WO2018146730A1 - Energy applying structure and treatment tool - Google Patents

Energy applying structure and treatment tool Download PDF

Info

Publication number
WO2018146730A1
WO2018146730A1 PCT/JP2017/004447 JP2017004447W WO2018146730A1 WO 2018146730 A1 WO2018146730 A1 WO 2018146730A1 JP 2017004447 W JP2017004447 W JP 2017004447W WO 2018146730 A1 WO2018146730 A1 WO 2018146730A1
Authority
WO
WIPO (PCT)
Prior art keywords
main surface
energy
electrode
electrically connected
hole
Prior art date
Application number
PCT/JP2017/004447
Other languages
French (fr)
Japanese (ja)
Inventor
松木 薫
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to PCT/JP2017/004447 priority Critical patent/WO2018146730A1/en
Publication of WO2018146730A1 publication Critical patent/WO2018146730A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/08Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by means of electrically-heated probes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor

Definitions

  • the present invention relates to an energy applying structure and a treatment tool.
  • an energy applying structure for applying energy to a living tissue is provided, and a treatment tool for treating (joining (or anastomizing), severing, etc.) the living tissue by applying the energy is known (for example, patent document) 1).
  • the energy imparting structure (heat generating element) described in Patent Document 1 includes an elongated treatment member (substrate) having an insulating film formed on the surface, and a heat generating pattern formed on the insulating film and generating heat by energization ( And a pair of electrode pads formed on the insulating film and electrically connected to both ends of the heat generation pattern. Further, a pair of lead wires (wires) are respectively joined to the pair of electrode pads. Then, in the energy applying structure, the treatment member is heated by applying a voltage (energization) to the pair of electrode pads via the pair of lead wires and heating the heat generation pattern, and the living tissue in contact with the treatment member To treat.
  • the electrode pad is a portion to which the lead wire is bonded. Therefore, as the electrode pad, it is necessary to secure a size (area) to which the lead wire can be joined. That is, in the case of miniaturizing (shortening) the energy application structure described in Patent Document 1, it is desirable to miniaturize the treatment member and the heat generation pattern while securing the size of the electrode pad so that the lead wire can be joined. It becomes.
  • the electrode pad has a smaller electric resistance value than the heat generation pattern.
  • the lead wire is joined to the electrode pad, heat easily escapes through the lead wire. For this reason, on the treatment member, the area provided with the electrode pad is a relatively low temperature non-heating area.
  • the area provided with the heat generation pattern is a heat generation area having a relatively high temperature.
  • the treatment member concerned is heated uniformly. There is a problem that it is difficult (to achieve high heat uniformity).
  • This invention is made in view of the above, Comprising: It aims at providing the energy provision structure and treatment implement which can implement
  • an energy applying structure comprises: a first main surface which applies heat energy to a living tissue in contact with the living tissue; A treatment member having a second main surface opposed to the main surface, a heat generation pattern formed on the second main surface and generating heat by energization, a third main surface joined to the heat generation pattern, and the second main surface An insulating layer having a fourth main surface opposed to the third main surface, a first electrode formed on the fourth main surface and supplying power to the heat generation pattern, the first electrode, and the first electrode And a first current-carrying member electrically connecting the heat generation pattern.
  • a treatment tool according to the present invention includes the above-described energy application structure.
  • FIG. 1 is a view schematically showing a treatment system according to the first embodiment.
  • FIG. 2 is an enlarged view of the distal end portion of the treatment tool.
  • FIG. 3 is a diagram showing an energy application structure.
  • FIG. 4 is a view showing an energy application structure.
  • FIG. 5 is a diagram showing an energy application structure.
  • FIG. 6 is a view showing an energy application structure according to a modification of the first embodiment.
  • FIG. 7 is a view showing the energy application structure according to the second embodiment.
  • FIG. 8 is a view showing an energy application structure according to the second embodiment.
  • FIG. 9 is a view showing an energy application structure according to the second embodiment.
  • FIG. 10 is a view showing an energy application structure according to the third embodiment.
  • FIG. 11 is a view showing an energy application structure according to the fourth embodiment.
  • FIG. 12 is a view showing an energy application structure according to the fourth embodiment.
  • FIG. 1 is a view schematically showing a treatment system 1 according to the first embodiment.
  • the treatment system 1 treats (joins (or anastomoses) and detaches, etc.) a living tissue by applying thermal energy to the living tissue to be treated.
  • the treatment system 1 includes a treatment tool 2, a control device 3 and a foot switch 4 as shown in FIG.
  • the treatment tool 2 is, for example, a linear surgical treatment tool for treating a living tissue through the abdominal wall.
  • the treatment tool 2 includes a handle 5, a shaft 6, and a grip 7.
  • the handle 5 is a part held by the operator by hand. Further, as shown in FIG. 1, the handle 5 is provided with an operation knob 51.
  • the shaft 6 has a substantially cylindrical shape, and one end (the right end in FIG. 1) is connected to the handle 5. Further, a grip 7 is attached to the other end (left end in FIG. 1) of the shaft 6.
  • An opening / closing mechanism (not shown) for opening and closing the first and second jaws 8 and 8 '(FIG.
  • an electric cable C (FIG. 1) connected to the control device 3 passes from the one end side (right end portion side in FIG. 1) to the other end side (in FIG. 1) It is disposed up to the left end side).
  • FIG. 2 is an enlarged view of the distal end portion of the treatment tool 2.
  • the gripping portion 7 is a portion that grips a living tissue to treat the living tissue.
  • the grip 7 includes first and second jaws 8 and 8 ′.
  • the first and second jaws 8 and 8 ' are pivotally supported by the other end (left end in FIGS. 1 and 2) of the shaft 6 so as to be able to open and close in the direction of arrow R1 (FIG. 2) In accordance with the operation of, it is possible to grasp the living tissue.
  • the energy imparting structures 10 and 10 ' are respectively provided on the first and second jaws 8 and 8'.
  • energy provision structure 10, 10 ' has the same structure, and only the point from which the attitude
  • FIGS. 3 to 5 show the energy transfer structure 10.
  • FIG. 3 is a perspective view of the energy application structure 10 viewed from the lower side in FIG.
  • FIG. 4 is an exploded perspective view of FIG.
  • FIG. 5 is a cross-sectional view of the energy application structure 10 taken along a vertical plane extending in the longitudinal direction of the energy application structure 10 through the first through holes 131.
  • the front end side described below is the front end side of the holding part 7, Comprising: The left side is meant in FIG. 3 thru
  • the energy applying structure 10 generates thermal energy under the control of the controller 3.
  • the energy application structure 10 includes a treatment member 11, a heat generation pattern 12, an insulating layer 13, and a pair of first electrodes 14.
  • the treatment member 11 includes a conductive member 15 and an insulating member 16 as shown in FIGS. 3 to 5.
  • the conductive member 15 is made of, for example, a conductive material such as copper.
  • the conductive member 15 has an elongated shape (from the tip of the gripping portion 7) having a recess 151 on one plate surface (plate surface on the upper side in FIGS. 3 and 4). It is comprised by the plate body of the elongate form (It extends in the left-right direction in FIG. 1, FIG. 2) which goes to a proximal end.
  • the recess 151 is located at the center in the width direction of the conductive member 15 and extends along the longitudinal direction of the conductive member 15.
  • the conductive member 15 supports the respective members 12 to 14 and 16 in the recess 151, and with respect to the upper surface of the first jaw 8 disposed on the lower side in FIGS. 1 and 2,
  • the other plate surface (the lower plate surface in FIGS. 3 and 4) in which the concave portion 151 is not formed is attached in a posture in which it faces upward.
  • the other plate surface corresponds to the first main surface PS1 (FIGS. 2 to 5) according to the present invention.
  • the bottom surface of the recess 151 corresponds to the fifth main surface PS5 (FIGS. 3 to 5) according to the present invention.
  • the first main surface PS1 contacts the living tissue, and heat from the heat generation pattern 12 is transmitted to the living body. Transfer to tissue (apply thermal energy to living tissue).
  • the insulating member 16 is made of, for example, an insulating material such as alumina or aluminum nitride having a high thermal conductivity, and transfers the heat from the heat generation pattern 12 to the conductive member 15. Further, as shown in FIG. 3 or 4, the insulating member 16 is formed of a long plate (a long plate extending in the longitudinal direction of the grip portion 7). The insulating member 16 is bonded to the fifth main surface PS5 via the conductive bonding layer 17 provided on the entire surface of one plate surface (the lower plate surface in FIGS. 3 to 5). .
  • one plate surface corresponds to the sixth main surface PS6 (FIGS. 3 to 5) according to the present invention.
  • the other plate surface corresponds to the second main surface PS2 (FIGS. 3 to 5) according to the present invention.
  • the heat generation pattern 12 is obtained by processing stainless steel (SUS 304), which is a conductive material, and includes a pair of connection portions 121 and a resistance pattern 122 as shown in FIG. 3 or 4. Then, the heat generation pattern 12 is bonded to the second main surface PS2 by thermocompression bonding.
  • the material of the heat generation pattern 12 is not limited to stainless steel (SUS304), and may be another stainless steel material (for example, No. 400 series), or a conductive material such as platinum or tungsten may be adopted. Further, the heat generation pattern 12 is not limited to the structure bonded to the second main surface PS2 by thermocompression bonding, and the structure formed on the second main surface PS2 by vapor deposition or the like may be adopted.
  • the pair of connection parts 121 are provided on the base end side of the second main surface PS2 so as to face each other along the width direction of the second main surface PS2. There is.
  • One end of the resistance pattern 122 is connected (conductive) to one of the connection portions 121, and extends from the one end along a U-shape following the outer edge shape of the second main surface PS2 while meandering in a wave shape.
  • the other end is connected (conductive) to the other connection portion 121.
  • the resistance pattern 122 generates heat when a voltage is applied (energized) to the pair of connection portions 121.
  • the insulating layer 13 is made of, for example, an insulating material such as polyimide having a low thermal conductivity. Further, as shown in FIG. 3 or FIG. 4, the insulating layer 13 has a long shape (long shape extending in the longitudinal direction of the grip portion 7) having the same width dimension and length dimension as the insulating member 16. It is composed of a plate.
  • the insulating layer 13 has one plate surface (the lower plate surface in FIGS. 3 to 5) bonded to the second main surface PS2.
  • one plate surface corresponds to the third main surface PS3 (FIGS. 3 to 5) according to the present invention.
  • the other plate surface the upper plate surface in FIGS.
  • the thermal resistance of the insulating layer 13 is larger than the thermal resistance of the insulating member 16.
  • the insulating layer 13 may be made of the same material as the insulating member 16. In this case, if the thickness dimension of the insulating layer 13 is made larger than the thickness dimension of the insulating member 16, the thermal resistance of the insulating layer 13 can be made larger than the thermal resistance of the insulating member 16.
  • a pair of first through holes 131 (FIG. 3 to FIG. 3) which respectively penetrate between the third main surface PS3 and the fourth main surface PS4 at positions facing the pair of connection portions 121. Figure 5) is formed.
  • the pair of first through holes 131 corresponds to a first current-carrying member according to the present invention, and is electrically connected to the pair of connection portions 121, respectively.
  • the pair of first electrodes 14 are each made of a conductive material such as copper, aluminum, carbon or the like, and as shown in FIG. 3 or FIG. It is a pad electrode of the elongate form (long form extended in the longitudinal direction of the holding part 7) which has the length dimension of (1).
  • the pair of first electrodes 14 is deposited on the fourth main surface PS4 by evaporation or the like so as to respectively cover the pair of first through holes 131 with a predetermined interval in the width direction of the insulating layer 13. It is formed. Further, the pair of first electrodes 14 is electrically connected to the pair of first through holes 131, respectively.
  • the control device 3 applies a voltage to the pair of first electrodes 14 via the two heat generating lead wires C1 to set the pair of first electrodes 14 to the pair of first through holes 131 to the pair.
  • the resistor pattern 122 is energized via the conduction path of the connection portion 121 to the resistor pattern 122.
  • the foot switch 4 is a portion operated by the operator with a foot. And according to the said operation to the foot switch 4, ON and OFF of electricity supply from the control apparatus 3 to the treatment tool 2 (resistance pattern 122) are switched. In addition, as a means to switch the said on and off, you may employ
  • the control device 3 is configured to include a CPU (Central Processing Unit) or the like, and centrally controls the operation of the treatment tool 2 in accordance with a predetermined control program. More specifically, the control device 3 heats the treatment member 11 by applying a voltage to the resistance pattern 122 via the electric cable C in accordance with the operation (operation of power on) of the foot switch 4 by the operator. Do.
  • the heat generation pattern 12 is formed on the second main surface PS2 of the treatment member 11.
  • the pair of first electrodes 14 is formed on the fourth main surface PS4 of the insulating layer 13.
  • the heat generation pattern 12 and the pair of first electrodes 14 are electrically connected by the pair of first through holes 131. That is, the heat generating pattern 12 and the pair of first electrodes 14 are respectively formed in different layers. For this reason, as the pair of first electrodes 14, it is possible to secure a sufficient area for joining the pair of heating lead wires C1 on the fourth main surface PS4.
  • the heat generation pattern 12 is formed over the entire surface of the second main surface PS2 because the region disposed by the pair of first electrodes 14 is not limited in the second main surface PS2. can do. That is, even if the energy application structure 10 (10 ') is downsized (shortened), the entire second main surface PS2 can be uniformly heated. Therefore, according to the energy application structure 10 (10 ') according to the first embodiment, there is an effect that high heat uniformity performance can be realized even when the size is reduced.
  • the thermal resistance of the insulating layer 13 is larger than the thermal resistance of the insulating member 16. Therefore, the heat generated by the heat generation pattern 12 can be transmitted to the insulating member 16 side more. As a result, heat is less likely to escape to the pair of heating lead wires C1 via the pair of electrodes 14, and a higher heat uniformity can be realized.
  • FIG. 6 is a view showing an energy applying structure 10A (10A ′) according to a modification of the first embodiment.
  • the energy application structure 10A according to the present modification corresponds to the energy application structure 10 described in the first embodiment described above, and is provided to the first jaw 8.
  • the energy applying structure 10A ′ according to the present modification corresponds to the energy applying structure 10 ′ described in the first embodiment described above, and is provided in the second jaw 8 ′.
  • energy provision structure 10A, 10A ' has the same structure, and only the point from which the attitude
  • one plate surface (the plate surface on the lower side in FIG. 6) is a surface with which biological tissue comes in contact, and corresponds to the first main surface PS1 according to the present invention . That is, the insulating member 16 according to the present modification corresponds to the treatment member according to the present invention.
  • the energy applying structure according to the second embodiment applies high-frequency energy to the living tissue in addition to the thermal energy to the energy applying structure 10 (10 ') described in the first embodiment described above. Treatment of living tissue by the application of energy.
  • FIG. 7 to FIG. 9 are views showing the energy transfer structure 10B (10B ') according to the second embodiment.
  • FIG. 7 corresponds to FIG.
  • FIG. 8 is a diagram corresponding to FIG.
  • FIG. 9 is a cross-sectional view of the energy application structure 10B (10B ') cut through a vertical plane extending in the longitudinal direction of the energy application structure 10B (10B') through the second through holes 132.
  • the energy application structure 10B according to the second embodiment corresponds to the energy application structure 10 described in the first embodiment, and is provided in the first jaw 8.
  • the energy application structure 10B 'according to the second embodiment corresponds to the energy application structure 10' described in the first embodiment, and is provided in the second jaw 8 '.
  • energy provision structure 10B, 10B ' has the same structure, and only the point from which the attitude
  • the energy transfer structure 10B (10B ') according to the second embodiment is A back electrode 18, a second through hole 132, a third through hole 161, and a second electrode 19 are added.
  • the back electrode 18 is made of a conductive material such as copper, aluminum, carbon or the like, and has an elongated shape (the elongated shape extending in the longitudinal direction of the gripping portion 7) having the same width dimension and length dimension as the insulating member 16
  • the sixth main surface PS6 is formed by vapor deposition or the like. That is, in the second embodiment, the insulating member 16 is bonded to the fifth main surface PS5 via the back electrode 18 and the bonding layer 17 provided on the entire surface of the back electrode 18.
  • the back electrode 18 is electrically connected to the conductive member 15.
  • the back electrode 18 may be made of the same material as the heat generating pattern 12.
  • the second through hole 132 is located between the pair of first through holes 131 in the insulating layer 13 as shown in FIG. 8 or FIG. 9, and the third main surface PS3 and the fourth main surface PS4.
  • Penetrate between The third through hole 161 is located between the pair of connecting portions 121 in the insulating member 16 as shown in FIG. 8 or FIG. 9, and between the second main surface PS2 and the sixth main surface PS6. Penetrate.
  • the third through holes 161 are electrically connected to the back electrode 18 and the second through holes 132, respectively.
  • the back surface electrode 18 and the second and third through holes 132 and 161 described above correspond to the second current-carrying member 20 (FIGS. 7 to 9) according to the present invention.
  • the second electrode 19 is made of a conductive material such as copper, aluminum, carbon or the like, and has a width smaller than that of the insulating layer 13 and a length substantially the same as that of the insulating layer 13 as shown in FIG. It is a pad electrode of the elongate form (long form extended in the longitudinal direction of the holding part 7) which has a dimension.
  • the second electrode 19 is located between the pair of first electrodes 14, and the second through 19 is formed with a predetermined distance from the pair of first electrodes 14 in the width direction of the insulating layer 13.
  • the fourth main surface PS4 is formed by evaporation or the like so as to cover the hole 132. Also, the second electrode 19 is electrically connected to the second through hole 132.
  • the control device 3 supplies high frequency power to each of the second electrodes 19 of the energy application structures 10B and 10B ′ via the two high frequency lead wires C2.
  • high frequency power is supplied to each conductive member 15 through the conduction path of the second electrode 19 to the second through hole 132 to the third through hole 161 to the back surface electrode 18 to the bonding layer 17 to the conductive member 15. Be done. That is, the biological tissue held by each conductive member 15 is given high frequency energy and treated with the high frequency energy.
  • the energy imparting structures 10B and 10B ' according to the second embodiment described above, the following effects can be obtained in addition to the effects similar to those of the first embodiment described above.
  • the second electrode 19 to which the high frequency lead C2 is bonded is formed on the fourth main surface PS4 of the insulating layer 13.
  • a back surface electrode 18 electrically connected to the conductive member 15 is formed on the sixth main surface PS6 of the insulating member 16.
  • second and third through holes 132 and 161 for electrically connecting the second electrode 19 and the back surface electrode 18 are formed in the insulating layer 13 and the insulating member 16 respectively. That is, the high frequency lead wire C2 is not directly joined to the conductive member 15.
  • the third embodiment will be described.
  • the same components as those of the second embodiment described above are denoted by the same reference numerals, and the detailed description thereof is omitted or simplified.
  • the second through hole 132 and the back electrode 18 are electrically connected to the energy application structure 10B (10B ′) described in the second embodiment. Connection structure is different.
  • FIG. 10 is a view showing an energy applying structure 10C (10C ') according to the third embodiment.
  • FIG. 10 is a cross-sectional view corresponding to FIG.
  • the energy application structure 10C according to the third embodiment corresponds to the energy application structure 10B described in the second embodiment described above, and is provided in the first jaw 8.
  • the energy application structure 10C 'according to the third embodiment corresponds to the energy application structure 10B' described in the second embodiment, and is provided in the second jaw 8 '.
  • energy provision structure 10C, 10C ' has the same structure, and only the points from which an up-and-down attitude becomes reverse differ. For this reason, the same code
  • the third through hole 161 is omitted, and instead of the third through hole 161, the current path portion 21 is provided. Has been added.
  • the current path portion 21 is made of a conductive material such as copper, aluminum, carbon or the like. As shown in FIG. 10, the conduction path portion 21 straddles the second main surface PS2 and the side S7 on the proximal side intersecting the second and sixth main surfaces PS6, and the second main The surface PS2 and the side surface S7 are formed by vapor deposition or the like. Then, the conduction path portion 21 is electrically connected to the second through hole 132 and the back surface electrode 18, respectively.
  • the conductive path portion 21 may be made of the same material as the heat generation pattern 12.
  • the back surface electrode 18, the second through hole 132, and the conduction path portion 21 correspond to the second conduction member 20 (FIG. 10) according to the present invention.
  • Embodiment 4 Next, the fourth embodiment will be described.
  • the same components as those in the third embodiment described above are denoted by the same reference numerals, and the detailed description thereof is omitted or simplified.
  • the first and second electrodes 14 and 19 and a pair of heat generation are used.
  • the connection structure between the lead wire C1 and the high frequency lead wire C2 is different.
  • FIG. 11 and FIG. 12 are diagrams showing an energy providing structure 10D (10D ') according to the fourth embodiment.
  • the energy application structure 10D according to the fourth embodiment corresponds to the energy application structure 10C described in the third embodiment described above, and is provided in the first jaw 8.
  • the energy applying structure 10D 'according to the fourth embodiment corresponds to the energy applying structure 10C' described in the third embodiment described above, and is provided in the second jaw 8 '.
  • energy provision structure 10D, 10D ' has the same structure, and only the point from which the attitude
  • the first and second electrodes 14 and 19 generate a pair of heat generation through the flexible substrate 22. It electrically connects to the lead wire C1 and the lead wire C2 for high frequency respectively.
  • the energy imparting structure 10D (10D ') according to the fourth embodiment described above, the following effects can be obtained in addition to the effects similar to those of the third embodiment described above.
  • the first and second electrodes 14 and 19 are electrically connected to the pair of heating lead wires C1 and the high frequency lead wires C2 via the flexible substrate 22. Therefore, the pair of heating lead wires C1 and high frequency lead wires C2 can be positioned on the first main surface PS1 side with respect to the first and second electrodes 14 and 19. Therefore, the thickness of the gripping portion 7 can be reduced.
  • the present invention should not be limited only by the above-described first to fourth embodiments and the modification of the first embodiment.
  • the first and second jaws 8, 8 are provided in the energy imparting structures 10 (10A to 10D) and 10 '(10A' to 10D ') according to the above-described first to fourth embodiments and the modification of the first embodiment.
  • the heat energy may be applied to the living tissue from only one side of the first and second jaws 8 and 8 '.
  • thermal energy or high frequency energy is applied to the living tissue.
  • the present invention is not limited to this, and may be a configuration in which ultrasonic energy is further applied.
  • the first main surface PS1 is flat.
  • the cross-sectional shape of the first main surface PS1 may be configured as a convex shape, a concave shape, a mountain shape, or the like.
  • the sizes of the first and second electrodes 14 and 19 can be such that the heating lead C1 and the high frequency lead C2 can be joined. Other sizes may be used as long as they have an area.
  • the flexible printed circuit 22 described in the fourth embodiment described above is used to generate the lead wire C1 for heating and the lead wire C2 for high frequency , And the second electrodes 14 and 19 may be electrically connected.

Abstract

This energy applying structure 10 includes: a treatment member 11 which has a first major surface PS1 that applies thermal energy to body tissue by contacting the body tissue and a second major surface PS2 that opposes the first major surface PS1; a heating pattern 12 which is formed on the second major surface PS2 and generates heat when energized; an insulating layer 13 which has a third major surface PS3 that is bonded to the heating pattern 12 and a fourth major surface PS4 that opposes the third major surface PS3; a first electrode 14 which is formed on the fourth major surface PS4 and supplies power to the heating pattern 12; and a first energizing member 131 which electrically connects the first electrode 14 and the heating pattern 12.

Description

エネルギ付与構造体及び処置具Energy applying structure and treatment tool
 本発明は、エネルギ付与構造体及び処置具に関する。 The present invention relates to an energy applying structure and a treatment tool.
 従来、生体組織にエネルギを付与するエネルギ付与構造体が設けられ、当該エネルギの付与により生体組織を処置(接合(若しくは吻合)及び切離等)する処置具が知られている(例えば、特許文献1参照)。
 特許文献1に記載のエネルギ付与構造体(発熱素子)は、表面に絶縁膜が形成された長尺状の処置部材(基板)と、当該絶縁膜上に形成され、通電により発熱する発熱パターン(発熱体)と、当該絶縁膜上に形成され、発熱パターンの両端部にそれぞれ電気的に接続する一対の電極パッドとを備える。また、一対の電極パッドには、一対のリード線(ワイヤ)がそれぞれ接合される。そして、エネルギ付与構造体では、一対のリード線を介して一対の電極パッドに電圧を印加(通電)して発熱パターンを発熱することで、処置部材を加熱し、当該処置部材に接触した生体組織を処置する。
Conventionally, an energy applying structure for applying energy to a living tissue is provided, and a treatment tool for treating (joining (or anastomizing), severing, etc.) the living tissue by applying the energy is known (for example, patent document) 1).
The energy imparting structure (heat generating element) described in Patent Document 1 includes an elongated treatment member (substrate) having an insulating film formed on the surface, and a heat generating pattern formed on the insulating film and generating heat by energization ( And a pair of electrode pads formed on the insulating film and electrically connected to both ends of the heat generation pattern. Further, a pair of lead wires (wires) are respectively joined to the pair of electrode pads. Then, in the energy applying structure, the treatment member is heated by applying a voltage (energization) to the pair of electrode pads via the pair of lead wires and heating the heat generation pattern, and the living tissue in contact with the treatment member To treat.
特許第4593241号公報Patent No. 4593241
 上述したように、電極パッドは、リード線が接合される部分である。このため、電極パッドとしては、リード線を接合可能な大きさ(面積)を確保しておく必要がある。すなわち、特許文献1に記載のエネルギ付与構造体を小型化(短尺化)する場合には、リード線を接合可能に電極パッドの大きさを確保しつつ、処置部材及び発熱パターンを小型化することとなる。
 ここで、電極パッドは、発熱パターンよりも電気抵抗値が小さい。また、電極パッドは、リード線が接合されるため、当該リード線を介して熱が逃げ易い。このため、処置部材上において、電極パッドが設けられた領域は、比較的に温度の低い非発熱領域となる。一方、発熱パターンが設けられた領域は、比較的に温度の高い発熱領域となる。
 そして、特許文献1に記載のエネルギ付与構造体では、小型化した場合、処置部材上において、電極パッド(非発熱領域)の大きさが相対的に大きくなるため、当該処置部材を均一に加熱する(高い均熱性能を実現する)ことが難しい、という問題がある。
As described above, the electrode pad is a portion to which the lead wire is bonded. Therefore, as the electrode pad, it is necessary to secure a size (area) to which the lead wire can be joined. That is, in the case of miniaturizing (shortening) the energy application structure described in Patent Document 1, it is desirable to miniaturize the treatment member and the heat generation pattern while securing the size of the electrode pad so that the lead wire can be joined. It becomes.
Here, the electrode pad has a smaller electric resistance value than the heat generation pattern. In addition, since the lead wire is joined to the electrode pad, heat easily escapes through the lead wire. For this reason, on the treatment member, the area provided with the electrode pad is a relatively low temperature non-heating area. On the other hand, the area provided with the heat generation pattern is a heat generation area having a relatively high temperature.
And in the energy grant structure given in patent documents 1, since size of an electrode pad (non-heat generation field) becomes relatively large on a treatment member when it miniaturizes, the treatment member concerned is heated uniformly. There is a problem that it is difficult (to achieve high heat uniformity).
 本発明は、上記に鑑みてなされたものであって、小型化しても高い均熱性能を実現することができるエネルギ付与構造体及び処置具を提供することを目的とする。 This invention is made in view of the above, Comprising: It aims at providing the energy provision structure and treatment implement which can implement | achieve high temperature soaking performance even if it reduces in size.
 上述した課題を解決し、目的を達成するために、本発明に係るエネルギ付与構造体は、生体組織に接触して当該生体組織に熱エネルギを付与する第1の主面と、当該第1の主面に対向する第2の主面とを有する処置部材と、前記第2の主面に形成され、通電により発熱する発熱パターンと、前記発熱パターンに接合する第3の主面と、当該第3の主面に対向する第4の主面とを有する絶縁層と、前記第4の主面に形成され、前記発熱パターンに電力を供給する第1の電極と、前記第1の電極と前記発熱パターンとを電気的に接続する第1の通電部材とを備える。 In order to solve the problems described above and to achieve the object, an energy applying structure according to the present invention comprises: a first main surface which applies heat energy to a living tissue in contact with the living tissue; A treatment member having a second main surface opposed to the main surface, a heat generation pattern formed on the second main surface and generating heat by energization, a third main surface joined to the heat generation pattern, and the second main surface An insulating layer having a fourth main surface opposed to the third main surface, a first electrode formed on the fourth main surface and supplying power to the heat generation pattern, the first electrode, and the first electrode And a first current-carrying member electrically connecting the heat generation pattern.
 また、本発明に係る処置具は、上述したエネルギ付与構造を備える。 Further, a treatment tool according to the present invention includes the above-described energy application structure.
 本発明に係るエネルギ付与構造体及び処置具によれば、小型化しても高い均熱性能を実現することができる、という効果を奏する。 ADVANTAGE OF THE INVENTION According to the energy provision structure and treatment tool which concern on this invention, even if it miniaturizes, it is effective in the ability to implement | achieve high temperature soaking performance.
図1は、本実施の形態1に係る処置システムを模式的に示す図である。FIG. 1 is a view schematically showing a treatment system according to the first embodiment. 図2は、処置具の先端部分を拡大した図である。FIG. 2 is an enlarged view of the distal end portion of the treatment tool. 図3は、エネルギ付与構造体を示す図である。FIG. 3 is a diagram showing an energy application structure. 図4は、エネルギ付与構造体を示す図である。FIG. 4 is a view showing an energy application structure. 図5は、エネルギ付与構造体を示す図である。FIG. 5 is a diagram showing an energy application structure. 図6は、本実施の形態1の変形例に係るエネルギ付与構造体を示す図である。FIG. 6 is a view showing an energy application structure according to a modification of the first embodiment. 図7は、本実施の形態2に係るエネルギ付与構造体を示す図である。FIG. 7 is a view showing the energy application structure according to the second embodiment. 図8は、本実施の形態2に係るエネルギ付与構造体を示す図である。FIG. 8 is a view showing an energy application structure according to the second embodiment. 図9は、本実施の形態2に係るエネルギ付与構造体を示す図である。FIG. 9 is a view showing an energy application structure according to the second embodiment. 図10は、本実施の形態3に係るエネルギ付与構造体を示す図である。FIG. 10 is a view showing an energy application structure according to the third embodiment. 図11は、本実施の形態4に係るエネルギ付与構造体を示す図である。FIG. 11 is a view showing an energy application structure according to the fourth embodiment. 図12は、本実施の形態4に係るエネルギ付与構造体を示す図である。FIG. 12 is a view showing an energy application structure according to the fourth embodiment.
 以下、図面を参照して、本発明を実施するための形態(以下、実施の形態)について説明する。なお、以下に説明する実施の形態によって本発明が限定されるものではない。さらに、図面の記載において、同一の部分には同一の符号を付している。 Hereinafter, with reference to the drawings, modes for carrying out the present invention (hereinafter referred to as embodiments) will be described. The present invention is not limited by the embodiments described below. Furthermore, in the description of the drawings, the same parts are given the same reference numerals.
 〔処置システムの概略構成〕
 図1は、本実施の形態1に係る処置システム1を模式的に示す図である。
 処置システム1は、処置対象である生体組織に熱エネルギを付与することにより、当該生体組織を処置(接合(若しくは吻合)及び切離等)する。この処置システム1は、図1に示すように、処置具2と、制御装置3と、フットスイッチ4とを備える。
[Schematic Configuration of Treatment System]
FIG. 1 is a view schematically showing a treatment system 1 according to the first embodiment.
The treatment system 1 treats (joins (or anastomoses) and detaches, etc.) a living tissue by applying thermal energy to the living tissue to be treated. The treatment system 1 includes a treatment tool 2, a control device 3 and a foot switch 4 as shown in FIG.
 〔処置具の構成〕
 処置具2は、例えば、腹壁を通して生体組織に処置を行うためのリニアタイプの外科医療用処置具である。この処置具2は、図1に示すように、ハンドル5と、シャフト6と、把持部7とを備える。
 ハンドル5は、術者が手で持つ部分である。そして、このハンドル5には、図1に示すように、操作ノブ51が設けられている。
 シャフト6は、図1に示すように、略円筒形状を有し、一端(図1中、右端部)がハンドル5に接続されている。また、シャフト6の他端(図1中、左端部)には、把持部7が取り付けられている。そして、このシャフト6の内部には、術者による操作ノブ51の操作に応じて、把持部7を構成する第1,第2ジョー8,8´(図1)を開閉させる開閉機構(図示略)が設けられている。また、このシャフト6の内部には、制御装置3に接続された電気ケーブルC(図1)がハンドル5を介して一端側(図1中、右端部側)から他端側(図1中、左端部側)まで配設されている。
[Configuration of treatment tool]
The treatment tool 2 is, for example, a linear surgical treatment tool for treating a living tissue through the abdominal wall. As shown in FIG. 1, the treatment tool 2 includes a handle 5, a shaft 6, and a grip 7.
The handle 5 is a part held by the operator by hand. Further, as shown in FIG. 1, the handle 5 is provided with an operation knob 51.
As shown in FIG. 1, the shaft 6 has a substantially cylindrical shape, and one end (the right end in FIG. 1) is connected to the handle 5. Further, a grip 7 is attached to the other end (left end in FIG. 1) of the shaft 6. An opening / closing mechanism (not shown) for opening and closing the first and second jaws 8 and 8 '(FIG. 1) constituting the gripping portion 7 in accordance with the operation of the operation knob 51 by the operator inside the shaft 6 ) Is provided. Also, inside the shaft 6, an electric cable C (FIG. 1) connected to the control device 3 passes from the one end side (right end portion side in FIG. 1) to the other end side (in FIG. 1) It is disposed up to the left end side).
 〔把持部の構成〕
 図2は、処置具2の先端部分を拡大した図である。
 把持部7は、生体組織を把持して、当該生体組織を処置する部分である。この把持部7は、図1または図2に示すように、第1,第2ジョー8,8´を備える。
 第1,第2ジョー8,8´は、矢印R1(図2)方向に開閉可能にシャフト6の他端(図1,図2中、左端部)に軸支され、術者による操作ノブ51の操作に応じて、生体組織を把持可能とする。
 そして、第1,第2ジョー8,8´には、図2に示すように、エネルギ付与構造体10,10´がそれぞれ設けられている。
 なお、エネルギ付与構造体10,10´は、同一の構成を有し、上下の姿勢が逆になる点のみが異なる。このため、以下では、エネルギ付与構造体10の構成を主に説明する。そして、エネルギ付与構造体10´については、エネルギ付与構造体10と同一の構成に同一の符号を付してその説明を省略する。
[Configuration of gripping portion]
FIG. 2 is an enlarged view of the distal end portion of the treatment tool 2.
The gripping portion 7 is a portion that grips a living tissue to treat the living tissue. As shown in FIG. 1 or 2, the grip 7 includes first and second jaws 8 and 8 ′.
The first and second jaws 8 and 8 'are pivotally supported by the other end (left end in FIGS. 1 and 2) of the shaft 6 so as to be able to open and close in the direction of arrow R1 (FIG. 2) In accordance with the operation of, it is possible to grasp the living tissue.
And, as shown in FIG. 2, the energy imparting structures 10 and 10 'are respectively provided on the first and second jaws 8 and 8'.
In addition, energy provision structure 10, 10 'has the same structure, and only the point from which the attitude | position of an up-and-down becomes reverse differs. Therefore, the configuration of the energy application structure 10 will be mainly described below. And about energy grant structure 10 ', the same numerals are given to the same composition as energy grant structure 10, and the explanation is omitted.
 〔エネルギ付与構造体の構成〕
 図3ないし図5は、エネルギ付与構造体10を示す図である。具体的に、図3は、図2中、下方側からエネルギ付与構造体10を見た斜視図である。図4は、図3の分解斜視図である。図5は、第1のスルーホール131を通り、エネルギ付与構造体10の長手方向に延びる鉛直面にて当該エネルギ付与構造体10を切断した断面図である。
 なお、以下で記載する「先端側」は、把持部7の先端側であって、図3ないし図5中、左側を意味する。また、以下で記載する「基端側」は、把持部7のシャフト6側であって、図3ないし図5中、右側を意味する。
 エネルギ付与構造体10は、制御装置3による制御の下、熱エネルギを発生する。このエネルギ付与構造体10は、図3ないし図5に示すように、処置部材11と、発熱パターン12と、絶縁層13と、一対の第1の電極14とを備える。
[Configuration of energy application structure]
FIGS. 3 to 5 show the energy transfer structure 10. Specifically, FIG. 3 is a perspective view of the energy application structure 10 viewed from the lower side in FIG. FIG. 4 is an exploded perspective view of FIG. FIG. 5 is a cross-sectional view of the energy application structure 10 taken along a vertical plane extending in the longitudinal direction of the energy application structure 10 through the first through holes 131.
In addition, "the front end side" described below is the front end side of the holding part 7, Comprising: The left side is meant in FIG. 3 thru | or FIG. Also, the “proximal side” described below means the right side in FIGS. 3 to 5 on the shaft 6 side of the grip 7.
The energy applying structure 10 generates thermal energy under the control of the controller 3. As shown in FIGS. 3 to 5, the energy application structure 10 includes a treatment member 11, a heat generation pattern 12, an insulating layer 13, and a pair of first electrodes 14.
 処置部材11は、図3ないし図5に示すように、導電部材15と、絶縁部材16とを備える。
 導電部材15は、例えば、銅等の導電性材料で構成されている。また、導電部材15は、図3または図4に示すように、一方の板面(図3,図4中、上方側の板面)に凹部151を有する長尺状(把持部7の先端から基端に向かう長手方向(図1,図2中、左右方向)に延在する長尺状)の板体で構成されている。
 凹部151は、導電部材15における幅方向の中心に位置し、当該導電部材15の長手方向に沿って延在する。また、凹部151を構成する側壁部のうち、基端側の側壁部は、省略されている。そして、導電部材15は、凹部151内で各部材12~14,16を支持しつつ、図1及び図2中、下方側に配設された第1ジョー8における上方側の面に対して、凹部151が形成されていない他方の板面(図3,図4中、下方側の板面)が上方に向く姿勢で取り付けられる。
 ここで、導電部材15において、他方の板面は、本発明に係る第1の主面PS1(図2~図5)に相当する。また、凹部151の底面は、本発明に係る第5の主面PS5(図3~図5)に相当する。すなわち、導電部材15は、第1,第2ジョー8,8´にて生体組織を把持した状態で、第1の主面PS1が当該生体組織に接触し、発熱パターン12からの熱を当該生体組織に伝達する(熱エネルギを生体組織に付与する)。
The treatment member 11 includes a conductive member 15 and an insulating member 16 as shown in FIGS. 3 to 5.
The conductive member 15 is made of, for example, a conductive material such as copper. In addition, as shown in FIG. 3 or 4, the conductive member 15 has an elongated shape (from the tip of the gripping portion 7) having a recess 151 on one plate surface (plate surface on the upper side in FIGS. 3 and 4). It is comprised by the plate body of the elongate form (It extends in the left-right direction in FIG. 1, FIG. 2) which goes to a proximal end.
The recess 151 is located at the center in the width direction of the conductive member 15 and extends along the longitudinal direction of the conductive member 15. Further, among the side walls forming the recess 151, the side wall on the base end side is omitted. Then, the conductive member 15 supports the respective members 12 to 14 and 16 in the recess 151, and with respect to the upper surface of the first jaw 8 disposed on the lower side in FIGS. 1 and 2, The other plate surface (the lower plate surface in FIGS. 3 and 4) in which the concave portion 151 is not formed is attached in a posture in which it faces upward.
Here, in the conductive member 15, the other plate surface corresponds to the first main surface PS1 (FIGS. 2 to 5) according to the present invention. Further, the bottom surface of the recess 151 corresponds to the fifth main surface PS5 (FIGS. 3 to 5) according to the present invention. That is, in a state where the conductive member 15 holds the living tissue with the first and second jaws 8 and 8 ', the first main surface PS1 contacts the living tissue, and heat from the heat generation pattern 12 is transmitted to the living body. Transfer to tissue (apply thermal energy to living tissue).
 絶縁部材16は、例えば、熱伝導率の高いアルミナや窒化アルミニウム等の絶縁性材料で構成され、発熱パターン12からの熱を導電部材15に伝達する。また、絶縁部材16は、図3または図4に示すように、長尺状(把持部7の長手方向に延在する長尺状)の板体で構成されている。そして、絶縁部材16は、一方の板面(図3~図5中、下方側の板面)の全面に設けられた導電性の接合層17を介して第5の主面PS5に接合される。
 ここで、絶縁部材16において、一方の板面は、本発明に係る第6の主面PS6(図3~図5)に相当する。また、絶縁部材16において、他方の板面(図3~図5中、上方側の板面)は、本発明に係る第2の主面PS2(図3~図5)に相当する。
The insulating member 16 is made of, for example, an insulating material such as alumina or aluminum nitride having a high thermal conductivity, and transfers the heat from the heat generation pattern 12 to the conductive member 15. Further, as shown in FIG. 3 or 4, the insulating member 16 is formed of a long plate (a long plate extending in the longitudinal direction of the grip portion 7). The insulating member 16 is bonded to the fifth main surface PS5 via the conductive bonding layer 17 provided on the entire surface of one plate surface (the lower plate surface in FIGS. 3 to 5). .
Here, in the insulating member 16, one plate surface corresponds to the sixth main surface PS6 (FIGS. 3 to 5) according to the present invention. Further, in the insulating member 16, the other plate surface (the upper plate surface in FIGS. 3 to 5) corresponds to the second main surface PS2 (FIGS. 3 to 5) according to the present invention.
 発熱パターン12は、導電性材料であるステンレス(SUS304)を加工したものであり、図3または図4に示すように、一対の接続部121と、抵抗パターン122とを備える。そして、発熱パターン12は、第2の主面PS2に熱圧着により接合される。
 なお、発熱パターン12の材料としては、ステンレス(SUS304)に限らず、他のステンレス材料(例えば400番系)でもよいし、プラチナや、タングステン等の導電性材料を採用しても構わない。また、発熱パターン12としては、第2の主面PS2に熱圧着により接合した構成に限らず、当該第2の主面PS2に蒸着等により形成した構成を採用しても構わない。
The heat generation pattern 12 is obtained by processing stainless steel (SUS 304), which is a conductive material, and includes a pair of connection portions 121 and a resistance pattern 122 as shown in FIG. 3 or 4. Then, the heat generation pattern 12 is bonded to the second main surface PS2 by thermocompression bonding.
The material of the heat generation pattern 12 is not limited to stainless steel (SUS304), and may be another stainless steel material (for example, No. 400 series), or a conductive material such as platinum or tungsten may be adopted. Further, the heat generation pattern 12 is not limited to the structure bonded to the second main surface PS2 by thermocompression bonding, and the structure formed on the second main surface PS2 by vapor deposition or the like may be adopted.
 一対の接続部121は、図3または図4に示すように、第2の主面PS2の基端側において、当該第2の主面PS2の幅方向に沿って互いに対向するように設けられている。
 抵抗パターン122は、一端が一方の接続部121に接続(導通)し、当該一端から、波状に蛇行しながら、第2の主面PS2の外縁形状に倣うU字形状に沿って延在し、他端が他方の接続部121に接続(導通)する。
 そして、抵抗パターン122は、一対の接続部121に電圧が印加(通電)されることにより、発熱する。
As shown in FIG. 3 or 4, the pair of connection parts 121 are provided on the base end side of the second main surface PS2 so as to face each other along the width direction of the second main surface PS2. There is.
One end of the resistance pattern 122 is connected (conductive) to one of the connection portions 121, and extends from the one end along a U-shape following the outer edge shape of the second main surface PS2 while meandering in a wave shape. The other end is connected (conductive) to the other connection portion 121.
The resistance pattern 122 generates heat when a voltage is applied (energized) to the pair of connection portions 121.
 絶縁層13は、例えば、熱伝導率の低いポリイミド等の絶縁性材料で構成されている。また、絶縁層13は、図3または図4に示すように、絶縁部材16と同一の幅寸法及び長さ寸法を有する長尺状(把持部7の長手方向に延在する長尺状)の板体で構成されている。そして、絶縁層13は、一方の板面(図3~図5中、下方側の板面)が第2の主面PS2に接合される。
 ここで、絶縁層13において、一方の板面は、本発明に係る第3の主面PS3(図3~図5)に相当する。また、絶縁層13において、他方の板面(図3~図5中、上方側の板面)は、本発明に係る第4の主面PS4(図3~図5)に相当する。
 そして、本実施の形態1では、絶縁層13の熱抵抗は、絶縁部材16の熱抵抗よりも大きい。なお、絶縁層13を絶縁部材16と同一の材料で構成しても構わない。この場合、絶縁層13の厚み寸法を絶縁部材16の厚み寸法よりも大きくすれば、絶縁層13の熱抵抗を絶縁部材16の熱抵抗よりも大きくすることができる。
 この絶縁層13において、一対の接続部121に対向する位置には、第3の主面PS3と第4の主面PS4との間をそれぞれ貫通する一対の第1のスルーホール131(図3~図5)が形成されている。そして、一対の第1のスルーホール131は、本発明に係る第1の通電部材に相当し、一対の接続部121とそれぞれ電気的に接続する。
The insulating layer 13 is made of, for example, an insulating material such as polyimide having a low thermal conductivity. Further, as shown in FIG. 3 or FIG. 4, the insulating layer 13 has a long shape (long shape extending in the longitudinal direction of the grip portion 7) having the same width dimension and length dimension as the insulating member 16. It is composed of a plate. The insulating layer 13 has one plate surface (the lower plate surface in FIGS. 3 to 5) bonded to the second main surface PS2.
Here, in the insulating layer 13, one plate surface corresponds to the third main surface PS3 (FIGS. 3 to 5) according to the present invention. In the insulating layer 13, the other plate surface (the upper plate surface in FIGS. 3 to 5) corresponds to the fourth main surface PS4 (FIGS. 3 to 5) according to the present invention.
In the first embodiment, the thermal resistance of the insulating layer 13 is larger than the thermal resistance of the insulating member 16. The insulating layer 13 may be made of the same material as the insulating member 16. In this case, if the thickness dimension of the insulating layer 13 is made larger than the thickness dimension of the insulating member 16, the thermal resistance of the insulating layer 13 can be made larger than the thermal resistance of the insulating member 16.
In the insulating layer 13, a pair of first through holes 131 (FIG. 3 to FIG. 3) which respectively penetrate between the third main surface PS3 and the fourth main surface PS4 at positions facing the pair of connection portions 121. Figure 5) is formed. The pair of first through holes 131 corresponds to a first current-carrying member according to the present invention, and is electrically connected to the pair of connection portions 121, respectively.
 一対の第1の電極14は、銅、アルミニウム、カーボン等の導電性材料でそれぞれ構成され、図3または図4に示すように、絶縁層13よりも小さい幅寸法で当該絶縁層13と略同一の長さ寸法を有する長尺状(把持部7の長手方向に延在する長尺状)のパッド電極である。これら一対の第1の電極14は、絶縁層13の幅方向に所定の間隔を空けた状態で、一対の第1のスルーホール131をそれぞれ覆うように第4の主面PS4にそれぞれ蒸着等により形成されている。また、一対の第1の電極14は、一対の第1のスルーホール131とそれぞれ電気的に接続する。
 ここで、一対の第1の電極14において、図3ないし図5中、上方側の面には、電気ケーブルCを構成する2つの発熱用リード線C1がそれぞれ接合(接続)される。そして、制御装置3は、2つの発熱用リード線C1を介して一対の第1の電極14に電圧を印加することにより、一対の第1の電極14~一対の第1のスルーホール131~一対の接続部121~抵抗パターン122の通電経路を介して、当該抵抗パターン122に通電する。
The pair of first electrodes 14 are each made of a conductive material such as copper, aluminum, carbon or the like, and as shown in FIG. 3 or FIG. It is a pad electrode of the elongate form (long form extended in the longitudinal direction of the holding part 7) which has the length dimension of (1). The pair of first electrodes 14 is deposited on the fourth main surface PS4 by evaporation or the like so as to respectively cover the pair of first through holes 131 with a predetermined interval in the width direction of the insulating layer 13. It is formed. Further, the pair of first electrodes 14 is electrically connected to the pair of first through holes 131, respectively.
Here, in the pair of first electrodes 14, two heat generating lead wires C <b> 1 constituting the electric cable C are joined (connected) to the upper surface in FIGS. 3 to 5. Then, the control device 3 applies a voltage to the pair of first electrodes 14 via the two heat generating lead wires C1 to set the pair of first electrodes 14 to the pair of first through holes 131 to the pair. The resistor pattern 122 is energized via the conduction path of the connection portion 121 to the resistor pattern 122.
 〔制御装置及びフットスイッチの構成〕
 フットスイッチ4は、術者が足で操作する部分である。そして、フットスイッチ4への当該操作に応じて、制御装置3から処置具2(抵抗パターン122)への通電のオン及びオフが切り替えられる。
 なお、当該オン及びオフを切り替える手段としては、フットスイッチ4に限らず、その他、手で操作するスイッチ等を採用しても構わない。
 制御装置3は、CPU(Central Processing Unit)等を含んで構成され、所定の制御プログラムにしたがって、処置具2の動作を統括的に制御する。より具体的に、制御装置3は、術者によるフットスイッチ4への操作(通電オンの操作)に応じて、電気ケーブルCを介して抵抗パターン122に電圧を印加して、処置部材11を加熱する。
[Configuration of Control Device and Foot Switch]
The foot switch 4 is a portion operated by the operator with a foot. And according to the said operation to the foot switch 4, ON and OFF of electricity supply from the control apparatus 3 to the treatment tool 2 (resistance pattern 122) are switched.
In addition, as a means to switch the said on and off, you may employ | adopt not only the foot switch 4 but the switch etc. which are operated by hand other than that.
The control device 3 is configured to include a CPU (Central Processing Unit) or the like, and centrally controls the operation of the treatment tool 2 in accordance with a predetermined control program. More specifically, the control device 3 heats the treatment member 11 by applying a voltage to the resistance pattern 122 via the electric cable C in accordance with the operation (operation of power on) of the foot switch 4 by the operator. Do.
 〔処置システムの動作〕
 次に、上述した処置システム1の動作について説明する。
 術者は、処置具2を手で持ち、当該処置具2の先端部分(把持部7及びシャフト6の一部)を、例えば、トロッカ等を用いて腹壁を通して腹腔内に挿入する。そして、術者は、操作ノブ51を操作し、把持部7にて処置対象の生体組織を把持する。
 次に、術者は、フットスイッチ4を操作し、制御装置3から処置具2への通電をオンに切り替える。当該オンに切り替えられると、制御装置3は、電気ケーブルCを介して抵抗パターン122に電圧を印加し、当該抵抗パターン122を発熱させる。当該抵抗パターン122からの熱は、絶縁部材16及び接合層17を介して導電部材15に伝達する。そして、導電部材15(第1の主面PS1)に接触している生体組織は、当該導電部材15の熱により処置される。
[Operation of treatment system]
Next, the operation of the treatment system 1 described above will be described.
The operator holds the treatment tool 2 by hand, and inserts the distal end portion (a part of the grip 7 and the shaft 6) of the treatment tool 2 into the abdominal cavity through the abdominal wall using, for example, a trocar. Then, the operator operates the operation knob 51, and the grasping unit 7 grasps the living tissue to be treated.
Next, the operator operates the foot switch 4 to switch on energization of the treatment instrument 2 from the control device 3. When switched on, the control device 3 applies a voltage to the resistor pattern 122 via the electric cable C to cause the resistor pattern 122 to generate heat. Heat from the resistive pattern 122 is transferred to the conductive member 15 through the insulating member 16 and the bonding layer 17. Then, the living tissue in contact with the conductive member 15 (first main surface PS1) is treated by the heat of the conductive member 15.
 以上説明した本実施の形態1に係るエネルギ付与構造体10(10´)によれば、以下の効果を奏する。
 本実施の形態1に係るエネルギ付与構造体10(10´)では、発熱パターン12は、処置部材11の第2の主面PS2に形成されている。また、一対の第1の電極14は、絶縁層13の第4の主面PS4に形成されている。そして、発熱パターン12及び一対の第1の電極14は、一対の第1のスルーホール131にて電気的に接続されている。すなわち、発熱パターン12及び一対の第1の電極14は、互いに異なる層にそれぞれ形成されている。
 このため、一対の第1の電極14としては、第4の主面PS4において、一対の発熱用リード線C1をそれぞれ接合可能とする面積を十分に確保することができる。一方、発熱パターン12としては、第2の主面PS2において、一対の第1の電極14により配設される領域が制限されることがないため、当該第2の主面PS2全面に亘って形成することができる。すなわち、エネルギ付与構造体10(10´)を小型化(短尺化)しても、第2の主面PS2全面を均一に加熱することができる。
 したがって、本実施の形態1に係るエネルギ付与構造体10(10´)によれば、小型化しても高い均熱性能を実現することができる、という効果を奏する。
According to the energy application structure 10 (10 ') according to the first embodiment described above, the following effects can be obtained.
In the energy transfer structure 10 (10 ′) according to the first embodiment, the heat generation pattern 12 is formed on the second main surface PS2 of the treatment member 11. In addition, the pair of first electrodes 14 is formed on the fourth main surface PS4 of the insulating layer 13. The heat generation pattern 12 and the pair of first electrodes 14 are electrically connected by the pair of first through holes 131. That is, the heat generating pattern 12 and the pair of first electrodes 14 are respectively formed in different layers.
For this reason, as the pair of first electrodes 14, it is possible to secure a sufficient area for joining the pair of heating lead wires C1 on the fourth main surface PS4. On the other hand, the heat generation pattern 12 is formed over the entire surface of the second main surface PS2 because the region disposed by the pair of first electrodes 14 is not limited in the second main surface PS2. can do. That is, even if the energy application structure 10 (10 ') is downsized (shortened), the entire second main surface PS2 can be uniformly heated.
Therefore, according to the energy application structure 10 (10 ') according to the first embodiment, there is an effect that high heat uniformity performance can be realized even when the size is reduced.
 また、本実施の形態1に係るエネルギ付与構造体10(10´)では、絶縁層13の熱抵抗は、絶縁部材16の熱抵抗よりも大きい。
 このため、発熱パターン12で発生した熱をより絶縁部材16側に伝達することができる。このため、一対の電極14を介して一対の発熱用リード線C1にそれぞれ熱が逃げ難くなり、さらに高い均熱性能を実現することができる。
Further, in the energy applying structure 10 (10 ′) according to the first embodiment, the thermal resistance of the insulating layer 13 is larger than the thermal resistance of the insulating member 16.
Therefore, the heat generated by the heat generation pattern 12 can be transmitted to the insulating member 16 side more. As a result, heat is less likely to escape to the pair of heating lead wires C1 via the pair of electrodes 14, and a higher heat uniformity can be realized.
(実施の形態1の変形例)
 図6は、本実施の形態1の変形例に係るエネルギ付与構造体10A(10A´)を示す図である。
 上述した実施の形態1において、図6に示すように、導電部材15を省略したエネルギ付与構造体10A(10A´)を採用しても構わない。ここで、本変形例に係るエネルギ付与構造体10Aは、上述した実施の形態1で説明したエネルギ付与構造体10に対応し、第1ジョー8に設けられる。また、本変形例に係るエネルギ付与構造体10A´は、上述した実施の形態1で説明したエネルギ付与構造体10´に対応し、第2ジョー8´に設けられる。そして、エネルギ付与構造体10A,10A´は、同一の構成を有し、上下の姿勢が逆になる点のみが異なる。このため、エネルギ付与構造体10A,10A´の同一の構成には同一の符号を付す。
 そして、本変形例に係る絶縁部材16において、一方の板面(図6中、下方側の板面)は、生体組織が接触する面となり、本発明に係る第1の主面PS1に相当する。すなわち、本変形例に係る絶縁部材16は、本発明に係る処置部材に相当する。
(Modification of Embodiment 1)
FIG. 6 is a view showing an energy applying structure 10A (10A ′) according to a modification of the first embodiment.
In Embodiment 1 mentioned above, as shown in FIG. 6, you may employ | adopt the energy provision structure 10A (10A ') which abbreviate | omitted the conductive member 15. FIG. Here, the energy application structure 10A according to the present modification corresponds to the energy application structure 10 described in the first embodiment described above, and is provided to the first jaw 8. Further, the energy applying structure 10A ′ according to the present modification corresponds to the energy applying structure 10 ′ described in the first embodiment described above, and is provided in the second jaw 8 ′. And energy provision structure 10A, 10A 'has the same structure, and only the point from which the attitude | position of an up-and-down becomes reverse differs. For this reason, the same code | symbol is attached | subjected to the same structure of energy provision structure 10A, 10A '.
Then, in the insulating member 16 according to the present modification, one plate surface (the plate surface on the lower side in FIG. 6) is a surface with which biological tissue comes in contact, and corresponds to the first main surface PS1 according to the present invention . That is, the insulating member 16 according to the present modification corresponds to the treatment member according to the present invention.
(実施の形態2)
 次に、本実施の形態2について説明する。
 以下の説明では、上述した実施の形態1と同様の構成には同一符号を付し、その詳細な説明は省略または簡略化する。
 本実施の形態2に係るエネルギ付与構造体は、上述した実施の形態1で説明したエネルギ付与構造体10(10´)に対して、生体組織に熱エネルギの他、高周波エネルギを付与し、双方のエネルギの付与により生体組織を処置する。
Second Embodiment
Next, the second embodiment will be described.
In the following description, the same components as those in the first embodiment described above are denoted by the same reference numerals, and the detailed description thereof is omitted or simplified.
The energy applying structure according to the second embodiment applies high-frequency energy to the living tissue in addition to the thermal energy to the energy applying structure 10 (10 ') described in the first embodiment described above. Treatment of living tissue by the application of energy.
 図7ないし図9は、本実施の形態2に係るエネルギ付与構造体10B(10B´)を示す図である。具体的に、図7は、図3に対応した図である。図8は、図4に対応した図である。図9は、第2のスルーホール132を通り、エネルギ付与構造体10B(10B´)の長手方向に延びる鉛直面にて当該エネルギ付与構造体10B(10B´)を切断した断面図である。
 ここで、本実施の形態2に係るエネルギ付与構造体10Bは、上述した実施の形態1で説明したエネルギ付与構造体10に対応し、第1ジョー8に設けられる。また、本実施の形態2に係るエネルギ付与構造体10B´は、上述した実施の形態1で説明したエネルギ付与構造体10´に対応し、第2ジョー8´に設けられる。そして、エネルギ付与構造体10B,10B´は、同一の構成を有し、上下の姿勢が逆になる点のみが異なる。このため、エネルギ付与構造体10B,10B´の同一の構成には同一の符号を付す。
 本実施の形態2に係るエネルギ付与構造体10B(10B´)では、図7ないし図9に示すように、上述した実施の形態1で説明したエネルギ付与構造体10(10´)に対して、裏面電極18と、第2のスルーホール132と、第3のスルーホール161と、第2の電極19とが追加されている。
FIG. 7 to FIG. 9 are views showing the energy transfer structure 10B (10B ') according to the second embodiment. Specifically, FIG. 7 corresponds to FIG. FIG. 8 is a diagram corresponding to FIG. FIG. 9 is a cross-sectional view of the energy application structure 10B (10B ') cut through a vertical plane extending in the longitudinal direction of the energy application structure 10B (10B') through the second through holes 132.
Here, the energy application structure 10B according to the second embodiment corresponds to the energy application structure 10 described in the first embodiment, and is provided in the first jaw 8. Further, the energy application structure 10B 'according to the second embodiment corresponds to the energy application structure 10' described in the first embodiment, and is provided in the second jaw 8 '. And energy provision structure 10B, 10B 'has the same structure, and only the point from which the attitude | position of an up-and-down becomes reverse differs. For this reason, the same code | symbol is attached | subjected to the same structure of energy provision structure 10B, 10B '.
In the energy transfer structure 10B (10B ') according to the second embodiment, as shown in FIGS. 7 to 9, the energy transfer structure 10 (10') described in the first embodiment is A back electrode 18, a second through hole 132, a third through hole 161, and a second electrode 19 are added.
 裏面電極18は、銅、アルミニウム、カーボン等の導電性材料で構成され、絶縁部材16と同一の幅寸法及び長さ寸法を有する長尺状(把持部7の長手方向に延在する長尺状)の電極であり、第6の主面PS6に蒸着等により形成されている。すなわち、本実施の形態2では、絶縁部材16は、裏面電極18と、当該裏面電極18全面に設けられた接合層17を介して、第5の主面PS5に接合される。そして、裏面電極18は、導電部材15と電気的に接続する。なお、裏面電極18としては、発熱パターン12と同一の材料で構成しても構わない。 The back electrode 18 is made of a conductive material such as copper, aluminum, carbon or the like, and has an elongated shape (the elongated shape extending in the longitudinal direction of the gripping portion 7) having the same width dimension and length dimension as the insulating member 16 The sixth main surface PS6 is formed by vapor deposition or the like. That is, in the second embodiment, the insulating member 16 is bonded to the fifth main surface PS5 via the back electrode 18 and the bonding layer 17 provided on the entire surface of the back electrode 18. The back electrode 18 is electrically connected to the conductive member 15. The back electrode 18 may be made of the same material as the heat generating pattern 12.
 第2のスルーホール132は、図8または図9に示すように、絶縁層13において、一対の第1のスルーホール131の間に位置し、第3の主面PS3と第4の主面PS4との間を貫通する。
 第3のスルーホール161は、図8または図9に示すように、絶縁部材16において、一対の接続部121の間に位置し、第2の主面PS2と第6の主面PS6との間を貫通する。そして、第3のスルーホール161は、裏面電極18と第2のスルーホール132とにそれぞれ電気的に接続する。
 以上説明した裏面電極18、及び第2,第3のスルーホール132,161は、本発明に係る第2の通電部材20(図7~図9)に相当する。
The second through hole 132 is located between the pair of first through holes 131 in the insulating layer 13 as shown in FIG. 8 or FIG. 9, and the third main surface PS3 and the fourth main surface PS4. Penetrate between
The third through hole 161 is located between the pair of connecting portions 121 in the insulating member 16 as shown in FIG. 8 or FIG. 9, and between the second main surface PS2 and the sixth main surface PS6. Penetrate. The third through holes 161 are electrically connected to the back electrode 18 and the second through holes 132, respectively.
The back surface electrode 18 and the second and third through holes 132 and 161 described above correspond to the second current-carrying member 20 (FIGS. 7 to 9) according to the present invention.
 第2の電極19は、銅、アルミニウム、カーボン等の導電性材料で構成され、図7または図8に示すように、絶縁層13よりも小さい幅寸法で当該絶縁層13と略同一の長さ寸法を有する長尺状(把持部7の長手方向に延在する長尺状)のパッド電極である。この第2の電極19は、一対の第1の電極14の間に位置し、絶縁層13の幅方向に当該一対の第1の電極14と所定の間隔を空けた状態で、第2のスルーホール132を覆うように第4の主面PS4に蒸着等により形成されている。また、第2の電極19は、第2のスルーホール132と電気的に接続する。
 ここで、第2の電極19において、図7ないし図9中、上方側の面には、電気ケーブルCを構成する高周波用リード線C2が接合(接続)される。そして、制御装置3は、エネルギ付与構造体10B,10B´の各第2の電極19に対して2つの高周波用リード線C2を介して高周波電力を供給する。これにより、第2の電極19~第2のスルーホール132~第3のスルーホール161~裏面電極18~接合層17~導電部材15の通電経路を介して、各導電部材15に高周波電力が供給される。すなわち、各導電部材15に把持された生体組織は、高周波エネルギが付与され、当該高周波エネルギにより処置される。
The second electrode 19 is made of a conductive material such as copper, aluminum, carbon or the like, and has a width smaller than that of the insulating layer 13 and a length substantially the same as that of the insulating layer 13 as shown in FIG. It is a pad electrode of the elongate form (long form extended in the longitudinal direction of the holding part 7) which has a dimension. The second electrode 19 is located between the pair of first electrodes 14, and the second through 19 is formed with a predetermined distance from the pair of first electrodes 14 in the width direction of the insulating layer 13. The fourth main surface PS4 is formed by evaporation or the like so as to cover the hole 132. Also, the second electrode 19 is electrically connected to the second through hole 132.
Here, in the second electrode 19, in FIGS. 7 to 9, the high-frequency lead wire C <b> 2 that constitutes the electric cable C is joined (connected) to the upper surface. Then, the control device 3 supplies high frequency power to each of the second electrodes 19 of the energy application structures 10B and 10B ′ via the two high frequency lead wires C2. As a result, high frequency power is supplied to each conductive member 15 through the conduction path of the second electrode 19 to the second through hole 132 to the third through hole 161 to the back surface electrode 18 to the bonding layer 17 to the conductive member 15. Be done. That is, the biological tissue held by each conductive member 15 is given high frequency energy and treated with the high frequency energy.
 以上説明した本実施の形態2に係るエネルギ付与構造体10B,10B´によれば、上述した実施の形態1と同様の効果の他、以下の効果を奏する。
 本実施の形態2に係るエネルギ付与構造体10B(10B´)では、高周波用リード線C2が接合される第2の電極19は、絶縁層13の第4の主面PS4に形成されている。また、絶縁部材16の第6の主面PS6には、導電部材15と電気的に接続する裏面電極18が形成されている。そして、絶縁層13及び絶縁部材16には、第2の電極19と裏面電極18とを電気的に接続する第2,第3のスルーホール132,161がそれぞれ形成されている。すなわち、高周波用リード線C2は、導電部材15に直接、接合されていない。このため、高周波用リード線C2に熱が逃げ難い構造となる。
 したがって、エネルギ付与構造体10B(10B´)として熱エネルギ及び高周波エネルギの双方を生体組織に付与する構造を採用した場合であっても、高い均熱性能を実現することができる。
According to the energy imparting structures 10B and 10B 'according to the second embodiment described above, the following effects can be obtained in addition to the effects similar to those of the first embodiment described above.
In the energy application structure 10B (10B ') according to the second embodiment, the second electrode 19 to which the high frequency lead C2 is bonded is formed on the fourth main surface PS4 of the insulating layer 13. Further, a back surface electrode 18 electrically connected to the conductive member 15 is formed on the sixth main surface PS6 of the insulating member 16. Then, second and third through holes 132 and 161 for electrically connecting the second electrode 19 and the back surface electrode 18 are formed in the insulating layer 13 and the insulating member 16 respectively. That is, the high frequency lead wire C2 is not directly joined to the conductive member 15. For this reason, it becomes a structure which heat can not escape easily to lead wire C2 for high frequency.
Therefore, even in the case of adopting a structure in which both thermal energy and high frequency energy are applied to the living tissue as the energy applying structure 10B (10B '), high heat uniformity performance can be realized.
(実施の形態3)
 次に、本実施の形態3について説明する。
 以下の説明では、上述した実施の形態2と同様の構成には同一符号を付し、その詳細な説明は省略または簡略化する。
 本実施の形態3に係るエネルギ付与構造体では、上述した実施の形態2で説明したエネルギ付与構造体10B(10B´)に対して、第2のスルーホール132と裏面電極18との電気的な接続構造が異なる。
Third Embodiment
Next, the third embodiment will be described.
In the following description, the same components as those of the second embodiment described above are denoted by the same reference numerals, and the detailed description thereof is omitted or simplified.
In the energy application structure according to the third embodiment, the second through hole 132 and the back electrode 18 are electrically connected to the energy application structure 10B (10B ′) described in the second embodiment. Connection structure is different.
 図10は、本実施の形態3に係るエネルギ付与構造体10C(10C´)を示す図である。具体的に、図10は、図9に対応した断面図である。
 ここで、本実施の形態3に係るエネルギ付与構造体10Cは、上述した実施の形態2で説明したエネルギ付与構造体10Bに対応し、第1ジョー8に設けられる。また、本実施の形態3に係るエネルギ付与構造体10C´は、上述した実施の形態2で説明したエネルギ付与構造体10B´に対応し、第2ジョー8´に設けられる。そして、エネルギ付与構造体10C,10C´は、同一の構成を有し、上下の姿勢が逆になる点のみが異なる。このため、エネルギ付与構造体10C,10C´の同一の構成には同一の符号を付す。
 本実施の形態3に係るエネルギ付与構造体10C(10C´)では、図10に示すように、第3のスルーホール161が省略され、当該第3のスルーホール161の代わりに、通電経路部21が追加されている。
FIG. 10 is a view showing an energy applying structure 10C (10C ') according to the third embodiment. Specifically, FIG. 10 is a cross-sectional view corresponding to FIG.
Here, the energy application structure 10C according to the third embodiment corresponds to the energy application structure 10B described in the second embodiment described above, and is provided in the first jaw 8. Further, the energy application structure 10C 'according to the third embodiment corresponds to the energy application structure 10B' described in the second embodiment, and is provided in the second jaw 8 '. And energy provision structure 10C, 10C 'has the same structure, and only the points from which an up-and-down attitude becomes reverse differ. For this reason, the same code | symbol is attached | subjected to the same structure of energy provision structure 10C, 10C '.
In the energy application structure 10C (10C ') according to the third embodiment, as shown in FIG. 10, the third through hole 161 is omitted, and instead of the third through hole 161, the current path portion 21 is provided. Has been added.
 通電経路部21は、銅、アルミニウム、カーボン等の導電性材料で構成されている。この通電経路部21は、図10に示すように、第2の主面PS2と、第2,第6の主面PS6に交差する基端側の側面S7とを跨いで、当該第2の主面PS2及び側面S7に蒸着等により形成されている。そして、通電経路部21は、第2のスルーホール132と裏面電極18とにそれぞれ電気的に接続する。なお、通電経路部21としては、発熱パターン12と同一の材料で構成しても構わない。
 そして、裏面電極18、第2のスルーホール132、及び通電経路部21は、本発明に係る第2の通電部材20(図10)に相当する。
The current path portion 21 is made of a conductive material such as copper, aluminum, carbon or the like. As shown in FIG. 10, the conduction path portion 21 straddles the second main surface PS2 and the side S7 on the proximal side intersecting the second and sixth main surfaces PS6, and the second main The surface PS2 and the side surface S7 are formed by vapor deposition or the like. Then, the conduction path portion 21 is electrically connected to the second through hole 132 and the back surface electrode 18, respectively. The conductive path portion 21 may be made of the same material as the heat generation pattern 12.
The back surface electrode 18, the second through hole 132, and the conduction path portion 21 correspond to the second conduction member 20 (FIG. 10) according to the present invention.
 以上説明した本実施の形態3のように、第2のスルーホール132と裏面電極18とを通電経路部21にて電気的に接続した構成を採用した場合であっても、上述した実施の形態2と同様の効果を奏する。 Even in the case of adopting the configuration in which the second through hole 132 and the back surface electrode 18 are electrically connected by the current path portion 21 as in the third embodiment described above, the embodiment described above It produces the same effect as 2).
(実施の形態4)
 次に、本実施の形態4について説明する。
 以下の説明では、上述した実施の形態3と同様の構成には同一符号を付し、その詳細な説明は省略または簡略化する。
 本実施の形態4に係るエネルギ付与構造体では、上述した実施の形態3で説明したエネルギ付与構造体10C(10C´)に対して、第1,第2の電極14,19と一対の発熱用リード線C1及び高周波用リード線C2との接続構造が異なる。
Embodiment 4
Next, the fourth embodiment will be described.
In the following description, the same components as those in the third embodiment described above are denoted by the same reference numerals, and the detailed description thereof is omitted or simplified.
In the energy application structure according to the fourth embodiment, for the energy application structure 10C (10C ′) described in the third embodiment described above, the first and second electrodes 14 and 19 and a pair of heat generation are used. The connection structure between the lead wire C1 and the high frequency lead wire C2 is different.
 図11及び図12は、本実施の形態4に係るエネルギ付与構造体10D(10D´)を示す図である。
 ここで、本実施の形態4に係るエネルギ付与構造体10Dは、上述した実施の形態3で説明したエネルギ付与構造体10Cに対応し、第1ジョー8に設けられる。また、本実施の形態4に係るエネルギ付与構造体10D´は、上述した実施の形態3で説明したエネルギ付与構造体10C´に対応し、第2ジョー8´に設けられる。そして、エネルギ付与構造体10D,10D´は、同一の構成を有し、上下の姿勢が逆になる点のみが異なる。このため、エネルギ付与構造体10D,10D´の同一の構成には同一の符号を付す。
 本実施の形態4に係るエネルギ付与構造体10D(10D´)では、第1,第2の電極14,19は、図11または図12に示すように、フレキシブル基板22を介して、一対の発熱用リード線C1及び高周波用リード線C2にそれぞれ電気的に接続する。
FIG. 11 and FIG. 12 are diagrams showing an energy providing structure 10D (10D ') according to the fourth embodiment.
Here, the energy application structure 10D according to the fourth embodiment corresponds to the energy application structure 10C described in the third embodiment described above, and is provided in the first jaw 8. Further, the energy applying structure 10D 'according to the fourth embodiment corresponds to the energy applying structure 10C' described in the third embodiment described above, and is provided in the second jaw 8 '. And energy provision structure 10D, 10D 'has the same structure, and only the point from which the attitude | position of an up-and-down becomes reverse differs. For this reason, the same code | symbol is attached | subjected to the same structure of energy provision structure 10D, 10D '.
In the energy transfer structure 10D (10D ') according to the fourth embodiment, as shown in FIG. 11 or 12, the first and second electrodes 14 and 19 generate a pair of heat generation through the flexible substrate 22. It electrically connects to the lead wire C1 and the lead wire C2 for high frequency respectively.
 以上説明した本実施の形態4に係るエネルギ付与構造体10D(10D´)によれば、上述した実施の形態3と同様の効果の他、以下の効果を奏する。
 本実施の形態4では、第1,第2の電極14,19と一対の発熱用リード線C1及び高周波用リード線C2とは、フレキシブル基板22を介して電気的に接続される。
 このため、一対の発熱用リード線C1及び高周波用リード線C2を第1,第2の電極14,19に対して第1の主面PS1側に位置付けることができる。したがって、把持部7の薄型化を図ることができる。
According to the energy imparting structure 10D (10D ') according to the fourth embodiment described above, the following effects can be obtained in addition to the effects similar to those of the third embodiment described above.
In the fourth embodiment, the first and second electrodes 14 and 19 are electrically connected to the pair of heating lead wires C1 and the high frequency lead wires C2 via the flexible substrate 22.
Therefore, the pair of heating lead wires C1 and high frequency lead wires C2 can be positioned on the first main surface PS1 side with respect to the first and second electrodes 14 and 19. Therefore, the thickness of the gripping portion 7 can be reduced.
(その他の実施形態)
 ここまで、本発明を実施するための形態を説明してきたが、本発明は上述した実施の形態1~4及び当該実施の形態1の変形例によってのみ限定されるべきものではない。
 上述した実施の形態1~4及び当該実施の形態1の変形例に係るエネルギ付与構造体10(10A~10D),10´(10A´~10D´)では、第1,第2ジョー8,8´の両側から生体組織に熱エネルギを付与する構成としていたが、これに限らない。例えば、第1,第2ジョー8,8´の一方の側のみから生体組織に熱エネルギを付与する構成としても構わない。
 上述した実施の形態1~4及び当該実施の形態1の変形例に係るエネルギ付与構造体10(10A~10D),10´(10A´~10D´)では、生体組織に対して熱エネルギや高周波エネルギを付与する構成としていたが、これに限らず、超音波エネルギをさらに付与する構成としても構わない。
(Other embodiments)
Although the embodiments for carrying out the present invention have been described above, the present invention should not be limited only by the above-described first to fourth embodiments and the modification of the first embodiment.
In the energy imparting structures 10 (10A to 10D) and 10 '(10A' to 10D ') according to the above-described first to fourth embodiments and the modification of the first embodiment, the first and second jaws 8, 8 are provided. Although it was set as the structure which gives thermal energy to a biological tissue from both sides of ', it does not restrict to this. For example, the heat energy may be applied to the living tissue from only one side of the first and second jaws 8 and 8 '.
In the energy imparting structures 10 (10A to 10D) and 10 '(10A' to 10D ') according to the first to fourth embodiments and the modification of the first embodiment described above, thermal energy or high frequency energy is applied to the living tissue. Although the configuration has been described in which energy is applied, the present invention is not limited to this, and may be a configuration in which ultrasonic energy is further applied.
 上述した実施の形態1~4及び当該実施の形態1の変形例に係るエネルギ付与構造体10(10A~10D),10´(10A´~10D´)では、第1の主面PS1は、平坦面で構成されていたが、これに限らない。例えば、第1の主面PS1の断面形状を凸形状、凹形状、あるいは山形等で構成しても構わない。
 上述した実施の形態1~4及び当該実施の形態1の変形例において、第1,第2の電極14,19の大きさとしては、発熱用リード線C1や高周波用リード線C2を接合可能な面積を有していれば、その他の大きさとしても構わない。
 上述した実施の形態1,2及び当該実施の形態1の変形例において、上述した実施の形態4で説明したフレキシブル基板22を利用して、発熱用リード線C1や高周波用リード線C2と第1,第2の電極14,19とを電気的に接続しても構わない。
In the energy imparting structures 10 (10A to 10D) and 10 '(10A' to 10D ') according to the above-described first to fourth embodiments and the modification of the first embodiment, the first main surface PS1 is flat. Although it was constituted by the aspect, it is not restricted to this. For example, the cross-sectional shape of the first main surface PS1 may be configured as a convex shape, a concave shape, a mountain shape, or the like.
In the first to fourth embodiments and the modification of the first embodiment described above, the sizes of the first and second electrodes 14 and 19 can be such that the heating lead C1 and the high frequency lead C2 can be joined. Other sizes may be used as long as they have an area.
In the first and second embodiments described above and the modified example of the first embodiment, the flexible printed circuit 22 described in the fourth embodiment described above is used to generate the lead wire C1 for heating and the lead wire C2 for high frequency , And the second electrodes 14 and 19 may be electrically connected.
 1 処置システム
 2 処置具
 3 制御装置
 4 フットスイッチ
 5 ハンドル
 6 シャフト
 7 把持部
 8,8´ 第1,第2ジョー
 10,10´,10A~10D,10A´~10D´ エネルギ付与構造体
 11 処置部材
 12 発熱パターン
 13 絶縁層
 14 第1の電極
 15 導電部材
 16 絶縁部材
 17 接合層
 18 裏面電極
 19 第2の電極
 20 第2の通電部材
 21 通電経路部
 22 フレキシブル基板
 51 操作ノブ
 121 接続部
 122 抵抗パターン
 131,132 第1,第2のスルーホール
 151 凹部
 161 第3のスルーホール
 C 電気ケーブル
 C1 発熱用リード線
 C2 高周波用リード線
 PS1~PS6 第1~第6の主面
 R1 矢印
 S7 側面
Reference Signs List 1 treatment system 2 treatment tool 3 control device 4 foot switch 5 handle 6 shaft 7 grip portion 8, 8 'first and second jaws 10, 10', 10A to 10D, 10A 'to 10D' energy applying structure 11 treatment member 12 heat generation pattern 13 insulating layer 14 first electrode 15 conductive member 16 insulating member 17 bonding layer 18 back surface electrode 19 second electrode 20 second current-carrying member 21 current-carrying path portion 22 flexible substrate 51 operation knob 121 connection portion 122 resistance pattern 131, 132 first and second through holes 151 concave portion 161 third through hole C electric cable C1 lead wire for heat generation C2 high frequency lead wire PS1 to PS6 first to sixth main surfaces R1 arrow S7 side surface

Claims (8)

  1.  生体組織に接触して当該生体組織に熱エネルギを付与する第1の主面と、当該第1の主面に対向する第2の主面とを有する処置部材と、
     前記第2の主面に形成され、通電により発熱する発熱パターンと、
     前記発熱パターンに接合する第3の主面と、当該第3の主面に対向する第4の主面とを有する絶縁層と、
     前記第4の主面に形成され、前記発熱パターンに電力を供給する第1の電極と、
     前記第1の電極と前記発熱パターンとを電気的に接続する第1の通電部材とを備えるエネルギ付与構造体。
    A treatment member having a first main surface for applying thermal energy to the living tissue in contact with the living tissue, and a second main surface facing the first main surface;
    A heat generation pattern which is formed on the second main surface and generates heat by energization;
    An insulating layer having a third main surface joined to the heat generation pattern, and a fourth main surface facing the third main surface;
    A first electrode formed on the fourth main surface to supply power to the heat generation pattern;
    An energy applying structure body comprising: a first current-carrying member electrically connecting the first electrode and the heat generation pattern.
  2.  前記処置部材は、
     前記第2の主面を有する絶縁部材を備え、
     前記絶縁層の熱抵抗は、
     前記絶縁部材の熱抵抗よりも大きい
     請求項1に記載のエネルギ付与構造体。
    The treatment member is
    An insulating member having the second main surface,
    The thermal resistance of the insulating layer is
    The energy giving structure according to claim 1, wherein the heat resistance is larger than the thermal resistance of the insulating member.
  3.  前記第1の通電部材は、
     前記第3の主面と前記第4の主面との間を貫通する第1のスルーホールである
     請求項1または2に記載のエネルギ付与構造体。
    The first current-carrying member is
    It is a 1st through hole which penetrates between the said 3rd main surface and the said 4th main surface. The energy provision structure as described in any one of Claims 1-3.
  4.  前記第1の電極は、
     前記第1のスルーホールを覆う位置に設けられたパッド電極である
     請求項3に記載のエネルギ付与構造体。
    The first electrode is
    It is a pad electrode provided in the position which covers a said 1st through hole. The energy provision structure of Claim 3.
  5.  前記処置部材は、
     前記生体組織に接触して当該生体組織に熱エネルギ及び高周波エネルギを付与する前記第1の主面と、当該第1の主面に対向する第5の主面とを有する導電部材と、
     前記第5の主面に接合する第6の主面と、当該第6の主面に対向する前記第2の主面とを有する絶縁部材とを備え、
     当該エネルギ付与構造体は、
     前記第4の主面に形成され、前記導電部材に高周波電力を供給する第2の電極と、
     前記第2の電極と前記導電部材とを電気的に接続する第2の通電部材とをさらに備える
     請求項1~4のいずれか一つに記載のエネルギ付与構造体。
    The treatment member is
    A conductive member having the first main surface for applying thermal energy and high frequency energy to the living tissue in contact with the living tissue, and a fifth main surface facing the first main surface;
    And an insulating member having a sixth main surface joined to the fifth main surface, and the second main surface facing the sixth main surface,
    The energy transfer structure is
    A second electrode formed on the fourth main surface and supplying high frequency power to the conductive member;
    5. The energy applying structure according to any one of claims 1 to 4, further comprising a second current-carrying member electrically connecting the second electrode and the conductive member.
  6.  前記第2の通電部材は、
     前記第3の主面と前記第4の主面との間を貫通するとともに、前記第2の電極に電気的に接続する第2のスルーホールと、
     前記第2の主面と前記第6の主面との間を貫通するとともに、前記第2のスルーホールに電気的に接続する第3のスルーホールと、
     前記第6の主面に形成されるとともに、前記第3のスルーホールと前記導電部材とにそれぞれ電気的に接続する裏面電極とを備える
     請求項5に記載のエネルギ付与構造体。
    The second current-carrying member is
    A second through hole penetrating between the third main surface and the fourth main surface and electrically connected to the second electrode;
    A third through hole penetrating between the second main surface and the sixth main surface and electrically connected to the second through hole;
    The energy applying structure according to claim 5, further comprising a back surface electrode formed on the sixth main surface and electrically connected to the third through hole and the conductive member.
  7.  前記第2の通電部材は、
     前記第3の主面と前記第4の主面との間を貫通するとともに、前記第2の電極に電気的に接続する第2のスルーホールと、
     一部が前記絶縁部材における前記第2の主面と前記第6の主面とに交差する側面に形成されるとともに、前記第2のスルーホールに電気的に接続する通電経路部と、
     前記第6の主面に形成されるとともに、前記通電経路部と前記導電部材とにそれぞれ電気的に接続する裏面電極とを備える
     請求項5に記載のエネルギ付与構造体。
    The second current-carrying member is
    A second through hole penetrating between the third main surface and the fourth main surface and electrically connected to the second electrode;
    A conductive path portion which is partially formed on the side surface intersecting the second main surface and the sixth main surface of the insulating member and electrically connected to the second through hole;
    The energy applying structure according to claim 5, further comprising: a back surface electrode formed on the sixth main surface and electrically connected to the conduction path portion and the conductive member.
  8.  請求項1~7のいずれか一つに記載のエネルギ付与構造体を備える処置具。 A treatment tool comprising the energy applying structure according to any one of claims 1 to 7.
PCT/JP2017/004447 2017-02-07 2017-02-07 Energy applying structure and treatment tool WO2018146730A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/004447 WO2018146730A1 (en) 2017-02-07 2017-02-07 Energy applying structure and treatment tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/004447 WO2018146730A1 (en) 2017-02-07 2017-02-07 Energy applying structure and treatment tool

Publications (1)

Publication Number Publication Date
WO2018146730A1 true WO2018146730A1 (en) 2018-08-16

Family

ID=63108052

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/004447 WO2018146730A1 (en) 2017-02-07 2017-02-07 Energy applying structure and treatment tool

Country Status (1)

Country Link
WO (1) WO2018146730A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4593241B2 (en) * 2004-11-09 2010-12-08 オリンパス株式会社 Heating element and medical treatment tool using the same
JP2014144183A (en) * 2013-01-30 2014-08-14 Olympus Corp Therapeutic treatment device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4593241B2 (en) * 2004-11-09 2010-12-08 オリンパス株式会社 Heating element and medical treatment tool using the same
JP2014144183A (en) * 2013-01-30 2014-08-14 Olympus Corp Therapeutic treatment device

Similar Documents

Publication Publication Date Title
JP5631716B2 (en) Therapeutic treatment device
JP5931604B2 (en) Therapeutic treatment device
CN109788978B (en) Treatment tool
US20150327909A1 (en) Treatment apparatus
JP6274881B2 (en) Therapeutic treatment device
US10603097B2 (en) Treatment energy application structure and medical treatment device
WO2018055778A1 (en) Treatment instrument and treatment system
WO2018146730A1 (en) Energy applying structure and treatment tool
US20180028254A1 (en) Therapeutic energy applying structure and medical treatment device
JP6833849B2 (en) Treatment tool
US10603096B2 (en) Treatment-energy applying structure and medical treatment device
US20180055555A1 (en) Therapeutic energy applying structure and medical treatment device
JP5704985B2 (en) Therapeutic treatment device
US20190110831A1 (en) Treatment tool
WO2018146729A1 (en) Energy applying structure and treatment tool
WO2017163410A1 (en) Energy treatment tool
JP2012165948A (en) Treatment device for therapy and method for producing the same
WO2019202717A1 (en) Treatment instrument
WO2019092822A1 (en) Treatment tool
WO2019092845A1 (en) Treatment tool
WO2020012623A1 (en) Treatment tool
WO2020183681A1 (en) Medical heater, and treatment instrument
WO2019186656A1 (en) Treatment instrument
WO2018193493A1 (en) Surgical tool
WO2018150548A1 (en) Energy applying structure and treatment tool

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17896282

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17896282

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP