JP2012083121A - Particulate substance detection sensor - Google Patents
Particulate substance detection sensor Download PDFInfo
- Publication number
- JP2012083121A JP2012083121A JP2010227237A JP2010227237A JP2012083121A JP 2012083121 A JP2012083121 A JP 2012083121A JP 2010227237 A JP2010227237 A JP 2010227237A JP 2010227237 A JP2010227237 A JP 2010227237A JP 2012083121 A JP2012083121 A JP 2012083121A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- heating element
- detection
- particulate matter
- resistance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
Abstract
Description
本発明は、例えば、車両用内燃機関の排気浄化システムに好適に利用されて、排出ガス中に存在する粒子状物質の量を検出する、電気抵抗式の粒子状物質検出センサに関する。 The present invention relates to an electric resistance type particulate matter detection sensor that is suitably used in, for example, an exhaust purification system of an internal combustion engine for a vehicle and detects the amount of particulate matter present in exhaust gas.
自動車用ディーゼルエンジン等において、燃焼排気中に含まれる環境汚染物質、特に煤粒子(Soot)及び可溶性有機成分(SOF)を主体とする粒子状物質(Particulate Matter;以下、適宜PMと称する)を捕集するために、排気通路にディーゼルパティキュレートフィルタ(以下、適宜DPFと称する)を設置することが行われている。DPFは、耐熱性に優れる多孔質セラミックスからなり、多数の細孔を有する隔壁に燃焼排気を通過させてPMを捕捉する。 In automobile diesel engines and the like, environmental pollutants contained in combustion exhaust, particularly particulate matter (Particulate Matter; hereinafter referred to as PM) as appropriate, mainly composed of soot particles and soluble organic components (SOF) are captured. In order to collect, a diesel particulate filter (hereinafter referred to as DPF as appropriate) is installed in the exhaust passage. The DPF is made of porous ceramics having excellent heat resistance, and traps PM by allowing combustion exhaust gas to pass through partition walls having a large number of pores.
DPFは、PM捕集量が許容量を超えると、目詰まりが生じて圧力損失が増大したり、PMのすり抜けが増加したりする虞があり、定期的に再生処理をおこなって捕集能力を回復させている。
DPFの再生処理は、ヒータ加熱あるいはポスト噴射等により高温の燃焼排気をDPF内に導入し、PMを燃焼除去する。
また、一般的にDPFの再生時期は、PM捕集量の増加によりDPFの圧力損失が増大することを利用して決定しており、このため、DPFの上流及び下流の圧力差を検出する差圧センサが設置される。
If the amount of PM collected exceeds the allowable amount, DPF may cause clogging and increase pressure loss or increase PM slipping. It is recovering.
In the regeneration process of the DPF, high-temperature combustion exhaust gas is introduced into the DPF by heater heating or post injection, and PM is burned and removed.
In general, the regeneration timing of the DPF is determined by utilizing the fact that the pressure loss of the DPF increases due to the increase in the amount of collected PM. Therefore, the difference in detecting the pressure difference between the upstream and downstream of the DPF is detected. A pressure sensor is installed.
一方、燃焼排気中のPMを直接検出可能なPM検出センサが提案されている。このPM検出センサを、例えばDPFの下流に設置して、DPFをすり抜けるPM量を測定し、車載式故障診断装置(OBD;On Board Diagnosis)において、DPFの作動状態の監視、例えば亀裂や破損といった異常の検出に利用することができる。
あるいはPM検出センサを、DPFの上流に設置して、DPFに流入するPM量を測定し、差圧センサに代えてDPFの再生時期の判断に利用することも検討されている。
On the other hand, a PM detection sensor capable of directly detecting PM in combustion exhaust has been proposed. This PM detection sensor is installed downstream of the DPF, for example, measures the amount of PM that passes through the DPF, and monitors the operating state of the DPF, for example, cracks and breaks, in an onboard diagnosis (OBD). It can be used to detect abnormalities.
Alternatively, it has been studied to install a PM detection sensor upstream of the DPF, measure the amount of PM flowing into the DPF, and use it to determine the regeneration timing of the DPF instead of the differential pressure sensor.
このようなPM検出センサの一例として、特許文献1には、絶縁性を有する基板の表面に、一対の導電性電極を形成し、基板の裏面又は内部に発熱体を形成した電気抵抗式のスモークセンサが開示されている。
このスモークセンサは、スモーク(微粒炭素)が導電性を有することを利用したもので、検出部となる電極間に、スモークが堆積することで生じる電気抵抗の変化を検出している。
また、検出部に堆積するPMの量によって変化する静電容量の変化や素子のインピーダンスの変化を検出するものもある(例えば、特許文献2等参照。)。
センサ素子内部に設けられた発熱体は、センサ素子の検出部を所望の温度に加熱し、一定の温度で電極間抵抗を測定した後に、加熱温度を高くし付着したスモークを焼き切って検出能力を回復させている。
As an example of such a PM detection sensor,
This smoke sensor uses the fact that smoke (fine carbon) has electrical conductivity, and detects a change in electrical resistance caused by the deposition of smoke between electrodes serving as a detection unit.
In addition, there is a device that detects a change in electrostatic capacitance or a change in impedance of an element that changes depending on the amount of PM deposited on the detection unit (see, for example, Patent Document 2).
The heating element provided inside the sensor element heats the detection part of the sensor element to a desired temperature, measures the resistance between the electrodes at a certain temperature, then raises the heating temperature to burn off the attached smoke and detectability Is recovering.
一般に、特許文献1にあるような従来の電気抵抗式のPM検出センサでは、発熱体によりスモークを焼き切って再生をする際に発熱体の抵抗値に基づき温度制御している。
ところが、発熱体の抵抗値は、温度変化に対して線形に変化するが、温度変化に対する抵抗値変化の絶対値が小さく感度が鈍いのに加え、発熱体の初期抵抗値のバラツキや、検出回路における配線抵抗のバラツキ等の影響を受けやすく、温度制御の精度が低い。
さらに、PM検出センサに堆積したPMを加熱除去してセンサを再生すべく発熱体に通電を開始し、センサを加熱したときに一定時間経過すると、図16に示すように、PM検出信号に発振ノイズが検出される。
これは、本発明者等の鋭意試験により、発熱体の温度上昇に伴い、電気絶縁体として用いられているアルミナの絶縁抵抗が大きく低下し、検出電極間に導通経路が形成されるためであることが判明した。
このような絶縁抵抗の低下が起こると、再生が完了しPMが検出電極間に堆積していないにも拘わらず、検出電極間に導通が検出され、加熱再生処理が過剰に継続されたり、また、検出抵抗の検出時においても、発熱体へ供給される通電パルスがノイズとして検出電極に漏れ、検出出力の変動を引き起こしたりする虞がある。
In general, in a conventional electric resistance type PM detection sensor as disclosed in
However, although the resistance value of the heating element changes linearly with respect to the temperature change, the absolute value of the resistance value change with respect to the temperature change is small and the sensitivity is low, and variations in the initial resistance value of the heating element and the detection circuit Is susceptible to variations in wiring resistance, etc., and the temperature control accuracy is low.
Further, the heating element is energized to regenerate the sensor by heating and removing the PM accumulated on the PM detection sensor, and when a certain time elapses when the sensor is heated, the PM detection signal oscillates as shown in FIG. Noise is detected.
This is because, as a result of diligent tests by the present inventors, the insulation resistance of alumina used as an electrical insulator is greatly reduced as the temperature of the heating element rises, and a conduction path is formed between the detection electrodes. It has been found.
When such a decrease in insulation resistance occurs, conduction is detected between the detection electrodes even though regeneration is completed and PM is not deposited between the detection electrodes, and the heat regeneration process is continued excessively. Even when the detection resistor is detected, there is a possibility that the energization pulse supplied to the heating element leaks to the detection electrode as noise and causes fluctuation in detection output.
そこで本発明は、かかる実情に鑑み、内燃機関の燃焼排気等の被測定ガス中に含まれる粒子状物質の量の検出に用いられ、検出部に捕集、堆積した粒子状物質の量に応じて変化する電気的特性を検出する粒子状物質検出センサの再生制御時において、高い精度で加熱温度を検出し、これを利用して高い精度の温度制御を可能とした信頼性の高い粒子状物質検出センサを提供することを目的とする。 Therefore, in view of such circumstances, the present invention is used for detecting the amount of particulate matter contained in a gas to be measured such as combustion exhaust gas of an internal combustion engine, and according to the amount of particulate matter collected and deposited in the detection unit. Highly accurate particulate matter detection that enables high-precision temperature control by detecting the heating temperature at the time of regeneration control of particulate matter detection sensors that detect the changing electrical characteristics An object is to provide a detection sensor.
第1の発明では、被測定ガス中に含まれる粒子状物質の堆積する検出部と、該検出部との間に耐熱性絶縁基体を介して配設され通電により発熱する発熱体とを具備し、上記検出部に堆積する粒子状物質の量によって変化する電気的特性を検出して被測定ガス中に含まれる粒子状物質の量を検出するともに、上記発熱体への通電によって上記検出電極間に堆積した粒子状物質を加熱除去する粒子状物質検出センサであって、上記発熱体の加熱温度を検出する温度検出手段として、加熱に伴う上記耐熱性絶縁基体の絶縁抵抗の低下により、上記発熱体から上記検出電極へ漏れるリーク電流を検出するリーク電流検出手段を具備することを特徴とする(請求項1)。 According to a first aspect of the present invention, there is provided a detection unit on which particulate matter contained in a gas to be measured is deposited, and a heating element that is disposed between the detection unit via a heat-resistant insulating substrate and generates heat when energized. Detecting the electrical characteristics that change depending on the amount of particulate matter deposited on the detection unit to detect the amount of particulate matter contained in the gas to be measured, A particulate matter detection sensor that heats and removes the particulate matter deposited on the heating element, and as a temperature detection means for detecting the heating temperature of the heating element, the heat generation is caused by a decrease in insulation resistance of the heat-resistant insulating substrate accompanying heating. Leakage current detection means for detecting leakage current leaking from the body to the detection electrode is provided (claim 1).
第1の発明によれば、上記リーク電流は、上記耐熱性絶縁基体固有の温度特性に依存するため、高い精度で上記発熱体の温度を検出することができる。 According to the first invention, since the leakage current depends on the temperature characteristic specific to the heat-resistant insulating substrate, the temperature of the heating element can be detected with high accuracy.
第2の発明では、上記耐熱性絶縁基体をアルミナによって形成せしめる(請求項2)。アルミナは、安価で、安定した絶縁性を有する絶縁性材料として広く用いられ、極めて安定供給されているものである。
しかし、本発明者等の鋭意試験により、常温から1000℃までの温度変化に対して、100GΩから数十kΩまでの急激な抵抗値変化を示し、この抵抗値変化に伴い上記リーク電流検出手段によって検出される上記リーク電流によって検出することのできる上記発熱体の温度は、±5℃以内の極めて高精度で検出できることが判明した。
一方、本発明によらず、従来の発熱体の抵抗値の変化によって温度制御した場合には、配線抵抗の影響が大きく0.1Ωの配線抵抗の変化に対して±25℃程度の検出誤差を生じ、また回路の抵抗値バラツキや固体間のバラツキの影響によって最大±200℃程度の測定誤差を生じることが判明した。
In the second invention, the heat-resistant insulating substrate is made of alumina. Alumina is widely used as an insulating material that is inexpensive and has stable insulating properties, and is very stably supplied.
However, as a result of diligent tests by the present inventors, a sudden change in resistance value from 100 GΩ to several tens of kΩ is shown with respect to a temperature change from room temperature to 1000 ° C., and the leakage current detection means is accompanied by this resistance value change. It has been found that the temperature of the heating element that can be detected by the detected leakage current can be detected with extremely high accuracy within ± 5 ° C.
On the other hand, when temperature control is performed by changing the resistance value of a conventional heating element irrespective of the present invention, the influence of wiring resistance is large, and a detection error of about ± 25 ° C. is caused for a change in wiring resistance of 0.1Ω. Further, it has been found that a measurement error of about ± 200 ° C. at maximum is caused by the influence of the variation in resistance value of the circuit and the variation between solids.
第3の発明では、上記リーク電流検出手段は、オンオフのデューティ比によって上記発熱体への通電量を制御するパルス幅変調制御によって行った場合に、上記発熱体への通電パルスがオフの時に、上記一対の電極間に粒子状物質が堆積していない状態で検出されるオフ時出力信号(VOFF)を検出する(請求項3)。 In a third aspect of the invention, when the leakage current detection means is performed by pulse width modulation control that controls the amount of current supplied to the heating element by an on / off duty ratio, when the current supply pulse to the heating element is off, An off-time output signal (V OFF ) detected in a state where particulate matter is not deposited between the pair of electrodes is detected.
第3の発明によれば、上記発熱体への通電パルスのオンオフの発振周期に対して反転した周期で発振するリーク電流の高く安定した状態で検出することができ、温度に対する感度が最も高く温度制御に利用し易くなる。したがって、高い精度で加熱温度を検出し、これを利用して高い精度の温度制御を可能とした信頼性の高い粒子状物質検出センサが実現できる。 According to the third aspect of the invention, it is possible to detect in a stable state with a high leakage current that oscillates at a period inverted with respect to the on / off oscillation period of the energization pulse to the heating element, and has the highest sensitivity to temperature. It becomes easy to use for control. Therefore, it is possible to realize a highly reliable particulate matter detection sensor that detects the heating temperature with high accuracy and uses this to control the temperature with high accuracy.
第4の発明では、上記リーク電流検出手段は、上記通電パルスがオフの時に検出されるオフ時出力信号(VOFF)と上記通電パルスがオンの時に検出されるオン時出力信号(VON)との差(VOFF−VON)をリーク電流信号(ΔV)として検出する(請求項4)。 In the fourth invention, the leakage current detection means includes an off-time output signal (V OFF ) detected when the energization pulse is off and an on-time output signal (V ON ) detected when the energization pulse is on. (V OFF −V ON ) is detected as a leakage current signal (ΔV).
第4の発明によれば、上記リーク電流から上記耐熱性絶縁基体の抵抗値を精度良く算出することができ、上記耐熱性絶縁基体の抵抗値と温度との関係から上記発熱体の温度を極めて高い精度で検出することができる。 According to the fourth invention, the resistance value of the heat-resistant insulating substrate can be accurately calculated from the leakage current, and the temperature of the heating element can be set extremely high from the relationship between the resistance value of the heat-resistant insulating substrate and the temperature. It can be detected with high accuracy.
第5の発明では、上記発熱体の抵抗値を検出する発熱体抵抗値検出手段を有し、上記リーク電流検出手段によって算出した目標温度における発熱体抵抗値と温度との関係を学習する高温時発熱体抵抗値学習手段を具備する(請求項5)。 According to a fifth aspect of the present invention, there is provided a heating element resistance value detecting means for detecting the resistance value of the heating element, and learning the relationship between the heating element resistance value and the temperature at the target temperature calculated by the leak current detecting means. A heating element resistance learning means is provided (claim 5).
従来の発熱体抵抗によってのみ温度制御する場合には、制御回路等の配線抵抗の影響を廃除することが困難であったが、第5の発明によれば、上記高温時発熱体抵抗値学習手段によって目標温度における発熱体抵抗値と温度との関係を学習することによって、個々の粒子状物質検出センサの抵抗値バラツキ等の影響を廃除し、より精度の高い温度制御が可能となる。 When the temperature is controlled only by the conventional heating element resistance, it is difficult to eliminate the influence of the wiring resistance of the control circuit or the like. According to the fifth invention, the high-temperature heating element resistance learning means Thus, by learning the relationship between the heating element resistance value and the temperature at the target temperature, it is possible to eliminate the influence of the resistance value variation of each particulate matter detection sensor and to control the temperature with higher accuracy.
第6の発明では、上記粒子状物質検出センサを内燃機関の燃焼排気流路に配設し、上記内燃機関の運転状況を検出する運転状況検出手段とし燃焼排気温度、冷却水温度、油温度、吸気温度、燃料温度のいずれかの温度、又は、これらから選択される複数の温度を検出する温度センサを具備し、該温度センサによって検出した上記内燃機関の始動開始直後における温度情報と上記発熱体抵抗値検出手段によって検出された発熱体抵抗値とから、低温環境下での発熱体抵抗値と温度との関係を学習する低温時発熱体抵抗値学習手段を具備する(請求項6)。 In a sixth aspect of the invention, the particulate matter detection sensor is disposed in the combustion exhaust passage of the internal combustion engine, and serves as an operating state detecting means for detecting the operating state of the internal combustion engine. The combustion exhaust temperature, the cooling water temperature, the oil temperature, A temperature sensor for detecting any one of the intake air temperature, the fuel temperature, or a plurality of temperatures selected from these, and temperature information immediately after starting the internal combustion engine detected by the temperature sensor and the heating element A low-temperature heating element resistance value learning means is provided for learning a relationship between the heating element resistance value and temperature in a low-temperature environment from the heating element resistance value detected by the resistance value detection means.
上記リーク電流は、上記発熱体が一定温度以上に発熱し上記耐熱性絶縁基体の絶縁抵抗が低下した場合にのみ検出され、高温環境下での温度制御に利用し得るものであるが、第6の発明によれば、低温環境下での発熱体抵抗値と温度との関係を学習することによって、高温時のみならず幅広い温度範囲に対して精度良く温度制御可能となる。 The leakage current is detected only when the heating element generates heat above a certain temperature and the insulation resistance of the heat-resistant insulating substrate is lowered, and can be used for temperature control in a high temperature environment. According to the invention, by learning the relationship between the heating element resistance value and the temperature under a low temperature environment, it becomes possible to control the temperature with high accuracy not only at a high temperature but also over a wide temperature range.
第7の発明では、上記高温時発熱体抵抗値学習手段によって学習した高温時発熱体抵抗学習値と上記低温時発熱体抵抗値学習手段によって学習した低温時発熱体抵抗学習値とから個別の発熱体の温度特性を補正する温度特性補正手段を具備する(請求項7)。 In the seventh invention, individual heat generation is performed from the high temperature heating element resistance learning value learned by the high temperature heating element resistance learning means and the low temperature heating element resistance learning value learned by the low temperature heating element resistance learning means. Temperature characteristic correcting means for correcting the temperature characteristic of the body is provided (claim 7).
第7の発明によれば、上記温度特性補正手段によって、上記発熱体の温度を精度良く制御するだけでなく、上記粒子状物質検出センサを上記発熱体の抵抗値から被測定ガスの温度を算出する温度センサとして用いることが可能となり、上記内燃機関の制御や排ガス浄化装置等の制御などに利用することができる。 According to the seventh invention, not only the temperature of the heating element is accurately controlled by the temperature characteristic correcting means, but also the particulate matter detection sensor calculates the temperature of the gas to be measured from the resistance value of the heating element. It can be used as a temperature sensor, and can be used for control of the internal combustion engine, control of an exhaust gas purification device, and the like.
図1を参照して本発明の第1の実施形態における粒子状物質検出センサ(以下、PM検出センサと称す。)1の概要について説明する。本発明のPM検出センサ1は、内燃機関の燃焼排気流路に設けられ、燃焼排気を被測定ガスとして、被測定ガス中の粒子状物質の量を検出するものであり、その検出結果は、内燃機関の燃焼制御、排気浄化装置の再生、異常診断等に利用される。
PM検出センサ1は、粒子状物質検出素子(以下、PM検出素子と称す。)10と、PM検出素子10からの出力信号を検出する出力検出手段20と、PM検出素子10の内部に設けられた発熱体150への通電を制御する発熱体通電制御手段30と、出力検出手段20によって検出された出力信号VOUTによって、高温時に発生するリーク電流信号ΔVを検出するリーク電流検出手段40と、リーク電流検出手段40によって検出されたリーク電流信号ΔVから発熱体150の温度を算出する発熱温度算出手段50とによって構成されている。
An outline of a particulate matter detection sensor (hereinafter referred to as PM detection sensor) 1 according to the first embodiment of the present invention will be described with reference to FIG. The
The
PM検出素子10は、アルミナ等の耐熱性絶縁基体100の表面に形成され、所定の間隙を設けて対向する一対の検出電極110、120と、これらの検出電極110、120のそれぞれを外部の出力検出手段20に接続する一対の出力伝達用リード部111、121と絶縁性基体100を介して検出電極110、120及び出力伝達用リード部111、121との絶縁を確保して配設され、通電により発熱する発熱体150と、発熱体150と外部に設けた発熱体通電制御手段30とを接続する一対の発熱体通電用リード部151、152とのよって構成されている。
一の出力伝達用リード部111は、制御電圧V出力伝達用リード部111、121に接続され、他方の出力伝達用リード部121は、出力検出手段20に接続されている。
検出電極110、120間に導電性の粒子状物質が堆積すると、検出電極110、120間に形成される電気抵抗やインピーダンス等の電気的特性が導電性微粒子の堆積量に応じて変化する。
The
One
When conductive particulate matter is deposited between the
出力検出手段20は、粒子状物質の堆積に伴う検出電極110、120間の電気抵抗の変化を検出抵抗RSENとして検出すべく、分圧抵抗Rdivによって、制御電圧VCCを分圧して、検出抵抗RSENを検出する分圧手段210と、検出抵抗RSENと分圧抵抗Rdivとによって分圧された出力信号VOUTを増幅する増幅手段220とを具備している。
なお、同様の分圧抵抗Rdiv等の電流検出手段によって、検出電極間に堆積するPMの量に応じて変化する静電容量の変化、素子のインピーダンスの変化、検出抵抗と静電容量との合成インピーダンスの変化等を検出するようにしても良い。
Output detection means 20 to detect a change in electrical resistance between the
It should be noted that, by a similar current detection means such as a voltage dividing resistor Rdiv, the change in capacitance that changes according to the amount of PM deposited between the detection electrodes, the change in impedance of the element, and the combination of the detection resistor and capacitance An impedance change or the like may be detected.
PM検出素子10の内部には、通電により発熱し、検出電極110、120を加熱する発熱体150が形成されており、発熱体150は、発熱体通電用リード部151、152を介して、バッテリ電圧VBと発熱体通電制御手段30とに接続され、発熱体通電制御手段30に設けられた通電開閉手段31によって、バッテリ電圧VBの供給と停止を制御されている。
また、通電開閉手段31は、発熱体150への通電の要否に応じてオンオフのデューティ比によって発熱体150への通電量を制御するパルス幅変調制御を行うべく発振されるヒータ制御用パルス信号PWMによって開閉制御されている。
Inside the
The energization opening / closing means 31 is a heater control pulse signal that is oscillated to perform pulse width modulation control for controlling the energization amount to the
発熱体150は、通電により400℃〜1000℃まで発熱し、検出電極110、120間に堆積した粒子状物質を加熱除去する場合には、600℃以上の高温に制御し、検出条件を一定温度に保つことにより、温度依存性のある検出抵抗RSENを安定化させ、粒子状物質の検出精度の向上を図る場合には、600℃以下の比較的低温に制御している。
The
絶縁性基体100の絶縁抵抗RALは、400℃以下の低温時には、100MΩから100GΩの極めて高い絶縁性を有するが、発熱体150の温度上昇に伴い、絶縁抵抗RALが変化し、700℃以上になると、急激に電気抵抗が低下し、1000℃においては、100kΩ程度に低下する。
このため、700℃以上の高温時においては、絶縁性基体100を介して出力伝達用リード部111、121と発熱体通電用リード部151、152との間に導通経路が形成され、リーク電流が流れる。
The insulation resistance R AL of the insulating
For this reason, at a high temperature of 700 ° C. or higher, a conduction path is formed between the output
本発明のPM検出センサ1は、発熱体150の加熱温度を検出する温度検出手段として、加熱に伴う耐熱性絶縁基体100の絶縁抵抗RALの低下により、発熱体150側から検出電極1101、120へ流れるリーク電流を検出するリーク電流検出手段40を具備し、このリーク電流をリーク電流信号ΔVとして検出し、このリーク電流信号ΔVを基に、ヒータ温度算出手段50によってPM検出素子10の温度を精度良く算出し、これをフィードバックして発熱体150の加熱温度をより高精度熱に制御しようとするものである。
図2を参照して、PM検出素子10の具体的な構成例について説明する。図2(a)は、本発明が適用し得るPM検出素子10の展開斜視図である。
ドクターブレード法等の公知の成形方法により略平板状に形成されたアルミナ製の絶縁性基体100の表面に、白金ペースト等を用いて厚膜印刷等の公知の成形方法により一定の間隙を設けて対向する検出電極110、120が形成してある。
検出電極110と検出電極120とは、それぞれ検出電極リード部111、121から複数の電極が突出する櫛歯形状に形成し、これらを対向せしめてある。
さらに、検出電極110、120の表面側に積層して、検出電極リード部111、121の表面を覆うように、耐熱性ガラス、アルミナ等の絶縁性保護層170が形成され、絶縁性保護層170に設けた検出部開口170から検出電極110、120が露出し、検出電極110、120間に粒子状物質が堆積するようになっている。
A specific configuration example of the
A constant gap is provided on the surface of the insulating
The
Further, an insulating
略平板状に形成したアルミナ製の絶縁性基体140の表面には、検出電極110、120を加熱できる位置に白金等を用いて発熱体150が形成され、さらに発熱体150に接続して発熱体リード部151、152が形成されている。
アルミナ製の絶縁性基体100の裏面側に積層して、アルミナ製の絶縁性基体130を介して、発熱体150及び発熱体リード部151、152を設けたアルミナ製の絶縁性基体140が積層され、これらが一体的に焼成され、PM検出素子10が形成されている。
On the surface of the insulating
The insulating
本図(b)に示すように、再生時において、発熱体150への通電により、一定温度以上となり絶縁性基体100の電気抵抗が低下すると、発熱体150側から検出電極110、120側へリーク電流が流れることがある。
このため、検出電極110、120間に形成される検出抵抗RSENの出力信号VOUTが発熱体150への通電パルスの変化に呼応して発振することが判明した。
本発明は、かかるリーク現象を積極的に利用して、より制度の高い温度制御にできる粒子状物質検出センサを提供すべく想起されたものである。
As shown in FIG. 4B, during regeneration, if the electric resistance of the insulating
For this reason, it has been found that the output signal VOUT of the detection resistor R SEN formed between the
The present invention has been conceived to provide a particulate matter detection sensor that can positively utilize such a leak phenomenon and achieve higher temperature control.
なお、完成後のPM検出素子10において、絶縁性基体100、130、140は一体的に区別できないものであるため、以下の説明において、これらを区別せず絶縁性基体100と称する。
In addition, in the
また、本発明に用いることのできるPM検出素子10は、粒子状物質の堆積量に応じて変化する電気抵抗を検出するものであれば、本実施形態に示したように一対の検出電極110、120を櫛歯状に形成したものに限定されるものではなく、一定の間隙を設けて対向する一対の平行電極によって構成したものでも、多孔質電極によって複数の電極対を構成するものでも良い。
Further, the
図3を参照して、発熱体150への通電パルスの変化と検出電圧VOUTとの関係について詳述する。本図は、検出電極110、120間に粒子状物質が堆積していない状態で、発熱体150の温度を各温度に上昇させる時の通電パルスとリーク電流信号検出手段40によって検出される出力信号VOUTの変化を示すものである。
本図(a)に示すように600℃においては、検出信号VOUTは検出限界以下でほとんど変化がない。
ところが、本図(b)に示すように、800℃においては、通電パルスがオフの時には検出信号VOUTが大きくなり、オンの時には、検出信号VOUTが小さくなるように、発熱体150への通電パルスのオンオフ周期に対して反転した周期で検出信号VOUTが発振し、本図(c)に示すように、900℃では、さらに大きな振幅(ΔV)で検出信号VOUTが発振している。
With reference to FIG. 3, the relationship between the change in the energization pulse to the
As shown in FIG. 5A, at 600 ° C., the detection signal VOUT is below the detection limit and hardly changes.
However, as shown in FIG. 7B, at 800 ° C., the detection signal VOUT is increased when the energization pulse is off, and the detection signal VOUT is decreased when the energization pulse is on. detection signal V OUT in the cycle inverted relative oN-oFF cycle of the energizing pulse is oscillated, as shown in the figure (c), at 900 ° C., the detection signal V OUT even greater amplitude ([Delta] V) is oscillating .
図4を参照して、出力信号VOUTが発熱体150への通電パルスの発振周期に対して反転した周期で発振する原因について説明する。
本図(a)は、発熱体通電パルスがオンとなった場合における粒子状物質検出センサの等価回路図、(b)は、発熱体通電パルスがオフとなった場合における粒子状物質検出センサの等価回路図である。
本図(a)に示すように、通電パルスがオンとなった状態では、絶縁性基体100の絶縁抵抗RALは、開閉素子31を介して接地されているため、分圧抵抗Rdivに対して並列接続された状態となり、通電パルスがオンとなった状態で検出されるオン時出力信号VONは、並列に接続された絶縁抵抗RALと分圧抵抗Rdivとの合成抵抗(1/(1/RAL+1/Rdiv))と検出電極110、120間に形成される検出抵抗RSENとで制御電圧VCCを案分することになる。
したがって、オン時検出信号VON、制御電圧VCC、絶縁抵抗RAL、検出抵抗RSEN、分圧抵抗Rdivの間には、下記の関係が成り立つ。
ところが、発熱体の発熱体抵抗RHは、数Ω程度であるのに対して、絶縁抵抗RALは高温時に抵抗値が下がった状態であっても数十kΩであるので、発熱体抵抗RHよりも遙かに大きく、本図右側に示すように発熱体抵抗RHを廃除した回路と等価である。
したがって、バッテリ電圧VBとオフ時出力信号VOFFとの電位差(VB−VOFF)によって絶縁抵抗RALに流れる電流I1(=(VB−VOFF)/RAL)と、制御電圧VCCとオフ時出力信号VOFFとの電位差(VCC−VOFF)によって検出抵抗RSENに流れる電流I2(=(VB−VOFF)/RSEN)との和(I1+I2)がオフ時出力信号VOFFによって分圧抵抗Rdivに流れる電流I3(=VOFF/Rdiv)に等しく、これらの関係を整理するとオフ時出力信号VOFF、バッテリ電圧VB、制御電圧VCC、絶縁抵抗RAL、検出抵抗RSEN、分圧抵抗Rdivの間には、下記の関係が成り立つ。
したがって、絶縁抵抗RALとバッテリ電圧VBからのリーク電流信号ΔVとは反比例の関係にあり、リーク電流信号ΔVを計測することによって絶縁抵抗RALが検出できることが分かる。また、リーク電流ΔVは、発熱体抵抗RHの影響を受けないことが分かる。
The reason why the output signal VOUT oscillates at a cycle inverted with respect to the oscillation cycle of the energization pulse to the
This figure (a) is an equivalent circuit diagram of the particulate matter detection sensor when the heating element energization pulse is turned on, and (b) is an equivalent circuit diagram of the particulate matter detection sensor when the heating element conduction pulse is turned off. It is an equivalent circuit diagram.
As shown in the figure (a), when energizing pulse is turned on, the insulation resistance R AL of insulating
Therefore, the following relationship is established among the on-time detection signal V ON , the control voltage V CC , the insulation resistance R AL , the detection resistance R SEN , and the voltage dividing resistance R div .
However, the heating element resistance R H of the heating element is about several Ω, whereas the insulation resistance R AL is several tens of kΩ even when the resistance value is lowered at high temperature. It is much larger than H and is equivalent to a circuit in which the heating element resistance RH is eliminated as shown on the right side of the figure.
Therefore, the potential difference between the battery voltage V B and the OFF time of the output signal V OFF (V B -V OFF) by the current flowing through the insulation resistance R AL I1 and (= (V B -V OFF) / R AL), the control voltage V CC and the potential difference between the off time of the output signal V oFF (V CC -V oFF) current flowing through the detection resistor R SEN by I 2 (= (V B -V oFF) / R SEN) and the sum of (I 1 + I 2) There equal to the current I 3 flowing through the off-time of the output signal V oFF voltage dividing resistors R div (= V oFF / R div), and rearranging these relationships off time of output signal V oFF, the battery voltage V B, the control voltage V The following relationship is established among CC , insulation resistance R AL , detection resistance R SEN , and voltage dividing resistance R div .
Therefore, is inversely proportional to the leakage current signal [Delta] V from insulation resistance RAL and the battery voltage V B, it can be seen that can detect insulation resistance R AL by measuring the leakage current signal [Delta] V. It can also be seen that the leakage current ΔV is not affected by the heating element resistance RH .
なお、上記実施形態においては、リーク電流信号ΔVとして、オフ時出力信号VOFFとオン時出力信号VONとの差を用いたが、温度変化によるオフ時出力信号VOFFの変化に比べ、オン時出力信号VONの変化は小さく、ほぼ一定であると見なし、簡易な方法として、オフ時出力信号VOFFを一定のオフセット電位との比較からリーク電流信号ΔVを算出しても良い。 In the above embodiment, the difference between the off-time output signal V OFF and the on-time output signal V ON is used as the leakage current signal ΔV. However, the leakage current signal ΔV is on compared with the change in the off-time output signal V OFF due to the temperature change. The change in the hour output signal V ON is considered to be small and almost constant, and as a simple method, the leak current signal ΔV may be calculated by comparing the off-time output signal V OFF with a constant offset potential.
図5を参照して、具体例なリーク信号の検出結果について説明する。
本図(a)に示すように、600℃においては、検出電極110、120間に粒子状物質の堆積がない状態で、例えば、バッテリ電圧VB=14v、制御電圧VCC=5v、発熱体抵抗RH=4.70Ω、絶縁抵抗RAL=0.5GΩ、検出抵抗RSEN=1GΩ、分圧抵抗Rdiv=10kΩとして、計算上、オン時出力信号VON=0.05mV、オフ時出力信号VOFF=0.05mV、リーク電流信号ΔV=0.00mVとなり、リーク電流信号ΔVは検出されない。
さらに、本図(b)に示すように、800℃においては、バッテリ電圧VB=14v、制御電圧VCC=5v、発熱体抵抗RH=5.60Ω、絶縁抵抗RAL=5.3MΩ、検出抵抗RSEN=1GΩ、分圧抵抗Rdiv=10kΩとして、計算上、オン時出力信号VON=0.05mV、オフ時出力信号VOFF=26.27mV、リーク電流信号ΔV=26.2mVとなり、実際の検出結果はΔV=33.0mVであった。
さらに、本図(c)に示すように、900℃においては、バッテリ電圧VB=14v、制御電圧VCC=5v、発熱体抵抗RH=6.05Ω、絶縁抵抗RAL=0.8MΩ、検出抵抗RSEN=1GΩ、分圧抵抗Rdiv=10kΩとして、計算上、オン時出力信号VON=0.05mV、オフ時出力信号VOFF170.89mV、リーク電流信号ΔV=170.8mVとなり、実際の検出結果は、ΔV=179.5mVであり、計算値と実際の検出結果とが良く一致している。
A specific leak signal detection result will be described with reference to FIG.
As shown in FIG. 6A, at 600 ° C., for example, the battery voltage V B = 14 v, the control voltage V CC = 5 v, Assuming that the resistance R H = 4.70 Ω, the insulation resistance R AL = 0.5 GΩ, the detection resistance R SEN = 1 GΩ, and the voltage dividing resistance R div = 10 kΩ, the output signal V ON = 0.05 mV when output, and the output when OFF The signal V OFF = 0.05 mV and the leak current signal ΔV = 0.00 mV, and the leak current signal ΔV is not detected.
Furthermore, as shown in this figure (b), at 800 ° C., the battery voltage V B = 14 v, the control voltage V CC = 5 v, the heating element resistance R H = 5.60Ω, the insulation resistance R AL = 5.3 MΩ, Assuming that the detection resistor R SEN = 1 GΩ and the voltage dividing resistor R div = 10 kΩ, the output signal V ON = 0.05 mV, the output signal V OFF = 26.27 mV, and the leak current signal ΔV = 26.2 mV when calculated. The actual detection result was ΔV = 33.0 mV.
Furthermore, as shown in this figure (c), at 900 ° C., battery voltage V B = 14 v, control voltage V CC = 5 v, heating element resistance R H = 6.05Ω, insulation resistance R AL = 0.8 MΩ, Assuming that the detection resistor R SEN = 1 GΩ and the voltage dividing resistor R div = 10 kΩ, the output signal V ON = 0.05 mV when turned on, the output signal V OFF when turned off 170.89 mV, and the leakage current signal ΔV = 170.8 mV, The actual detection result is ΔV = 179.5 mV, and the calculated value and the actual detection result are in good agreement.
図6を参照し、本発明の効果について説明する。
本図(a)は、アルミナの抵抗温度特性を示し、図中●印で示す点は、本発明の実施例として、アルミナを絶縁性基体100として用いて、リーク電流検出信号ΔVの検出結果から算出した絶縁抵抗RALを示す。
アルミナの絶縁抵抗は、温度変化に対して指数関数的に変化するため、僅かな温度変化に対しても急激な抵抗値の変化となる。
例えば、配線径0.5mm2、比抵抗0.0336Ω/mの銅線を5mずつ、正負の2系統分に使用した場合の配線抵抗は、0.336Ωとなるが、800℃において、数百kΩから数MΩある絶縁性基体100の抵抗RALに対して遙かに小さく、0.1℃以下の温度誤差に相当し、配線抵抗の影響は無視できる。
したがって、本図(a)に示すように、アルミナの温度特性値と、本発明のPM検出センサ1を用いて検出したリーク電流検出信号ΔVから算出した絶縁抵抗RALと良く一致しており、リーク電流検出信号ΔVを計測することによって、発熱体150の加熱温度を精度良く温度制御可能となることが期待できる。
一方、本図(b)に示すように、発熱体抵抗RHは、0℃から800℃の温度変化に対して直線性をもって変化するが、抵抗値の変化幅が2.0Ω〜5.6Ωと狭く、僅かな抵抗値の変化に対して測定誤差を生じ易く、従来の発熱体150の発熱体抵抗RHを検出して、温度制御した場合に目標温度との温度差を生じ易い。
加えて、例えば、RH=0.0045Ω/℃ ×t℃+2.0Ω(tは発熱抵抗体の温度)
であると近似した場合、発熱体抵抗RHの絶対値が低いため、上述と同じ配線抵抗0.36Ωがある場合には、検出温度に対する影響が大きく、75℃に相当する温度誤差となる。
また、従来の発熱体抵抗RHのみの測定によって温度検出した場合には、回路バラツキの影響も無視できなくなり、回路誤差の影響を考慮した場合200℃程度の温度差を生じることとなる。
なお、実際の絶縁性基体100の絶縁抵抗RALの温度特性や、発熱体150の発熱体抵抗温度係数αは、個体差等を生じることから、個別の粒子状物質検出素子に対して予め計測した絶縁抵抗RALの温度特性や発熱体抵抗温度係数αのデータを記録したチップを素子毎に搭載し、リーク電流信号検出手段40に読み取らせて、制御温度の補正に利用するようにしても良い。
The effect of the present invention will be described with reference to FIG.
This figure (a) shows the resistance-temperature characteristics of alumina, and the points indicated by ● in the figure are the results of detection of the leak current detection signal ΔV using alumina as the insulating
Since the insulation resistance of alumina changes exponentially with respect to a temperature change, the resistance value changes rapidly even with a slight temperature change.
For example, the wiring resistance when a copper wire having a wiring diameter of 0.5 mm 2 and a specific resistance of 0.0336 Ω / m is used for two positive and negative lines of 5 m is 0.336 Ω. kΩ much smaller relative to the number MΩ is resistance R AL of the insulating
Accordingly, as shown in the figure (a), the temperature characteristic value of the alumina, and good agreement with the leakage current detection signal ΔV insulation resistance R AL calculated from detected by using the
On the other hand, as shown in FIG. 5B, the heating element resistance RH changes linearly with respect to a temperature change from 0 ° C. to 800 ° C., but the change width of the resistance value is 2.0Ω to 5.6Ω. A measurement error is likely to occur for a slight change in resistance value, and a temperature difference from the target temperature is likely to occur when the heating element resistance RH of the
In addition, for example, R H = 0.0045Ω / ° C. × t ° C. + 2.0Ω (t is the temperature of the heating resistor)
Since the absolute value of the heating element resistance RH is low, if there is the same wiring resistance of 0.36Ω as described above, the influence on the detected temperature is large, resulting in a temperature error corresponding to 75 ° C.
In addition, when the temperature is detected by measuring only the conventional heating element resistance RH , the influence of the circuit variation cannot be ignored, and a temperature difference of about 200 ° C. is generated when the influence of the circuit error is taken into consideration.
Note that the temperature characteristics of the insulation resistance RAL of the actual insulating
図7(a)に本発明の実施例であるアルミナを絶縁性基体100として用いた場合の800℃近傍における絶縁抵抗RALの変化を示す。本図に示すように、例えば、絶縁抵抗RALの測定に±5%の検出誤差があったとしても、その結果生じ得る温度差は±5℃以内である。
一方、本図(b)に比較例として示す、発熱体抵抗RHの検出に±5%の検出誤差が生じた場合、温度誤差は±62℃となる。
したがって、絶縁性基体100の絶縁抵抗RALの検出により発熱体150の加熱温度を制御することで遙かに制御精度が向上する。
FIG. 7A shows a change in the insulation resistance RAL in the vicinity of 800 ° C. when alumina as an example of the present invention is used as the insulating
On the other hand, when a detection error of ± 5% occurs in the detection of the heating element resistance RH shown as a comparative example in FIG. 5B, the temperature error becomes ± 62 ° C.
Therefore, the control accuracy is greatly improved by controlling the heating temperature of the
図8に本発明の粒子状物質検出センサで検出されたリーク電流検出信号ΔVと素子温度TSENの実測値とリーク電流検出信号ΔVから算出した素子温度TSENとの関係を示す。
本図に示すように、素子温度TSENは、リーク電流検出信号ΔVに対して対数関数的に変化し、素子温度TSENの実測値と計算値とが良く一致しており、本発明の粒子状物質検出センサによれば極めて高い精度で温度制御できる。
It shows the relationship between the particulate matter detected by the detection sensor the leakage current detection signal [Delta] V and the element temperature T SEN measured values and leakage current detection signal element temperature calculated from [Delta] V T SEN of the present invention in FIG.
As shown in the figure, the element temperature T SEN changes logarithmically with respect to the leakage current detection signal ΔV, and the measured value and the calculated value of the element temperature T SEN are in good agreement. According to the particulate matter detection sensor, the temperature can be controlled with extremely high accuracy.
図9を参照して、本発明の第2の実施形態におけるPM検出センサ1aについて説明する。
上記実施形態においては、検出電極110、120間に粒子状物質が堆積していない状態においてPM検出素子10を高温に加熱した時に発生するリーク電流検出信号ΔVを検出することによって、極めて精度良く加熱温度を制御できることを説明したが、上記実施形態においては、リーク電流の発生する700℃以上の高温における温度制御に効果を発揮するものである。
そこで、本実施形態においては、上記実施形態と同様の構成に加えて、リーク電流が発生しない、若しくは、リーク電流が発生していたとしても検出が困難である低温においても精度良く温度制御できるように、発熱体150の抵抗値RHを検出する発熱体抵抗値検出手段32を設けた点が相違する。
従来の粒子状物質検出センサにおいても発熱体150の抵抗値RHを検出することによって、発熱体150の加熱温度を制御しているが、上述の如く、配線抵抗や回路バラツキの影響が大きく、検出誤差を生じ易い。
しかし、本実施形態においては、発熱体150の抵抗値RHを検出するだけでなく、その検出結果と、高温時に検出したリーク電流検出信号ΔVの検出結果によって、個別のPM検出センサ1aの配線誤差を補正し、精度良く温度制御を可能とするものである。具体的な補正方法については後述する。
なお、上記実施形態と同様の構成については、同じ符号を付したので説明を省略する。
With reference to FIG. 9, the
In the above embodiment, heating is performed with extremely high accuracy by detecting the leakage current detection signal ΔV generated when the
Therefore, in this embodiment, in addition to the same configuration as the above embodiment, it is possible to perform temperature control with high accuracy even at a low temperature where leakage current does not occur or is difficult to detect even if leakage current occurs. The difference is that a heating element resistance value detecting means 32 for detecting the resistance value RH of the
In the conventional particulate matter detection sensor, the heating temperature of the
However, in the present embodiment, not only the resistance value RH of the
In addition, about the structure similar to the said embodiment, since the same code | symbol was attached | subjected, description is abbreviate | omitted.
ここで、図10を参照して、本発明のPM検出センサ1,1aのリーク電流検出信号ΔVを利用した具体的な温度制御方法について説明する。
本図(a)は、素子温度TSEN(℃)と絶縁性基体100の絶縁抵抗RALの経時変化を示す。絶縁抵抗RALは、低温時には数GΩレベルの高い絶縁性を示すが、素子温度TSENの上昇に伴い、所定の温度T1(例えば600℃)以上になると急激に変化し、例えば数kΩまで低下する。
本図(b)に示すように、所定の温度T1以上となるとリーク電流検出信号ΔVが検出される。
このとき、上述の如くリーク電流検出信号ΔV(mV)は、発熱体150への通電パルスの開閉周期に対して反転した周期で発振しながら上昇する。
リーク電流検出信号ΔVが、予め設定したF/B目標値に到達した場合には、素子温度TSENが目標温度T2に達していると考えられるので、リーク電流検出信号ΔVが一定となるように、発熱体150への通電パルスのデューティ比を制御する。
同時に、本図(c)に示すように、素子温度TSENの上昇に伴い上昇する発熱体抵抗RH(Ω)を計測し、目標リーク電流における発熱体抵抗RHを学習する。
Here, a specific temperature control method using the leakage current detection signal ΔV of the
This figure (a) shows change with time of element temperature T SEN (° C.) and insulation resistance R AL of the insulating
As shown in the figure (b), the leakage current detection signal ΔV is detected when a predetermined temperature above T 1.
At this time, as described above, the leakage current detection signal ΔV (mV) rises while oscillating at a cycle inverted with respect to the opening / closing cycle of the energization pulse to the
Leakage current detection signal ΔV is, when it reaches the preset F / B target value, it is considered that the element temperature TSEN has reached the target temperature T 2, as the leakage current detection signal ΔV is constant The duty ratio of the energization pulse to the
At the same time, as shown in FIG. 3C, the heating element resistance R H (Ω) that rises as the element temperature T SEN increases is measured, and the heating element resistance R H at the target leakage current is learned.
図11(a)は、発熱体抵抗学習値RLRNによって発熱体150の抵抗特性を補正した場合の特性図である。
上述の如く発熱体抵抗RHは、配線抵抗や回路バラツキの影響を受けやすく、 図11(a)及び(b)に点線で示すように、温度差を生じるバラツキ範囲が存在する。
そこで、上述の如く、F/B目標値に到達した時点において学習した発熱体抵抗学習値RLRNによって、実際のPM検出素子10のヒータ特性を補正する。
具体的には、リーク電流検出信号ΔVから算出された素子温度TSENと発熱体抵抗RHから算出した素子温度TSENとを比較し、その差を補正することによってより精度の高い温度制御が可能となる。
例えば、本図(a)に示すように発熱体抵抗RHと素子温度TSENとの関係において、20℃における発熱体抵抗をR20とし、20℃から800℃まで温度が上昇した場合の抵抗変化率(直線の傾き)を発熱体抵抗温度係数α20とたとき、t℃における発熱体抵抗Rtは、Rt=R20{1+α20(t−20)}で与えられ、これを上述のリーク電流検出信号ΔVにも基づいてF/B目標値において学習した発熱体抵抗学習値RLRNとの差によって補正する。
本図(b)は、上述の発熱体抵抗学習値RLRNを高温側発熱体学習値RLHとし、後述する低温側発熱体学習値RLLとの2点によって、発熱体150の抵抗特性を補正することにより、さらに高い精度で温度検出を行う場合の特性図である。
FIG. 11A is a characteristic diagram when the resistance characteristic of the
As described above, the heating element resistance RH is easily affected by wiring resistance and circuit variation, and there is a variation range in which a temperature difference occurs as shown by dotted lines in FIGS.
Therefore, as described above, the heater characteristics of the actual
Specifically, compared with the leakage current detection signal element temperature calculated from [Delta] V T SEN and device temperature was calculated from a heater resistor R H T SEN, more precise temperature control by correcting the difference It becomes possible.
For example, in the relationship between the heating element resistance RH and the element temperature T SEN as shown in FIG. 5A, the heating element resistance at 20 ° C. is R 20, and the resistance when the temperature rises from 20 ° C. to 800 ° C. When the rate of change (slope of the straight line) is the heating element resistance temperature coefficient α 20 , the heating element resistance Rt at t ° C. is given by R t = R 20 {1 + α 20 (t−20)}. Correction is performed based on the difference from the heating element resistance learning value R LRN learned at the F / B target value based on the leakage current detection signal ΔV.
This figure (b) makes the above-mentioned heating element resistance learning value R LRN the high temperature side heating element learning value R LH, and the resistance characteristic of the
図12を参照して、本発明の粒子状物質検出センサに適用される発熱体抵抗学習方法の一例について説明する。
ステップS100の粒子状物質堆積有無判定行程では、検出信号VOUTと所定の閾値VREFとを比較し、検出信号VOUTが閾値VREFより小さい場合には、検出抵抗RSENが大きく、検出電極110、120間に粒子状物質が堆積していない状態であると判断し、判定Yesとなり、ステップS110のリーク電流判定行程に進む。
一方、検出信号VOUTが閾値VREF以上の場合には、検出抵抗RSENが小さく、検出電極110、120間に粒子状物質が堆積している状態であると判断し、判定Noとなり、終了行程に進み、ステップS100から再スタートする。
次いでステップS110のリーク電流判定行程では、リーク電流検出信号ΔVと予め設定したF/B目標値とを比較し、リーク電流検出信号ΔVがF/B目標値以上である場合には。目標温度に達している状態であると判断し、判定Yesとなり、ステップS130の発熱体抵抗学習行程に進む。
一方、リーク電流検出信号ΔVがF/B目標値に達していない場合には、判定Noとなり、終了行程に進み、ステップS100から再スタートする。
ステップS130発熱体抵抗学習行程では、リーク電流検出信号ΔVから求めたF/B目標温度における発熱体抵抗RHを発熱体抵抗検出手段32により検出し、メモリ等の記録媒体に発熱体抵抗学習値RLRNとして記録、保存する。
学習結果は、発熱体150の次回の温度制御の補正に利用される。発熱体抵抗RHの学習が完了したら終了行程に進む。
With reference to FIG. 12, an example of the heating element resistance learning method applied to the particulate matter detection sensor of the present invention will be described.
In the particulate matter deposition presence / absence determination step in step S100, the detection signal VOUT is compared with a predetermined threshold value VREF . When the detection signal VOUT is smaller than the threshold value VREF , the detection resistance R SEN is large and the detection electrode It is determined that the particulate matter is not deposited between 110 and 120, the determination is Yes, and the process proceeds to the leakage current determination process in step S110.
On the other hand, when the detection signal V OUT is equal to or higher than the threshold value V REF , the detection resistance R SEN is small, and it is determined that particulate matter is accumulated between the
Next, in the leakage current determination process in step S110, the leakage current detection signal ΔV is compared with a preset F / B target value, and when the leakage current detection signal ΔV is equal to or greater than the F / B target value. It is determined that the target temperature has been reached, the determination is Yes, and the process proceeds to the heating element resistance learning process in step S130.
On the other hand, when the leak current detection signal ΔV has not reached the F / B target value, the determination is No, the process proceeds to the end step, and the process restarts from step S100.
In step S130, a heating element resistance learning process, the heating element resistance RH at the F / B target temperature obtained from the leak current detection signal ΔV is detected by the heating element resistance detection means 32, and the heating element resistance learning value is stored in a recording medium such as a memory. Record and save as R LRN .
The learning result is used for correction of the next temperature control of the
図13を参照して、上述のF/B目標値における発熱体抵抗の学習結果を利用した発熱体150の温度制御方法に一例について説明する。
ステップS200の目標発熱体抵抗算出行程では、先に学習した発熱体抵抗学習値RLRNと、抵抗温度係数α20とから求めた補正後の発熱体抵抗特性αから、目標ヒータ温度TTRG(℃)における目標発熱体抵抗RTRG(Ω)を算出する。
次いで、ステップS210の発熱体抵抗判定行程では、ヒータ検出手段32によって検出した検出発熱体抵抗RDTCと目標発熱体抵抗RTRGとが等しいか否かが判定される。
検出発熱体抵抗RDTCが目標発熱体抵抗RTRGより小さい場合には、判定Noとなり、かつ、通電をそのまま維持したのでは過電流又は過昇温となる虞があると判断され、ステップS220の通電抑制行程へ進む。
ステップS220の通電抑制行程では、通電量を抑制すべく、デューティ比が下げられ、終了行程に進む。
一方、ステップS210の発熱体抵抗判定行程において、検出発熱体抵抗RTDCと目標発熱体抵抗RTRGとが等しい場合には、判定Yesとなり、かつ、目標温度に到達している又は通電量が適正であると判断されるので、ステップS230の通電維持行程に進む。
ステップS230の通電量維持行程では、温度維持を図るべく、そのままのデューティ比が維持され、終了行程に進む。
さらに、ステップS210の発熱体抵抗判定行程において、検出発熱体抵抗RDTCが目標発熱体抵抗RTRGよりも小さい場合には、判定Noとなり、かつ、目標温度に到達していない、又は、エネルギ供給不足であると判断され、ステップS240の通電量増加行程に進む。
ステップS240の通電量増加行程では、通電量を増やし早期に目標温度に到達すべく、デューティ比の増加が図られ、終了行程に進む。
ステップS200〜S240が繰り返されることにより、発熱体150の温度が精度良く目標温度に維持される。
With reference to FIG. 13, an example of a method for controlling the temperature of the
In the target heating element resistance calculation process of step S200, the target heater temperature T TRG (° C.) is calculated from the corrected heating element resistance characteristic α obtained from the previously learned heating element resistance learning value R LRN and the resistance temperature coefficient α 20. ) To calculate the target heating element resistance R TRG (Ω).
Next, in the heating element resistance determination process in step S210, it is determined whether or not the detected heating element resistance R DTC detected by the heater detection means 32 is equal to the target heating element resistance RTRG .
If the detected heating element resistance R DTC is smaller than the target heating element resistance RTRG, it is determined No, and it is determined that there is a risk of overcurrent or overheating if the energization is maintained as it is. Proceed to energization suppression process.
In the energization suppression process of step S220, the duty ratio is lowered to suppress the energization amount, and the process proceeds to the end process.
On the other hand, if the detected heating element resistance RTDC and the target heating element resistance RTRG are equal in the heating element resistance determination process in step S210, the determination is Yes and the target temperature has been reached or the amount of energization is appropriate. Therefore, the process proceeds to the energization maintaining process in step S230.
In the energization amount maintaining process in step S230, the duty ratio is maintained as it is to maintain the temperature, and the process proceeds to the end process.
Further, in the heating element resistance determination process in step S210, if the detected heating element resistance R DTC is smaller than the target heating element resistance RTRG , the determination is No and the target temperature has not been reached, or the energy supply It is determined that the amount is insufficient, and the process proceeds to an energization amount increasing process in step S240.
In the energization amount increasing process of step S240, the duty ratio is increased in order to increase the energization amount and reach the target temperature at an early stage, and the process proceeds to the end process.
By repeating steps S200 to S240, the temperature of the
図14を参照して本発明の粒子状物質検出センサを温度センサとして利用する場合の制御方法の一例について説明する。
ステップS300の発熱体抵抗検出行程では、発熱体抵抗検出手段32によって検出発熱体抵抗RDTCが検出される。
ステップS210のヒータ温度推定行程では、上述の発熱体抵抗学習値RLRNと抵抗温度係数αで補正した補正後発熱体抵抗RAMDに基づいてヒータ温度TESTを推定する。
ヒータ温度の推定が完了したら終了行程に進む。
上述の如くリーク電流信号ΔVによって高温時における発熱体抵抗を補正することで、低温時における発熱体抵抗から推定した温度の検出精度も向上する。
したがって、推定されたヒータ温度TESTは、発熱体150の温度制御のみならず、発熱体150への通電を行っていない状態で、被測定ガスの温度を発熱体抵抗から推定し、機関の燃焼制御や排気浄化装置の制御等にも利用可能である。
An example of a control method when the particulate matter detection sensor of the present invention is used as a temperature sensor will be described with reference to FIG.
In the heating element resistance detection process in step S300, the detected heating element resistance R DTC is detected by the heating element resistance detection means 32.
In the heater temperature estimation step in step S210, the heater temperature T EST is estimated based on the corrected heating element resistance R AMD corrected with the heating element resistance learning value R LRN and the resistance temperature coefficient α.
When the estimation of the heater temperature is completed, the process proceeds to the end step.
As described above, by correcting the heating element resistance at the high temperature by the leakage current signal ΔV, the temperature detection accuracy estimated from the heating element resistance at the low temperature is also improved.
Therefore, the estimated heater temperature T EST estimates the temperature of the gas to be measured from the resistance of the heating element not only in the temperature control of the
図15を参照して、本発明の粒子状物質検出センサを内燃機関の燃焼排気流路に設け、内燃機関の運転状況を検出する運転状況検出手段として燃焼排気温度、又は、冷却水温を検出する温度センサを併用して、より精度の高い温度制御を行うために、上述の高温時発熱体抵抗値学習手段に加え低温時発熱体抵抗値学習手段を設けた一例について説明する。 ステップS400の学習条件成立判定行程では、エンジン冷却水温度TW又は燃焼排気温度、油温度、吸気温度、燃料温度のいずれかの温度、又は、これらから選択される複数の温度を検出する温度センサによって検出される温度とセンサ温度TSENとがほぼ等しい条件か否かが判定される。
例えば、前回のエンジン停止から充分な時間が経過している場合や始動開始直後等、エンジン冷却水温度TWとセンサ温度TSENとがほぼ等しい条件では判定Yesとなり、ステップS410の温度検出行程に進む。
一方、運転停止から短時間で再起動した場合など、エンジン冷却水温度TWと素子温度TSENとの温度差が大きいと判断される状況では、判定Noとなり、低温側学習を行わず終了行程に進む。
ステップS410の温度検出行程では、水温センサによって温度情報としてエンジン冷却水温度TWが検出され、発熱体抵抗検出手段32によって本発明の微粒子検出センサの発熱体抵抗RHが検出される。
次いで、ステップS420の低温時学習行程では、エンジン冷却水温度TWと被測定ガス温度、即ち、素子温度TSENとが等しいとみなされ、この時に検出された発熱体抵抗RHとエンジン冷却水温度TWとから、低温時発熱体抵抗学習値RLLがメモリ等に記録、保管される。
低温時発熱体抵抗学習値RLLの学習が終わると終了行程に進む。
本実施形態においては、個別の発熱体の温度特性を補正する温度特性補正手段として、上述の高温時発熱体抵抗値学習手段によってF/B目標値において学習した発熱体抵抗学習値RLRNを高温時発熱体抵抗学習値RLHと、上述の低温時発熱体学習手段において学習した低温時発熱体抵抗学習値RLLとの2点を用いる。
このようにして得られた2つの学習値によって、先に図11(b)に示したように、発熱体抵抗値RHと素子温度TSENとの関係について、発熱体抵抗温度係数αをより精度良く補正することができる。
上述の如く、リーク電流信号ΔVは、発熱体150が一定温度(T1)以上に発熱し、耐熱性絶縁基体100の絶縁抵抗RALが低下した場合にのみ検出され、高温環境下での温度制御に利用し得るものである。
しかし、水温センサや、油温センサ等の温度情報を検出する温度情報検出手段によって得られた温度情報を利用することにより、低温環境下での発熱体抵抗値RHと温度TSENとの関係を学習することによって、高温時のみならず幅広い温度範囲に対して精度良く温度制御可能となる。
Referring to FIG. 15, the particulate matter detection sensor of the present invention is provided in the combustion exhaust passage of the internal combustion engine, and the combustion exhaust temperature or the cooling water temperature is detected as an operation state detection means for detecting the operation state of the internal combustion engine. An example in which a low-temperature heating element resistance learning unit is provided in addition to the above-described high-temperature heating element resistance learning unit in order to perform temperature control with higher accuracy using a temperature sensor will be described. In the learning condition establishment determination process in step S400, a temperature sensor that detects engine cooling water temperature TW or combustion exhaust temperature, oil temperature, intake air temperature, fuel temperature, or a plurality of temperatures selected from these temperatures. It is determined whether or not the detected temperature and the sensor temperature T SEN are substantially equal.
For example, example, immediately after or if the beginning of startup has passed sufficient time since the last engine stop, the engine coolant temperature T W and the sensor temperature T SEN and the determination Yes and is approximately equal conditions, the temperature detection process in step S410 move on.
On the other hand, in the context in which it is determined that such as when restarting in a short time from the shutdown, a large temperature difference between the engine coolant temperature T W and the element temperature T SEN, judgment becomes No termination stroke without cold side learning Proceed to
In the temperature detection process of step S410, the engine coolant temperature TW is detected as temperature information by the water temperature sensor, and the heating element resistance RH of the particulate detection sensor of the present invention is detected by the heating element resistance detection means 32.
Next, in the low temperature learning process in step S420, the engine coolant temperature TW and the measured gas temperature, that is, the element temperature T SEN are considered to be equal, and the heating element resistance RH detected at this time and the engine coolant are detected. and a temperature T W, the low temperature heating element resistance learning value R LL is recorded in a memory or the like, is stored.
When learning of the low-temperature heating element resistance learning value RLL is completed, the process proceeds to an end step.
In the present embodiment, as the temperature characteristic correction means for correcting the temperature characteristics of the individual heating elements, the heating element resistance learning value R LRN learned at the F / B target value by the high temperature heating element resistance learning means described above is used as the high temperature. Two points are used: the heating element resistance learning value R LH during low temperature and the low temperature heating element resistance learning value R LL learned by the low-temperature heating element learning means described above.
With the two learning values obtained in this way, as shown in FIG. 11B, the heating element resistance temperature coefficient α is further increased with respect to the relationship between the heating element resistance value RH and the element temperature T SEN. Correction can be made with high accuracy.
As described above, the leak current signal ΔV is detected only when the
However, the relationship between the heating element resistance value RH and the temperature T SEN in a low temperature environment by using temperature information obtained by temperature information detection means for detecting temperature information such as a water temperature sensor or an oil temperature sensor. By learning the above, it becomes possible to accurately control the temperature not only at high temperatures but also over a wide temperature range.
上記実施形態においては、絶縁性基体100としてアルミナを用いた場合について説明したが、第1の発明としては、絶縁性基体をアルミナに限定するものではなく、抵抗温度特性が既知である耐熱性絶縁材料であれば、チタニア、ムライト等の酸化物セラミック材料や、窒化珪素、炭化硅素、窒化アルミニウム等の非酸化物セラミック材料も利用可能であると推察される。
なお、本発明者等の鋭意試験により、ジルコニアは、高温時に高い導電性を生じるため、本発明の絶縁性基体の材料としては不向きであることが判明している。
また、上記実施形態においては、電気的特性として対向する一対の検出電極に形成される電気抵抗を検出する粒子状物質検出素子を例に説明したが、本発明において、粒子状物質検出素子が検出対象とする電気的特性は、検出部に形成される電気抵抗に限定されるものではなく、検出部に堆積する粒子状物質の量によって変化する静電容量を検出するものでも、静電容量成分のインピーダンスの変化を検出するものでも、検出抵抗と静電容量のインピーダンスとの合成インピーダンスの変化を検出するものでも良い。
PM検出素子の再生手段として絶縁性基体を介して設けられた発熱体への通電時に絶縁性基体の絶縁抵抗が低下して発生するリーク電流信号を検出することにより、絶縁性基体の固有の抵抗温度特性から極めて精度良くPM検出素子の温度を検出し、PM検出素子の温度制御等に利用する本発明の技術思想は、被測定ガス中のPMを検出する方法として如何なる電気的特性を検出するものにも適宜採用し得るものである。
In the above embodiment, the case where alumina is used as the insulating
In addition, it has been found by intensive studies by the present inventors that zirconia is not suitable as a material for the insulating substrate of the present invention because it produces high conductivity at high temperatures.
In the above embodiment, the particulate matter detection element that detects the electrical resistance formed on the pair of opposing detection electrodes as an electrical characteristic has been described as an example. However, in the present invention, the particulate matter detection element detects the electrical resistance. The target electrical characteristics are not limited to the electrical resistance formed in the detection unit, and the capacitance component that detects the capacitance that varies depending on the amount of particulate matter deposited on the detection unit may be used. It is also possible to detect a change in impedance of the combined impedance of the detection resistor and the capacitance.
By detecting a leak current signal generated when the insulation resistance of the insulating substrate decreases when the heating element provided via the insulating substrate is energized as a regeneration means of the PM detection element, the intrinsic resistance of the insulating substrate is detected. The technical idea of the present invention, which detects the temperature of the PM detection element from the temperature characteristic with extremely high accuracy and is used for temperature control of the PM detection element, detects any electrical characteristic as a method for detecting PM in the gas to be measured. It can also be adopted as appropriate.
1 微粒子検出センサ
10 粒子状物質検出素子
100 耐熱性絶縁基体(アルミナ基板)
110、120 検出電極
111、121 出力伝達用リード部
150 発熱体
151、152 発熱体通電用リード部
20 出力検出手段
210 分圧手段
220 増幅手段
30 発熱体通電制御手段
31 通電開閉手段(FET)
40 リーク電流検出手段
50 発熱体温度算出手段
RAL 絶縁抵抗
RH 発熱体抵抗値
RSEN 検出抵抗
Rdiv 分圧抵抗
VB バッテリ電圧
VCC 制御電圧
1
110, 120
40 Leakage current detection means 50 Heating element temperature calculation means R AL insulation resistance R H heating element resistance value R SEN detection resistance R div voltage dividing resistance V B battery voltage V CC control voltage
Claims (7)
上記発熱体の加熱温度を検出する温度検出手段として、加熱に伴う上記耐熱性絶縁基体の絶縁抵抗の低下により、上記発熱体から上記検出電極へ漏れるリーク電流を検出するリーク電流検出手段を具備することを特徴とする粒子状物質検出センサ。 The detector comprises a detector that deposits particulate matter contained in the gas to be measured, and a heating element that is disposed between the detector and a heat-resistant insulating substrate and generates heat when energized, and is deposited on the detector. The particulate matter deposited between the detection electrodes by energizing the heating element while detecting the amount of particulate matter contained in the gas to be measured by detecting electrical characteristics that change depending on the amount of particulate matter A particulate matter detection sensor for removing heat by heating,
As temperature detection means for detecting the heating temperature of the heating element, there is provided leakage current detection means for detecting leakage current leaking from the heating element to the detection electrode due to a decrease in insulation resistance of the heat-resistant insulating substrate accompanying heating. A particulate matter detection sensor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010227237A JP2012083121A (en) | 2010-10-07 | 2010-10-07 | Particulate substance detection sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010227237A JP2012083121A (en) | 2010-10-07 | 2010-10-07 | Particulate substance detection sensor |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2012083121A true JP2012083121A (en) | 2012-04-26 |
Family
ID=46242156
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010227237A Pending JP2012083121A (en) | 2010-10-07 | 2010-10-07 | Particulate substance detection sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2012083121A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013231627A (en) * | 2012-04-27 | 2013-11-14 | Nippon Soken Inc | Particle matter detection element, manufacturing method thereof, and particle matter detection sensor |
JP2016085141A (en) * | 2014-10-27 | 2016-05-19 | 京セラ株式会社 | Sensor substrate, sensor device, and method for manufacturing the sensor substrate |
KR20160086890A (en) * | 2013-11-13 | 2016-07-20 | 스토너릿지 인코포레이티드 | Soot sensor system |
WO2019116449A1 (en) * | 2017-12-12 | 2019-06-20 | オリンパス株式会社 | Treatment system |
DE112016002986B4 (en) | 2015-06-30 | 2019-09-26 | Denso Corporation | Particle detection system |
CN110514564A (en) * | 2019-08-26 | 2019-11-29 | 深圳顺络电子股份有限公司 | A kind of automobile-used particulate matter sensors ceramic chip and its manufacturing method |
CN110514565A (en) * | 2019-08-26 | 2019-11-29 | 深圳顺络电子股份有限公司 | A kind of chip particulate matter sensors ceramic chip and its manufacturing method |
-
2010
- 2010-10-07 JP JP2010227237A patent/JP2012083121A/en active Pending
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9528971B2 (en) | 2012-04-27 | 2016-12-27 | Denso Corporation | Particulate matter detection element and method of manufacturing same |
JP2013231627A (en) * | 2012-04-27 | 2013-11-14 | Nippon Soken Inc | Particle matter detection element, manufacturing method thereof, and particle matter detection sensor |
KR102295760B1 (en) | 2013-11-13 | 2021-09-01 | 스토너릿지 인코포레이티드 | Soot sensor system |
KR20210110887A (en) * | 2013-11-13 | 2021-09-09 | 스토너릿지 인코포레이티드 | Soot sensor system |
KR20160086890A (en) * | 2013-11-13 | 2016-07-20 | 스토너릿지 인코포레이티드 | Soot sensor system |
JP2017500546A (en) * | 2013-11-13 | 2017-01-05 | ストーンリッジ・インコーポレッド | 煤 Sensor system |
CN105849525A (en) * | 2013-11-13 | 2016-08-10 | 斯通瑞智公司 | Soot sensor system |
US11467079B2 (en) | 2013-11-13 | 2022-10-11 | Standard Motor Products, Inc. | Soot sensor system |
KR102450353B1 (en) | 2013-11-13 | 2022-10-04 | 스탠다드 모토 프로덕츠, 인크. | Soot sensor system |
US10591398B2 (en) | 2013-11-13 | 2020-03-17 | Stoneridge, Inc. | Soot sensor system |
JP2016085141A (en) * | 2014-10-27 | 2016-05-19 | 京セラ株式会社 | Sensor substrate, sensor device, and method for manufacturing the sensor substrate |
DE112016002986B4 (en) | 2015-06-30 | 2019-09-26 | Denso Corporation | Particle detection system |
US10900881B2 (en) | 2015-06-30 | 2021-01-26 | Denso Corporation | Particulate matter detection system |
WO2019116449A1 (en) * | 2017-12-12 | 2019-06-20 | オリンパス株式会社 | Treatment system |
CN110514565A (en) * | 2019-08-26 | 2019-11-29 | 深圳顺络电子股份有限公司 | A kind of chip particulate matter sensors ceramic chip and its manufacturing method |
CN110514564A (en) * | 2019-08-26 | 2019-11-29 | 深圳顺络电子股份有限公司 | A kind of automobile-used particulate matter sensors ceramic chip and its manufacturing method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5115873B2 (en) | Particulate filter failure detection device | |
JP2012083121A (en) | Particulate substance detection sensor | |
JP5240679B2 (en) | Detection device | |
JP2012047722A (en) | Particulate matter detection sensor and method for determining abnormality of the sensor | |
JP4341651B2 (en) | Thermal gas flow meter | |
JP5387591B2 (en) | Detection device | |
JP2006266961A (en) | Soot sensor | |
JP2009144577A (en) | Failure determination device for particulate filter | |
JP2010525367A (en) | Particulate matter sensor | |
JP2012012960A (en) | Particulate matter detection sensor | |
JP2011080439A (en) | Device for detecting abnormality of particulate filter | |
KR102340459B1 (en) | Method for operating a particle sensor | |
JP2012189049A (en) | Particulate matter detector and fault detection device for particulate filter | |
JP6372789B2 (en) | Filter fault diagnosis device | |
EP2072973B1 (en) | Fluid flow rate measurement apparatus | |
JP2011203093A (en) | Gas sensor, and disconnection detection method thereof | |
US20190383721A1 (en) | Exhaust gas particulate matter sensor | |
JP6481966B2 (en) | Control device | |
JP5924546B2 (en) | Filter failure detection device | |
WO2020241808A1 (en) | Exhaust-gas sensor | |
JP7172860B2 (en) | Exhaust gas sensor | |
JPS60123757A (en) | Smoke sensor | |
JP6481967B2 (en) | Control device | |
WO2016052734A1 (en) | Filter failure detection device, and particulate matter detection device | |
JPS6039542A (en) | Smoke density detecting method |