WO2019116449A1 - Treatment system - Google Patents

Treatment system Download PDF

Info

Publication number
WO2019116449A1
WO2019116449A1 PCT/JP2017/044595 JP2017044595W WO2019116449A1 WO 2019116449 A1 WO2019116449 A1 WO 2019116449A1 JP 2017044595 W JP2017044595 W JP 2017044595W WO 2019116449 A1 WO2019116449 A1 WO 2019116449A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat generating
switch
target
unit
index value
Prior art date
Application number
PCT/JP2017/044595
Other languages
French (fr)
Japanese (ja)
Inventor
雅人 成澤
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to PCT/JP2017/044595 priority Critical patent/WO2019116449A1/en
Publication of WO2019116449A1 publication Critical patent/WO2019116449A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/08Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by means of electrically-heated probes

Definitions

  • the present invention relates to a treatment system.
  • a heat generating portion that generates heat when energized is provided, and a gripping portion that holds a biological tissue is provided, and the heat energy generated in the heat generating portion is applied to the biological tissue to treat the biological tissue (join A treatment system for (or anastomosis) and dissection etc.) is known (see, for example, Patent Document 1).
  • the treatment system described in Patent Document 1 adopts a configuration that solves the problem of uneven distribution load.
  • the uneven distribution load means a state in which the living tissue is gripped by a part of the gripping surface, not the entire gripping surface that grips the living tissue in the gripping part.
  • the heat-emitting part is each provided in the position where the longitudinal direction of a holding part differs, and the structure which controls the said several heat-emitting part independently is employ
  • the present invention has been made in view of the above, and it is an object of the present invention to provide a treatment system capable of appropriately treating a living tissue even under uneven distribution load and achieving cost reduction. To aim.
  • a treatment system comprises a heat transfer plate for applying heat energy to a living tissue in contact with the living tissue, and a tip and a base of the heat transfer plate.
  • a plurality of heat generating portions respectively provided at different positions in the longitudinal direction connecting the ends and respectively generating heat by energization to heat the heat transfer plate; a power supply for supplying an alternating current to the plurality of heat generating portions;
  • a plurality of switches each connected in series to the heat generating portion and selecting one target heat generating portion to be supplied with an alternating current from the power supply among the plurality of heat generating portions, and controlling the operation of the plurality of switches
  • a switch control unit for sequentially switching the one target heating unit among the plurality of heating units; an index value measuring unit for measuring an index value serving as an indicator of the temperatures of the plurality of heating units; value And a power control unit configured to control at least one of switching timing of the target heat generating unit by the switch control unit and power supplied from the power supply to the
  • the treatment system according to the present invention it is possible to appropriately treat a living tissue even when the load is unevenly distributed, and to achieve cost reduction.
  • FIG. 1 is a view schematically showing a treatment system according to the first embodiment.
  • FIG. 2 is an enlarged view of the distal end portion of the treatment tool.
  • FIG. 3 is an exploded perspective view showing the heat generating structure.
  • FIG. 4 is a view of the heater as viewed from the heat transfer plate side.
  • FIG. 5 is a block diagram illustrating a treatment system.
  • FIG. 6 is a diagram showing a circuit configuration of a treatment system.
  • FIG. 7 is a flowchart showing the energization control method.
  • FIG. 8 is a diagram for explaining a specific example of the energization control method shown in FIG.
  • FIG. 9 is a diagram showing a first modification of the first embodiment.
  • FIG. 10 is a diagram showing a modification 2 of the first embodiment.
  • FIG. 11 is a diagram showing a treatment system according to the second embodiment.
  • FIG. 12 is a flowchart showing the energization control method according to the third embodiment.
  • FIG. 13 is a diagram for explaining a specific example of the energization control method shown in FIG.
  • FIG. 14 is a diagram for explaining a specific example of the energization control method shown in FIG.
  • FIG. 15 is a flowchart showing the energization control method according to the fourth embodiment.
  • FIG. 16 is a diagram for explaining a specific example of the energization control method shown in FIG.
  • FIG. 17 is a block diagram showing a treatment system according to the fifth embodiment.
  • FIG. 1 is a view schematically showing a treatment system 1 according to the first embodiment.
  • the treatment system 1 treats (joins (or anastomoses) and detaches, etc.) a living tissue by applying thermal energy to the living tissue to be treated.
  • the treatment system 1 includes a treatment tool 2, a control device 3 and a foot switch 4 as shown in FIG.
  • the treatment tool 2 is, for example, a linear surgical treatment tool for treating a living tissue through the abdominal wall.
  • This treatment tool 2 is provided with the handle 5, the shaft 6, the holding part 7, and the heater drive part 8 (refer FIG. 5), as shown in FIG.
  • the handle 5 is a part held by the operator by hand.
  • the handle 5 is provided with an operation knob 51.
  • the shaft 6 has a substantially cylindrical shape, and one end (the right end in FIG. 1) is connected to the handle 5. Further, a grip 7 is attached to the other end (left end in FIG. 1) of the shaft 6.
  • An opening / closing mechanism (shown in the drawing) opens and closes the first and second holding members 9 and 10 (FIG. 1) constituting the holding unit 7 in accordance with the operation of the operation knob 51 by the operator. ) Is provided.
  • the detailed configuration of the heater driving unit 8 will be described when describing the configurations of the control device 3 and the foot switch 4.
  • FIG. 2 is an enlarged view of the distal end portion of the treatment tool 2.
  • the gripping portion 7 is a portion that grips a living tissue to treat the living tissue.
  • the gripping portion 7 includes first and second gripping members 9 and 10 as shown in FIG. 1 or 2.
  • the first and second gripping members 9 and 10 are pivotally supported by the other end (left end in FIGS. 1 and 2) of the shaft 6 so as to be able to open and close in the direction of arrow R1 (FIG. 2) In accordance with the operation 51, the living tissue can be grasped.
  • the front end side is the front end side of the holding part 7, Comprising: The left side is meant in FIG. 1, FIG. Further, “proximal side” described below means the right side in FIGS. 1 and 2 on the side of the shaft 6 of the grip 7.
  • the first gripping member 9 is disposed below the second gripping member 10 in FIG. 1 or 2. As shown in FIG. 2, the first gripping member 9 includes a first cover member 11 and a heat generating structure 12.
  • the first cover member 11 is formed of a long plate extending in the longitudinal direction (left and right direction in FIGS. 1 and 2) from the tip end of the grip 7 toward the base end. In the first cover member 11, a recess 111 is formed on the upper surface in FIG.
  • the recess 111 is located at the center in the width direction of the first cover member 11 and extends along the longitudinal direction of the first cover member 11. Moreover, the side wall part by the side of the proximal end among the side wall parts which comprise the recessed part 111 is abbreviate
  • the first cover member 11 is supported by the shaft 6 with the recess 111 facing upward in FIG. 2 while supporting the heat generating structure 12 in the recess 111.
  • FIG. 3 is an exploded perspective view showing the heat generating structure 12. Specifically, FIG. 3 is an exploded perspective view of the heat generating structure 12 from the upper side in FIGS. 1 and 2.
  • the heat generating structure 12 is accommodated in the recess 111 with a part thereof protruding upward from the recess 111 in FIG.
  • the heat generating structure 12 generates thermal energy under the control of the control device 3.
  • the heat generating structure 12 includes a heat transfer plate 13, a heater 14, and an adhesive member 15.
  • the heat transfer plate 13 is formed of, for example, a long plate (long plate extending in the longitudinal direction of the grip portion 7) made of a material such as copper. Then, in a state in which the heat transfer plate 13 holds the living tissue by the first and second holding members 9 and 10, the plate surface on the upper side in FIGS. 2 and 3 contacts the living tissue, and the heater The heat from 14 is transmitted to the living tissue (heat energy is applied to the living tissue).
  • FIG. 4 is a view of the heater 14 as viewed from the heat transfer plate 13 side.
  • the heater 14 partially generates heat, and functions as a sheet heater that heats the heat transfer plate 13 by the heat generation.
  • the heater 14 includes a substrate 16, a first resistance pattern 17, and a second resistance pattern 18 as shown in FIG. 3 or 4.
  • the substrate 16 is a long sheet (long sheet extending in the longitudinal direction of the grip 7) made of an insulating material such as polyimide.
  • an insulating material such as polyimide.
  • substrate 16 you may employ
  • the first resistance pattern 17 is formed by processing stainless steel (SUS 304) which is a conductive material, and as shown in FIG. 3 or FIG. 4, a pair of first connection portions 171 and a first pattern main body 172 And Then, the first resistance pattern 17 is bonded to the upper surface 161 of the substrate 16 in FIG. 3 by thermocompression bonding.
  • the material of the first resistance pattern 17 is not limited to stainless steel (SUS304), and may be another stainless steel material (for example, No. 400 series), or a conductive material such as platinum or tungsten may be employed. Absent.
  • the first resistance pattern 17 is not limited to the structure bonded to the surface 161 of the substrate 16 by thermocompression bonding, and may be formed on the surface 161 by vapor deposition, printing, or the like.
  • the pair of first connection portions 171 are respectively provided on the base end side (the right end side in FIGS. 3 and 4) of the substrate 16, and from the base end side to the tip side They extend toward the left end side in FIGS. 3 and 4 and are provided to face each other along the width direction of the substrate 16. Then, the pair of first connection portions 171 is connected to the heater drive unit 8, and in the shaft 6, one end side (right end portion side in FIG. 1) of the shaft 6 to the other end side (FIG. 1 in FIG. 1) , And the two first lead wires C1 (see FIG. 5) drawn to the left end side) are respectively joined (connected). In FIG. 5, for convenience of explanation, only one first lead wire C1 is shown.
  • One end of the first pattern main body 172 is connected (conductive) to one of the first connection portions 171, extends from the one end to the tip end while meandering in a wave shape, and substantially in the longitudinal center of the substrate 16 The other end is folded back to the proximal end side in the vicinity, and the other end is connected (conductive) to the other first connection portion 171. Further, in the first pattern main body 172, the resistance value per unit length in the longitudinal direction of the substrate 16 is set larger than that of the pair of first connection portions 171. The first pattern main body 172 generates heat when a voltage is applied (energized) to the pair of first connection portions 171 by the heater driving unit 8 through the two first lead wires C1. That is, the first pattern main body 172 corresponds to the heat generating portion according to the present invention.
  • the second resistance pattern 18 is formed by processing stainless steel (SUS 304), which is a conductive material, and as shown in FIG. 3 or 4, a pair of second connection portions 181 and a second pattern main body 182 And Then, the second resistance pattern 18 is bonded to the surface 161 of the substrate 16 by thermocompression bonding.
  • the material of the second resistance pattern 18 is not limited to stainless steel (SUS 304), and may be another stainless steel material (for example, No. 400 series), or a conductive material such as platinum or tungsten may be employed. Absent.
  • the second resistance pattern 18 is not limited to the structure bonded to the surface 161 of the substrate 16 by thermocompression bonding, and may be formed on the surface 161 by vapor deposition, printing, or the like.
  • the material of the second resistance pattern 18 may be the same as or different from the material of the first resistance pattern 17.
  • the pair of second connection portions 181 extend from the base end side of the substrate 16 to near the approximate center of the substrate 16 in the longitudinal direction, and the first resistance pattern 17 is formed. It is provided so as to face each other in the width direction of the substrate 16 so as to sandwich it.
  • the pair of second connection portions 181 is connected to the heater driving portion 8 and in the shaft 6, the one end side (right end portion side in FIG. 1) of the shaft 6 to the other end side (FIG. 1 in FIG. , And the two second lead wires C2 (see FIG. 5) drawn to the left end) are respectively joined (connected). In FIG. 5, for convenience of explanation, only one second lead wire C2 is shown.
  • the second pattern main body 182 is connected (conductive) at one end to one second connection portion 181, extends from the one end to the tip of the substrate 16 while meandering in a wavelike manner, and on the proximal end side at the tip To the other second connection portion 181 (conducting). Further, in the second pattern main body 182, the resistance value per unit length in the longitudinal direction of the substrate 16 is set larger than that of the pair of second connection parts 181. Then, the second pattern main body 182 generates heat when a voltage is applied (energized) to the pair of second connection portions 181 by the heater driving unit 8 through the two second lead wires C2. That is, the second pattern main body 182 corresponds to the heat generating portion according to the present invention. As described above, the first and second pattern bodies 172 and 182 are arranged in parallel in the longitudinal direction of the substrate 16 (provided at different positions in the longitudinal direction).
  • the bonding member 15 is interposed between the heat transfer plate 13 and the surface 161 (first and second resistance patterns 17 and 18) of the substrate 16 as shown in FIG. Adhesively fix.
  • the adhesive member 15 is a long sheet (long sheet extending in the longitudinal direction of the grip portion 7) which has good thermal conductivity and electrical insulation, withstands high temperature, and has adhesiveness. It is configured.
  • the heat transfer plate 13 is disposed so as to cover the entire first and second pattern bodies 172 and 182.
  • the bonding member 15 is disposed so as to cover the entire first and second pattern main bodies 172 and 182 and to partially cover each of the pair of first connection portions 171 and the pair of second connection portions 181. Be done.
  • the bonding member 15 is disposed in a state of being protruded to the base end side with respect to the heat transfer plate 13.
  • the two first lead wires C1 and the two second lead wires C2 are not covered by the adhesive member 15 in the pair of first connection portions 171 and the pair of second connection portions 181. (Connected) to each other.
  • the second holding member 10 includes a second cover member 19 and an opposing plate 20, as shown in FIG.
  • the second cover member 19 has the same shape as the first cover member 11. That is, as shown in FIG. 2, the second cover member 19 has a recess 191 similar to the recess 111.
  • the second cover member 19 is supported by the shaft 6 in a posture in which the recess 191 faces downward in FIG. 2 (a posture facing the recess 111) while supporting the opposing plate 20 in the recess 191.
  • the opposing plate 20 is made of, for example, a conductive material such as copper.
  • the opposing plate 20 is formed of a flat plate having substantially the same planar shape as the recess 191, and is fixed in the recess 191. Then, the opposing plate 20 grips the living tissue with the heat transfer plate 13.
  • the opposing board 20 you may comprise not only an electroconductive material but resin materials, such as other materials, for example, PEEK (polyether ether ketone).
  • FIG. 5 is a block diagram showing the treatment system 1.
  • FIG. 6 is a diagram showing a circuit configuration of the treatment system 1.
  • the foot switch 4 is a portion operated by the operator with a foot.
  • control device 3 performs energization control of heater 14 (the 1st and 2nd resistance pattern 17 and 18).
  • the control device 3 is configured to include a CPU (Central Processing Unit) or the like, and centrally controls the operation of the treatment tool 2 in accordance with a predetermined control program.
  • the control device 3 includes a power supply 31, a control unit 32, and a memory 33, as shown in FIG. 5 or FIG.
  • the power supply 31 is connected to the heater driving unit 8 via the electric cable C (FIGS. 1 and 5). Then, the power supply 31 supplies power for energizing the first and second resistance patterns 17 and 18 to the heater driving unit 8 through the electric cable C under the control of the control unit 32.
  • the power supply 31 is an AC power supply, and supplies an alternating current to the first and second resistance patterns 17 and 18.
  • the control unit 32 includes, for example, a CPU, an FPGA (Field-Programmable Gate Array), and the like. Then, the control unit 32 controls the operation of the power supply 31. Further, the control unit 32 communicates with the heater driving unit 8 via the electric cable C, and controls the operation of the heater driving unit 8. As shown in FIG.
  • the control unit 32 includes a switch control unit 321, an index value measurement unit 322, and an energization control unit 323.
  • the functions of the switch control unit 321, the index value measurement unit 322, and the energization control unit 323 will be described after the configuration of the heater driving unit 8 is described.
  • the memory 33 stores a control program executed by the control unit 32, data necessary for processing by the control unit 32, and the like.
  • data necessary for processing by the control unit 32 for example, resistance temperature characteristic information indicating the relationship between the resistance value and the temperature in the first and second resistance patterns 17 and 18, respectively, the first and second data The voltage value etc. for electricity supply to the resistance patterns 17 and 18 can be illustrated.
  • the heater driving unit 8 is provided, for example, inside the handle 5. As shown in FIG. 5 or 6, the heater drive unit 8 includes first and second switches 81 and 82, a switch drive unit 83, first and second detection resistors 84 and 85, and DAQ Data Acquisition) 86.
  • the first switch 81 connects the electric cable C and the first resistance pattern 17 (first lead wire C1) such that the first switch 81 is connected in series to the first resistance pattern 17.
  • the first supply path P1 (FIGS. 5 and 6) of the alternating current to the resistance pattern 17 is provided.
  • the first switch 81 is turned on by the switch driving unit 83, thereby allowing the supply of alternating current to the first resistance pattern 17 via the first supply path P1 (permitting energization), By turning the switch OFF, the supply of alternating current to the first resistance pattern 17 via the first supply path P1 is prohibited (prohibition of energization).
  • two MOSFETs Metal-Oxide-Semiconductor Field-Effect Transistors
  • the connected sources are connected to a ground D-GND (a ground of the switch driver 83) different from the ground P-GND of the power supply 31.
  • the second switch 82 connects the electric cable C and the second resistance pattern 18 (second lead wire C2) such that the second switch 82 is connected in series to the second resistance pattern 18.
  • the second supply path P2 (FIGS. 5 and 6) of the alternating current to the resistance pattern 18 is provided.
  • the second switch 82 is turned on by the switch driving unit 83, thereby permitting the supply of alternating current to the second resistance pattern 18 via the second supply path P2 (permitting energization), By turning off the switch, the supply of alternating current to the second resistance pattern 18 via the second supply path P2 is inhibited (energization is prohibited).
  • the second switch 82 is, as shown in FIG.
  • the first resistance pattern 17 (first pattern main body 172) is a target to be supplied with alternating current from the power supply 31. It is selected as one target heating unit to be
  • the second resistance pattern 18 (second pattern main body 182) is a target of supply of alternating current from the power supply 31. It is selected as one target heating unit to be That is, the first and second switches 81 and 82 select one target heat generating portion among the first and second resistor patterns 17 and 18, and correspond to the switches according to the present invention.
  • the switch drive unit 83 is formed of, for example, a photocoupler, and turns on or off the first and second switches 81 and 82 under the control of the DAQ 86.
  • the first detection resistor 84 is a monitor resistor (1 ⁇ resistor in the example of FIG. 6) provided in the first supply path P1 so as to be connected in series to the first resistor pattern 17.
  • the second detection resistor 85 is a monitor resistor (1 ⁇ resistor in the example of FIG. 6) provided in the second supply path P2 so as to be connected in series to the second resistor pattern 18.
  • the DAQ 86 communicates with the control unit 32 of the control device 3 via the electrical cable C.
  • the DAQ 86 controls the operation of the switch drive unit 83 in accordance with the control signal transmitted from the control unit 32, and at the same time, the voltage values applied to the first and second detection resistors 84 and 85 A current value flowing through the two detection resistors 84 and 85 is detected, and a detection signal corresponding to the voltage value and the current value is transmitted to the control unit 32.
  • the switch control unit 321 transmits a control signal to the DAQ 86 via the electrical cable C, controls the operation of the first and second switches 81 and 82, and selects one of the first and second resistance patterns 17 and 18.
  • One target heating unit is switched sequentially.
  • the index value measurement unit 322 detects the detection signal (the voltage value applied to the first and second detection resistors 84 and 85 and the first and second detection resistors 84 and 85) transmitted from the DAQ 86 via the electrical cable C.
  • the resistance values of the first and second resistance patterns 17 and 18 are calculated based on the flowing current value). Then, the index value measurement unit 322 performs the first and second calculated resistance values based on the resistance temperature characteristic information corresponding to the first and second resistance patterns 17 and 18 stored in the memory 33, respectively.
  • the energization control unit 323 is based on the temperatures of the first and second resistance patterns 17 and 18 measured by the index value measurement unit 322, the switching timing of the target heating unit by the switch control unit 321 and the target heat generation from the power supply 31. Control at least one of the power supplied to the unit.
  • FIG. 7 is a flowchart showing the energization control method.
  • the operator holds the treatment tool 2 by hand, and inserts the distal end portion (a part of the grip 7 and the shaft 6) of the treatment tool 2 into the abdominal cavity through the abdominal wall using, for example, a trocar. Then, the operator operates the operation knob 51, and the grasping unit 7 grasps the living tissue to be treated. And control device 3 performs energization control shown below according to operation (Step S1: Yes) of foot switch 4 by an operator.
  • the control unit 32 executes an initialization process (step S2). For example, in step S2, the control unit 32 sets the initial voltage value to be supplied to the first and second resistor patterns 17 and 18 as the voltage value for supplying the first and second resistor patterns 17 and 18 to the memory 33.
  • the switch control unit 321 determines a switch to be turned on among the first and second switches 81 and 82 (step S3). For example, in the case where the first switch 81 is determined as the switch to be switched on in the immediately preceding loop (the loop of steps S3 to S9), the second loop is to be switched on as the switch in the next loop. decide.
  • the switch control unit 321 sets the switch determined in step S3 among the first and second switches 81 and 82 as the switch ON and the other switch OFF (step S4). That is, among the first and second resistance patterns 17 and 18, the resistance pattern connected in series to the switch which is turned on is selected as the target heat generating portion.
  • the energization control unit 323 sets the voltage value for energization corresponding to the target heating portion selected in step S4 (the initial voltage value stored in the memory 33 in step S2, or in the memory 33 in step S7). The stored voltage value is read from the memory 33.
  • the energization control unit 323 controls the operation of the power supply 31, sets the peak value of the AC voltage supplied from the power supply 31 to the read voltage value, and energizes the target heating unit with the voltage value (step S5). ).
  • the energization control unit 323 reads the initial voltage value stored in the memory 33 in step S2, and energizes the target heating unit with the initial voltage value.
  • the resistance patterns other than the target heating portion selected in step S4 among the first and second resistance patterns 17 and 18 will be described as non-target heating portions.
  • the index value measurement unit 322 determines the voltage value applied to the detection resistor connected in series with the non-target heating portion among the first and second detection resistors 84 and 85 and the current flowing through the detection resistor. Based on the detection signal corresponding to the value, the temperature of the non-target heating portion (hereinafter referred to as the heater temperature) is measured (step S6).
  • the first and second switches 81 and 82 configured as alternating current switches respectively have predetermined capacitance components.
  • the second supply path P2 is used according to the capacitance component of the second switch 82. Leakage current flows. Then, in step S6, the index value measurement unit 322 calculates the temperature of the non-target heating portion using the leakage current.
  • the energization control unit 323 applies the non-target heating portion to be selected next as a target heating portion using the difference between the heater temperature of the non-target heating portion measured in step S6 and the target temperature.
  • a voltage value to be calculated is calculated, and the calculated voltage value is stored (updated) in the memory 33 as a voltage value for energizing the target heat generating portion (step S7).
  • general PID Proportional-Integral-Differential
  • step S8 the energization control unit 323 constantly monitors whether the switching timing of the target heat generating unit has come (step S8). Specifically, in step S8, the energization control unit 323 sets the switching timing to a point in time when a predetermined time TC (see FIG. 8) has elapsed since the energization of the target heat generating portion is started in step S5. That is, in the first embodiment, the switching timing is set to a constant cycle. If it is determined that the switching timing of the target heat generating portion has come (step S8: Yes), the control unit 32 determines whether the treatment time necessary for treatment of the living tissue has elapsed (step S9).
  • step S9 the control unit 32 determines whether a predetermined time has elapsed since the foot switch 4 is operated (step S1: Yes). Then, when it is determined that the treatment time has elapsed (step S9: Yes), the control device 3 ends the energization control. On the other hand, when it is determined that the treatment time has not elapsed (step S9: No), the control device 3 returns to step S3.
  • FIG. 8 is a diagram for explaining a specific example of the energization control method.
  • FIG. 8A is a diagram showing changes in the heater temperature and the voltage value at the time of energization in the first resistance pattern 17.
  • FIG. 8B is a diagram showing changes in the heater temperature and the voltage value at the time of energization in the second resistance pattern 18. Note that FIG. 7 exemplifies the case where the first switch 81 is switched on first. Further, in FIG. 8, the heater temperature is represented by a line graph, and the voltage value is represented by a bar graph.
  • the first resistance pattern 17 is selected as the target heat generating portion (step S4). That is, in the first loop, the second resistance pattern 18 is a non-target heating portion. Thereafter, as shown in FIG. 8A, the first resistance pattern 17 is energized at the initial voltage value V0 (step S5). At this time, the second switch 82 is turned off in the second supply path P2 of the alternating current to the second resistance pattern 18 which is the non-target heating portion, but the capacitance of the second switch 82 Leakage current flows depending on the component. That is, an extremely small voltage value VL2 (FIG. 8B) is applied to the second resistance pattern 18 in accordance with the leakage current.
  • VL2 very small voltage value
  • step S6 the heater temperature T2 (FIG. 8B) of the second resistance pattern 18 to be selected next as the target heating portion is measured (step S6), and the heater temperature T2 is used.
  • a voltage value V2 (FIG. 8B) to be applied to the second resistance pattern 18 (in the second loop of steps S3 to S9) is calculated (step S7).
  • step S8: Yes the target heat generating portion is switched from the first resistance pattern 17 to the second resistance pattern 18.
  • Step S3 the first loop of steps S3 to S9 ends.
  • the second resistance pattern 18 is selected as the target heat generating portion (step S4). That is, in the second loop, the first resistance pattern 17 is a non-target heating portion. Thereafter, the second resistance pattern 18 is energized at the voltage value V2 calculated in the first loop of steps S3 to S9 (step S5). At this time, the first switch 81 is turned off in the first supply path P1 of the alternating current to the first resistance pattern 17 which is the non-target heating portion, but the capacitance of the first switch 81 Leakage current flows depending on the component. That is, an extremely small voltage value VL1 (FIG. 8A) is applied to the first resistance pattern 17 in accordance with the leakage current.
  • VL1 very small voltage value
  • step S6 the heater temperature T1 (FIG. 8A) of the first resistance pattern 17 to be selected next as the target heating portion is measured (step S6), and the heater temperature T1 is used. Then, a voltage value V1 (FIG. 8A) to be applied to the first resistance pattern 17 (in the third loop of steps S3 to S9) is calculated (step S7). Thereafter, when the predetermined time TC has elapsed since the start of energization of the second resistance pattern 18 (step S8: Yes), the target heat generating portion is switched from the second resistance pattern 18 to the first resistance pattern 17 (Step S3). Thus, the second loop of steps S3 to S9 is completed.
  • the heater temperatures of the first and second resistance patterns 17 and 18 are respectively controlled to target temperatures as shown in FIG. 8 by repeatedly executing the loop of steps S3 to S9.
  • the first and second pattern bodies 172 and 182 are provided at different positions in the longitudinal direction of the grip 7 and are controlled independently of each other. Therefore, as in the configuration described in Patent Document 1, even if the load is unevenly distributed, the living tissue can be heated at the target temperature, and the living tissue can be appropriately treated. Further, in the treatment system 1 according to the first embodiment, a supply path (the first path from the power source 31 to the first and second resistance patterns 17 and 18 (first and second pattern bodies 172 and 182) (the first path) The first and second resistance patterns 17 and 18 are independently controlled by switching the first and second supply paths P1 and P2 by the first and second switches 81 and 82, respectively.
  • the biological tissue can be appropriately treated even if the load is unevenly distributed, and the cost can be reduced. Play.
  • the non-target heat generating portion (selected among the first and second switches 81 and 82) is selected as the target heat generating portion next to the first and second resistance patterns 17 and 18.
  • a voltage value for example, when the power is supplied to the target heating portion next time using the heater temperature immediately before being selected as the target heating portion (for example, the heater temperature T1 (T2) shown in FIG. 8)
  • the voltage value V1 (V2) shown in FIG. 8 can be appropriately calculated. Therefore, the heater temperatures of the first and second resistance patterns 17 and 18 can be controlled appropriately and stably at the target temperature.
  • FIG. 9 is a diagram showing a first modification of the first embodiment. Specifically, FIG. 9 is a cross-sectional view orthogonal to the width direction of the grasping portion 7A in a state where the grasping portion 7A according to the present modification 1 is closed (a state in which the living tissue LT is grasped by the grasping portion 7A). It is sectional drawing which cut
  • FIG. 9 for convenience of explanation, the illustration of the pair of first connection portions 171 and the pair of second connection portions 181 is omitted.
  • the first and second pattern bodies 172 and 182 are provided in parallel in the longitudinal direction in the first gripping member 9, but provided that they are provided at different positions in the longitudinal direction. It may be disposed as shown in FIG. Specifically, in the gripping portion 7A according to the first modification, as shown in FIG. 9, the first resistance pattern 17 is provided to the first gripping member 9. On the other hand, the second resistance pattern 18 is provided on the second holding member 10. The first and second pattern bodies 172 and 182 are provided at different positions in the longitudinal direction. Even when the configuration of the first modification described above is adopted, the same effect as that of the first embodiment described above is obtained.
  • FIG. 10 is a diagram showing a modification 2 of the first embodiment.
  • step S4 and step S5 may be simultaneously executed (parallel processing).
  • step S4 and step S5 may be simultaneously executed (parallel processing).
  • step S5 there is no time difference between the switching of the first and second switches 81 and 82 (step S4) and the energization of the target heat generating portion (step S5).
  • Energization control can be performed.
  • FIG. 11 is a diagram corresponding to FIG. 6 and is a diagram showing a treatment system 1B according to the second embodiment.
  • the first and second capacitors 87 and 88 correspond to the treatment system 1 (FIG. 6) described in the first embodiment described above.
  • the first capacitor 87 corresponds to a capacitive element according to the present invention, and is connected in series to the first resistance pattern 17 and parallel to the first switch 81 as shown in FIG.
  • the first capacitor 87 has a capacitance component larger than that of the first switch 81.
  • the second capacitor 88 corresponds to a capacitive element according to the present invention, and is connected in series to the second resistance pattern 18 and in parallel to the second switch 82 as shown in FIG.
  • the second supply path P2 is provided to be connected to the second supply path P2.
  • the second capacitor 88 has a capacitance component larger than that of the second switch 82.
  • the index value measurement unit 322 is configured such that the capacitance components of the first switch 81 and the first capacitor 87 in the first and second supply paths P1 and P2 or the second In accordance with the capacitance components of the switch 82 and the second capacitor 88, the temperature of the non-target heating portion is measured using the leakage current flowing in the supply path connected to the non-target heating portion.
  • the following effects can be obtained.
  • the above-described first and second capacitors 87 and 88 are added. Therefore, it is possible to further increase the leakage current flowing through the supply path connected to the non-target heating portion among the first and second supply paths P1 and P2, and to improve the detection accuracy of the leakage current. Therefore, the heater temperature immediately before being selected as the target heat generating portion can be calculated with high accuracy, and the energization control can be performed with high accuracy.
  • the third embodiment will be described.
  • the same components and steps as those in the first embodiment described above are denoted by the same reference numerals, and the detailed description thereof is omitted or simplified.
  • the peak value of the AC voltage supplied from the power supply 31 is controlled while the switching timing has a constant cycle.
  • the peak value of the AC voltage supplied from the power supply 31 is constant (the predetermined voltage value Vmax (see FIG. 13C and FIG. 13D))
  • the target heat generation is performed. Control the energizing time to energize the unit continuously. That is, in the third embodiment, the energization control method is different from that of the first embodiment described above.
  • FIG. 12 is a flowchart showing the energization control method according to the third embodiment.
  • step S5 is omitted from the energization control method (FIG. 7) described in the first embodiment described above, and steps S2 and S7 are performed. , S8, instead of employing steps S2C, S7C, S8C.
  • step S6 is executed after step S4 because step S5 is omitted.
  • steps S2C, S7C, and S8C will be described.
  • Step S2C is executed when the operator operates the foot switch 4 (step S1: Yes). Specifically, in step S2C, the energization control unit 323 operates the power supply 31 to supply the AC voltage of the predetermined voltage value Vmax from the power supply 31. After this, the control device 3 shifts to step S3. By performing step S2C, the target heat generating portion selected in step S4 is energized at the predetermined voltage value Vmax.
  • Step S7C is performed after step S6.
  • the energization control unit 323 uses the difference between the heater temperature of the non-target heating portion measured in step S6 and the target temperature and then performs the next operation. A voltage value to be supplied to the non-target heat generating portion selected as the target heat generating portion is calculated. The energization control unit 323 also calculates the ratio of the calculated voltage value to the predetermined voltage value Vmax.
  • the energization control unit 323 calculates a time corresponding to the calculated ratio with respect to the predetermined time TC as the energization time for energizing the non-target heat generating portion to be next selected as the target heat generating portion, and calculates the calculated power supply time It is stored in the memory 33.
  • step S8C the energization control unit 323 constantly monitors whether or not the switching timing of the target heat generating unit has come (step S8C). Specifically, in step S8C, the energization control unit 323 determines that the energization time (this loop is the first loop) stored in the memory 33 in the previous loop (the loop of steps S3, S4, S6, S7C, S8C, and S9). In this case, the predetermined energization time) which is the initial value is read out, and the point in time when the energization time has elapsed since the start of energization of the target heat generating portion in step S4 is taken as the switching timing. When it is determined that the switching timing has come (the energization time has elapsed) (step S8C: Yes), the control device 3 shifts to step S9.
  • FIGS. 13 (a) and 13 (b) show the first, the second, and the third in the case where the energization control is performed by the energization control method (hereinafter referred to as the LEVEL method) described in the first embodiment described above.
  • the change of the voltage value at the time of electricity supply in 2nd resistance pattern 17 and 18 is shown, respectively.
  • FIG. 14 is a diagram corresponding to FIG. 13 (a), 13 (c) and 14 (a) show changes in voltage value and energization time of the first resistance pattern 17 during energization.
  • FIGS. 13B, 13D, and 14B show changes in voltage value and energization time of the second resistance pattern 18 during energization.
  • the voltage values applied to the first and second resistance patterns 17 and 18 are constant at a predetermined voltage value Vmax.
  • the predetermined voltage value Vmax is, for example, the maximum voltage value for energizing the first and second resistance patterns 17 and 18 in the first embodiment described above.
  • the voltage value calculated in step S7 is a ratio of 50%, 100%, 80%, 50%, and 15% to the predetermined voltage value Vmax. It is assumed that the In this case, in step S7C, the energization time is calculated as a time corresponding to the ratio to the predetermined time TC, so as shown in FIG.
  • TC when the calculated voltage value is 100% of the voltage value Vmax
  • 0.8 TC in the case where the calculated voltage value is 80% of the voltage value Vmax
  • 0.. 5 TC when the calculated voltage value is 50% of the voltage value Vmax
  • 0.15 TC when the calculated voltage value is 15% of the voltage value Vmax
  • the conduction control unit 323 sets the peak value of the power supplied from the power supply 31 to the target heating unit constant (constant at the predetermined voltage value Vmax), and then the target heating unit Based on the heater temperature of the non-target heat generation part selected as, the current supply time which continues supplying current to the non-target heat generation part is controlled. For this reason, as the power supply 31, a configuration in which the output value is fixed can be adopted instead of the configuration in which the output value is variable. Therefore, the cost of the treatment system 1 can be further reduced.
  • Embodiment 4 Next, the fourth embodiment will be described.
  • the same components and steps as those in the first embodiment described above are denoted by the same reference numerals, and the detailed description thereof is omitted or simplified.
  • the position of the living tissue LT in a state in which the living tissue LT is gripped by the gripping unit 7 is determined, and the heater 14 (the The control of energization of the first and second resistance patterns 17 and 18) is executed. That is, in the fourth embodiment, the energization control method is different from the above-described first embodiment.
  • FIG. 15 is a flowchart showing the energization control method according to the fourth embodiment.
  • the energization control method according to the fourth embodiment is, as shown in FIG. 15, a step S5D in place of steps S5, S8 and S9 with respect to the energization control method (FIG. 7) described in the first embodiment. , S8D, S9D2 and S9D3, and steps S10 to S13, S3D1 to S7D1, S3D2 to S8D2 and S3D3 to S8D3 are added.
  • steps S5D, S8D, S10 to S13, S3D1 to S7D1, S3D2 to S9D2 and S3D3 to S9D3 will be described.
  • Step S10 is performed after step S2. Specifically, in step S10, the control unit 32 determines whether or not both of the first and second resistance patterns 17 and 18 are energized. If it is determined that power is not supplied to both the first and second resistance patterns 17 and 18 (step S10: No), the control unit 32 sets one of the first and second resistance patterns 17 and 18 to one side. It is judged whether it supplied with electricity (step S11). When it is determined that one of the first and second resistance patterns 17 and 18 is not energized (step S11: No), the control device 3 proceeds to step S3.
  • Step S5D is performed after step S4. Specifically, in step S5D, the energization control unit 323 controls the operation of the power supply 31 and sets the peak value of the AC voltage supplied from the power supply 31 to the initial voltage value stored in the memory 33 in step S2. The target heating portion is energized at the initial voltage value. Thereafter, the control device 3 shifts to step S6.
  • step S11 If it is determined that one of the first and second resistance patterns 17 and 18 is energized (step S11: Yes), the control device 3 performs steps S3 to S7 described in the first embodiment, respectively. Similar steps S3D1 to S7D1 are executed. That is, steps S3D1 to S7D1 are executed after steps S3, S4, S5D, S6 and S7 energize one of the first and second resistance patterns 17 and 18.
  • step S5D1 the energization control unit 323 reads from the memory 33 the voltage value stored in the memory 33 in step S7.
  • the energization control unit 323 controls the operation of the power supply 31, sets the peak value of the AC voltage supplied from the power supply 31 to the read voltage value, and energizes the target heating unit with the voltage value. Further, in step 6D1, the index value measurement unit 322 measures the temperature of the non-target heat generation portion in the same manner as step S6 described in the first embodiment described above. Further, the index value measurement unit 322 is responsive to the voltage value applied to the detection resistor connected in series to the target heating portion among the first and second detection resistors 84 and 85 and the current value flowing to the detection resistor. The temperature of the target heating portion is measured based on the detection signal.
  • Step S8D is performed after step S7 or step S7D1. Specifically, in step S8D, the power supply control unit 323 sets a switching timing as a point in time when a set time (for example, a predetermined time TC) has elapsed since power supply to the target heat generating portion is started in step S5D or step S5D1. It constantly monitors whether the switching timing has come. Then, when it is determined that the switching timing has come (step S8D: Yes), the control device 3 returns to step S10.
  • a set time for example, a predetermined time TC
  • Step S12 is executed when it is determined that both of the first and second resistance patterns 17 and 18 are energized (step S10: Yes). Specifically, in step S12, the energization control unit 323 determines whether the temperature difference between the heater temperatures of the first and second resistance patterns 17 and 18 measured in step S6D1 is equal to or greater than a first threshold. Do.
  • Step S13 is executed when it is determined that the temperature difference between the heater temperatures of the first and second resistance patterns 17 and 18 is equal to or greater than the first threshold (step S12: Yes). Specifically, in step S13, the conduction control unit 323 sets the conduction time of the resistance pattern having the highest heater temperature among the first and second resistance patterns 17 and 18 as the predetermined time TC. Further, the energization control unit 323 sets the energization time of the resistance pattern having a low heater temperature to be longer than the predetermined time TC. Then, the energization control unit 323 stores each energization time in the memory 33.
  • step S13 the control device 3 executes the loop of steps S3D2 to S9D2 similar to the loop of steps S3 to S9 described in the first embodiment described above.
  • step S8D2 the conduction control unit 323 reads the conduction time corresponding to the target heating portion selected in step S4D2 out of the respective conduction times stored in the memory 33 in step S13 from the memory 33, and in step S5D2 It is constantly monitored whether or not the current application time has elapsed since the current application to the target heat generating portion has been started.
  • the loop of steps S13 and S3D2 to S9D2 described above corresponds to the first control according to the present invention.
  • step S12 When it is determined that the temperature difference between the heater temperatures of the first and second resistance patterns 17 and 18 is less than the first threshold (step S12: No), the control device 3 performs the first embodiment described above.
  • the loop of steps S3D3 to S9D3 similar to the loop of steps S3 to S9 described above is executed.
  • FIG. 16 is a diagram for explaining a specific example of the energization control method.
  • FIGS. 16A and 16B correspond to FIG. 8 and the temperature difference between the heater temperatures of the first and second resistance patterns 17 and 18 is equal to or greater than the first threshold value.
  • Step S12 Yes
  • the energization control is performed by the energization control method described in the first embodiment described above (when the loop of steps S3D3 to S9D3 is executed)
  • 16C and 16D correspond to FIG. 8 when the temperature difference between the heater temperatures of the first and second resistance patterns 17 and 18 is equal to or greater than the first threshold (see FIG. In step S12: Yes), the first and second resistance patterns in the case where the energization control is performed by the energization control method according to the fourth embodiment (when the loop of step S13 and steps S3D2 to S9D2 is executed) Changes in the heater temperature and the voltage value at the time of energization are shown at 17 and 18, respectively. 16 (a) and 16 (c) show changes of the heater temperature and the voltage value at the time of energization in the first resistance pattern 17. FIG.
  • FIGS. 16B and 16D show changes in the heater temperature and the voltage value at the time of energization in the second resistance pattern 18.
  • the heater temperature of the non-target heating portion (first resistance pattern 17) measured in step S6D1 is taken as the heater temperature T3, and the target heating portion (second resistance) is obtained.
  • the heater temperature of pattern 18) is a heater temperature T4.
  • the heater temperature T3 is lower than the heater temperature T4.
  • the temperature difference (T4-T3) between the heater temperatures T3 and T4 is equal to or greater than the first threshold. That is, when the temperature difference (T4-T3) is the same as in FIGS. 16 (a) and 16 (b) and FIGS. 16 (c) and 16 (d), the same uneven load occurs. Respectively.
  • step S12 When the temperature difference between the heater temperatures of the first and second resistance patterns 17 and 18 is less than the first threshold (step S12: No), the loop of steps S3D3 to S9D3 is repeatedly performed to execute the above-described process.
  • the first and second resistor patterns 17 and 18 are energized at a constant cycle (every predetermined time TC). Then, the heater temperatures of the first and second resistance patterns 17 and 18 are respectively controlled to target temperatures (see, for example, FIG. 8).
  • step S13 the energization time of the second resistance pattern 18 that has reached the high heater temperature T4 is set to the predetermined time TC.
  • the energization time of the first resistance pattern 17 that has become the low heater temperature T3 is set to the time (T4 / T3) ⁇ TC obtained by multiplying the ratio (T4 / T3) of the heater temperatures T3 and T4 by the predetermined time TC. Be done.
  • the loop of steps S3D2 to S9D2 is repeatedly executed, and the target heat generating portion is switched every energization time period TC, (T4 / T3) ⁇ TC, so that the heater temperatures of the first and second resistance patterns 17 and 18 become , Is controlled to the target temperature respectively.
  • the heater temperature of the first and second resistance patterns 17 and 18 measured in step S6D1 is a heater of the resistance pattern having many regions covered with the living tissue LT.
  • the temperature is lower than the heater temperature of the other resistance pattern because more heat is transferred to the living tissue LT.
  • the conduction time of the resistance pattern having the low heater temperature among the first and second resistance patterns 17 and 18 is subjected to the conduction of the resistance pattern having the high heater temperature. Make it longer than time.
  • the energization control is performed according to the energization control method described in the above-described first embodiment when the load is unevenly distributed (FIGS. 16A and 16B) and the fourth embodiment, Compared with the case where the energization control is performed by the energization control method (FIGS. 16C and 16D), the case where the energization control is performed by the energization control method according to the fourth embodiment is The heater temperature of the resistance pattern having many regions covered with the living tissue LT can be reached faster than the target temperature. For example, as shown in FIG.
  • the heater temperature of the resistance pattern reaches the target temperature faster by the time ⁇ T when the energization control is performed by the energization control method according to the fourth embodiment. . Therefore, the treatment time of the living tissue LT can be shortened.
  • the broken line shown in FIG. 16 (c) is the same as the solid line shown in FIG. 16 (a).
  • step S12 when the temperature difference between the heater temperatures of the first and second resistance patterns 17 and 18 is equal to or greater than the first threshold (step S12: Yes), Control (steps S13, S3D2 to S9D2) are executed. That is, the first control is performed only when the uneven distribution load is significant (when the temperature difference between the heater temperatures of the first and second resistor patterns 17 and 18 is equal to or greater than the first threshold). For this reason, when the uneven distribution load is not remarkable, there is no need to execute step S13, and the processing load of the control device 3 can be reduced by not executing the step S13.
  • FIG. 17 is a block diagram showing a treatment system 1E according to the fifth embodiment.
  • the first and second switches 81 and 82 and the switch drive unit 83 are provided in the treatment tool 2 (for example, inside the handle 5).
  • a treatment tool 2E in which the first and second switches 81 and 82 and the switch drive unit 83 are omitted from the treatment tool 2 is adopted. doing.
  • an adapter 21 which can be attached to and detached from the control device 3 is added. Then, the treatment tool 2E and the control device 3 are mutually connected via the adapter 21 and the electric cable CE, so that the DAQ 86 and the control unit 32 can communicate and the first and second resistance patterns 17 and 18 from the power supply 31. It becomes possible to supply power.
  • first and second switches 81 and 82 and a switch drive unit 83 are provided inside the adapter 21 though the specific illustration is omitted. Then, by connecting the treatment tool 2E and the control device 3 to each other, the first and second switches 81 and 82 are respectively disposed in the first and second supply paths P1 and P2. Further, in the fifth embodiment, the switch drive unit 83 is directly controlled by the control unit 32.
  • the treatment tool 2E is not provided with the first and second switches 81 and 82 and the switch drive unit 83.
  • the first and second switches 81 and 82 and the switch driver 83 are provided inside the adapter 21. Therefore, with respect to the treatment tool 2 described in the first embodiment described above, simplification, downsizing, and cost reduction of the configuration of the treatment tool 2E can be achieved.
  • the first and second switches 81 and 82 and the switch drive unit 83 are provided in the adapter 21 and therefore should be reused. Can.
  • the present invention is not to be limited only by the above-described first to fifth embodiments and the first and second modifications of the first embodiment.
  • the second holding member 10 may be omitted.
  • the heat generating structure 12 is also provided to the second holding member 10, and from both of the first and second holding members 9 and 10. It is also possible to apply thermal energy to the living tissue LT.
  • high-frequency energy or ultrasonic energy may be further applied to the living tissue LT.
  • the gripping surface of the heat transfer plate 13 and the opposing plate 20 in contact with the living tissue LT is formed of a flat surface.
  • the cross-sectional shape of the gripping surface may be formed in a convex shape, a concave shape, a chevron shape or the like.
  • the energization control of the first and second resistance patterns 17 and 18 based on the heater temperature measured by the index value measurement unit 322 It was running, but it is not limited to this.
  • the energization control of the first and second resistance patterns 17 and 18 may be executed based on the resistance value of the first and second resistance patterns 17 and 18 measured by the index value measurement unit 322. Absent.
  • only two heat generating parts (first and second pattern bodies 172 and 182) according to the present invention are provided. Not limited to, three or more may be provided at different positions in the longitudinal direction of the gripping portions 7 and 7A.
  • the number of switches and capacitive elements according to the present invention is not limited to two (first and second switches 81 and 82, and first and second capacitors 87 and 88), and a heat generating portion according to the present invention The same number may be provided, or different numbers (for example, only one) may be provided.
  • a switch according to the present invention a high-speed mechanical switch or the like may be used.
  • the plurality of switches according to the present invention may be configured by one matrix switch module.
  • the PWM method described in mode 3 may be adopted.
  • the control device 3 includes the memory 33.
  • the present invention is not limited to this.
  • the heater driving unit 8 may be provided with a ROM (Read Only Memory), and a part of the function of the memory 33 (for example, step 2 etc.) may be provided in the ROM.

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Otolaryngology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Surgical Instruments (AREA)

Abstract

A treatment system 1 includes: a plurality of heating units 17, 18 which are provided at different longitudinal positions on a heat exchange plate; a power source 31 which supplies an alternating current; a plurality of switches 81, 82 which are serially connected with the plurality of heating units 17, 18 respectively and which selects one heating unit of interest whereto the alternating current from the power source 31 is to be supplied from among the plurality of heating units 17, 18; a switch control unit 321 which sequentially switches the heating unit of interest; an index value measuring unit 322 which measures each of the index values of the temperatures of the plurality of heating units 17, 18; and an energization control unit 323 which controls the switching timing of the heating unit of interest and/or the power supplied to the heating unit of interest from the power source 31 on the basis of the index values. The index value measuring unit 322 measures the index value of a heating unit not of interest that was not selected as the heating unit of interest using leakage current flowing through the switch that is serially connected with the heating unit not of interest according to the capacitive component of the switch.

Description

処置システムTreatment system
 本発明は、処置システムに関する。 The present invention relates to a treatment system.
 従来、通電により発熱する発熱部が設けられているとともに生体組織を把持する把持部を備え、当該発熱部にて発生した熱エネルギを当該生体組織に付与することで、当該生体組織を処置(接合(若しくは吻合)及び切離等)する処置システムが知られている(例えば、特許文献1参照)。
 特許文献1に記載の処置システムは、偏在負荷の問題を解決する構成を採用している。
 ここで、偏在負荷とは、把持部における生体組織を把持する把持面全面ではなく、当該把持面の一部で生体組織を把持した状態を意味する。
 例えば、当該把持面全面に亘って一つの発熱部が設けられており、偏在負荷になっている場合には、発熱部において、生体組織にて覆われている部分は、当該生体組織に熱が伝達されることにより、当該部分の温度が目標温度よりも低くなる。一方、発熱部において、生体組織にて覆われていない部分は、当該生体組織に熱が伝達されないため、当該部分の温度が目標温度よりも高くなる。すなわち、目標温度で生体組織を加熱することができず、処置時間が長く掛かってしまう、という問題がある。
 そこで、特許文献1に記載の処置システムでは、発熱部を把持部の長手方向の異なる位置にそれぞれ設け、当該複数の発熱部を独立して制御する構成を採用している。このような構成により、偏在負荷になっていても、目標温度で生体組織を加熱し、適切に当該生体組織を処置することが可能となる。
Conventionally, a heat generating portion that generates heat when energized is provided, and a gripping portion that holds a biological tissue is provided, and the heat energy generated in the heat generating portion is applied to the biological tissue to treat the biological tissue (join A treatment system for (or anastomosis) and dissection etc.) is known (see, for example, Patent Document 1).
The treatment system described in Patent Document 1 adopts a configuration that solves the problem of uneven distribution load.
Here, the uneven distribution load means a state in which the living tissue is gripped by a part of the gripping surface, not the entire gripping surface that grips the living tissue in the gripping part.
For example, in the case where a single heat generating portion is provided over the entire surface of the gripping surface and the load is unevenly distributed, heat is applied to the portion of the heat generating portion covered by the living tissue with the living tissue. Due to the transmission, the temperature of the portion becomes lower than the target temperature. On the other hand, in the heat generating portion, in the portion which is not covered by the living tissue, the heat is not transmitted to the living tissue, so the temperature of the portion becomes higher than the target temperature. That is, there is a problem that the living tissue can not be heated at the target temperature, and the treatment time is long.
So, in the treatment system of patent document 1, the heat-emitting part is each provided in the position where the longitudinal direction of a holding part differs, and the structure which controls the said several heat-emitting part independently is employ | adopted. With such a configuration, even if the load is unevenly distributed, it is possible to heat the living tissue at the target temperature and appropriately treat the living tissue.
特開2002-136525号公報JP 2002-136525 A
 しかしながら、特許文献1に記載の処置システムでは、複数の発熱部に通電用の電力をそれぞれ供給するために、複数の電源が必要となる。このため、低コスト化を図ることができない、という問題がある。 However, in the treatment system described in Patent Document 1, a plurality of power supplies are required in order to supply power for energization to the plurality of heat generating units. Therefore, there is a problem that cost reduction can not be achieved.
 本発明は、上記に鑑みてなされたものであって、偏在負荷になっていても適切に生体組織を処置することができ、かつ、低コスト化を図ることができる処置システムを提供することを目的とする。 The present invention has been made in view of the above, and it is an object of the present invention to provide a treatment system capable of appropriately treating a living tissue even under uneven distribution load and achieving cost reduction. To aim.
 上述した課題を解決し、目的を達成するために、本発明に係る処置システムは、生体組織に接触して当該生体組織に熱エネルギを付与する伝熱板と、前記伝熱板における先端と基端とを結ぶ長手方向の異なる位置にそれぞれ設けられ、通電によりそれぞれ発熱して前記伝熱板を加熱する複数の発熱部と、前記複数の発熱部に交流電流を供給する電源と、前記複数の発熱部に対してそれぞれ直列に接続され、当該複数の発熱部のうち前記電源からの交流電流の供給対象となる一つの対象発熱部を選択する複数のスイッチと、前記複数のスイッチの動作を制御し、前記複数の発熱部の中で前記一つの対象発熱部を順次、切り替えるスイッチ制御部と、前記複数の発熱部の温度の指標となる指標値をそれぞれ測定する指標値測定部と、前記指標値に基づいて、前記スイッチ制御部による前記対象発熱部の切替タイミングと前記電源から前記対象発熱部に供給される電力との少なくとも一方を制御する通電制御部とを備え、前記指標値測定部は、前記複数の発熱部のうち前記対象発熱部として選択されていない非対象発熱部の前記指標値を前記複数のスイッチのうち当該非対象発熱部に対して直列に接続されたスイッチの容量成分に応じて当該スイッチに流れる漏れ電流を用いて測定する。 In order to solve the problems described above and achieve the object, a treatment system according to the present invention comprises a heat transfer plate for applying heat energy to a living tissue in contact with the living tissue, and a tip and a base of the heat transfer plate. A plurality of heat generating portions respectively provided at different positions in the longitudinal direction connecting the ends and respectively generating heat by energization to heat the heat transfer plate; a power supply for supplying an alternating current to the plurality of heat generating portions; A plurality of switches each connected in series to the heat generating portion and selecting one target heat generating portion to be supplied with an alternating current from the power supply among the plurality of heat generating portions, and controlling the operation of the plurality of switches A switch control unit for sequentially switching the one target heating unit among the plurality of heating units; an index value measuring unit for measuring an index value serving as an indicator of the temperatures of the plurality of heating units; value And a power control unit configured to control at least one of switching timing of the target heat generating unit by the switch control unit and power supplied from the power supply to the target heat generating unit, the index value measuring unit The index value of the non-target heat generation part not selected as the target heat generation part among the plurality of heat generation parts according to the capacitance component of the switch connected in series to the non-target heat generation part among the plurality of switches Measure using the leakage current flowing to the switch.
 本発明に係る処置システムによれば、偏在負荷になっていても適切に生体組織を処置することができ、かつ、低コスト化を図ることができる、という効果を奏する。 According to the treatment system according to the present invention, it is possible to appropriately treat a living tissue even when the load is unevenly distributed, and to achieve cost reduction.
図1は、本実施の形態1に係る処置システムを模式的に示す図である。FIG. 1 is a view schematically showing a treatment system according to the first embodiment. 図2は、処置具の先端部分を拡大した図である。FIG. 2 is an enlarged view of the distal end portion of the treatment tool. 図3は、発熱構造体を示す分解斜視図である。FIG. 3 is an exploded perspective view showing the heat generating structure. 図4は、ヒータを伝熱板側から見た図である。FIG. 4 is a view of the heater as viewed from the heat transfer plate side. 図5は、処置システムを示すブロック図である。FIG. 5 is a block diagram illustrating a treatment system. 図6は、処置システムの回路構成を示す図である。FIG. 6 is a diagram showing a circuit configuration of a treatment system. 図7は、通電制御方法を示すフローチャートである。FIG. 7 is a flowchart showing the energization control method. 図8は、図7に示した通電制御方法の具体例を説明する図である。FIG. 8 is a diagram for explaining a specific example of the energization control method shown in FIG. 図9は、本実施の形態1の変形例1を示す図である。FIG. 9 is a diagram showing a first modification of the first embodiment. 図10は、本実施の形態1の変形例2を示す図である。FIG. 10 is a diagram showing a modification 2 of the first embodiment. 図11は、本実施の形態2に係る処置システムを示す図である。FIG. 11 is a diagram showing a treatment system according to the second embodiment. 図12は、本実施の形態3に係る通電制御方法を示すフローチャートである。FIG. 12 is a flowchart showing the energization control method according to the third embodiment. 図13は、図12に示した通電制御方法の具体例を説明する図である。FIG. 13 is a diagram for explaining a specific example of the energization control method shown in FIG. 図14は、図12に示した通電制御方法の具体例を説明する図である。FIG. 14 is a diagram for explaining a specific example of the energization control method shown in FIG. 図15は、本実施の形態4に係る通電制御方法を示すフローチャートである。FIG. 15 is a flowchart showing the energization control method according to the fourth embodiment. 図16は、図15に示した通電制御方法の具体例を説明する図である。FIG. 16 is a diagram for explaining a specific example of the energization control method shown in FIG. 図17は、本実施の形態5に係る処置システムを示すブロック図である。FIG. 17 is a block diagram showing a treatment system according to the fifth embodiment.
 以下に、図面を参照して、本発明を実施するための形態(以下、実施の形態)について説明する。なお、以下に説明する実施の形態によって本発明が限定されるものではない。さらに、図面の記載において、同一の部分には同一の符号を付している。 Hereinafter, embodiments for carrying out the present invention (hereinafter, embodiments) will be described with reference to the drawings. The present invention is not limited by the embodiments described below. Furthermore, in the description of the drawings, the same parts are given the same reference numerals.
(実施の形態1)
 〔処置システムの概略構成〕
 図1は、本実施の形態1に係る処置システム1を模式的に示す図である。
 処置システム1は、処置対象である生体組織に熱エネルギを付与することにより、当該生体組織を処置(接合(若しくは吻合)及び切離等)する。この処置システム1は、図1に示すように、処置具2と、制御装置3と、フットスイッチ4とを備える。
Embodiment 1
[Schematic Configuration of Treatment System]
FIG. 1 is a view schematically showing a treatment system 1 according to the first embodiment.
The treatment system 1 treats (joins (or anastomoses) and detaches, etc.) a living tissue by applying thermal energy to the living tissue to be treated. The treatment system 1 includes a treatment tool 2, a control device 3 and a foot switch 4 as shown in FIG.
 〔処置具の構成〕
 処置具2は、例えば、腹壁を通して生体組織に処置を行うためのリニアタイプの外科医療用処置具である。この処置具2は、図1に示すように、ハンドル5と、シャフト6と、把持部7と、ヒータ駆動部8(図5参照)とを備える。
 ハンドル5は、術者が手で持つ部分である。そして、このハンドル5には、図1に示すように、操作ノブ51が設けられている。
 シャフト6は、図1に示すように、略円筒形状を有し、一端(図1中、右端部)がハンドル5に接続されている。また、シャフト6の他端(図1中、左端部)には、把持部7が取り付けられている。そして、このシャフト6の内部には、術者による操作ノブ51の操作に応じて、把持部7を構成する第1,第2の把持部材9,10(図1)を開閉させる開閉機構(図示略)が設けられている。
 なお、ヒータ駆動部8の詳細な構成については、制御装置3及びフットスイッチ4の構成を説明する際に説明する。
[Configuration of treatment tool]
The treatment tool 2 is, for example, a linear surgical treatment tool for treating a living tissue through the abdominal wall. This treatment tool 2 is provided with the handle 5, the shaft 6, the holding part 7, and the heater drive part 8 (refer FIG. 5), as shown in FIG.
The handle 5 is a part held by the operator by hand. Further, as shown in FIG. 1, the handle 5 is provided with an operation knob 51.
As shown in FIG. 1, the shaft 6 has a substantially cylindrical shape, and one end (the right end in FIG. 1) is connected to the handle 5. Further, a grip 7 is attached to the other end (left end in FIG. 1) of the shaft 6. An opening / closing mechanism (shown in the drawing) opens and closes the first and second holding members 9 and 10 (FIG. 1) constituting the holding unit 7 in accordance with the operation of the operation knob 51 by the operator. ) Is provided.
The detailed configuration of the heater driving unit 8 will be described when describing the configurations of the control device 3 and the foot switch 4.
 〔把持部の構成〕
 図2は、処置具2の先端部分を拡大した図である。
 把持部7は、生体組織を把持して、当該生体組織を処置する部分である。この把持部7は、図1または図2に示すように、第1,第2の把持部材9,10を備える。
 第1,第2の把持部材9,10は、矢印R1(図2)方向に開閉可能にシャフト6の他端(図1,図2中、左端部)に軸支され、術者による操作ノブ51の操作に応じて、生体組織を把持可能とする。
[Configuration of gripping portion]
FIG. 2 is an enlarged view of the distal end portion of the treatment tool 2.
The gripping portion 7 is a portion that grips a living tissue to treat the living tissue. The gripping portion 7 includes first and second gripping members 9 and 10 as shown in FIG. 1 or 2.
The first and second gripping members 9 and 10 are pivotally supported by the other end (left end in FIGS. 1 and 2) of the shaft 6 so as to be able to open and close in the direction of arrow R1 (FIG. 2) In accordance with the operation 51, the living tissue can be grasped.
 〔第1の把持部材の構成〕
 なお、以下で記載する「先端側」は、把持部7の先端側であって、図1,図2中、左側を意味する。また、以下で記載する「基端側」は、把持部7のシャフト6側であって、図1,図2中、右側を意味する。
 第1の把持部材9は、第2の把持部材10に対して、図1または図2中、下方側に配設される。この第1の把持部材9は、図2に示すように、第1のカバー部材11と、発熱構造体12とを備える。
 第1のカバー部材11は、把持部7の先端から基端に向かう長手方向(図1,図2中、左右方向)に延在する長尺状の板体で構成されている。この第1のカバー部材11において、図2中、上方側の面には、凹部111が形成されている。
 凹部111は、第1のカバー部材11における幅方向の中心に位置し、当該第1のカバー部材11の長手方向に沿って延在する。また、凹部111を構成する側壁部のうち、基端側の側壁部は、省略されている。そして、第1のカバー部材11は、凹部111内で発熱構造体12を支持しつつ、凹部111が図2中、上方に向く姿勢でシャフト6に軸支される。
[Configuration of First Holding Member]
In addition, "the front end side" described below is the front end side of the holding part 7, Comprising: The left side is meant in FIG. 1, FIG. Further, “proximal side” described below means the right side in FIGS. 1 and 2 on the side of the shaft 6 of the grip 7.
The first gripping member 9 is disposed below the second gripping member 10 in FIG. 1 or 2. As shown in FIG. 2, the first gripping member 9 includes a first cover member 11 and a heat generating structure 12.
The first cover member 11 is formed of a long plate extending in the longitudinal direction (left and right direction in FIGS. 1 and 2) from the tip end of the grip 7 toward the base end. In the first cover member 11, a recess 111 is formed on the upper surface in FIG.
The recess 111 is located at the center in the width direction of the first cover member 11 and extends along the longitudinal direction of the first cover member 11. Moreover, the side wall part by the side of the proximal end among the side wall parts which comprise the recessed part 111 is abbreviate | omitted. The first cover member 11 is supported by the shaft 6 with the recess 111 facing upward in FIG. 2 while supporting the heat generating structure 12 in the recess 111.
 図3は、発熱構造体12を示す分解斜視図である。具体的に、図3は、図1,図2中、上方側から発熱構造体12を見た分解斜視図である。
 発熱構造体12は、一部が凹部111から図2中、上方側に突出した状態で、凹部111内に収容される。そして、発熱構造体12は、制御装置3による制御の下、熱エネルギを発生する。この発熱構造体12は、図3に示すように、伝熱板13と、ヒータ14と、接着部材15とを備える。
FIG. 3 is an exploded perspective view showing the heat generating structure 12. Specifically, FIG. 3 is an exploded perspective view of the heat generating structure 12 from the upper side in FIGS. 1 and 2.
The heat generating structure 12 is accommodated in the recess 111 with a part thereof protruding upward from the recess 111 in FIG. The heat generating structure 12 generates thermal energy under the control of the control device 3. As shown in FIG. 3, the heat generating structure 12 includes a heat transfer plate 13, a heater 14, and an adhesive member 15.
 伝熱板13は、例えば銅等の材料で構成された長尺状(把持部7の長手方向に延在する長尺状)の板体で構成されている。
 そして、伝熱板13は、第1,第2の把持部材9,10にて生体組織を把持した状態で、図2,図3中、上方側の板面が当該生体組織に接触し、ヒータ14からの熱を当該生体組織に伝達する(熱エネルギを生体組織に付与する)。
The heat transfer plate 13 is formed of, for example, a long plate (long plate extending in the longitudinal direction of the grip portion 7) made of a material such as copper.
Then, in a state in which the heat transfer plate 13 holds the living tissue by the first and second holding members 9 and 10, the plate surface on the upper side in FIGS. 2 and 3 contacts the living tissue, and the heater The heat from 14 is transmitted to the living tissue (heat energy is applied to the living tissue).
 図4は、ヒータ14を伝熱板13側から見た図である。
 ヒータ14は、一部が発熱し、当該発熱により伝熱板13を加熱するシートヒータとして機能する。このヒータ14は、図3または図4に示すように、基板16と、第1の抵抗パターン17と、第2の抵抗パターン18とを備える。
 基板16は、ポリイミド等の絶縁材料から構成された長尺状(把持部7の長手方向に延在する長尺状)のシートである。
 なお、基板16の材料としては、ポリイミドに限らず、例えば、窒化アルミ、アルミナ、ガラス、ジルコニア等の高耐熱絶縁性材料を採用しても構わない。
FIG. 4 is a view of the heater 14 as viewed from the heat transfer plate 13 side.
The heater 14 partially generates heat, and functions as a sheet heater that heats the heat transfer plate 13 by the heat generation. The heater 14 includes a substrate 16, a first resistance pattern 17, and a second resistance pattern 18 as shown in FIG. 3 or 4.
The substrate 16 is a long sheet (long sheet extending in the longitudinal direction of the grip 7) made of an insulating material such as polyimide.
In addition, as a material of the board | substrate 16, you may employ | adopt high heat-resistant insulating materials, such as not only a polyimide but aluminum nitride, an alumina, glass, a zirconia, etc., for example.
 第1の抵抗パターン17は、導電性材料であるステンレス(SUS304)を加工したものであり、図3または図4に示すように、一対の第1の接続部171と、第1のパターン本体172とを備える。そして、第1の抵抗パターン17は、基板16における図3中、上方側の面161に熱圧着により貼り合わせられる。
 なお、第1の抵抗パターン17の材料としては、ステンレス(SUS304)に限らず、他のステンレス材料(例えば400番系)でもよいし、プラチナや、タングステン等の導電性材料を採用しても構わない。また、第1の抵抗パターン17としては、基板16における面161に熱圧着により貼り合わせた構成に限らず、当該面161に蒸着や印刷等により形成しても構わない。
The first resistance pattern 17 is formed by processing stainless steel (SUS 304) which is a conductive material, and as shown in FIG. 3 or FIG. 4, a pair of first connection portions 171 and a first pattern main body 172 And Then, the first resistance pattern 17 is bonded to the upper surface 161 of the substrate 16 in FIG. 3 by thermocompression bonding.
The material of the first resistance pattern 17 is not limited to stainless steel (SUS304), and may be another stainless steel material (for example, No. 400 series), or a conductive material such as platinum or tungsten may be employed. Absent. Further, the first resistance pattern 17 is not limited to the structure bonded to the surface 161 of the substrate 16 by thermocompression bonding, and may be formed on the surface 161 by vapor deposition, printing, or the like.
 一対の第1の接続部171は、図3または図4に示すように、基板16の基端側(図3,図4中、右端部側)にそれぞれ設けられ、当該基端側から先端側(図3,図4中、左端部側)に向けてそれぞれ延在し、基板16の幅方向に沿って互いに対向するように設けられている。そして、一対の第1の接続部171には、ヒータ駆動部8に接続され、シャフト6の内部において、当該シャフト6の一端側(図1中、右端部側)から他端側(図1中、左端部側)まで引き回された2つの第1のリード線C1(図5参照)がそれぞれ接合(接続)される。なお、図5では、説明の便宜上、第1のリード線C1を1本のみ図示している。
 第1のパターン本体172は、一端が一方の第1の接続部171に接続(導通)し、当該一端から、波状に蛇行しながら、先端側に延在するとともに基板16における長手方向の略中央付近で基端側に折り返して他端が他方の第1の接続部171に接続(導通)する。また、第1のパターン本体172は、基板16の長手方向の単位長さ当たりの抵抗値が一対の第1の接続部171よりも大きく設定されている。
 そして、第1のパターン本体172は、2つの第1のリード線C1を介してヒータ駆動部8にて一対の第1の接続部171に電圧が印加(通電)されることにより、発熱する。すなわち、第1のパターン本体172は、本発明に係る発熱部に相当する。
As shown in FIG. 3 or 4, the pair of first connection portions 171 are respectively provided on the base end side (the right end side in FIGS. 3 and 4) of the substrate 16, and from the base end side to the tip side They extend toward the left end side in FIGS. 3 and 4 and are provided to face each other along the width direction of the substrate 16. Then, the pair of first connection portions 171 is connected to the heater drive unit 8, and in the shaft 6, one end side (right end portion side in FIG. 1) of the shaft 6 to the other end side (FIG. 1 in FIG. 1) , And the two first lead wires C1 (see FIG. 5) drawn to the left end side) are respectively joined (connected). In FIG. 5, for convenience of explanation, only one first lead wire C1 is shown.
One end of the first pattern main body 172 is connected (conductive) to one of the first connection portions 171, extends from the one end to the tip end while meandering in a wave shape, and substantially in the longitudinal center of the substrate 16 The other end is folded back to the proximal end side in the vicinity, and the other end is connected (conductive) to the other first connection portion 171. Further, in the first pattern main body 172, the resistance value per unit length in the longitudinal direction of the substrate 16 is set larger than that of the pair of first connection portions 171.
The first pattern main body 172 generates heat when a voltage is applied (energized) to the pair of first connection portions 171 by the heater driving unit 8 through the two first lead wires C1. That is, the first pattern main body 172 corresponds to the heat generating portion according to the present invention.
 第2の抵抗パターン18は、導電性材料であるステンレス(SUS304)を加工したものであり、図3または図4に示すように、一対の第2の接続部181と、第2のパターン本体182とを備える。そして、第2の抵抗パターン18は、基板16における面161に熱圧着により貼り合わせられる。
 なお、第2の抵抗パターン18の材料としては、ステンレス(SUS304)に限らず、他のステンレス材料(例えば400番系)でもよいし、プラチナや、タングステン等の導電性材料を採用しても構わない。また、第2の抵抗パターン18としては、基板16における面161に熱圧着により貼り合わせた構成に限らず、当該面161に蒸着や印刷等により形成しても構わない。また、第2の抵抗パターン18の材料としては、第1の抵抗パターン17の材料と同一の材料としてもよいし、異なる材料としても構わない。
The second resistance pattern 18 is formed by processing stainless steel (SUS 304), which is a conductive material, and as shown in FIG. 3 or 4, a pair of second connection portions 181 and a second pattern main body 182 And Then, the second resistance pattern 18 is bonded to the surface 161 of the substrate 16 by thermocompression bonding.
The material of the second resistance pattern 18 is not limited to stainless steel (SUS 304), and may be another stainless steel material (for example, No. 400 series), or a conductive material such as platinum or tungsten may be employed. Absent. Further, the second resistance pattern 18 is not limited to the structure bonded to the surface 161 of the substrate 16 by thermocompression bonding, and may be formed on the surface 161 by vapor deposition, printing, or the like. The material of the second resistance pattern 18 may be the same as or different from the material of the first resistance pattern 17.
 一対の第2の接続部181は、図3または図4に示すように、基板16の基端側から当該基板16における長手方向の略中央付近までそれぞれ延在し、第1の抵抗パターン17を挟んで基板16の幅方向に互いに対向するように設けられている。そして、一対の第2の接続部181には、ヒータ駆動部8に接続され、シャフト6の内部において、当該シャフト6の一端側(図1中、右端部側)から他端側(図1中、左端部側)まで引き回された2つの第2のリード線C2(図5参照)がそれぞれ接合(接続)される。なお、図5では、説明の便宜上、第2のリード線C2を1本のみ図示している。
 第2のパターン本体182は、一端が一方の第2の接続部181に接続(導通)し、当該一端から、波状に蛇行しながら、基板16の先端まで延在するとともに当該先端で基端側に折り返して他方の第2の接続部181に接続(導通)する。また、第2のパターン本体182は、基板16の長手方向の単位長さ当たりの抵抗値が一対の第2の接続部181よりも大きく設定されている。
 そして、第2のパターン本体182は、2つの第2のリード線C2を介してヒータ駆動部8にて一対の第2の接続部181に電圧が印加(通電)されることにより、発熱する。すなわち、第2のパターン本体182は、本発明に係る発熱部に相当する。
 以上のように、第1,第2のパターン本体172,182は、基板16における長手方向に並設されている(長手方向に異なる位置にそれぞれ設けられている)。
As shown in FIG. 3 or FIG. 4, the pair of second connection portions 181 extend from the base end side of the substrate 16 to near the approximate center of the substrate 16 in the longitudinal direction, and the first resistance pattern 17 is formed. It is provided so as to face each other in the width direction of the substrate 16 so as to sandwich it. The pair of second connection portions 181 is connected to the heater driving portion 8 and in the shaft 6, the one end side (right end portion side in FIG. 1) of the shaft 6 to the other end side (FIG. 1 in FIG. , And the two second lead wires C2 (see FIG. 5) drawn to the left end) are respectively joined (connected). In FIG. 5, for convenience of explanation, only one second lead wire C2 is shown.
The second pattern main body 182 is connected (conductive) at one end to one second connection portion 181, extends from the one end to the tip of the substrate 16 while meandering in a wavelike manner, and on the proximal end side at the tip To the other second connection portion 181 (conducting). Further, in the second pattern main body 182, the resistance value per unit length in the longitudinal direction of the substrate 16 is set larger than that of the pair of second connection parts 181.
Then, the second pattern main body 182 generates heat when a voltage is applied (energized) to the pair of second connection portions 181 by the heater driving unit 8 through the two second lead wires C2. That is, the second pattern main body 182 corresponds to the heat generating portion according to the present invention.
As described above, the first and second pattern bodies 172 and 182 are arranged in parallel in the longitudinal direction of the substrate 16 (provided at different positions in the longitudinal direction).
 接着部材15は、図3に示すように、伝熱板13と基板16における面161(第1,第2の抵抗パターン17,18)との間に介装され、伝熱板13とヒータ14とを接着固定する。この接着部材15は、良好な熱伝導性及び電気絶縁性を有し、かつ、高温に耐え、接着性を有する長尺状(把持部7の長手方向に延在する長尺状)のシートで構成されている。
 そして、伝熱板13は、図3に示すように、第1,第2のパターン本体172,182全体を覆うように配置される。また、接着部材15は、第1,第2のパターン本体172,182全体を覆うとともに、一対の第1の接続部171と一対の第2の接続部181とのそれぞれ一部を覆うように配置される。すなわち、接着部材15は、伝熱板13に対して基端側に張り出した状態で配置される。そして、2つの第1のリード線C1及び2つの第2のリード線C2は、一対の第1の接続部171及び一対の第2の接続部181において、接着部材15にて覆われていない領域にそれぞれ接続(接合)される。
The bonding member 15 is interposed between the heat transfer plate 13 and the surface 161 (first and second resistance patterns 17 and 18) of the substrate 16 as shown in FIG. Adhesively fix. The adhesive member 15 is a long sheet (long sheet extending in the longitudinal direction of the grip portion 7) which has good thermal conductivity and electrical insulation, withstands high temperature, and has adhesiveness. It is configured.
Then, as shown in FIG. 3, the heat transfer plate 13 is disposed so as to cover the entire first and second pattern bodies 172 and 182. In addition, the bonding member 15 is disposed so as to cover the entire first and second pattern main bodies 172 and 182 and to partially cover each of the pair of first connection portions 171 and the pair of second connection portions 181. Be done. That is, the bonding member 15 is disposed in a state of being protruded to the base end side with respect to the heat transfer plate 13. The two first lead wires C1 and the two second lead wires C2 are not covered by the adhesive member 15 in the pair of first connection portions 171 and the pair of second connection portions 181. (Connected) to each other.
 〔第2の把持部材の構成〕
 第2の把持部材10は、図2に示すように、第2のカバー部材19と、対向板20とを備える。
 第2のカバー部材19は、第1のカバー部材11と同一の形状を有する。すなわち、第2のカバー部材19は、図2に示すように、凹部111と同様の凹部191を有する。そして、第2のカバー部材19は、凹部191内で対向板20を支持しつつ、凹部191が図2中、下方に向く姿勢(凹部111に対向する姿勢)でシャフト6に軸支される。
 対向板20は、例えば、銅等の導電性材料で構成されている。この対向板20は、凹部191と略同一の平面形状を有する平板で構成され、当該凹部191内に固定される。そして、対向板20は、伝熱板13との間で生体組織を把持する。
 なお、対向板20としては、導電性材料に限らず、その他の材料、例えば、PEEK(ポリエーテルエーテルケトン)等の樹脂材料で構成しても構わない。
[Configuration of second gripping member]
The second holding member 10 includes a second cover member 19 and an opposing plate 20, as shown in FIG.
The second cover member 19 has the same shape as the first cover member 11. That is, as shown in FIG. 2, the second cover member 19 has a recess 191 similar to the recess 111. The second cover member 19 is supported by the shaft 6 in a posture in which the recess 191 faces downward in FIG. 2 (a posture facing the recess 111) while supporting the opposing plate 20 in the recess 191.
The opposing plate 20 is made of, for example, a conductive material such as copper. The opposing plate 20 is formed of a flat plate having substantially the same planar shape as the recess 191, and is fixed in the recess 191. Then, the opposing plate 20 grips the living tissue with the heat transfer plate 13.
In addition, as the opposing board 20, you may comprise not only an electroconductive material but resin materials, such as other materials, for example, PEEK (polyether ether ketone).
 〔制御装置及びフットスイッチの構成〕
 図5は、処置システム1を示すブロック図である。図6は、処置システム1の回路構成を示す図である。
 フットスイッチ4は、術者が足で操作する部分である。そして、フットスイッチ4への当該操作に応じて、制御装置3は、ヒータ14(第1,第2の抵抗パターン17,18)の通電制御を実行する。
 なお、通電制御を実行させる手段としては、フットスイッチ4に限らず、その他、手で操作するスイッチ等を採用しても構わない。
 制御装置3は、CPU(Central Processing Unit)等を含んで構成され、所定の制御プログラムにしたがって、処置具2の動作を統括的に制御する。この制御装置3は、図5または図6に示すように、電源31と、制御部32と、メモリ33とを備える。
[Configuration of Control Device and Foot Switch]
FIG. 5 is a block diagram showing the treatment system 1. FIG. 6 is a diagram showing a circuit configuration of the treatment system 1.
The foot switch 4 is a portion operated by the operator with a foot. And according to the operation concerned to foot switch 4, control device 3 performs energization control of heater 14 (the 1st and 2nd resistance pattern 17 and 18).
In addition, as a means to perform electricity supply control, you may employ | adopt not only foot switch 4 but the switch etc. which are operated by hand in addition to this.
The control device 3 is configured to include a CPU (Central Processing Unit) or the like, and centrally controls the operation of the treatment tool 2 in accordance with a predetermined control program. The control device 3 includes a power supply 31, a control unit 32, and a memory 33, as shown in FIG. 5 or FIG.
 電源31は、電気ケーブルC(図1,図5)を介して、ヒータ駆動部8に接続する。そして、電源31は、制御部32による制御の下、電気ケーブルCを介して、ヒータ駆動部8に対して、第1,第2の抵抗パターン17,18への通電用の電力を供給する。本実施の形態1では、電源31は、交流電源で構成され、第1,第2の抵抗パターン17,18に対して交流電流を供給する。
 制御部32は、例えば、CPU、FPGA(Field-Programmable Gate Array)等で構成されている。そして、制御部32は、電源31の動作を制御する。また、制御部32は、電気ケーブルCを介して、ヒータ駆動部8と通信を行い、当該ヒータ駆動部8の動作を制御する。この制御部32は、図5に示すように、スイッチ制御部321と、指標値測定部322と、通電制御部323とを備える。
 なお、スイッチ制御部321、指標値測定部322、及び通電制御部323の機能については、ヒータ駆動部8の構成を説明した後に説明する。
 メモリ33は、制御部32が実行する制御プログラムや、制御部32による処理で必要なデータ等を記憶する。ここで、制御部32による処理で必要なデータとしては、例えば、第1,第2の抵抗パターン17,18における抵抗値と温度との関係をそれぞれ示す抵抗温度特性情報、第1,第2の抵抗パターン17,18への通電用の電圧値等を例示することができる。
The power supply 31 is connected to the heater driving unit 8 via the electric cable C (FIGS. 1 and 5). Then, the power supply 31 supplies power for energizing the first and second resistance patterns 17 and 18 to the heater driving unit 8 through the electric cable C under the control of the control unit 32. In the first embodiment, the power supply 31 is an AC power supply, and supplies an alternating current to the first and second resistance patterns 17 and 18.
The control unit 32 includes, for example, a CPU, an FPGA (Field-Programmable Gate Array), and the like. Then, the control unit 32 controls the operation of the power supply 31. Further, the control unit 32 communicates with the heater driving unit 8 via the electric cable C, and controls the operation of the heater driving unit 8. As shown in FIG. 5, the control unit 32 includes a switch control unit 321, an index value measurement unit 322, and an energization control unit 323.
The functions of the switch control unit 321, the index value measurement unit 322, and the energization control unit 323 will be described after the configuration of the heater driving unit 8 is described.
The memory 33 stores a control program executed by the control unit 32, data necessary for processing by the control unit 32, and the like. Here, as data necessary for processing by the control unit 32, for example, resistance temperature characteristic information indicating the relationship between the resistance value and the temperature in the first and second resistance patterns 17 and 18, respectively, the first and second data The voltage value etc. for electricity supply to the resistance patterns 17 and 18 can be illustrated.
 ヒータ駆動部8は、例えば、ハンドル5の内部に設けられている。このヒータ駆動部8は、図5または図6に示すように、第1,第2のスイッチ81,82と、スイッチ駆動部83と、第1,第2の検出抵抗84,85と、DAQ(Data AcQuisition)86とを備える。
 第1のスイッチ81は、第1の抵抗パターン17に対して直列に接続されるように、電気ケーブルCと当該第1の抵抗パターン17(第1のリード線C1)とを結ぶ当該第1の抵抗パターン17への交流電流の第1の供給経路P1(図5,図6)に設けられている。そして、第1のスイッチ81は、スイッチ駆動部83によりスイッチONとなることで第1の供給経路P1を介した第1の抵抗パターン17への交流電流の供給を許容(通電を許容)し、スイッチOFFとなることで第1の供給経路P1を介した第1の抵抗パターン17への交流電流の供給を禁止(通電を禁止)する。本実施の形態1では、第1のスイッチ81は、図6に示すように、2つのMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)を極性が逆になるように直列に繋げた(ソース同士を接続した)交流スイッチで構成されている。なお、接続されたソース同士は、電源31のグラウンドP-GNDとは異なるグラウンドD-GND(スイッチ駆動部83のグラウンド)に接続されている。
The heater driving unit 8 is provided, for example, inside the handle 5. As shown in FIG. 5 or 6, the heater drive unit 8 includes first and second switches 81 and 82, a switch drive unit 83, first and second detection resistors 84 and 85, and DAQ Data Acquisition) 86.
The first switch 81 connects the electric cable C and the first resistance pattern 17 (first lead wire C1) such that the first switch 81 is connected in series to the first resistance pattern 17. The first supply path P1 (FIGS. 5 and 6) of the alternating current to the resistance pattern 17 is provided. Then, the first switch 81 is turned on by the switch driving unit 83, thereby allowing the supply of alternating current to the first resistance pattern 17 via the first supply path P1 (permitting energization), By turning the switch OFF, the supply of alternating current to the first resistance pattern 17 via the first supply path P1 is prohibited (prohibition of energization). In the first embodiment, as shown in FIG. 6, in the first switch 81, two MOSFETs (Metal-Oxide-Semiconductor Field-Effect Transistors) are connected in series so as to be opposite in polarity (sources Connected) is composed of an AC switch. The connected sources are connected to a ground D-GND (a ground of the switch driver 83) different from the ground P-GND of the power supply 31.
 第2のスイッチ82は、第2の抵抗パターン18に対して直列に接続されるように、電気ケーブルCと当該第2の抵抗パターン18(第2のリード線C2)とを結ぶ当該第2の抵抗パターン18への交流電流の第2の供給経路P2(図5,図6)に設けられている。そして、第2のスイッチ82は、スイッチ駆動部83によりスイッチONとなることで第2の供給経路P2を介した第2の抵抗パターン18への交流電流の供給を許容(通電を許容)し、スイッチOFFとなることで第2の供給経路P2を介した第2の抵抗パターン18への交流電流の供給を禁止(通電を禁止)する。本実施の形態1では、第2のスイッチ82は、図6に示すように、第1のスイッチ81と同様に、2つのMOSFETを極性が逆になるように直列に繋げた交流スイッチで構成されている。なお、接続されたソース同士は、電源31のグラウンドP-GNDとは異なるグラウンドD-GNDに接続されている。 The second switch 82 connects the electric cable C and the second resistance pattern 18 (second lead wire C2) such that the second switch 82 is connected in series to the second resistance pattern 18. The second supply path P2 (FIGS. 5 and 6) of the alternating current to the resistance pattern 18 is provided. Then, the second switch 82 is turned on by the switch driving unit 83, thereby permitting the supply of alternating current to the second resistance pattern 18 via the second supply path P2 (permitting energization), By turning off the switch, the supply of alternating current to the second resistance pattern 18 via the second supply path P2 is inhibited (energization is prohibited). In the first embodiment, the second switch 82 is, as shown in FIG. 6, similarly to the first switch 81, formed of an AC switch in which two MOSFETs are connected in series so as to be opposite in polarity. ing. The connected sources are connected to a ground D-GND different from the ground P-GND of the power supply 31.
 そして、第1のスイッチ81がスイッチONとなり、第2のスイッチ82がスイッチOFFとなることで、第1の抵抗パターン17(第1のパターン本体172)は、電源31からの交流電流の供給対象となる一つの対象発熱部として選択される。一方、第1のスイッチ81がスイッチOFFとなり、第2のスイッチ82がスイッチONとなることで、第2の抵抗パターン18(第2のパターン本体182)は、電源31からの交流電流の供給対象となる一つの対象発熱部として選択される。すなわち、第1,第2のスイッチ81,82は、第1,第2の抵抗パターン17,18のうち一つの対象発熱部を選択しており、本発明に係るスイッチにそれぞれ相当する。 Then, when the first switch 81 is switched on and the second switch 82 is switched off, the first resistance pattern 17 (first pattern main body 172) is a target to be supplied with alternating current from the power supply 31. It is selected as one target heating unit to be On the other hand, when the first switch 81 is switched OFF and the second switch 82 is switched ON, the second resistance pattern 18 (second pattern main body 182) is a target of supply of alternating current from the power supply 31. It is selected as one target heating unit to be That is, the first and second switches 81 and 82 select one target heat generating portion among the first and second resistor patterns 17 and 18, and correspond to the switches according to the present invention.
 スイッチ駆動部83は、例えば、フォトカプラ等で構成され、DAQ86による制御の下、第1,第2のスイッチ81,82をそれぞれスイッチONまたはスイッチOFFとする。
 第1の検出抵抗84は、第1の抵抗パターン17に対して直列に接続されるように第1の供給経路P1に設けられたモニタ抵抗(図6の例では1Ω抵抗)である。
 第2の検出抵抗85は、第2の抵抗パターン18に対して直列に接続されるように第2の供給経路P2に設けられたモニタ抵抗(図6の例では1Ω抵抗)である。
 DAQ86は、電気ケーブルCを介して、制御装置3の制御部32と通信を行う。そして、DAQ86は、制御部32から送信された制御信号に応じて、スイッチ駆動部83の動作を制御するとともに、第1,第2の検出抵抗84,85に加わる電圧値及び当該第1,第2の検出抵抗84,85を流れる電流値を検出し、当該電圧値及び電流値に応じた検出信号を制御部32に送信する。
The switch drive unit 83 is formed of, for example, a photocoupler, and turns on or off the first and second switches 81 and 82 under the control of the DAQ 86.
The first detection resistor 84 is a monitor resistor (1Ω resistor in the example of FIG. 6) provided in the first supply path P1 so as to be connected in series to the first resistor pattern 17.
The second detection resistor 85 is a monitor resistor (1Ω resistor in the example of FIG. 6) provided in the second supply path P2 so as to be connected in series to the second resistor pattern 18.
The DAQ 86 communicates with the control unit 32 of the control device 3 via the electrical cable C. Then, the DAQ 86 controls the operation of the switch drive unit 83 in accordance with the control signal transmitted from the control unit 32, and at the same time, the voltage values applied to the first and second detection resistors 84 and 85 A current value flowing through the two detection resistors 84 and 85 is detected, and a detection signal corresponding to the voltage value and the current value is transmitted to the control unit 32.
 スイッチ制御部321は、電気ケーブルCを介してDAQ86に制御信号を送信し、第1,第2のスイッチ81,82の動作を制御し、第1,第2の抵抗パターン17,18の中で一つの対象発熱部を順次、切り替える。
 指標値測定部322は、電気ケーブルCを介してDAQ86から送信された検出信号(第1,第2の検出抵抗84,85に加わる電圧値及び当該第1,第2の検出抵抗84,85を流れる電流値)に基づいて、第1,第2の抵抗パターン17,18の抵抗値を算出する。そして、指標値測定部322は、メモリ33に記憶された第1,第2の抵抗パターン17,18にそれぞれ対応する抵抗温度特性情報に基づいて、当該算出した抵抗値をそれぞれ第1,第2の抵抗パターン17,18の温度に換算する。
 通電制御部323は、指標値測定部322にて測定された第1,第2の抵抗パターン17,18の温度に基づいて、スイッチ制御部321による対象発熱部の切替タイミングと電源31から対象発熱部に供給される電力との少なくとも一方を制御する。
The switch control unit 321 transmits a control signal to the DAQ 86 via the electrical cable C, controls the operation of the first and second switches 81 and 82, and selects one of the first and second resistance patterns 17 and 18. One target heating unit is switched sequentially.
The index value measurement unit 322 detects the detection signal (the voltage value applied to the first and second detection resistors 84 and 85 and the first and second detection resistors 84 and 85) transmitted from the DAQ 86 via the electrical cable C. The resistance values of the first and second resistance patterns 17 and 18 are calculated based on the flowing current value). Then, the index value measurement unit 322 performs the first and second calculated resistance values based on the resistance temperature characteristic information corresponding to the first and second resistance patterns 17 and 18 stored in the memory 33, respectively. Converted to the temperature of the resistance patterns 17 and 18 of FIG.
The energization control unit 323 is based on the temperatures of the first and second resistance patterns 17 and 18 measured by the index value measurement unit 322, the switching timing of the target heating unit by the switch control unit 321 and the target heat generation from the power supply 31. Control at least one of the power supplied to the unit.
 〔通電制御方法〕
 次に、上述した処置システム1の動作(通電制御方法)について説明する。
 図7は、通電制御方法を示すフローチャートである。
 術者は、処置具2を手で持ち、当該処置具2の先端部分(把持部7及びシャフト6の一部)を、例えば、トロッカ等を用いて腹壁を通して腹腔内に挿入する。そして、術者は、操作ノブ51を操作し、把持部7にて処置対象の生体組織を把持する。
 そして、制御装置3は、術者によるフットスイッチ4の操作(ステップS1:Yes)に応じて、以下に示す通電制御を実行する。
[Electric control method]
Next, the operation (power supply control method) of the treatment system 1 described above will be described.
FIG. 7 is a flowchart showing the energization control method.
The operator holds the treatment tool 2 by hand, and inserts the distal end portion (a part of the grip 7 and the shaft 6) of the treatment tool 2 into the abdominal cavity through the abdominal wall using, for example, a trocar. Then, the operator operates the operation knob 51, and the grasping unit 7 grasps the living tissue to be treated.
And control device 3 performs energization control shown below according to operation (Step S1: Yes) of foot switch 4 by an operator.
 先ず、制御部32は、初期化処理を実行する(ステップS2)。例えば、制御部32は、ステップS2において、第1,第2の抵抗パターン17,18に通電する初期電圧値を第1,第2の抵抗パターン17,18への通電用の電圧値としてメモリ33に記憶する。
 ステップS2の後、スイッチ制御部321は、第1,第2のスイッチ81,82のうちスイッチONとするスイッチを決定する(ステップS3)。例えば、直前のループ(ステップS3~S9のループ)で第1のスイッチ81をスイッチONとするスイッチとして決定していた場合には、次のループでは第2のスイッチ82をスイッチONとするスイッチとして決定する。
First, the control unit 32 executes an initialization process (step S2). For example, in step S2, the control unit 32 sets the initial voltage value to be supplied to the first and second resistor patterns 17 and 18 as the voltage value for supplying the first and second resistor patterns 17 and 18 to the memory 33. Remember to
After step S2, the switch control unit 321 determines a switch to be turned on among the first and second switches 81 and 82 (step S3). For example, in the case where the first switch 81 is determined as the switch to be switched on in the immediately preceding loop (the loop of steps S3 to S9), the second loop is to be switched on as the switch in the next loop. decide.
 ステップS3の後、スイッチ制御部321は、第1,第2のスイッチ81,82のうちステップS3で決定したスイッチをスイッチONとし、他方のスイッチOFFとする(ステップS4)。すなわち、第1,第2の抵抗パターン17,18のうち、スイッチONとなったスイッチに対して直列に接続された抵抗パターンが対象発熱部として選択される。
 ステップS4の後、通電制御部323は、ステップS4で選択された対象発熱部に応じた通電用の電圧値(ステップS2でメモリ33に記憶された初期電圧値、あるいは、ステップS7でメモリ33に記憶された電圧値)をメモリ33から読み出す。そして、通電制御部323は、電源31の動作を制御し、電源31から供給される交流電圧のピーク値を当該読み出した電圧値に設定し、当該電圧値で対象発熱部に通電する(ステップS5)。なお、1回目のループ(ステップS3~S9のループ)では、通電制御部323は、ステップS2でメモリ33に記憶された初期電圧値を読み出し、当該初期電圧値で対象発熱部に通電する。
After step S3, the switch control unit 321 sets the switch determined in step S3 among the first and second switches 81 and 82 as the switch ON and the other switch OFF (step S4). That is, among the first and second resistance patterns 17 and 18, the resistance pattern connected in series to the switch which is turned on is selected as the target heat generating portion.
After step S4, the energization control unit 323 sets the voltage value for energization corresponding to the target heating portion selected in step S4 (the initial voltage value stored in the memory 33 in step S2, or in the memory 33 in step S7). The stored voltage value is read from the memory 33. Then, the energization control unit 323 controls the operation of the power supply 31, sets the peak value of the AC voltage supplied from the power supply 31 to the read voltage value, and energizes the target heating unit with the voltage value (step S5). ). In the first loop (the loop of steps S3 to S9), the energization control unit 323 reads the initial voltage value stored in the memory 33 in step S2, and energizes the target heating unit with the initial voltage value.
 以下では、説明の便宜上、第1,第2の抵抗パターン17,18のうち、ステップS4で選択された対象発熱部以外の抵抗パターンを非対象発熱部と記載する。
 ステップS5の後、指標値測定部322は、第1,第2の検出抵抗84,85のうち非対象発熱部に対して直列に接続された検出抵抗に加わる電圧値及び当該検出抵抗に流れる電流値に応じた検出信号に基づいて、当該非対象発熱部の温度(以下、ヒータ温度と記載)を測定する(ステップS6)。
 なお、交流スイッチとして構成された第1,第2のスイッチ81,82は、所定の容量成分をそれぞれ有している。このため、例えば、第1のスイッチ81をスイッチONとし、第2のスイッチ82をスイッチOFFとした場合であっても、当該第2のスイッチ82の容量成分に応じて第2の供給経路P2に漏れ電流が流れる。そして、ステップS6では、指標値測定部322は、当該漏れ電流を用いて非対象発熱部の温度を算出している。
Hereinafter, for the convenience of description, the resistance patterns other than the target heating portion selected in step S4 among the first and second resistance patterns 17 and 18 will be described as non-target heating portions.
After step S5, the index value measurement unit 322 determines the voltage value applied to the detection resistor connected in series with the non-target heating portion among the first and second detection resistors 84 and 85 and the current flowing through the detection resistor. Based on the detection signal corresponding to the value, the temperature of the non-target heating portion (hereinafter referred to as the heater temperature) is measured (step S6).
The first and second switches 81 and 82 configured as alternating current switches respectively have predetermined capacitance components. Therefore, for example, even when the first switch 81 is switched on and the second switch 82 is switched off, the second supply path P2 is used according to the capacitance component of the second switch 82. Leakage current flows. Then, in step S6, the index value measurement unit 322 calculates the temperature of the non-target heating portion using the leakage current.
 ステップS6の後、通電制御部323は、ステップS6で測定された非対象発熱部のヒータ温度と目標温度との差を利用して次に対象発熱部として選択される当該非対象発熱部に投入する電圧値を算出し、当該算出した電圧値をメモリ33に当該対象発熱部への通電用の電圧値として記憶(更新)する(ステップS7)。なお、当該電圧値の算出に際しては、一般的なPID(Proportional-Integral-Differential)制御等が用いられる。 After step S6, the energization control unit 323 applies the non-target heating portion to be selected next as a target heating portion using the difference between the heater temperature of the non-target heating portion measured in step S6 and the target temperature. A voltage value to be calculated is calculated, and the calculated voltage value is stored (updated) in the memory 33 as a voltage value for energizing the target heat generating portion (step S7). In addition, general PID (Proportional-Integral-Differential) control or the like is used to calculate the voltage value.
 ステップS7の後、通電制御部323は、対象発熱部の切替タイミングになったか否かを常時、監視する(ステップS8)。具体的に、通電制御部323は、ステップS8において、ステップS5で対象発熱部への通電を開始してから既定の時間TC(図8参照)が経過した時点を切替タイミングとする。すなわち、本実施の形態1では、切替タイミングを一定周期としている。
 対象発熱部の切替タイミングになったと判断された場合(ステップS8:Yes)には、制御部32は、生体組織の処置に必要な処置時間が経過したか否かを判断する(ステップS9)。具体的に、制御部32は、ステップS9において、フットスイッチ4が操作(ステップS1:Yes)されてから所定の時間が経過したか否かを判断する。
 そして、処置時間が経過したと判断された場合(ステップS9:Yes)には、制御装置3は、通電制御を終了する。
 一方、処置時間が経過していないと判断された場合(ステップS9:No)には、制御装置3は、ステップS3に戻る。
After step S7, the energization control unit 323 constantly monitors whether the switching timing of the target heat generating unit has come (step S8). Specifically, in step S8, the energization control unit 323 sets the switching timing to a point in time when a predetermined time TC (see FIG. 8) has elapsed since the energization of the target heat generating portion is started in step S5. That is, in the first embodiment, the switching timing is set to a constant cycle.
If it is determined that the switching timing of the target heat generating portion has come (step S8: Yes), the control unit 32 determines whether the treatment time necessary for treatment of the living tissue has elapsed (step S9). Specifically, in step S9, the control unit 32 determines whether a predetermined time has elapsed since the foot switch 4 is operated (step S1: Yes).
Then, when it is determined that the treatment time has elapsed (step S9: Yes), the control device 3 ends the energization control.
On the other hand, when it is determined that the treatment time has not elapsed (step S9: No), the control device 3 returns to step S3.
 〔通電制御方法の具体例〕
 次に、上述した通電制御方法の具体例について説明する。
 図8は、通電制御方法の具体例を説明する図である。具体的に、図8(a)は、第1の抵抗パターン17におけるヒータ温度と通電時の電圧値との変化を示す図である。図8(b)は、第2の抵抗パターン18におけるヒータ温度と通電時の電圧値との変化を示す図である。なお、図7では、始めに第1のスイッチ81がスイッチONされた場合を例示している。また、図8では、ヒータ温度を線グラフで表現し、電圧値を棒グラフで表現している。
[Specific example of energization control method]
Next, a specific example of the above-described energization control method will be described.
FIG. 8 is a diagram for explaining a specific example of the energization control method. Specifically, FIG. 8A is a diagram showing changes in the heater temperature and the voltage value at the time of energization in the first resistance pattern 17. FIG. 8B is a diagram showing changes in the heater temperature and the voltage value at the time of energization in the second resistance pattern 18. Note that FIG. 7 exemplifies the case where the first switch 81 is switched on first. Further, in FIG. 8, the heater temperature is represented by a line graph, and the voltage value is represented by a bar graph.
 ステップS3~S9の1回目のループでは、第1の抵抗パターン17が対象発熱部として選択される(ステップS4)。すなわち、当該1回目のループでは、第2の抵抗パターン18は、非対象発熱部である。この後、第1の抵抗パターン17は、図8(a)に示すように、初期電圧値V0で通電される(ステップS5)。この際、非対象発熱部である第2の抵抗パターン18への交流電流の第2の供給経路P2には、第2のスイッチ82がスイッチOFFとなっているが当該第2のスイッチ82の容量成分に応じて漏れ電流が流れる。すなわち、第2の抵抗パターン18には、当該漏れ電流に応じて極めて小さい電圧値VL2(図8(b))が加わる。そして、当該漏れ電流を用いて、次に対象発熱部として選択される第2の抵抗パターン18のヒータ温度T2(図8(b))を測定し(ステップS6)、当該ヒータ温度T2を利用して次に当該第2の抵抗パターン18に投入(ステップS3~S9の2回目のループで投入)する電圧値V2(図8(b))を算出する(ステップS7)。この後、第1の抵抗パターン17への通電を開始してから既定の時間TCが経過すると(ステップS8:Yes)、対象発熱部を第1の抵抗パターン17から第2の抵抗パターン18に切り替える(ステップS3)。これにより、ステップS3~S9の1回目のループが終了する。 In the first loop of steps S3 to S9, the first resistance pattern 17 is selected as the target heat generating portion (step S4). That is, in the first loop, the second resistance pattern 18 is a non-target heating portion. Thereafter, as shown in FIG. 8A, the first resistance pattern 17 is energized at the initial voltage value V0 (step S5). At this time, the second switch 82 is turned off in the second supply path P2 of the alternating current to the second resistance pattern 18 which is the non-target heating portion, but the capacitance of the second switch 82 Leakage current flows depending on the component. That is, an extremely small voltage value VL2 (FIG. 8B) is applied to the second resistance pattern 18 in accordance with the leakage current. Then, using the leakage current, the heater temperature T2 (FIG. 8B) of the second resistance pattern 18 to be selected next as the target heating portion is measured (step S6), and the heater temperature T2 is used. Then, a voltage value V2 (FIG. 8B) to be applied to the second resistance pattern 18 (in the second loop of steps S3 to S9) is calculated (step S7). Thereafter, when the predetermined time TC has elapsed since the start of energization of the first resistance pattern 17 (step S8: Yes), the target heat generating portion is switched from the first resistance pattern 17 to the second resistance pattern 18 (Step S3). Thus, the first loop of steps S3 to S9 ends.
 ステップS3~S9の2回目のループでは、第2の抵抗パターン18が対象発熱部として選択される(ステップS4)。すなわち、当該2回目のループでは、第1の抵抗パターン17は、非対象発熱部である。この後、第2の抵抗パターン18は、ステップS3~S9の1回目のループで算出された電圧値V2で通電される(ステップS5)。この際、非対象発熱部である第1の抵抗パターン17への交流電流の第1の供給経路P1には、第1のスイッチ81がスイッチOFFとなっているが当該第1のスイッチ81の容量成分に応じて漏れ電流が流れる。すなわち、第1の抵抗パターン17には、当該漏れ電流に応じて極めて小さい電圧値VL1(図8(a))が加わる。そして、当該漏れ電流を用いて、次に対象発熱部として選択される第1の抵抗パターン17のヒータ温度T1(図8(a))を測定し(ステップS6)、当該ヒータ温度T1を利用して次に当該第1の抵抗パターン17に投入(ステップS3~S9の3回目のループで投入)する電圧値V1(図8(a))を算出する(ステップS7)。この後、第2の抵抗パターン18への通電を開始してから既定の時間TCが経過すると(ステップS8:Yes)、対象発熱部を第2の抵抗パターン18から第1の抵抗パターン17に切り替える(ステップS3)。これにより、ステップS3~S9の2回目のループが終了する。 In the second loop of steps S3 to S9, the second resistance pattern 18 is selected as the target heat generating portion (step S4). That is, in the second loop, the first resistance pattern 17 is a non-target heating portion. Thereafter, the second resistance pattern 18 is energized at the voltage value V2 calculated in the first loop of steps S3 to S9 (step S5). At this time, the first switch 81 is turned off in the first supply path P1 of the alternating current to the first resistance pattern 17 which is the non-target heating portion, but the capacitance of the first switch 81 Leakage current flows depending on the component. That is, an extremely small voltage value VL1 (FIG. 8A) is applied to the first resistance pattern 17 in accordance with the leakage current. Then, using the leakage current, the heater temperature T1 (FIG. 8A) of the first resistance pattern 17 to be selected next as the target heating portion is measured (step S6), and the heater temperature T1 is used. Then, a voltage value V1 (FIG. 8A) to be applied to the first resistance pattern 17 (in the third loop of steps S3 to S9) is calculated (step S7). Thereafter, when the predetermined time TC has elapsed since the start of energization of the second resistance pattern 18 (step S8: Yes), the target heat generating portion is switched from the second resistance pattern 18 to the first resistance pattern 17 (Step S3). Thus, the second loop of steps S3 to S9 is completed.
 そして、第1,第2の抵抗パターン17,18のヒータ温度は、ステップS3~S9のループを繰り返し実行することで、図8に示すように、目標温度にそれぞれ制御される。 The heater temperatures of the first and second resistance patterns 17 and 18 are respectively controlled to target temperatures as shown in FIG. 8 by repeatedly executing the loop of steps S3 to S9.
 以上説明した本実施の形態1によれば、以下の効果を奏する。
 本実施の形態1に係る処置システム1では、第1,第2のパターン本体172,182は、把持部7の長手方向の異なる位置にそれぞれ設けられ、互いに独立して制御される。
 このため、特許文献1に記載の構成と同様に、偏在負荷になっていても、目標温度で生体組織を加熱し、適切に当該生体組織を処置することができる。
 また、本実施の形態1に係る処置システム1では、電源31から第1,第2の抵抗パターン17,18(第1,第2のパターン本体172,182)への交流電流の供給経路(第1,第2の供給経路P1,P2)を第1,第2のスイッチ81,82にて切り替えることにより、当該第1,第2の抵抗パターン17,18を独立に制御する。
 このため、特許文献1に記載の構成と比較して、電源31を複数、設ける必要がなく、低コスト化を図ることができる。
 以上のことから、本実施の形態1に係る処置システム1によれば、偏在負荷になっていても適切に生体組織を処置することができ、かつ、低コスト化を図ることができる、という効果を奏する。
According to the first embodiment described above, the following effects can be obtained.
In the treatment system 1 according to the first embodiment, the first and second pattern bodies 172 and 182 are provided at different positions in the longitudinal direction of the grip 7 and are controlled independently of each other.
Therefore, as in the configuration described in Patent Document 1, even if the load is unevenly distributed, the living tissue can be heated at the target temperature, and the living tissue can be appropriately treated.
Further, in the treatment system 1 according to the first embodiment, a supply path (the first path from the power source 31 to the first and second resistance patterns 17 and 18 (first and second pattern bodies 172 and 182) (the first path) The first and second resistance patterns 17 and 18 are independently controlled by switching the first and second supply paths P1 and P2 by the first and second switches 81 and 82, respectively.
Therefore, compared to the configuration described in Patent Document 1, it is not necessary to provide a plurality of power supplies 31, and cost reduction can be achieved.
From the above, according to the treatment system 1 according to the first embodiment, the biological tissue can be appropriately treated even if the load is unevenly distributed, and the cost can be reduced. Play.
 特に、処置システム1では、第1,第2の抵抗パターン17,18のうち次に対象発熱部として選択される非対象発熱部(第1,第2のスイッチ81,82のうちスイッチOFFとされたスイッチに対して直列に接続された抵抗パターン)のヒータ温度を第1,第2のスイッチ81,82のうちスイッチOFFとされたスイッチの容量成分に応じて当該スイッチに流れる漏れ電流を用いて測定する。
 このため、対象発熱部として選択される直前のヒータ温度(例えば、図8に示したヒータ温度T1(T2))を利用して次に当該対象発熱部に電力を供給する際の電圧値(例えば、図8に示した電圧値V1(V2))を適切に算出することができる。したがって、第1,第2の抵抗パターン17,18のヒータ温度を目標温度に適切かつ安定に制御することができる。
In particular, in the treatment system 1, the non-target heat generating portion (selected among the first and second switches 81 and 82) is selected as the target heat generating portion next to the first and second resistance patterns 17 and 18. Of the heater temperature of the resistance pattern connected in series to the switch using the leakage current flowing through the switch according to the capacitance component of the switch turned off among the first and second switches 81 and 82 taking measurement.
For this reason, a voltage value (for example, when the power is supplied to the target heating portion next time using the heater temperature immediately before being selected as the target heating portion (for example, the heater temperature T1 (T2) shown in FIG. 8) The voltage value V1 (V2) shown in FIG. 8 can be appropriately calculated. Therefore, the heater temperatures of the first and second resistance patterns 17 and 18 can be controlled appropriately and stably at the target temperature.
(実施の形態1の変形例1)
 図9は、本実施の形態1の変形例1を示す図である。具体的に、図9は、本変形例1に係る把持部7Aを閉じた状態(把持部7Aにて生体組織LTを把持した状態)で当該把持部7Aの幅方向に直交する切断面にて当該把持部7Aを切断した断面図である。なお、図9では、説明の便宜上、一対の第1の接続部171及び一対の第2の接続部181の図示を省略している。
 上述した実施の形態1では、第1,第2のパターン本体172,182は、第1の把持部材9において、長手方向に並設されていたが、長手方向に異なる位置に設けられていれば、図9に示すように配設しても構わない。
 具体的に、本変形例1に係る把持部7Aでは、図9に示すように、第1の抵抗パターン17は、第1の把持部材9に設けられている。一方、第2の抵抗パターン18は、第2の把持部材10に設けられている。そして、第1,第2のパターン本体172,182は、長手方向に異なる位置にそれぞれ設けられている。
 以上説明した本変形例1の構成を採用した場合であっても、上述した実施の形態1と同様の効果を奏する。
(Modification 1 of Embodiment 1)
FIG. 9 is a diagram showing a first modification of the first embodiment. Specifically, FIG. 9 is a cross-sectional view orthogonal to the width direction of the grasping portion 7A in a state where the grasping portion 7A according to the present modification 1 is closed (a state in which the living tissue LT is grasped by the grasping portion 7A). It is sectional drawing which cut | disconnected the said holding part 7A. In FIG. 9, for convenience of explanation, the illustration of the pair of first connection portions 171 and the pair of second connection portions 181 is omitted.
In the first embodiment described above, the first and second pattern bodies 172 and 182 are provided in parallel in the longitudinal direction in the first gripping member 9, but provided that they are provided at different positions in the longitudinal direction. It may be disposed as shown in FIG.
Specifically, in the gripping portion 7A according to the first modification, as shown in FIG. 9, the first resistance pattern 17 is provided to the first gripping member 9. On the other hand, the second resistance pattern 18 is provided on the second holding member 10. The first and second pattern bodies 172 and 182 are provided at different positions in the longitudinal direction.
Even when the configuration of the first modification described above is adopted, the same effect as that of the first embodiment described above is obtained.
(実施の形態1の変形例2)
 図10は、本実施の形態1の変形例2を示す図である。
 上述した実施の形態1において、図10に示すように、ステップS4とステップS5とを同時に実行(並列処理)しても構わない。
 以上説明した本変形例2によれば、第1,第2のスイッチ81,82の切替(ステップS4)と対象発熱部への通電(ステップS5)とに時間差が生じないため、より高精度に通電制御を行うことができる。
(Modification 2 of Embodiment 1)
FIG. 10 is a diagram showing a modification 2 of the first embodiment.
In the first embodiment described above, as shown in FIG. 10, step S4 and step S5 may be simultaneously executed (parallel processing).
According to the second modification described above, there is no time difference between the switching of the first and second switches 81 and 82 (step S4) and the energization of the target heat generating portion (step S5). Energization control can be performed.
(実施の形態2)
 次に、本実施の形態2について説明する。
 以下の説明では、上述した実施の形態1と同様の構成及びステップには同一符号を付し、その詳細な説明は省略または簡略化する。
 図11は、図6に対応した図であって、本実施の形態2に係る処置システム1Bを示す図である。
 本実施の形態2に係る処置システム1Bでは、図11に示すように、上述した実施の形態1で説明した処置システム1(図6)に対して、第1,第2のコンデンサ87,88が追加されている。
 第1のコンデンサ87は、本発明に係る容量性素子に相当し、図11に示すように、第1の抵抗パターン17に対して直列に接続されるとともに、第1のスイッチ81に対して並列に接続されるように第1の供給経路P1に設けられている。なお、第1のコンデンサ87は、第1のスイッチ81の容量成分よりも大きい容量成分を有する。
 第2のコンデンサ88は、本発明に係る容量性素子に相当し、図11に示すように、第2の抵抗パターン18に対して直列に接続されるとともに、第2のスイッチ82に対して並列に接続されるように第2の供給経路P2に設けられている。なお、第2のコンデンサ88は、第2のスイッチ82の容量成分よりも大きい容量成分を有する。
 そして、本実施の形態2に係る指標値測定部322は、第1,第2の供給経路P1,P2のうち、第1のスイッチ81及び第1のコンデンサ87の容量成分、または、第2のスイッチ82及び第2のコンデンサ88の容量成分に応じて、非対象発熱部に接続する供給経路に流れる漏れ電流を用いて当該非対象発熱部の温度を測定する。
Second Embodiment
Next, the second embodiment will be described.
In the following description, the same components and steps as those in the first embodiment described above are denoted by the same reference numerals, and the detailed description thereof is omitted or simplified.
FIG. 11 is a diagram corresponding to FIG. 6 and is a diagram showing a treatment system 1B according to the second embodiment.
In the treatment system 1B according to the second embodiment, as shown in FIG. 11, the first and second capacitors 87 and 88 correspond to the treatment system 1 (FIG. 6) described in the first embodiment described above. Has been added.
The first capacitor 87 corresponds to a capacitive element according to the present invention, and is connected in series to the first resistance pattern 17 and parallel to the first switch 81 as shown in FIG. Are provided in the first supply path P1 so as to be connected thereto. The first capacitor 87 has a capacitance component larger than that of the first switch 81.
The second capacitor 88 corresponds to a capacitive element according to the present invention, and is connected in series to the second resistance pattern 18 and in parallel to the second switch 82 as shown in FIG. The second supply path P2 is provided to be connected to the second supply path P2. The second capacitor 88 has a capacitance component larger than that of the second switch 82.
Then, the index value measurement unit 322 according to the second embodiment is configured such that the capacitance components of the first switch 81 and the first capacitor 87 in the first and second supply paths P1 and P2 or the second In accordance with the capacitance components of the switch 82 and the second capacitor 88, the temperature of the non-target heating portion is measured using the leakage current flowing in the supply path connected to the non-target heating portion.
 以上説明した本実施の形態2によれば、上述した実施の形態1と同様の効果の他、以下の効果を奏する。
 本実施の形態2に係る処置システム1Bでは、上述した第1,第2のコンデンサ87,88が追加されている。
 このため、第1,第2の供給経路P1,P2のうち非対象発熱部に接続する供給経路に流れる漏れ電流をより大きくすることができ、当該漏れ電流の検出精度を向上させることができる。したがって、対象発熱部として選択される直前のヒータ温度を高精度に算出し、通電制御を高精度に行うことができる。
According to the second embodiment described above, in addition to the effects similar to the first embodiment described above, the following effects can be obtained.
In the treatment system 1B according to the second embodiment, the above-described first and second capacitors 87 and 88 are added.
Therefore, it is possible to further increase the leakage current flowing through the supply path connected to the non-target heating portion among the first and second supply paths P1 and P2, and to improve the detection accuracy of the leakage current. Therefore, the heater temperature immediately before being selected as the target heat generating portion can be calculated with high accuracy, and the energization control can be performed with high accuracy.
(実施の形態3)
 次に、本実施の形態3について説明する。
 以下の説明では、上述した実施の形態1と同様の構成及びステップには同一符号を付し、その詳細な説明は省略または簡略化する。
 上述した実施の形態1では、切替タイミングを一定周期としつつ、電源31から供給される交流電圧のピーク値を制御していた。
 これに対して本実施の形態3では、電源31から供給される交流電圧のピーク値を一定(既定の電圧値Vmax(図13(c),図13(d)参照))としつつ、対象発熱部に継続して通電する通電時間を制御する。すなわち、本実施の形態3では、上述した実施の形態1に対して、通電制御方法が異なる。
Third Embodiment
Next, the third embodiment will be described.
In the following description, the same components and steps as those in the first embodiment described above are denoted by the same reference numerals, and the detailed description thereof is omitted or simplified.
In the first embodiment described above, the peak value of the AC voltage supplied from the power supply 31 is controlled while the switching timing has a constant cycle.
On the other hand, in the third embodiment, while the peak value of the AC voltage supplied from the power supply 31 is constant (the predetermined voltage value Vmax (see FIG. 13C and FIG. 13D)), the target heat generation is performed. Control the energizing time to energize the unit continuously. That is, in the third embodiment, the energization control method is different from that of the first embodiment described above.
 〔通電制御方法〕
 図12は、本実施の形態3に係る通電制御方法を示すフローチャートである。
 本実施の形態3に係る通電制御方法は、図12に示すように、上述した実施の形態1で説明した通電制御方法(図7)に対して、ステップS5を省略するとともに、ステップS2,S7,S8の代わりにステップS2C,S7C,S8Cを採用している点が異なる。なお、本実施の形態3では、ステップS5を省略したことに伴い、ステップS4の後、ステップS6が実行される。以下では、ステップS2C,S7C,S8Cのみを説明する。
[Electric control method]
FIG. 12 is a flowchart showing the energization control method according to the third embodiment.
In the energization control method according to the third embodiment, as shown in FIG. 12, step S5 is omitted from the energization control method (FIG. 7) described in the first embodiment described above, and steps S2 and S7 are performed. , S8, instead of employing steps S2C, S7C, S8C. In the third embodiment, step S6 is executed after step S4 because step S5 is omitted. Hereinafter, only steps S2C, S7C, and S8C will be described.
 ステップS2Cは、術者によりフットスイッチ4が操作された場合(ステップS1:Yes)に実行される。
 具体的に、通電制御部323は、ステップS2Cにおいて、電源31を動作させ、当該電源31から既定の電圧値Vmaxの交流電圧を供給させる。この後、制御装置3は、ステップS3に移行する。
 当該ステップS2Cが実行されることにより、ステップS4で選択された対象発熱部は、当該既定の電圧値Vmaxで通電される。
Step S2C is executed when the operator operates the foot switch 4 (step S1: Yes).
Specifically, in step S2C, the energization control unit 323 operates the power supply 31 to supply the AC voltage of the predetermined voltage value Vmax from the power supply 31. After this, the control device 3 shifts to step S3.
By performing step S2C, the target heat generating portion selected in step S4 is energized at the predetermined voltage value Vmax.
 ステップS7Cは、ステップS6の後に実行される。
 通電制御部323は、ステップS7Cにおいて、上述した実施の形態1で説明したステップS7と同様に、ステップS6で測定された非対象発熱部のヒータ温度と目標温度との差を利用して次に対象発熱部として選択される当該非対象発熱部に投入する電圧値を算出する。また、通電制御部323は、既定の電圧値Vmaxに対する当該算出した電圧値の割合を算出する。そして、通電制御部323は、既定の時間TCに対する当該算出した割合に応じた時間を次に対象発熱部として選択される非対象発熱部に通電する通電時間として算出し、当該算出した通電時間をメモリ33に記憶する。
Step S7C is performed after step S6.
In step S7C, similarly to step S7 described in the first embodiment, the energization control unit 323 uses the difference between the heater temperature of the non-target heating portion measured in step S6 and the target temperature and then performs the next operation. A voltage value to be supplied to the non-target heat generating portion selected as the target heat generating portion is calculated. The energization control unit 323 also calculates the ratio of the calculated voltage value to the predetermined voltage value Vmax. Then, the energization control unit 323 calculates a time corresponding to the calculated ratio with respect to the predetermined time TC as the energization time for energizing the non-target heat generating portion to be next selected as the target heat generating portion, and calculates the calculated power supply time It is stored in the memory 33.
 ステップS7Cの後、通電制御部323は、対象発熱部の切替タイミングになったか否かを常時、監視する(ステップS8C)。具体的に、通電制御部323は、ステップS8Cにおいて、前回のループ(ステップS3,S4,S6,S7C,S8C,S9のループ)でメモリ33に記憶された通電時間(本ループが1回目のループであれば初期値となる既定の通電時間)を読み出し、ステップS4で対象発熱部への通電を開始してから当該通電時間が経過した時点を切替タイミングとする。そして、切替タイミングになった(通電時間が経過した)と判断された場合(ステップS8C:Yes)に、制御装置3は、ステップS9に移行する。 After step S7C, the energization control unit 323 constantly monitors whether or not the switching timing of the target heat generating unit has come (step S8C). Specifically, in step S8C, the energization control unit 323 determines that the energization time (this loop is the first loop) stored in the memory 33 in the previous loop (the loop of steps S3, S4, S6, S7C, S8C, and S9). In this case, the predetermined energization time) which is the initial value is read out, and the point in time when the energization time has elapsed since the start of energization of the target heat generating portion in step S4 is taken as the switching timing. When it is determined that the switching timing has come (the energization time has elapsed) (step S8C: Yes), the control device 3 shifts to step S9.
 〔通電制御方法の具体例〕
 次に、本実施の形態3に係る通電制御方法の具体例について説明する。
 図13及び図14は、通電制御方法の具体例を説明する図である。具体的に、図13(a)及び図13(b)は、上述した実施の形態1で説明した通電制御方法(以下、LEVEL方式と記載)で通電制御を行った場合での第1,第2の抵抗パターン17,18における通電時の電圧値の変化をそれぞれ示している。図13(c)及び図13(d)は、本実施の形態3で説明した通電制御方法(以下、PWM方式と記載)で通電制御を行った場合での第1,第2の抵抗パターン17,18における通電時間の変化をそれぞれ示している。なお、図13(c)及び図13(d)では、説明の便宜上、対象発熱部の切替タイミングをLEVEL方式(図13(a)及び図13(b))の切替タイミングと同一にしている。図14は、図8に対応した図である。なお、図13(a)、図13(c)、及び図14(a)は、第1の抵抗パターン17における通電時の電圧値や通電時間の変化を示している。図13(b)、図13(d)、及び図14(b)は、第2の抵抗パターン18における通電時の電圧値や通電時間の変化を示している。
[Specific example of energization control method]
Next, a specific example of the energization control method according to the third embodiment will be described.
13 and 14 are diagrams for explaining a specific example of the energization control method. Specifically, FIGS. 13 (a) and 13 (b) show the first, the second, and the third in the case where the energization control is performed by the energization control method (hereinafter referred to as the LEVEL method) described in the first embodiment described above. The change of the voltage value at the time of electricity supply in 2nd resistance pattern 17 and 18 is shown, respectively. 13 (c) and 13 (d) show the first and second resistance patterns 17 when the energization control is performed by the energization control method (hereinafter referred to as the PWM method) described in the third embodiment. , 18 show changes in the energizing time, respectively. 13 (c) and 13 (d), for convenience of explanation, the switching timing of the target heat generating portion is the same as the switching timing of the LEVEL method (FIGS. 13 (a) and 13 (b)). FIG. 14 is a diagram corresponding to FIG. 13 (a), 13 (c) and 14 (a) show changes in voltage value and energization time of the first resistance pattern 17 during energization. FIGS. 13B, 13D, and 14B show changes in voltage value and energization time of the second resistance pattern 18 during energization.
 本実施の形態3では、第1,第2の抵抗パターン17,18に通電する電圧値は、図13(c)及び図13(d)に示すように、既定の電圧値Vmaxで一定である。ここで、既定の電圧値Vmaxは、例えば、上述した実施の形態1において、第1,第2の抵抗パターン17,18に通電する最大の電圧値としている。
 ここで、図13(a)に示すように、LEVEL方式において、ステップS7で算出された電圧値が既定の電圧値Vmaxに対して50%、100%、80%、50%、15%の割合であった場合を想定する。
 この場合には、ステップS7Cにおいて、通電時間は、既定の時間TCに対する当該割合に応じた時間として算出されるため、図13(c)に示すように、0.5TC(算出された電圧値が電圧値Vmaxの50%の場合)、TC(算出された電圧値が電圧値Vmaxの100%の場合)、0.8TC(算出された電圧値が電圧値Vmaxの80%の場合)、0.5TC(算出された電圧値が電圧値Vmaxの50%の場合)、及び0.15TC(算出された電圧値が電圧値Vmaxの15%の場合)としてそれぞれ算出される。
 そして、通電時間毎に対象発熱部が切り替えられる(ステップS8B,S3)ことにより、第1,第2の抵抗パターン17,18のヒータ温度は、図14に示すように、目標温度にそれぞれ制御される。
In the third embodiment, as shown in FIGS. 13 (c) and 13 (d), the voltage values applied to the first and second resistance patterns 17 and 18 are constant at a predetermined voltage value Vmax. . Here, the predetermined voltage value Vmax is, for example, the maximum voltage value for energizing the first and second resistance patterns 17 and 18 in the first embodiment described above.
Here, as shown in FIG. 13A, in the LEVEL system, the voltage value calculated in step S7 is a ratio of 50%, 100%, 80%, 50%, and 15% to the predetermined voltage value Vmax. It is assumed that the
In this case, in step S7C, the energization time is calculated as a time corresponding to the ratio to the predetermined time TC, so as shown in FIG. In the case of 50% of the voltage value Vmax), TC (when the calculated voltage value is 100% of the voltage value Vmax), 0.8 TC (in the case where the calculated voltage value is 80% of the voltage value Vmax), 0.. 5 TC (when the calculated voltage value is 50% of the voltage value Vmax) and 0.15 TC (when the calculated voltage value is 15% of the voltage value Vmax) are respectively calculated.
Then, the target heat generating portion is switched for each energization time (steps S8B and S3), whereby the heater temperatures of the first and second resistance patterns 17 and 18 are controlled to the target temperature as shown in FIG. Ru.
 以上説明した本実施の形態3によれば、上述した実施の形態1と同様の効果の他、以下の効果を奏する。
 本実施の形態3に係る処置システム1では、通電制御部323は、電源31から対象発熱部に供給される電力のピーク値を一定(既定の電圧値Vmaxで一定)とし、次に対象発熱部として選択される非対象発熱部のヒータ温度に基づいて、当該非対象発熱部に継続して通電する通電時間を制御する。
 このため、電源31として、出力値を可変とする構成ではなく、出力値を固定とする構成を採用することができる。したがって、処置システム1のさらなる低コスト化を図ることができる。
According to the third embodiment described above, the following effects can be obtained in addition to the effects similar to those of the first embodiment described above.
In the treatment system 1 according to the third embodiment, the conduction control unit 323 sets the peak value of the power supplied from the power supply 31 to the target heating unit constant (constant at the predetermined voltage value Vmax), and then the target heating unit Based on the heater temperature of the non-target heat generation part selected as, the current supply time which continues supplying current to the non-target heat generation part is controlled.
For this reason, as the power supply 31, a configuration in which the output value is fixed can be adopted instead of the configuration in which the output value is variable. Therefore, the cost of the treatment system 1 can be further reduced.
(実施の形態4)
 次に、本実施の形態4について説明する。
 以下の説明では、上述した実施の形態1と同様の構成及びステップには同一符号を付し、その詳細な説明は省略または簡略化する。
 本実施の形態4では、上述した実施の形態1に対して、把持部7にて生体組織LTを把持した状態での当該生体組織LTの位置を判別し、当該位置に応じてヒータ14(第1,第2の抵抗パターン17,18)の通電制御を実行する。すなわち、本実施の形態4では、上述した実施の形態1に対して、通電制御方法が異なる。
Embodiment 4
Next, the fourth embodiment will be described.
In the following description, the same components and steps as those in the first embodiment described above are denoted by the same reference numerals, and the detailed description thereof is omitted or simplified.
In the fourth embodiment, with respect to the first embodiment described above, the position of the living tissue LT in a state in which the living tissue LT is gripped by the gripping unit 7 is determined, and the heater 14 (the The control of energization of the first and second resistance patterns 17 and 18) is executed. That is, in the fourth embodiment, the energization control method is different from the above-described first embodiment.
 〔通電制御方法〕
 図15は、本実施の形態4に係る通電制御方法を示すフローチャートである。
 本実施の形態4に係る通電制御方法は、図15に示すように、上述した実施の形態1で説明した通電制御方法(図7)に対して、ステップS5,S8,S9の代わりにステップS5D,S8D,S9D2,S9D3を採用しているとともに、ステップS10~S13,S3D1~S7D1、S3D2~S8D2,S3D3~S8D3を追加している点が異なる。以下では、ステップS5D,S8D,S10~S13,S3D1~S7D1,S3D2~S9D2,S3D3~S9D3のみを説明する。
[Electric control method]
FIG. 15 is a flowchart showing the energization control method according to the fourth embodiment.
The energization control method according to the fourth embodiment is, as shown in FIG. 15, a step S5D in place of steps S5, S8 and S9 with respect to the energization control method (FIG. 7) described in the first embodiment. , S8D, S9D2 and S9D3, and steps S10 to S13, S3D1 to S7D1, S3D2 to S8D2 and S3D3 to S8D3 are added. In the following, only steps S5D, S8D, S10 to S13, S3D1 to S7D1, S3D2 to S9D2 and S3D3 to S9D3 will be described.
 ステップS10は、ステップS2の後に実行される。
 具体的に、制御部32は、ステップS10において、第1,第2の抵抗パターン17,18の双方に通電したか否かを判断する。
 第1,第2の抵抗パターン17,18の双方に通電していないと判断した場合(ステップS10:No)には、制御部32は、第1,第2の抵抗パターン17,18の一方に通電したか否かを判断する(ステップS11)。
 第1,第2の抵抗パターン17,18の一方に通電していないと判断された場合(ステップS11:No)には、制御装置3は、ステップS3に移行する。
Step S10 is performed after step S2.
Specifically, in step S10, the control unit 32 determines whether or not both of the first and second resistance patterns 17 and 18 are energized.
If it is determined that power is not supplied to both the first and second resistance patterns 17 and 18 (step S10: No), the control unit 32 sets one of the first and second resistance patterns 17 and 18 to one side. It is judged whether it supplied with electricity (step S11).
When it is determined that one of the first and second resistance patterns 17 and 18 is not energized (step S11: No), the control device 3 proceeds to step S3.
 ステップS5Dは、ステップS4の後に実行される。
 具体的に、通電制御部323は、ステップS5Dにおいて、電源31の動作を制御し、電源31から供給される交流電圧のピーク値をステップS2でメモリ33に記憶された初期電圧値に設定し、当該初期電圧値で対象発熱部に通電する。この後、制御装置3は、ステップS6に移行する。
Step S5D is performed after step S4.
Specifically, in step S5D, the energization control unit 323 controls the operation of the power supply 31 and sets the peak value of the AC voltage supplied from the power supply 31 to the initial voltage value stored in the memory 33 in step S2. The target heating portion is energized at the initial voltage value. Thereafter, the control device 3 shifts to step S6.
 第1,第2の抵抗パターン17,18の一方に通電したと判断された場合(ステップS11:Yes)には、制御装置3は、上述した実施の形態1で説明したステップS3~S7とそれぞれ同様のステップS3D1~S7D1を実行する。すなわち、ステップS3D1~S7D1は、ステップS3,S4,S5D,S6,S7により、第1,第2の抵抗パターン17,18の一方に通電された後に実行される。
 ここで、ステップS5D1では、通電制御部323は、ステップS7でメモリ33に記憶された電圧値をメモリ33から読み出す。そして、通電制御部323は、電源31の動作を制御し、電源31から供給される交流電圧のピーク値を当該読み出した電圧値に設定し、当該電圧値で対象発熱部に通電する。
 また、ステップ6D1では、指標値測定部322は、上述した実施の形態1で説明したステップS6と同様に非対象発熱部の温度を測定する。また、指標値測定部322は、第1,第2の検出抵抗84,85のうち対象発熱部に対して直列に接続された検出抵抗に加わる電圧値及び当該検出抵抗に流れる電流値に応じた検出信号に基づいて、当該対象発熱部の温度を測定する。
If it is determined that one of the first and second resistance patterns 17 and 18 is energized (step S11: Yes), the control device 3 performs steps S3 to S7 described in the first embodiment, respectively. Similar steps S3D1 to S7D1 are executed. That is, steps S3D1 to S7D1 are executed after steps S3, S4, S5D, S6 and S7 energize one of the first and second resistance patterns 17 and 18.
Here, in step S5D1, the energization control unit 323 reads from the memory 33 the voltage value stored in the memory 33 in step S7. Then, the energization control unit 323 controls the operation of the power supply 31, sets the peak value of the AC voltage supplied from the power supply 31 to the read voltage value, and energizes the target heating unit with the voltage value.
Further, in step 6D1, the index value measurement unit 322 measures the temperature of the non-target heat generation portion in the same manner as step S6 described in the first embodiment described above. Further, the index value measurement unit 322 is responsive to the voltage value applied to the detection resistor connected in series to the target heating portion among the first and second detection resistors 84 and 85 and the current value flowing to the detection resistor. The temperature of the target heating portion is measured based on the detection signal.
 ステップS8Dは、ステップS7またはステップS7D1の後に実行される。
 具体的に、通電制御部323は、ステップS8Dにおいて、ステップS5DまたはステップS5D1で対象発熱部への通電を開始してから設定時間(例えば、既定の時間TC)が経過した時点を切替タイミングとし、当該切替タイミングになったか否かを常時、監視する。そして、当該切替タイミングになったと判断された場合(ステップS8D:Yes)には、制御装置3は、ステップS10に戻る。
Step S8D is performed after step S7 or step S7D1.
Specifically, in step S8D, the power supply control unit 323 sets a switching timing as a point in time when a set time (for example, a predetermined time TC) has elapsed since power supply to the target heat generating portion is started in step S5D or step S5D1. It constantly monitors whether the switching timing has come. Then, when it is determined that the switching timing has come (step S8D: Yes), the control device 3 returns to step S10.
 ステップS12は、第1,第2の抵抗パターン17,18の双方に通電したと判断された場合(ステップS10:Yes)に実行される。
 具体的に、通電制御部323は、ステップS12において、ステップS6D1で測定された第1,第2の抵抗パターン17,18のヒータ温度の温度差が第1の閾値以上であるか否かを判断する。
Step S12 is executed when it is determined that both of the first and second resistance patterns 17 and 18 are energized (step S10: Yes).
Specifically, in step S12, the energization control unit 323 determines whether the temperature difference between the heater temperatures of the first and second resistance patterns 17 and 18 measured in step S6D1 is equal to or greater than a first threshold. Do.
 ステップS13は、第1,第2の抵抗パターン17,18のヒータ温度の温度差が第1の閾値以上であると判断された場合(ステップS12:Yes)に実行される。
 具体的に、通電制御部323は、ステップS13において、第1,第2の抵抗パターン17,18のうち、ヒータ温度の高い抵抗パターンの通電時間を既定の時間TCとする。また、通電制御部323は、ヒータ温度の低い抵抗パターンの通電時間を既定の時間TCよりも長い時間とする。そして、通電制御部323は、各通電時間をメモリ33に記憶する。
Step S13 is executed when it is determined that the temperature difference between the heater temperatures of the first and second resistance patterns 17 and 18 is equal to or greater than the first threshold (step S12: Yes).
Specifically, in step S13, the conduction control unit 323 sets the conduction time of the resistance pattern having the highest heater temperature among the first and second resistance patterns 17 and 18 as the predetermined time TC. Further, the energization control unit 323 sets the energization time of the resistance pattern having a low heater temperature to be longer than the predetermined time TC. Then, the energization control unit 323 stores each energization time in the memory 33.
 ステップS13の後、制御装置3は、上述した実施の形態1で説明したステップS3~S9のループと同様のステップS3D2~S9D2のループを実行する。
 ここで、ステップS8D2では、通電制御部323は、ステップS13でメモリ33に記憶された各通電時間のうちステップS4D2で選択された対象発熱部に応じた通電時間をメモリ33から読み出し、ステップS5D2で当該対象発熱部への通電を開始してから当該通電時間が経過したか否かを常時、監視する。
 以上説明したステップS13、及びステップS3D2~S9D2のループは、本発明に係る第1の制御に相当する。
After step S13, the control device 3 executes the loop of steps S3D2 to S9D2 similar to the loop of steps S3 to S9 described in the first embodiment described above.
Here, in step S8D2, the conduction control unit 323 reads the conduction time corresponding to the target heating portion selected in step S4D2 out of the respective conduction times stored in the memory 33 in step S13 from the memory 33, and in step S5D2 It is constantly monitored whether or not the current application time has elapsed since the current application to the target heat generating portion has been started.
The loop of steps S13 and S3D2 to S9D2 described above corresponds to the first control according to the present invention.
 第1,第2の抵抗パターン17,18のヒータ温度の温度差が第1の閾値未満であると判断された場合(ステップS12:No)には、制御装置3は、上述した実施の形態1で説明したステップS3~S9のループと同様のステップS3D3~S9D3のループを実行する。 When it is determined that the temperature difference between the heater temperatures of the first and second resistance patterns 17 and 18 is less than the first threshold (step S12: No), the control device 3 performs the first embodiment described above. The loop of steps S3D3 to S9D3 similar to the loop of steps S3 to S9 described above is executed.
 〔通電制御方法の具体例〕
 次に、本実施の形態4に係る通電制御方法の具体例について説明する。
 図16は、通電制御方法の具体例を説明する図である。具体的に、図16(a)及び図16(b)は、図8に対応した図であって、第1,第2の抵抗パターン17,18のヒータ温度の温度差が第1の閾値以上である時(ステップS12:Yes)に、上述した実施の形態1で説明した通電制御方法で通電制御を行った場合(ステップS3D3~S9D3のループを実行した場合)での当該第1,第2の抵抗パターン17,18におけるヒータ温度及び通電時の電圧値の変化をそれぞれ示している。図16(c)及び図16(d)は、図8に対応した図であって、第1,第2の抵抗パターン17,18のヒータ温度の温度差が第1の閾値以上である時(ステップS12:Yes)に、本実施の形態4に係る通電制御方法で通電制御を行った場合(ステップS13及びステップS3D2~S9D2のループを実行した場合)での当該第1,第2の抵抗パターン17,18におけるヒータ温度及び通電時の電圧値の変化をそれぞれ示している。なお、図16(a)及び図16(c)は、第1の抵抗パターン17におけるヒータ温度及び通電時の電圧値の変化を示している。また、図16(b)及び図16(d)は、第2の抵抗パターン18におけるヒータ温度及び通電時の電圧値の変化を示している。さらに、図16(a)~図16(d)では、ステップS6D1で測定された非対象発熱部(第1の抵抗パターン17)のヒータ温度をヒータ温度T3とし、対象発熱部(第2の抵抗パターン18)のヒータ温度をヒータ温度T4としている。なお、ヒータ温度T3は、ヒータ温度T4よりも低い温度である。また、ヒータ温度T3,T4の温度差(T4-T3)は、第1の閾値以上である。すなわち、図16(a)及び図16(b)と図16(c)及び図16(d)とは、当該温度差(T4-T3)が同一であり、同一の偏在負荷が生じている場合をそれぞれ示している。
[Specific example of energization control method]
Next, a specific example of the energization control method according to the fourth embodiment will be described.
FIG. 16 is a diagram for explaining a specific example of the energization control method. Specifically, FIGS. 16A and 16B correspond to FIG. 8 and the temperature difference between the heater temperatures of the first and second resistance patterns 17 and 18 is equal to or greater than the first threshold value. (Step S12: Yes), when the energization control is performed by the energization control method described in the first embodiment described above (when the loop of steps S3D3 to S9D3 is executed) The change of the heater temperature and the voltage value at the time of electricity supply in the resistance patterns 17 and 18 of FIG. FIGS. 16C and 16D correspond to FIG. 8 when the temperature difference between the heater temperatures of the first and second resistance patterns 17 and 18 is equal to or greater than the first threshold (see FIG. In step S12: Yes), the first and second resistance patterns in the case where the energization control is performed by the energization control method according to the fourth embodiment (when the loop of step S13 and steps S3D2 to S9D2 is executed) Changes in the heater temperature and the voltage value at the time of energization are shown at 17 and 18, respectively. 16 (a) and 16 (c) show changes of the heater temperature and the voltage value at the time of energization in the first resistance pattern 17. FIG. 16B and 16D show changes in the heater temperature and the voltage value at the time of energization in the second resistance pattern 18. Further, in FIGS. 16A to 16D, the heater temperature of the non-target heating portion (first resistance pattern 17) measured in step S6D1 is taken as the heater temperature T3, and the target heating portion (second resistance) is obtained. The heater temperature of pattern 18) is a heater temperature T4. The heater temperature T3 is lower than the heater temperature T4. The temperature difference (T4-T3) between the heater temperatures T3 and T4 is equal to or greater than the first threshold. That is, when the temperature difference (T4-T3) is the same as in FIGS. 16 (a) and 16 (b) and FIGS. 16 (c) and 16 (d), the same uneven load occurs. Respectively.
 第1,第2の抵抗パターン17,18のヒータ温度の温度差が第1の閾値未満である場合(ステップS12:No)には、ステップS3D3~S9D3のループを繰り返し実行することにより、上述した実施の形態1と同様に、第1,第2の抵抗パターン17,18に一定周期(既定の時間TC毎)で通電される。そして、第1,第2の抵抗パターン17,18のヒータ温度は、目標温度にそれぞれ制御される(例えば、図8参照)。 When the temperature difference between the heater temperatures of the first and second resistance patterns 17 and 18 is less than the first threshold (step S12: No), the loop of steps S3D3 to S9D3 is repeatedly performed to execute the above-described process. As in the first embodiment, the first and second resistor patterns 17 and 18 are energized at a constant cycle (every predetermined time TC). Then, the heater temperatures of the first and second resistance patterns 17 and 18 are respectively controlled to target temperatures (see, for example, FIG. 8).
 一方、第1,第2の抵抗パターン17,18のヒータ温度の温度差が第1の閾値以上である場合(ステップS12:Yes)には、図16(c)及び図16(d)に示すように、ステップS13において、高いヒータ温度T4となった第2の抵抗パターン18の通電時間は、既定の時間TCに設定される。また、低いヒータ温度T3となった第1の抵抗パターン17の通電時間は、既定の時間TCにヒータ温度T3,T4の比率(T4/T3)を乗じた時間(T4/T3)・TCに設定される。そして、ステップS3D2~S9D2のループを繰り返し実行し、通電時間TC,(T4/T3)・TC毎に対象発熱部が切り替えられることにより、第1,第2の抵抗パターン17,18のヒータ温度は、目標温度にそれぞれ制御される。 On the other hand, if the temperature difference between the heater temperatures of the first and second resistance patterns 17 and 18 is equal to or greater than the first threshold (step S12: Yes), the process shown in FIGS. As described above, in step S13, the energization time of the second resistance pattern 18 that has reached the high heater temperature T4 is set to the predetermined time TC. In addition, the energization time of the first resistance pattern 17 that has become the low heater temperature T3 is set to the time (T4 / T3) · TC obtained by multiplying the ratio (T4 / T3) of the heater temperatures T3 and T4 by the predetermined time TC. Be done. Then, the loop of steps S3D2 to S9D2 is repeatedly executed, and the target heat generating portion is switched every energization time period TC, (T4 / T3) · TC, so that the heater temperatures of the first and second resistance patterns 17 and 18 become , Is controlled to the target temperature respectively.
 以上説明した本実施の形態4によれば、上述した実施の形態1と同様の効果の他、以下の効果を奏する。
 ところで、偏在負荷になっている場合には、ステップS6D1で測定された第1,第2の抵抗パターン17,18のヒータ温度は、生体組織LTにて覆われている領域の多い抵抗パターンのヒータ温度の方が当該生体組織LTに熱が多く伝達されるため、他方の抵抗パターンのヒータ温度よりも低くなる。
 本実施の形態4に係る処置システム1では、上述した点に着目し、第1,第2の抵抗パターン17,18のうちヒータ温度の低い抵抗パターンの通電時間をヒータ温度の高い抵抗パターンの通電時間よりも長くする。すなわち、第1,第2の抵抗パターン17,18のうち生体組織LTにて覆われている領域の多い抵抗パターンに対して積極的に電力を投入する。
 このため、偏在負荷になっている時に、上述した実施の形態1で説明した通電制御方法で通電制御を行った場合(図16(a),図16(b))と本実施の形態4に係る通電制御方法で通電制御を行った場合(図16(c),図16(d))とを比較すると、本実施の形態4に係る通電制御方法で通電制御を行った場合の方が、生体組織LTにて覆われている領域の多い抵抗パターンのヒータ温度をより速く目標温度に到達させることができる。例えば、図16(c)に示すように、本実施の形態4に係る通電制御方法で通電制御を行った場合の方が、当該抵抗パターンのヒータ温度は、時間ΔTだけ速く目標温度に到達する。したがって、生体組織LTの処置時間を短縮することができる。なお、図16(c)に示した破線は、図16(a)に示した実線と同一のものである。
According to the fourth embodiment described above, the following effects can be obtained in addition to the effects similar to those of the first embodiment described above.
By the way, when the load is unevenly distributed, the heater temperature of the first and second resistance patterns 17 and 18 measured in step S6D1 is a heater of the resistance pattern having many regions covered with the living tissue LT. The temperature is lower than the heater temperature of the other resistance pattern because more heat is transferred to the living tissue LT.
In the treatment system 1 according to the fourth embodiment, focusing on the above-described points, the conduction time of the resistance pattern having the low heater temperature among the first and second resistance patterns 17 and 18 is subjected to the conduction of the resistance pattern having the high heater temperature. Make it longer than time. That is, power is positively supplied to the resistance pattern having many regions covered with the living tissue LT among the first and second resistance patterns 17 and 18.
Therefore, in the case where the energization control is performed according to the energization control method described in the above-described first embodiment when the load is unevenly distributed (FIGS. 16A and 16B) and the fourth embodiment, Compared with the case where the energization control is performed by the energization control method (FIGS. 16C and 16D), the case where the energization control is performed by the energization control method according to the fourth embodiment is The heater temperature of the resistance pattern having many regions covered with the living tissue LT can be reached faster than the target temperature. For example, as shown in FIG. 16C, the heater temperature of the resistance pattern reaches the target temperature faster by the time ΔT when the energization control is performed by the energization control method according to the fourth embodiment. . Therefore, the treatment time of the living tissue LT can be shortened. The broken line shown in FIG. 16 (c) is the same as the solid line shown in FIG. 16 (a).
 また、本実施の形態4に係る処置システム1では、第1,第2の抵抗パターン17,18のヒータ温度の温度差が第1の閾値以上である場合(ステップS12:Yes)に、第1の制御(ステップS13,S3D2~S9D2)を実行する。すなわち、偏在負荷が顕著な場合(第1,第2の抵抗パターン17,18のヒータ温度の温度差が第1の閾値以上である場合)に限り、第1の制御を実行する。
 このため、偏在負荷が顕著でない場合には、ステップS13を実行する必要がなく、当該ステップS13を実行しない分、制御装置3の処理負荷を軽減することができる。
Further, in the treatment system 1 according to the fourth embodiment, when the temperature difference between the heater temperatures of the first and second resistance patterns 17 and 18 is equal to or greater than the first threshold (step S12: Yes), Control (steps S13, S3D2 to S9D2) are executed. That is, the first control is performed only when the uneven distribution load is significant (when the temperature difference between the heater temperatures of the first and second resistor patterns 17 and 18 is equal to or greater than the first threshold).
For this reason, when the uneven distribution load is not remarkable, there is no need to execute step S13, and the processing load of the control device 3 can be reduced by not executing the step S13.
(実施の形態5)
 次に、本実施の形態5について説明する。
 以下の説明では、上述した実施の形態1と同様の構成及びステップには同一符号を付し、その詳細な説明は省略または簡略化する。
 図17は、本実施の形態5に係る処置システム1Eを示すブロック図である。
 上述した実施の形態1に係る処置システム1では、第1,第2のスイッチ81,82及びスイッチ駆動部83は、処置具2(例えば、ハンドル5の内部)に設けられていた。
 これに対して本実施の形態5に係る処置システム1Eでは、図17に示すように、処置具2から第1,第2のスイッチ81,82及びスイッチ駆動部83を省略した処置具2Eを採用している。また、処置システム1Eでは、制御装置3に着脱自在とするアダプタ21が追加されている。そして、処置具2E及び制御装置3は、アダプタ21及び電気ケーブルCEを介して互いに接続することで、DAQ86,制御部32で通信可能、及び電源31から第1,第2の抵抗パターン17,18へと電力供給可能な状態となる。
 ここで、アダプタ21の内部には、具体的な図示は省略したが、第1,第2のスイッチ81,82及びスイッチ駆動部83が設けられている。そして、処置具2E及び制御装置3が互いに接続されることにより、第1,第2のスイッチ81,82は、第1,第2の供給経路P1,P2にそれぞれ配設されることとなる。また、本実施の形態5では、スイッチ駆動部83は、制御部32により直接、制御されることとなる。
Fifth Embodiment
Next, the fifth embodiment will be described.
In the following description, the same components and steps as those in the first embodiment described above are denoted by the same reference numerals, and the detailed description thereof is omitted or simplified.
FIG. 17 is a block diagram showing a treatment system 1E according to the fifth embodiment.
In the treatment system 1 according to the first embodiment described above, the first and second switches 81 and 82 and the switch drive unit 83 are provided in the treatment tool 2 (for example, inside the handle 5).
On the other hand, in a treatment system 1E according to the fifth embodiment, as shown in FIG. 17, a treatment tool 2E in which the first and second switches 81 and 82 and the switch drive unit 83 are omitted from the treatment tool 2 is adopted. doing. Further, in the treatment system 1E, an adapter 21 which can be attached to and detached from the control device 3 is added. Then, the treatment tool 2E and the control device 3 are mutually connected via the adapter 21 and the electric cable CE, so that the DAQ 86 and the control unit 32 can communicate and the first and second resistance patterns 17 and 18 from the power supply 31. It becomes possible to supply power.
Here, first and second switches 81 and 82 and a switch drive unit 83 are provided inside the adapter 21 though the specific illustration is omitted. Then, by connecting the treatment tool 2E and the control device 3 to each other, the first and second switches 81 and 82 are respectively disposed in the first and second supply paths P1 and P2. Further, in the fifth embodiment, the switch drive unit 83 is directly controlled by the control unit 32.
 以上説明した本実施の形態5によれば、上述した実施の形態1と同様の効果の他、以下の効果を奏する。
 本実施の形態5に係る処置システム1Eでは、処置具2Eには、第1,第2のスイッチ81,82及びスイッチ駆動部83が設けられていない。そして、第1,第2のスイッチ81,82及びスイッチ駆動部83は、アダプタ21の内部に設けられている。
 このため、上述した実施の形態1で説明した処置具2に対して、処置具2Eの構成の簡素化、小型化、及び低コスト化を図ることができる。また、処置具2Eを使用後に廃棄されるディスポーザブルな部分とした場合には、第1,第2のスイッチ81,82及びスイッチ駆動部83は、アダプタ21に設けられているため、再利用することができる。
According to the fifth embodiment described above, the following effects can be obtained in addition to the effects similar to those of the first embodiment described above.
In the treatment system 1E according to the fifth embodiment, the treatment tool 2E is not provided with the first and second switches 81 and 82 and the switch drive unit 83. The first and second switches 81 and 82 and the switch driver 83 are provided inside the adapter 21.
Therefore, with respect to the treatment tool 2 described in the first embodiment described above, simplification, downsizing, and cost reduction of the configuration of the treatment tool 2E can be achieved. In addition, in the case where the treatment tool 2E is a disposable part to be discarded after use, the first and second switches 81 and 82 and the switch drive unit 83 are provided in the adapter 21 and therefore should be reused. Can.
(その他の実施形態)
 ここまで、本発明を実施するための形態を説明してきたが、本発明は上述した実施の形態1~5及び実施の形態1の変形例1,2によってのみ限定されるべきものではない。
 上述した実施の形態1~5及び実施の形態1の変形例2において、第2の把持部材10を省略しても構わない。
 上述した実施の形態1~5及び実施の形態1の変形例1,2において、第2の把持部材10にも発熱構造体12を設け、第1,第2の把持部材9,10の双方から生体組織LTに熱エネルギを付与する構成としても構わない。
 上述した実施の形態1~5及び実施の形態1の変形例2において、生体組織LTに対して熱エネルギの他、高周波エネルギや超音波エネルギをさらに付与する構成としても構わない。
 上述した実施の形態1~5及び実施の形態1の変形例1,2では、伝熱板13や対向板20における生体組織LTに接触する把持面は、平坦面で構成されていたが、これに限らない。例えば、当該把持面の断面形状を凸形状、凹形状、あるいは山形等で構成しても構わない。
(Other embodiments)
Although the embodiments for carrying out the present invention have been described above, the present invention is not to be limited only by the above-described first to fifth embodiments and the first and second modifications of the first embodiment.
In the first to fifth embodiments and the second modification of the first embodiment described above, the second holding member 10 may be omitted.
In the first to fifth embodiments and the first and second modifications of the first embodiment, the heat generating structure 12 is also provided to the second holding member 10, and from both of the first and second holding members 9 and 10. It is also possible to apply thermal energy to the living tissue LT.
In the first to fifth embodiments and the second modification of the first embodiment, in addition to the thermal energy, high-frequency energy or ultrasonic energy may be further applied to the living tissue LT.
In the first to fifth embodiments and the first and second modifications of the first embodiment, the gripping surface of the heat transfer plate 13 and the opposing plate 20 in contact with the living tissue LT is formed of a flat surface. Not limited to. For example, the cross-sectional shape of the gripping surface may be formed in a convex shape, a concave shape, a chevron shape or the like.
 上述した実施の形態1~5及び実施の形態1の変形例1,2では、指標値測定部322にて測定されたヒータ温度に基づいて第1,第2の抵抗パターン17,18の通電制御を実行していたが、これに限らない。例えば、指標値測定部322にて測定された第1,第2の抵抗パターン17,18の抵抗値に基づいて当該第1,第2の抵抗パターン17,18の通電制御を実行しても構わない。
 上述した実施の形態1~5及び実施の形態1の変形例1,2では、本発明に係る発熱部(第1,第2のパターン本体172,182)を2つのみ設けていたが、これに限らず、把持部7,7Aの長手方向の異なる位置に3つ以上、設けても構わない。また、本発明に係るスイッチや容量性素子の数も2つ(第1,第2のスイッチ81,82、第1,第2のコンデンサ87,88)に限らず、本発明に係る発熱部と同一の数だけ設けてもよく、あるいは、異なる数(例えば、1つのみ)だけ設けても構わない。また、本発明に係るスイッチとしては、高速なメカニカルスイッチ等を用いても構わない。さらに、本発明に係る複数のスイッチを1つのマトリクススイッチモジュールで構成しても構わない。
 上述した実施の形態1の変形例1,2、実施の形態2、及び実施の形態4,5において、第1,第2の抵抗パターン17,18の通電制御としてLEVEL方式の他、上述した実施の形態3で説明したPWM方式を採用しても構わない。
 上述した実施の形態2において、本発明に係る容量性素子としては、第1,第2のスイッチ81,82の容量成分よりも大きい容量成分を有していれば、上述した実施の形態2で説明したコンデンサ87,88に限らず、その他の素子を採用しても構わない。
 上述した実施の形態1~5及び実施の形態1の変形例1,2では、制御装置3がメモリ33を備える構成としていたが、これに限らない。例えば、ヒータ駆動部8にROM(Read Only Memory)を設け、メモリ33の一部機能(例えば、ステップ2等)を当該ROMに持たせても構わない。
In the first to fifth embodiments and the first and second modifications of the first embodiment, the energization control of the first and second resistance patterns 17 and 18 based on the heater temperature measured by the index value measurement unit 322 It was running, but it is not limited to this. For example, the energization control of the first and second resistance patterns 17 and 18 may be executed based on the resistance value of the first and second resistance patterns 17 and 18 measured by the index value measurement unit 322. Absent.
In the first to fifth embodiments and the first and second modifications of the first embodiment, only two heat generating parts (first and second pattern bodies 172 and 182) according to the present invention are provided. Not limited to, three or more may be provided at different positions in the longitudinal direction of the gripping portions 7 and 7A. Further, the number of switches and capacitive elements according to the present invention is not limited to two (first and second switches 81 and 82, and first and second capacitors 87 and 88), and a heat generating portion according to the present invention The same number may be provided, or different numbers (for example, only one) may be provided. In addition, as a switch according to the present invention, a high-speed mechanical switch or the like may be used. Furthermore, the plurality of switches according to the present invention may be configured by one matrix switch module.
In the first and second embodiments and the second and fourth embodiments described above in connection with the first and second resistance patterns 17 and 18 in the first embodiment, in addition to the LEVEL system, the above-described embodiment has been described. The PWM method described in mode 3 may be adopted.
In Embodiment 2 described above, as long as the capacitive element according to the present invention has a capacitance component larger than that of the first and second switches 81 and 82, Embodiment 2 described above Not only the capacitors 87 and 88 described above, other elements may be adopted.
In the first to fifth embodiments and the first and second modifications of the first embodiment, the control device 3 includes the memory 33. However, the present invention is not limited to this. For example, the heater driving unit 8 may be provided with a ROM (Read Only Memory), and a part of the function of the memory 33 (for example, step 2 etc.) may be provided in the ROM.
 1,1B,1E 処置システム
 2,2E 処置具
 3 制御装置
 4 フットスイッチ
 5 ハンドル
 6 シャフト
 7,7A 把持部
 8 ヒータ駆動部
 9 第1の把持部材
 10 第2の把持部材
 11 第1のカバー部材
 12 発熱構造体
 13 伝熱板
 14 ヒータ
 15 接着部材
 16 基板
 17 第1の抵抗パターン
 18 第2の抵抗パターン
 19 第2のカバー部材
 20 対向板
 21 アダプタ
 31 電源
 32 制御部
 33 メモリ
 51 操作ノブ
 81 第1のスイッチ
 82 第2のスイッチ
 83 スイッチ駆動部
 84 第1の検出抵抗
 85 第2の検出抵抗
 86 DAQ
 87 第1のコンデンサ
 88 第2のコンデンサ
 111 凹部
 161 面
 171 第1の接続部
 172 第1のパターン本体
 181 第2の接続部
 182 第2のパターン本体
 191 凹部
 321 スイッチ制御部
 322 指標値測定部
 323 通電制御部
 C,CE 電気ケーブル
 C1 第1のリード線
 C2 第2のリード線
 LT 生体組織
 P1 第1の供給経路
 P2 第2の供給経路
 R1 矢印
 T1~T4 ヒータ温度
 TC,ΔT 時間
 V0 初期電圧値
 V1,V2,VL1,VL2,Vmax 電圧値
1, 1 B, 1 E treatment system 2, 2 E treatment tool 3 control device 4 foot switch 5 handle 6 shaft 7, 7 A gripping portion 8 heater driving portion 9 first gripping member 10 second gripping member 11 first cover member 12 Heat generation structure 13 Heat transfer plate 14 Heater 15 Bonding member 16 Substrate 17 1st resistance pattern 18 2nd resistance pattern 19 2nd cover member 20 Counterplate 21 Adapter 31 Power supply 32 Control part 33 Memory 51 Operation knob 81 1st Switches 82 second switch 83 switch driver 84 first detection resistor 85 second detection resistor 86 DAQ
87 first capacitor 88 second capacitor 111 recessed portion 161 surface 171 first connecting portion 172 first pattern main body 181 second connecting portion 182 second pattern main body 191 recessed portion 321 switch control portion 322 index value measuring portion 323 Energizing control unit C, CE Electric cable C1 1st lead C2 2nd lead LT living tissue P1 1st supply path P2 2nd supply path R1 arrow T1 to T4 heater temperature TC, ΔT time V0 initial voltage value V1, V2, VL1, VL2, Vmax voltage value

Claims (7)

  1.  生体組織に接触して当該生体組織に熱エネルギを付与する伝熱板と、
     前記伝熱板における先端と基端とを結ぶ長手方向の異なる位置にそれぞれ設けられ、通電によりそれぞれ発熱して前記伝熱板を加熱する複数の発熱部と、
     前記複数の発熱部に交流電流を供給する電源と、
     前記複数の発熱部に対してそれぞれ直列に接続され、当該複数の発熱部のうち前記電源からの交流電流の供給対象となる一つの対象発熱部を選択する複数のスイッチと、
     前記複数のスイッチの動作を制御し、前記複数の発熱部の中で前記一つの対象発熱部を順次、切り替えるスイッチ制御部と、
     前記複数の発熱部の温度の指標となる指標値をそれぞれ測定する指標値測定部と、
     前記指標値に基づいて、前記スイッチ制御部による前記対象発熱部の切替タイミングと前記電源から前記対象発熱部に供給される電力との少なくとも一方を制御する通電制御部とを備え、
     前記指標値測定部は、
     前記複数の発熱部のうち前記対象発熱部として選択されていない非対象発熱部の前記指標値を前記複数のスイッチのうち当該非対象発熱部に対して直列に接続されたスイッチの容量成分に応じて当該スイッチに流れる漏れ電流を用いて測定する処置システム。
    A heat transfer plate which applies heat energy to a living tissue in contact with the living tissue;
    A plurality of heat generating portions respectively provided at different positions in the longitudinal direction connecting the front end and the base end of the heat transfer plate, and generating heat by energization to heat the heat transfer plate;
    A power supply for supplying an alternating current to the plurality of heat generating parts;
    A plurality of switches connected in series to the plurality of heat generating units and selecting one target heat generating unit to be supplied with alternating current from the power supply among the plurality of heat generating units;
    A switch control unit that controls the operation of the plurality of switches and sequentially switches the one target heating unit among the plurality of heating units;
    An index value measurement unit that measures an index value that is an index of the temperatures of the plurality of heat generating portions,
    And a conduction control unit that controls at least one of switching timing of the target heating unit by the switch control unit and power supplied from the power source to the target heating unit based on the index value.
    The index value measurement unit
    The index value of the non-target heat generating part which is not selected as the target heat generating part among the plurality of heat generating parts according to the capacitance component of the switch connected in series with the non target heat generating part among the plurality of switches The treatment system which measures using the leakage current which flows into the said switch.
  2.  前記指標値測定部は、
     前記複数の発熱部のうち次に前記対象発熱部として選択される前記非対象発熱部の前記指標値を前記複数のスイッチのうち当該非対象発熱部に対して直列に接続されたスイッチの容量成分に応じて当該スイッチに流れる漏れ電流を用いて測定する請求項1に記載の処置システム。
    The index value measurement unit
    The index value of the non-target heating portion selected as the target heating portion next among the plurality of heating portions is a capacitance component of a switch connected in series to the non-target heating portion among the plurality of switches The treatment system according to claim 1, wherein the leakage current flowing through the switch is measured in accordance with.
  3.  前記複数の発熱部に対してそれぞれ直列に接続されるとともに前記複数のスイッチに対してそれぞれ並列に接続され、前記スイッチの容量成分よりも大きい容量成分をそれぞれ有する複数の容量性素子をさらに備え、
     前記指標値測定部は、
     前記非対象発熱部の前記指標値を当該非対象発熱部に対して直列に接続された前記スイッチ及び前記容量性素子の各容量成分に応じて当該スイッチ及び当該容量性素子に流れる漏れ電流を用いて測定する請求項1または2に記載の処置システム。
    And a plurality of capacitive elements respectively connected in series to the plurality of heat generating portions and in parallel to the plurality of switches, and each having a capacitive component larger than a capacitive component of the switches,
    The index value measurement unit
    The leakage current flowing through the switch and the capacitive element is used according to each capacitive component of the switch and the capacitive element connected in series with the index value of the asymmetric target heat generating part The treatment system according to claim 1 or 2 which measures.
  4.  前記通電制御部は、
     前記切替タイミングを一定の周期とし、前記指標値に基づいて、前記電源から前記対象発熱部に供給される電力のピーク値を制御する請求項1~3のいずれか一つに記載の処置システム。
    The energization control unit is
    The treatment system according to any one of claims 1 to 3, wherein the switching timing is a fixed cycle, and the peak value of the power supplied from the power source to the target heating unit is controlled based on the index value.
  5.  前記通電制御部は、
     前記電源から前記対象発熱部に供給される電力のピーク値を一定とし、前記指標値に基づいて、前記対象発熱部に継続して通電する通電時間を制御する請求項1~4のいずれか一つに記載の処置システム。
    The energization control unit is
    The peak value of the electric power supplied to the said object heat generating part from the said power supply is made constant, and the energizing time continuously supplied with electricity to the said object heat generating part based on the said index value is controlled. Treatment system described in
  6.  前記指標値測定部は、
     前記複数の発熱部の温度をそれぞれ測定し、
     前記通電制御部は、
     前記複数の発熱部のうち温度が最も低い発熱部が前記対象発熱部として選択された場合に、当該対象発熱部に供給される電力量が他の発熱部よりも高くなるように、前記切替タイミングと前記電源から当該対象発熱部に供給される電力との少なくとも一方を制御する第1の制御を実行する請求項1~5のいずれか一つに記載の処置システム。
    The index value measurement unit
    Measuring the temperatures of the plurality of heat generating parts respectively;
    The energization control unit is
    The switching timing is set such that, when the heat generating unit having the lowest temperature among the plurality of heat generating units is selected as the target heat generating unit, the amount of power supplied to the target heat generating unit becomes higher than that of the other heat generating units. The treatment system according to any one of claims 1 to 5, wherein a first control is performed to control at least one of the electric power supplied from the power supply to the target heat generating portion.
  7.  前記通電制御部は、
     前記複数の発熱部のうち最も低い温度と最も高い温度との温度差が第1の閾値以上である場合に、前記第1の制御を実行する請求項6に記載の処置システム。
    The energization control unit is
    The treatment system according to claim 6, wherein the first control is executed when a temperature difference between the lowest temperature and the highest temperature among the plurality of heat generating parts is equal to or more than a first threshold.
PCT/JP2017/044595 2017-12-12 2017-12-12 Treatment system WO2019116449A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/044595 WO2019116449A1 (en) 2017-12-12 2017-12-12 Treatment system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/044595 WO2019116449A1 (en) 2017-12-12 2017-12-12 Treatment system

Publications (1)

Publication Number Publication Date
WO2019116449A1 true WO2019116449A1 (en) 2019-06-20

Family

ID=66820107

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/044595 WO2019116449A1 (en) 2017-12-12 2017-12-12 Treatment system

Country Status (1)

Country Link
WO (1) WO2019116449A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004160191A (en) * 2002-10-25 2004-06-10 Olympus Corp Pyrotherapeutic equipment and pyrogenic operation control method therefor
JP2009172375A (en) * 2008-01-21 2009-08-06 Biosense Webster Inc Detection of current leakage through opto-switch
JP2012024576A (en) * 2010-07-23 2012-02-09 Conmed Corp Tissue fusion system, and method for performing self test
JP2012083121A (en) * 2010-10-07 2012-04-26 Denso Corp Particulate substance detection sensor
WO2017002449A1 (en) * 2015-07-01 2017-01-05 オリンパス株式会社 Thermotherapeutic device and control device thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004160191A (en) * 2002-10-25 2004-06-10 Olympus Corp Pyrotherapeutic equipment and pyrogenic operation control method therefor
JP2009172375A (en) * 2008-01-21 2009-08-06 Biosense Webster Inc Detection of current leakage through opto-switch
JP2012024576A (en) * 2010-07-23 2012-02-09 Conmed Corp Tissue fusion system, and method for performing self test
JP2012083121A (en) * 2010-10-07 2012-04-26 Denso Corp Particulate substance detection sensor
WO2017002449A1 (en) * 2015-07-01 2017-01-05 オリンパス株式会社 Thermotherapeutic device and control device thereof

Similar Documents

Publication Publication Date Title
US9937001B2 (en) Therapeutic treatment apparatus
US9833278B2 (en) Medical treatment apparatus and method of controlling the same
US9119619B2 (en) Treatment system and actuation method for treatment system
EP2769694A1 (en) Treatment system and method for controlling treatment system
US9675402B2 (en) Treatment device for medical treatment
JP5820649B2 (en) Therapeutic treatment device
WO2013088891A1 (en) Treatment system, and method for controlling treatment system
WO2013021806A1 (en) Therapeutic treatment device
WO2019116449A1 (en) Treatment system
JP2013034614A (en) Therapeutical treatment apparatus
JP2012161566A (en) Therapeutical treatment device and method for controlling the same
JP2015208415A (en) Therapeutic treatment device
US20190167338A1 (en) Treatment tool and treatment system
WO2018198208A1 (en) Treatment system
JP5959789B1 (en) Control device for energy treatment device and energy treatment system
US20150335375A1 (en) Treatment apparatus and method for controlling the same
WO2017037907A1 (en) Medical treatment apparatus, method for operating medical treatment apparatus, and treatment method
WO2019224924A1 (en) Treatment system, control method, and control program
WO2018198374A1 (en) Resistance-temperature characteristic calculation method, treatment system, and resistance-temperature characteristic calculation program
WO2017094193A1 (en) Thermal energy treatment device, and method for operating thermal energy treatment device
WO2018146730A1 (en) Energy applying structure and treatment tool
WO2017130384A1 (en) Treatment instrument and treatment system
WO2014148199A1 (en) Therapeutic treatment device
JP2005230189A (en) Treatment apparatus for surgery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17934614

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17934614

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP