JP5019057B2 - Solder flux and cream solder - Google Patents

Solder flux and cream solder Download PDF

Info

Publication number
JP5019057B2
JP5019057B2 JP2008020612A JP2008020612A JP5019057B2 JP 5019057 B2 JP5019057 B2 JP 5019057B2 JP 2008020612 A JP2008020612 A JP 2008020612A JP 2008020612 A JP2008020612 A JP 2008020612A JP 5019057 B2 JP5019057 B2 JP 5019057B2
Authority
JP
Japan
Prior art keywords
solder
rosin
flux
ppm
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008020612A
Other languages
Japanese (ja)
Other versions
JP2009178752A (en
Inventor
学 上垣内
巧 岡崎
大輔 島津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arakawa Chemical Industries Ltd
Original Assignee
Arakawa Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arakawa Chemical Industries Ltd filed Critical Arakawa Chemical Industries Ltd
Priority to JP2008020612A priority Critical patent/JP5019057B2/en
Priority to TW098100385A priority patent/TWI498184B/en
Priority to KR1020090002802A priority patent/KR101563954B1/en
Priority to CN2009100098846A priority patent/CN101497155B/en
Publication of JP2009178752A publication Critical patent/JP2009178752A/en
Application granted granted Critical
Publication of JP5019057B2 publication Critical patent/JP5019057B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Description

本発明は、はんだフラックスおよびクリームはんだに関する。 The present invention relates to solder flux and cream solder.

はんだフラックスには、ロジン系化合物が広く用いられている。ロジン系化合物としては、ロジンの他、ロジンの水素化物、不均化物、変性物等種々のものが知られている。しかしながら、ロジン系化合物を使用する場合には、選択する樹脂により、熱安定性や電気絶縁性等の性能が劣るということが問題となっていた。(例えば、特許文献1、第1頁左欄13行〜第2頁左上欄3行参照) A rosin compound is widely used for the solder flux. In addition to rosin, various rosin compounds such as rosin hydride, disproportionation product and modified product are known. However, in the case of using a rosin compound, there has been a problem that the resin to be selected has poor performance such as thermal stability and electrical insulation. (For example, see Patent Document 1, page 1, left column, line 13 to page 2, upper left column, line 3)

そこで、耐熱性、電気絶縁性を向上させる方法として、例えば、ロジン系樹脂として水素添加ロジン、不均化ロジンまたは重合ロジンの蒸留精製物を用いるという方法が提案されている(特許文献1参照)。本方法により、電気絶縁性をある程度向上させることができるものの、はんだボールに関してまだ、十分とはいえなかった。 Therefore, as a method for improving heat resistance and electrical insulation, for example, a method of using a distilled and purified product of hydrogenated rosin, disproportionated rosin or polymerized rosin as a rosin resin has been proposed (see Patent Document 1). . Although the electrical insulation can be improved to some extent by this method, the solder ball has not yet been sufficient.

ところで、近年、はんだは、クリームはんだという形で利用されるようになるにつれ、はんだボールの抑制やフラックスの色調の向上が求められるようになってきた。これらの課題を解決する方法として、レボピマル酸とアクリル酸のディールスアルダー反応によって得られる反応生成物を利用する方法が提案されている(特許文献2参照)。当該方法によれば、たしかに色調が良好ではんだボールの発生を抑制し、かつ、はんだ付け性が良好なクリームはんだを得ることができたが、得られたクリームはんだの電気絶縁性およびリフロー後の残渣の色調がまだ十分とは言えなかった。 By the way, in recent years, as solder is used in the form of cream solder, suppression of solder balls and improvement in color tone of flux have been demanded. As a method for solving these problems, a method using a reaction product obtained by Diels-Alder reaction of levopimaric acid and acrylic acid has been proposed (see Patent Document 2). According to the method, it was possible to obtain a cream solder having a good color tone, suppressing the generation of solder balls, and having good solderability. The color of the residue was still not sufficient.

特開昭59−159298号公報JP 59-159298 A 特開平6−39584号公報JP-A-6-39584

本発明は、電気絶縁性が良好で、はんだボールが少なく、リフロー後の残渣の色調が良好で、かつはんだ付け性が良好なはんだフラックスを提供することを目的とする。 An object of the present invention is to provide a solder flux having good electrical insulation, few solder balls, good color tone of a residue after reflow, and good solderability.

本発明者は、鋭意検討した結果、はんだフラックスに用いる樹脂の電気伝導度を低減させることにより電気絶縁性を向上させることができ、特定のロジン誘導体を用いることで、前記課題を解決できることを見出し、本発明を完成させた。 As a result of intensive studies, the present inventors have found that the electrical insulation can be improved by reducing the electrical conductivity of the resin used for the solder flux, and that the above problem can be solved by using a specific rosin derivative. The present invention has been completed.

すなわち、本発明は、α,β−不飽和カルボン酸(a)とロジン類(b)との付加反応物を水素化させて得られる金属含有量が50ppm以下でかつ20重量%エタノール溶液とした際の電気伝導度が1.0μS/cm以下であるロジン誘導体(A)を含有するはんだフラックス;粉末はんだおよび当該はんだフラックスを含有するクリームはんだに関する。 That is, the present invention provides a 20 wt% ethanol solution having a metal content of 50 ppm or less obtained by hydrogenating an addition reaction product of an α, β-unsaturated carboxylic acid (a) and a rosin (b). The present invention relates to a solder flux containing a rosin derivative (A) having an electrical conductivity of 1.0 μS / cm or less; powder solder and cream solder containing the solder flux.

本発明によれば、電気絶縁性が良好で、はんだボールの発生が少なく、リフロー後の残渣の色調が良好で、かつはんだ付け性が良好なはんだフラックス、特にクリームはんだに適した樹脂を提供することができる。また、本発明のはんだフラックスは、耐熱性に優れ、色調も良好である。   According to the present invention, there is provided a resin suitable for solder flux, particularly cream solder, which has good electrical insulation, less solder balls, good color tone of residue after reflow, and good solderability. be able to. In addition, the solder flux of the present invention has excellent heat resistance and good color tone.

本発明のフラックスは、α,β−不飽和カルボン酸(a)(以下、(a)成分という)およびロジン類(b)(以下、(b)成分という)の付加反応物を水素化させて得られる金属含有量が50ppm程度以下でかつ20重量%エタノール溶液とした際の電気伝導度が1.0μS/cm程度以下であるロジン誘導体(A)(以下、(A)成分という)を含有することを特徴とする。 The flux of the present invention hydrogenates an addition reaction product of α, β-unsaturated carboxylic acid (a) (hereinafter referred to as component (a)) and rosin (b) (hereinafter referred to as component (b)). Contains a rosin derivative (A) (hereinafter referred to as component (A)) having an electric conductivity of about 1.0 μS / cm or less when the obtained metal content is about 50 ppm or less and a 20 wt% ethanol solution is used. It is characterized by that.

(A)成分中に含まれる金属の含有量が50ppmを超える場合には、電気伝導度が1.0μS/cm以上となり、電気絶縁性が低くなるため好ましくない。なお、本発明において金属とは、17族、18族元素、水素、ホウ素、炭素、窒素、酸素、ケイ素、リン、硫黄、セレン以外の元素のことを言う。また、(A)成分をエタノールに溶解させて20重量%とした樹脂溶液の電気伝導度は、はんだとして用いる際の電気絶縁性に該当するものであり、当該値が高値になるということははんだフラックスの電気絶縁性を悪化させることになる。なお、金属の含有量は、波長分散型蛍光X線分析装置ZSX100e(理学電気(株)製)を用いて決定した値であり、20重量%エタノール溶液とした際の電気伝導度は、CONDUCTIVITY METER((株)堀場製作所製)により決定した値である。   When the content of the metal contained in the component (A) exceeds 50 ppm, the electric conductivity is 1.0 μS / cm or more, which is not preferable because the electric insulation is lowered. In addition, in this invention, a metal means elements other than a 17 group 18 element, hydrogen, boron, carbon, nitrogen, oxygen, silicon, phosphorus, sulfur, and selenium. In addition, the electrical conductivity of the resin solution in which the component (A) is dissolved in ethanol to 20% by weight corresponds to the electrical insulation when used as a solder. This will deteriorate the electrical insulation of the flux. The metal content is a value determined using a wavelength dispersive X-ray fluorescence analyzer ZSX100e (manufactured by Rigaku Denki Co., Ltd.), and the electrical conductivity when a 20 wt% ethanol solution is used is CONDUCTIVITY METER. It is a value determined by (manufactured by Horiba, Ltd.).

また、(A)成分中に含まれる第1族元素および第17族元素の含有量は、20ppm程度以下とすることが、電気伝導度を低くすることができるため好ましく、10ppm以下とすることが特に好ましい。 In addition, the content of the Group 1 element and the Group 17 element contained in the component (A) is preferably about 20 ppm or less because the electrical conductivity can be lowered, and is preferably 10 ppm or less. Particularly preferred.

(A)成分の製造に用いる(a)成分としては、特に限定されず、公知のものを使用することができる。具体的には、例えば、(メタ)アクリル酸、(無水)マレイン酸、フマル酸、(無水)シトラコン酸、(無水)イタコン酸等が挙げられる。これらのなかでは、アクリル酸を用いた場合、樹脂色調および脆性がより良好となるため好ましい。 (A) As a component used for manufacture of a component, it does not specifically limit, A well-known thing can be used. Specific examples include (meth) acrylic acid, (anhydrous) maleic acid, fumaric acid, (anhydrous) citraconic acid, (anhydrous) itaconic acid and the like. Among these, the use of acrylic acid is preferable because the resin color tone and brittleness become better.

(A)成分の製造に用いられる(b)成分としては、特に限定されず、公知のものを用いることができる。具体的には、ガムロジン、ウッドロジン、トール油ロジン等の原料ロジンなどが挙げられる。なお、(b)成分は、精製をしておくことで、金属を除去することができ、さらに樹脂色調の向上ができるため好ましい。精製方法としては特に限定されないが、具体的には、例えば、蒸留、再結晶、抽出等が挙げられる。蒸留による場合は、通常は温度200〜300℃、圧力130〜1300Paの範囲から蒸留時間を考慮して適宜選択される。再結晶の場合は、例えば、未精製の(b)成分を良溶媒に溶解し、ついで溶媒を留去して濃厚な溶液となし、この溶液に貧溶媒を添加することにより行なうことができる。良溶媒としてはベンゼン、トルエン、キシレン、クロロホルム、炭素数1〜3の低級アルコール、アセトン等のケトン類、酢酸エチル等の酢酸エステル類等が挙げられ、貧溶媒としてはn−ヘキサン、n−ヘプタン、シクロヘキサン、イソオクタン等が挙げられる。更に前記精製は未精製の(b)成分を、アルカリ水を用いてアルカリ水溶液となし、生じた不溶性の不ケン化物を有機溶媒により抽出したのち水層を中和してもよい。 (B) Component (b) used for manufacture of a component is not specifically limited, A well-known thing can be used. Specific examples include raw material rosins such as gum rosin, wood rosin, and tall oil rosin. The component (b) is preferable because the metal can be removed and the resin color tone can be further improved by refining. Although it does not specifically limit as a purification method, Specifically, distillation, recrystallization, extraction etc. are mentioned, for example. In the case of distillation, it is usually selected appropriately in consideration of the distillation time from a temperature range of 200 to 300 ° C. and a pressure of 130 to 1300 Pa. The recrystallization can be carried out, for example, by dissolving the unpurified component (b) in a good solvent, then distilling off the solvent to form a concentrated solution, and adding a poor solvent to this solution. Examples of good solvents include benzene, toluene, xylene, chloroform, lower alcohols having 1 to 3 carbon atoms, ketones such as acetone, and acetates such as ethyl acetate. Examples of poor solvents include n-hexane and n-heptane. , Cyclohexane, isooctane and the like. Further, in the purification, the unpurified component (b) may be made into an alkaline aqueous solution using alkaline water, and the resulting insoluble unsaponified product may be extracted with an organic solvent, and then the aqueous layer may be neutralized.

(a)成分と(b)成分の反応は、公知の方法で行なうことができる。具体的には、例えば、(a)成分および(b)成分を混合し、150〜300℃程度で、0.5〜24時間程度加熱することにより行なう。(a)成分と(b)成分の使用量は特に限定されないが、通常、(b)成分1モル部に対して、(a)成分を1モル部程度以下、好ましくは0.05〜0.75モル部、特に好ましくは0.10〜0.70モル部反応させる。なお、ロジン誘導体のα,β−不飽和カルボン酸による変性率は、30〜70%程度とすることにより、高酸価となることから活性が高くなるため好ましい。70%を超えると、樹脂の脆性が大きくなる傾向がある。なお、変性率は、ゲルパーメーションクロマトグラフィー分析により得られるロジンに基づくピーク面積とα,β−不飽和カルボン酸変性ロジンのピーク面積値から計算した値である。 The reaction between the component (a) and the component (b) can be performed by a known method. Specifically, for example, the components (a) and (b) are mixed and heated at about 150 to 300 ° C. for about 0.5 to 24 hours. Although the usage-amount of (a) component and (b) component is not specifically limited, Usually, (a) component is about 1 mol part or less with respect to 1 mol part of (b) component, Preferably it is 0.05-0. 75 mol parts, particularly preferably 0.10 to 0.70 mol parts are reacted. The modification rate of the rosin derivative with the α, β-unsaturated carboxylic acid is preferably about 30 to 70% because the activity becomes high because the acid value becomes high. If it exceeds 70%, the brittleness of the resin tends to increase. The modification rate is a value calculated from the peak area based on rosin obtained by gel permeation chromatography analysis and the peak area value of the α, β-unsaturated carboxylic acid-modified rosin.

本発明で用いられる(A)成分は、このようにして得られたα,β−不飽和カルボン酸変性ロジンを水素化することにより得られる。水素化は、特に限定されず、公知の方法を採用することができる。具体的には、例えば、水素化触媒の存在下、通常1〜25MPa、好ましくは5〜20MPaの水素加圧下で、0.5〜7時間程度、好ましくは1〜5時間、α,β−不飽和カルボン酸変性ロジンを加熱することにより行なう。水素化触媒としては、パラジウムカーボン、ロジウムカーボン、ルテニウムカーボン、白金カーボンなどの担持触媒、ニッケル、白金等の金属粉末、ヨウ素、ヨウ化鉄等のヨウ化物等、各種公知のものを使用することができる。該触媒の使用量は、α,β−不飽和カルボン酸変性ロジン100重量部に対して、通常0.01〜5重量部程度、好ましくは0.01〜3.0重量部である。また、水素化温度は100〜300℃程度、好ましくは150〜290℃である。水素化は水素化率が、30〜60%程度となるようにすることが樹脂色調および熱安定性が良好かつ結晶性の低い樹脂を得られる点で好ましい。なお、水素化率は、ガスクロマトグラフィーGC−14A((株)島津製作所製)により決定した値である。 The component (A) used in the present invention can be obtained by hydrogenating the α, β-unsaturated carboxylic acid-modified rosin thus obtained. Hydrogenation is not specifically limited, A well-known method is employable. Specifically, for example, in the presence of a hydrogenation catalyst, usually under a pressure of hydrogen of 1 to 25 MPa, preferably 5 to 20 MPa, about 0.5 to 7 hours, preferably 1 to 5 hours, α, β-depleted. This is carried out by heating a saturated carboxylic acid-modified rosin. As the hydrogenation catalyst, various known catalysts such as supported catalysts such as palladium carbon, rhodium carbon, ruthenium carbon and platinum carbon, metal powders such as nickel and platinum, and iodides such as iodine and iron iodide may be used. it can. The amount of the catalyst used is usually about 0.01 to 5 parts by weight, preferably 0.01 to 3.0 parts by weight with respect to 100 parts by weight of the α, β-unsaturated carboxylic acid-modified rosin. The hydrogenation temperature is about 100 to 300 ° C, preferably 150 to 290 ° C. Hydrogenation is preferably performed so that the hydrogenation rate is about 30 to 60% in order to obtain a resin having good resin color tone and thermal stability and low crystallinity. The hydrogenation rate is a value determined by gas chromatography GC-14A (manufactured by Shimadzu Corporation).

このようにして得られた水素化α,β−不飽和カルボン酸変性ロジンには、水素化時に用いた触媒や触媒由来の金属等(特に第1族、第17族元素の金属)が残存する傾向があるために、必要に応じて更に精製することが好ましい。精製は、蒸留、再結晶、抽出等の方法で行なえばよい。このようにして得られた(A)成分は、金属含有量が50ppm以下であり、20重量%エタノール溶液とした際の電気伝導度が1.0μS/cm以下である。また、(A)成分の色調は、通常、ガードナーカラー2以下である。なお、本発明において色調(ガードナーカラー)は、対象となる樹脂10gを試験管にとり、窒素気流下、加熱溶融させたものをキシダ化学(株)製ガードナー色数標準液と比色することにより決定した値である。(以下、ガードナーカラーは本方法により測定した値である。)   In the hydrogenated α, β-unsaturated carboxylic acid-modified rosin thus obtained, the catalyst used during the hydrogenation, the metal derived from the catalyst, etc. (particularly, metals of Group 1 and Group 17 elements) remain. Since there exists a tendency, it is preferable to refine | purify further as needed. Purification may be performed by a method such as distillation, recrystallization, extraction or the like. The component (A) thus obtained has a metal content of 50 ppm or less and an electric conductivity of 1.0 μS / cm or less when made into a 20 wt% ethanol solution. Further, the color tone of the component (A) is usually Gardner color 2 or less. In the present invention, the color tone (Gardner color) is determined by taking 10 g of the target resin in a test tube and heating and melting it under a nitrogen stream and color-matching with Gardner color number standard solution manufactured by Kishida Chemical Co., Ltd. It is the value. (Hereinafter, the Gardner color is a value measured by this method.)

本発明のはんだフラックスは、(A)成分を含有することを特徴とするものであるが、さらに、公知の(A)成分以外のフラックスベース樹脂、チキソ剤、活性剤、これら以外の添加剤等を含有してもよい。   The solder flux of the present invention is characterized by containing the component (A), and further, a flux base resin other than the known component (A), a thixotropic agent, an activator, additives other than these, etc. It may contain.

フラックスベース樹脂としては、(A)成分と異なるものであれば、特に限定されず公知のものを使用することができる。具体的には、例えば、ガムロジン、重合ロジン、水添ロジン、不均化ロジン、その他各種ロジン誘導体や、ポリエステル樹脂、フェノキシ樹脂、テルペン樹脂、ポリアミド樹脂等の合成樹脂などがあげられる。なお、(A)成分以外のフラックスベースを併用する場合には、例えば、前述した精製等をして金属量を低減させることが好ましい。   As a flux base resin, if it is different from (A) component, it will not specifically limit and a well-known thing can be used. Specific examples include gum rosin, polymerized rosin, hydrogenated rosin, disproportionated rosin, various other rosin derivatives, and synthetic resins such as polyester resin, phenoxy resin, terpene resin, and polyamide resin. In addition, when using flux bases other than (A) component together, it is preferable to reduce the amount of metals, for example by performing the refinement | purification etc. which were mentioned above.

溶剤としては、特に限定されず公知のものを使用することができる。具体的には、エタノール、n−プロパノール、イソプロパノール、イソブタノール等のアルコール類、ブチルカルビトール、ヘキシルカルビトール等のグリコールエーテル類、酢酸イソプロピル、プロピオン酸エチル、安息香酸ブチル、アジピン酸ジエチル等のエステル類、n−ヘキサン、ドデカン、テトラデセン等の炭化水素類等があげられる。 The solvent is not particularly limited, and known solvents can be used. Specifically, alcohols such as ethanol, n-propanol, isopropanol and isobutanol, glycol ethers such as butyl carbitol and hexyl carbitol, esters such as isopropyl acetate, ethyl propionate, butyl benzoate and diethyl adipate And hydrocarbons such as n-hexane, dodecane and tetradecene.

チキソ剤としては、特に限定されず公知のものを使用することができる。具体的には、例えば、硬化ひまし油、蜜ロウ、カルナバワックス、ステアリン酸アミド、ヒドロキシステアリン酸エチレンビスアミド等を使用することができる。 The thixotropic agent is not particularly limited, and known ones can be used. Specifically, for example, hardened castor oil, beeswax, carnauba wax, stearamide, hydroxystearic acid ethylene bisamide and the like can be used.

活性剤としては、特に限定されず公知のものを使用することができる。具体的には、例えば、アミンのハロゲン化水素酸塩、有機酸類や有機アミン類等が挙げられる。 As an activator, it does not specifically limit but a well-known thing can be used. Specific examples include amine hydrohalides, organic acids, and organic amines.

添加剤としては、通常フラックスの調製に用いることができるものであれば特に限定されず公知のものが用いることができる。酸化防止剤、防黴剤、艶消し剤等の添加剤を含有することができる。 The additive is not particularly limited as long as it can be usually used for the preparation of a flux, and known additives can be used. Additives such as antioxidants, antifungal agents and matting agents can be contained.

フラックスベース樹脂、溶剤、チキソ剤、活性剤および特定の化合物を含有するフラックスの各成分の組成比は、各種用途に応じて適宜決定すれば良いが、通常、フラックスベース樹脂30〜75重量部程度、溶剤20〜60重量部程度、チキソ剤1〜10重量部程度、活性剤0.1〜10部程度である。本発明のフラックスは、これら各成分を公知の方法で混合することにより得られる。得られたフラックス成分は、200℃での溶融粘度が、50〜500mPa・s程度である。 The composition ratio of each component of the flux containing the flux base resin, the solvent, the thixotropic agent, the activator and the specific compound may be appropriately determined according to various uses, but usually about 30 to 75 parts by weight of the flux base resin. The solvent is about 20 to 60 parts by weight, the thixotropic agent is about 1 to 10 parts by weight, and the activator is about 0.1 to 10 parts. The flux of the present invention can be obtained by mixing these components by a known method. The obtained flux component has a melt viscosity at 200 ° C. of about 50 to 500 mPa · s.

本発明のクリームはんだは、はんだ粉末および前記はんだ用フラックスを含有するものである。 The cream solder of the present invention contains solder powder and the soldering flux.

本発明で用いられるはんだ粉末の合金組成は特に限定されず、各種公知のものを使用できる。たとえば、はんだ合金としては、従来公知の錫−鉛合金や、鉛フリーはんだとして開発されている錫−銀合金、錫−亜鉛系合金等のはんだ合金組成;さらには前記はんだ合金に、銅、ビスマス、インジウム、アンチモン等を添加したもの等を使用できる。各成分の使用量は特に限定されないが、通常、はんだ粉末80〜95重量部程度に対してはんだフラックスが20〜5重量部程度である。 The alloy composition of the solder powder used in the present invention is not particularly limited, and various known ones can be used. For example, as a solder alloy, a conventionally known tin-lead alloy, a solder alloy composition such as a tin-silver alloy and a tin-zinc-based alloy that have been developed as a lead-free solder; , Indium, antimony and the like can be used. Although the usage-amount of each component is not specifically limited, Usually, a solder flux is about 20-5 weight part with respect to 80-95 weight part of solder powder.

以下、実施例および比較例を挙げて本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated further more concretely, this invention is not limited to these Examples.

実施例1
(1)精製
酸価170、軟化点(JIS K5902に規定する環球法により測定した。以下、軟化点は、同様の方法で測定した値である。)74℃、色調ガードナー6の未精製中国産ガムロジン1,000gとキシレン500gをコルベンに入れ、加熱溶解させた後キシレンを350g程度留去し、次いでシクロヘキサン350gを入れ、室温まで冷却した。冷却により結晶約100gが生じたところで上澄み液を別のコルベンに移し、さらに室温で再結晶させた後、上澄み液は取り除き、シクロヘキサン100gで洗浄後、溶媒を留去し、精製ロジン700gを得た。
(2)付加反応
反応容器に前記(1)で得られた精製ロジン660gとアクリル酸100gを仕込み、窒素気流下に攪拌しながら220℃で4時間反応を行い、ついで減圧下に未反応物を除去することにより付加反応生成物720gを得た。
(3)水素化反応
前記(2)で得られた付加反応生成物500gと5%パラジウムカーボン(含水率50%)5.0gを1リットル回転式オートクレーブに仕込み、系内の酸素を除去した後、系内を水素にて10MPaに加圧し220℃まで昇温し、同温度で3時間水素化反応を行い、無色ロジン誘導体460gを得た。
(4)精製
前記(3)で得られた無色ロジン誘導体400gとキシレン200gをコルベンに入れ、加熱溶解させた後、キシレンを150g留去し、次いでシクロヘキサン150gを入れ、室温まで冷却した。冷却により結晶約40gが生じたところで上澄み液を別のコルベンに移し、さらに室温で再結晶させた後、上澄み液は取り除き、シクロヘキサン20gで洗浄後、溶媒を留去し、酸価245.8、軟化点132.0℃、色調(ガードナー1以下)の精製無色ロジン誘導体280gを得た。精製無色ロジン誘導体中の金属及び第17族元素含有量はいずれも0ppmであった。
Example 1
(1) Purification Acid value 170, softening point (measured by the ring and ball method specified in JIS K5902; hereinafter, softening point is a value measured by the same method) 74 ° C., unrefined Chinese product of color tone Gardner 6 1,000 g of gum rosin and 500 g of xylene were placed in Kolben and dissolved by heating. After that, about 350 g of xylene was distilled off, and then 350 g of cyclohexane was added and cooled to room temperature. When about 100 g of crystals were formed by cooling, the supernatant was transferred to another Kolben and recrystallized at room temperature. Then, the supernatant was removed, washed with 100 g of cyclohexane, and the solvent was distilled off to obtain 700 g of purified rosin. .
(2) Addition reaction The reaction vessel was charged with 660 g of the purified rosin obtained in (1) above and 100 g of acrylic acid, and reacted for 4 hours at 220 ° C. with stirring under a nitrogen stream. Removal gave 720 g of addition reaction product.
(3) Hydrogenation reaction After adding 500 g of the addition reaction product obtained in the above (2) and 5.0 g of 5% palladium carbon (water content 50%) to a 1 liter rotary autoclave and removing oxygen in the system The system was pressurized to 10 MPa with hydrogen, heated to 220 ° C., and subjected to hydrogenation reaction at the same temperature for 3 hours to obtain 460 g of a colorless rosin derivative.
(4) Purification After adding 400 g of the colorless rosin derivative obtained in (3) and 200 g of xylene in Kolben and dissolving them by heating, 150 g of xylene was distilled off, and then 150 g of cyclohexane was added and cooled to room temperature. When about 40 g of crystals were formed by cooling, the supernatant was transferred to another Kolben and recrystallized at room temperature. Then, the supernatant was removed, washed with 20 g of cyclohexane, the solvent was distilled off, the acid value was 245.8, 280 g of a purified colorless rosin derivative having a softening point of 132.0 ° C. and a color tone (Gardner 1 or less) was obtained. Both the metal and group 17 element content in the purified colorless rosin derivative were 0 ppm.

実施例2
実施例1で得られた精製無色ロジン誘導体100g、1000ppm塩化ナトリウム水溶液1gをコルベンにいれ、再融解させ、酸価245.8、軟化点132.0℃、色調(ガードナー1)の精製無色ロジン誘導体を得た。精製無色ロジン誘導体中の金属含有量は10ppm、第1族および第17族元素含有量は20ppmであった。
Example 2
100 g of the purified colorless rosin derivative obtained in Example 1 and 1 g of a 1000 ppm aqueous sodium chloride solution were placed in Kolben, remelted, and the purified colorless rosin derivative having an acid value of 245.8, a softening point of 132.0 ° C., and a color tone (Gardner 1) Got. The metal content in the purified colorless rosin derivative was 10 ppm, and the group 1 and group 17 element contents were 20 ppm.

実施例3
実施例1で得られた精製無色ロジン誘導体100g、酸化鉄(Fe)7.2mgをコルベンにいれ、再融解させ、酸価245.8、軟化点132.0℃、色調(ガードナー1)の精製無色ロジン誘導体を得た。精製無色ロジン誘導体中の金属含有量は50ppm、第1族および第17族元素含有量は0ppmであった。
Example 3
100 g of the purified colorless rosin derivative obtained in Example 1 and 7.2 mg of iron oxide (Fe 2 O 3 ) were placed in Kolben, remelted, acid value 245.8, softening point 132.0 ° C., color tone (Gardner 1 To obtain a purified colorless rosin derivative. The metal content in the purified colorless rosin derivative was 50 ppm, and the group 1 and group 17 element contents were 0 ppm.

比較例1
実施例2において使用する1000ppm塩化ナトリウム水溶液を1.5gに変えた以外は同様の操作を行い、酸価245.8、軟化点132.0℃、色調(ガードナー1)の精製無色ロジン誘導体を得た。精製無色ロジン誘導体中の金属含有量は15ppm、第1族および第17族元素含有量は30ppmであった。
Comparative Example 1
A purified colorless rosin derivative having an acid value of 245.8, a softening point of 132.0 ° C., and a color tone (Gardner 1) was obtained except that the 1000 ppm sodium chloride aqueous solution used in Example 2 was changed to 1.5 g. It was. The metal content in the purified colorless rosin derivative was 15 ppm, and the group 1 and group 17 element contents were 30 ppm.

比較例2
実施例3において、使用する酸化鉄の量を8.6mgに変えた以外は同様の操作を行い、酸価245.8、軟化点132.0℃、色調(ガードナー1)の精製無色ロジン誘導体を得た。精製無色ロジン誘導体中の金属含有量は60ppm、第1族および第17族元素含有量は0ppmであった。
Comparative Example 2
In Example 3, the same operation was performed except that the amount of iron oxide used was changed to 8.6 mg, and a purified colorless rosin derivative having an acid value of 245.8, a softening point of 132.0 ° C., and a color tone (Gardner 1) was obtained. Obtained. The metal content in the purified colorless rosin derivative was 60 ppm, and the group 1 and group 17 element contents were 0 ppm.

比較例3
実施例1において(1)(4)の精製操作を除いた以外は同様の操作を行い、酸価247.6、軟化点130.5℃、色調(ガードナー3)のロジン誘導体を得た。精製無色ロジン誘導体中の金属含有量は54ppm、第1族および第17族元素含有量は24ppmであった。
Comparative Example 3
A rosin derivative having an acid value of 247.6, a softening point of 130.5 ° C., and a color tone (Gardner 3) was obtained except that the purification operations (1) and (4) were omitted in Example 1. The metal content in the purified colorless rosin derivative was 54 ppm, and the group 1 and group 17 element contents were 24 ppm.

性能評価
上記で得られた各種のロジン誘導体について、下記方法によりそれぞれ性能評価を行った。なお、比較例4では、酸価168.0、軟化点76.0℃、色調(ガードナー7+)の未精製ロジンを用いた。未精製ロジン中の金属含有量は92ppm、第1族および第17族元素含有量は24ppmであった。
Performance Evaluation The various rosin derivatives obtained above were evaluated for performance by the following methods. In Comparative Example 4, unpurified rosin having an acid value of 168.0, a softening point of 76.0 ° C., and a color tone (Gardner 7+) was used. The metal content in the unpurified rosin was 92 ppm, and the group 1 and group 17 element contents were 24 ppm.

(加熱安定性)内径1.5cm、高さ15cmの試験管にサンプル10gを入れ、蓋をしないまま180℃の循風乾燥機に静置して経時による色調(ガードナー)の変化を観察した。結果は表1に示す。 (Heating stability) 10 g of a sample was put in a test tube having an inner diameter of 1.5 cm and a height of 15 cm, and left to stand in a circulating dryer at 180 ° C. without a lid, and the change in color tone (Gardner) with time was observed. The results are shown in Table 1.

(電気伝導度)
220mlマヨネーズ瓶にサンプル20g、エタノール80gを入れ、振とう攪拌により溶解させた。溶解させた20重量%エタノール溶液をCONDUCTIVITY METER((株)堀場製作所製)により電気伝導度を測定した。結果は表1に示す。
(Electrical conductivity)
20 g of sample and 80 g of ethanol were placed in a 220 ml mayonnaise bottle and dissolved by shaking and stirring. The electrical conductivity of the dissolved 20 wt% ethanol solution was measured by CONDUCTIVITY METER (manufactured by Horiba, Ltd.). The results are shown in Table 1.

(電気絶縁性)
はんだフラックスとした場合の電気絶縁性を上記電気伝導度から評価した。結果を表1に示す。
◎:電気伝導度が0.5μS/cm以下
○:電気伝導度が0.5μS/cmを超えて1.0μS/cm以下
×:電気伝導度が1.0μS/cmを超える
(Electrical insulation)
The electrical insulation in the case of solder flux was evaluated from the above electrical conductivity. The results are shown in Table 1.
A: Electrical conductivity of 0.5 μS / cm or less B: Electrical conductivity of more than 0.5 μS / cm to 1.0 μS / cm or less X: Electric conductivity of more than 1.0 μS / cm

(フラックスの調製)
実施例1〜3、比較例1〜4を50部、ジエチレングリコールモノヘキシルエーテル45部、12−ヒドロキシステアリン酸エチレンビスアミド5部を容器に仕込み、加熱溶解させた後、冷却してフラックス組成物を調製した。
(Flux preparation)
50 parts of Examples 1 to 3 and Comparative Examples 1 to 4, 45 parts of diethylene glycol monohexyl ether, and 5 parts of 12-hydroxystearic acid ethylene bisamide were charged in a container, dissolved by heating, and then cooled to prepare a flux composition. did.

(クリームはんだの調製)
はんだ粉末(5〜20μm平均粒径を持つSn−Ag−Cu合金、96.5重量%/3重量%/0.5重量%)90部および上記で調製したフラックス10部とを攪拌してクリームはんだ組成物を調製した。
(Preparation of cream solder)
Cream by stirring 90 parts of solder powder (Sn—Ag—Cu alloy having an average particle diameter of 5 to 20 μm, 96.5 wt% / 3 wt% / 0.5 wt%) and 10 parts of the flux prepared above A solder composition was prepared.

(クリームはんだの評価)
(はんだ付け性)
「JIS Z3284附属書10 ぬれ効力およびディウェッティング試験」に準拠し、評価した。結果を表1に示す。
判定基準は広がり度合いの区分に従う。
良好(○):広がり度合いの区分1または2
不良(×):広がり度合いの区分3または4
(Evaluation of cream solder)
(Solderability)
Evaluation was performed in accordance with “JIS Z3284 Annex 10 Wetting Efficacy and Dewetting Test”. The results are shown in Table 1.
Judgment criteria follow the extent of spread.
Good (O): Spread degree category 1 or 2
Defect (x): Spreading degree category 3 or 4

(はんだボール)
「JIS Z3284 附属書11 ソルダーボール試験」に準拠し、評価した。
判定基準は下記の区分に従う。
非常に良好(◎):はんだボールが5個未満
良好(○) :はんだボールが5個以上10個未満
不良(×) :はんだボールが10個以上
試験結果は表1に示す。
(Solder ball)
Evaluation was performed in accordance with “JIS Z3284 Annex 11 Solder Ball Test”.
Judgment criteria follow the following categories.
Very good (◎): Less than 5 solder balls are good (◯): 5 or more and less than 10 solder balls are defective (x): 10 or more solder balls The test results are shown in Table 1.

(リフロー後の残渣の色調)
はんだ付け性試験後の基板上の残渣の着色度合いを目視で評価した。結果を表1に示す。
○:無色透明
△:若干の着色あり
×:着色あり
(Color tone of residue after reflow)
The degree of coloring of the residue on the substrate after the solderability test was visually evaluated. The results are shown in Table 1.
○: Colorless and transparent Δ: Slightly colored ×: Colored

Figure 0005019057
Figure 0005019057

Claims (7)

α,β−不飽和カルボン酸(a)およびロジン類(b)の付加反応物を水素化させて得られる金属含有量が50ppm以下でかつ20重量%エタノール溶液とした際の電気伝導度が1.0μS/cm以下であるロジン誘導体(A)を含有するはんだフラックス。 The electric conductivity when the metal content obtained by hydrogenating the addition reaction product of α, β-unsaturated carboxylic acid (a) and rosin (b) is 50 ppm or less and a 20 wt% ethanol solution is 1 Solder flux containing rosin derivative (A) which is 0.0 μS / cm or less. ロジン誘導体(A)中に含まれる第1族元素および第17族元素の含有量が20ppm以下である請求項1に記載のはんだフラックス。 The solder flux according to claim 1, wherein the content of the Group 1 element and the Group 17 element contained in the rosin derivative (A) is 20 ppm or less. ロジン誘導体(A)のα,β−不飽和カルボン酸変性率が、30〜70%である請求項1または2に記載のはんだフラックス。 The solder flux according to claim 1 or 2, wherein the rosin derivative (A) has an α, β-unsaturated carboxylic acid modification rate of 30 to 70%. ロジン誘導体(A)の水素化率が、30〜60%である請求項1〜3のいずれかに記載のはんだフラックス。 The solder flux according to any one of claims 1 to 3, wherein the rosin derivative (A) has a hydrogenation rate of 30 to 60%. ロジン誘導体(A)の色調がガードナーカラー2以下である請求項1〜4のいずれかに記載のはんだフラックス。 The solder flux according to any one of claims 1 to 4, wherein the color tone of the rosin derivative (A) is Gardner color 2 or less. はんだ粉末および請求項1〜5のいずれかに記載のはんだフラックスを含有するクリームはんだ。 Cream solder containing solder powder and the solder flux according to any one of claims 1 to 5. はんだ粉末が鉛フリーはんだ粉末である請求項6に記載のクリームはんだ。
The cream solder according to claim 6, wherein the solder powder is a lead-free solder powder.
JP2008020612A 2008-01-31 2008-01-31 Solder flux and cream solder Active JP5019057B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2008020612A JP5019057B2 (en) 2008-01-31 2008-01-31 Solder flux and cream solder
TW098100385A TWI498184B (en) 2008-01-31 2009-01-07 Solder flux and solder paste
KR1020090002802A KR101563954B1 (en) 2008-01-31 2009-01-13 Solder flux and solder paste
CN2009100098846A CN101497155B (en) 2008-01-31 2009-01-23 Soldering flux and soldering paste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008020612A JP5019057B2 (en) 2008-01-31 2008-01-31 Solder flux and cream solder

Publications (2)

Publication Number Publication Date
JP2009178752A JP2009178752A (en) 2009-08-13
JP5019057B2 true JP5019057B2 (en) 2012-09-05

Family

ID=40944544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008020612A Active JP5019057B2 (en) 2008-01-31 2008-01-31 Solder flux and cream solder

Country Status (2)

Country Link
JP (1) JP5019057B2 (en)
CN (1) CN101497155B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105014253A (en) * 2014-04-30 2015-11-04 江苏博迁新材料有限公司 Lead-free tin solder paste and preparation method thereof
JP7371132B2 (en) 2019-02-22 2023-10-30 ウェルセンス,インコーポレイテッド pressure sensing mat

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI546150B (en) * 2010-03-30 2016-08-21 Arakawa Chem Ind Solder flux and solder composition
CN102528326B (en) * 2010-09-24 2015-07-22 荒川化学工业株式会社 Rosin-based flux for soldering and solder paste
CN102554511A (en) * 2011-12-22 2012-07-11 肇庆理士电源技术有限公司 Novel soldering flux
CN102513737A (en) * 2011-12-27 2012-06-27 四川长虹电器股份有限公司 Soldering flux and preparation method thereof
JP6120139B2 (en) * 2012-01-24 2017-04-26 荒川化学工業株式会社 Lead-free solder flux, lead-free solder paste and lead-free thread solder
JP6238007B2 (en) * 2013-03-02 2017-11-29 荒川化学工業株式会社 Flux for lead-free solder for clearance resist and lead-free solder paste for clearance resist
CN103447716A (en) * 2013-08-23 2013-12-18 吴江龙硕金属制品有限公司 Halogen-free soldering flux and preparation method thereof
CN104174315B (en) * 2014-05-05 2016-06-08 江苏博迁新材料有限公司 Improve production technology and the mixing and emulsifying device thereof of solder(ing) paste scaling powder stability
CN117340480B (en) * 2023-10-26 2024-07-02 云南锡业新材料有限公司 Soldering flux for soldering paste and preparation method thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2666651B2 (en) * 1991-03-29 1997-10-22 荒川化学工業株式会社 Colorless rosin derivative and production method thereof
JP3787857B2 (en) * 1995-03-10 2006-06-21 タムラ化研株式会社 Circuit board soldering flux and circuit board
JP2003166007A (en) * 2001-03-28 2003-06-13 Tamura Kaken Co Ltd Method for manufacturing metal fine-particle, substance containing metal fine-particle, and soldering paste composition
JP2003338682A (en) * 2002-01-11 2003-11-28 Nec Infrontia Corp Soldering method and soldered body
US8404057B2 (en) * 2004-08-31 2013-03-26 Senju Metal Industry Co., Ltd. Soldering flux
TW200633810A (en) * 2004-12-28 2006-10-01 Arakawa Chem Ind Lead-free solder flux and solder paste
JP4609764B2 (en) * 2005-10-20 2011-01-12 荒川化学工業株式会社 Solder flux base resin, rosin solder flux, and solder paste
JP4697599B2 (en) * 2006-02-27 2011-06-08 荒川化学工業株式会社 Flux used for lead-free solder paste for precoat and lead-free solder paste for precoat
CN100408257C (en) * 2006-04-21 2008-08-06 北京工业大学 Water-soluble soldering flux dedicated for lead-free solder

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105014253A (en) * 2014-04-30 2015-11-04 江苏博迁新材料有限公司 Lead-free tin solder paste and preparation method thereof
JP7371132B2 (en) 2019-02-22 2023-10-30 ウェルセンス,インコーポレイテッド pressure sensing mat

Also Published As

Publication number Publication date
CN101497155A (en) 2009-08-05
CN101497155B (en) 2012-09-05
JP2009178752A (en) 2009-08-13

Similar Documents

Publication Publication Date Title
JP5019057B2 (en) Solder flux and cream solder
CN102528326B (en) Rosin-based flux for soldering and solder paste
CN102369083B (en) Flux composition for lead-free solder, and lead-free solder composition
JP6204007B2 (en) Flux composition, solder paste composition, and printed wiring board
JP6566248B2 (en) Flux for lead-free solder for clearance resist and lead-free solder paste for clearance resist
TWI579097B (en) Solder flux base resin, welding flux and solder paste
JP5490959B1 (en) Rosin for solder flux and solder flux using the same
JP6160861B2 (en) Solder flux base resin, solder flux and solder paste
JP2022037999A (en) Rosin base resin for lead-free solder flux, lead-free solder flux, and lead-free solder paste
JP5891960B2 (en) Dip soldering flux
CN106634612A (en) Rosin used for scaling powder as well as preparation method and application
JP5776877B2 (en) Solder flux and solder composition
JP5067565B2 (en) Solder flux and cream solder
TWI498184B (en) Solder flux and solder paste
JP6566272B2 (en) Flux for lead-free solder paste, lead-free solder paste
JP2021016871A (en) Rosin base resin for lead-free solder flux, lead-free solder flux, and lead-free solder paste

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120516

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120529

R150 Certificate of patent or registration of utility model

Ref document number: 5019057

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250