WO2018146729A1 - Energy applying structure and treatment tool - Google Patents

Energy applying structure and treatment tool Download PDF

Info

Publication number
WO2018146729A1
WO2018146729A1 PCT/JP2017/004443 JP2017004443W WO2018146729A1 WO 2018146729 A1 WO2018146729 A1 WO 2018146729A1 JP 2017004443 W JP2017004443 W JP 2017004443W WO 2018146729 A1 WO2018146729 A1 WO 2018146729A1
Authority
WO
WIPO (PCT)
Prior art keywords
main surface
frequency
energy application
heat generating
application structure
Prior art date
Application number
PCT/JP2017/004443
Other languages
French (fr)
Japanese (ja)
Inventor
隆之 井出
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to PCT/JP2017/004443 priority Critical patent/WO2018146729A1/en
Publication of WO2018146729A1 publication Critical patent/WO2018146729A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/08Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by means of electrically-heated probes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor

Definitions

  • the present invention relates to an energy application structure and a treatment instrument.
  • Patent Document 1 an energy applying structure that applies energy to a living tissue, and that treats the living tissue (joining (or anastomosis), cutting, etc.) by applying the energy (for example, Patent Documents) 1).
  • the energy application structure described in Patent Document 1 is provided on each treatment surface facing each other in a pair of jaws (jaw members) that grip biological tissue.
  • the energy application structure includes a treatment member (conductive sealing plate) made of a conductive material, and a heat generating member (heating element) disposed inside the treatment member.
  • a high-frequency wiring member such as a lead wire serving as a current-carrying path for high-frequency power is joined to the treatment member.
  • each treatment member in each energy application structure provided in each of the pair of jaws via each high-frequency wiring member, the living tissue grasped by the pair of jaws Is applied with high frequency energy.
  • a heating wiring member such as a lead wire serving as a power supply path is joined to the heating member.
  • the heat generating member generates heat by energization via the heat generating wiring member, and heats the treatment member.
  • the present invention has been made in view of the above, and an object of the present invention is to provide an energy application structure and a treatment instrument that can realize high heat equalization performance.
  • the energy application structure according to the present invention is made of a conductive material, and is a treatment for applying thermal energy and high-frequency energy to the living tissue in contact with the living tissue.
  • a heat generating pattern that generates heat when energized the heat generating member that heats the treatment member with the heat of the heat generating pattern, and a high-frequency power supply path that is provided on the heat generating member and supplied to the treatment member
  • a high-frequency wiring member is joined, and includes a current-carrying member that electrically connects the high-frequency wiring member and the treatment member.
  • the treatment tool according to the present invention includes the above-described energy application structure.
  • FIG. 1 is a diagram schematically illustrating a treatment system according to the first embodiment.
  • FIG. 2 is an enlarged view of the distal end portion of the treatment instrument.
  • FIG. 3 is a diagram showing an energy application structure.
  • FIG. 4 is a diagram showing an energy application structure.
  • FIG. 5 is a diagram illustrating a positional relationship between the first and second joining positions.
  • FIG. 6 is a diagram showing an energy application structure according to the second embodiment.
  • FIG. 7 is a diagram showing an energy application structure according to the second embodiment.
  • FIG. 8 is a diagram showing an energy application structure according to the third embodiment.
  • FIG. 9 is a diagram showing an energy application structure according to the third embodiment.
  • FIG. 10 is a diagram showing an energy application structure according to the fourth embodiment.
  • FIG. 10 is a diagram showing an energy application structure according to the fourth embodiment.
  • FIG. 11 is a diagram showing an energy application structure according to the fourth embodiment.
  • FIG. 12 is a diagram showing an energy application structure according to the fifth embodiment.
  • FIG. 13 is a diagram showing an energy application structure according to the fifth embodiment.
  • FIG. 14 is a diagram showing an energy application structure according to the sixth embodiment.
  • FIG. 15 is a diagram showing an energy application structure according to the sixth embodiment.
  • FIG. 16 is a diagram showing a positional relationship between the first and second joining positions according to the modified examples of the first to sixth embodiments.
  • FIG. 1 is a diagram schematically illustrating a treatment system 1 according to the first embodiment.
  • the treatment system 1 treats (joins (or anastomoses) and detaches, etc.) the living tissues by applying thermal energy and high frequency energy to the living tissues to be treated.
  • the treatment system 1 includes a treatment tool 2, a control device 3, and a foot switch 4.
  • the treatment tool 2 is, for example, a linear type surgical treatment tool for performing treatment on a living tissue through the abdominal wall.
  • the treatment tool 2 includes a handle 5, a shaft 6, and a grip portion 7.
  • the handle 5 is a part that the surgeon holds by hand.
  • the handle 5 is provided with an operation knob 51 as shown in FIG.
  • the shaft 6 has a substantially cylindrical shape, and one end (right end portion in FIG. 1) is connected to the handle 5.
  • a gripping portion 7 is attached to the other end of the shaft 6 (left end portion in FIG. 1).
  • An opening / closing mechanism (not shown) that opens and closes the first and second jaws 8 and 8 ′ (FIG.
  • FIG. 2 is an enlarged view of the distal end portion of the treatment instrument 2.
  • the gripping part 7 is a part that grips a living tissue and treats the living tissue.
  • the grip portion 7 includes first and second jaws 8 and 8 ′.
  • the first and second jaws 8 and 8 ' are pivotally supported on the other end (the left end portion in FIGS. 1 and 2) of the shaft 6 so as to be opened and closed in the direction of the arrow R1 (FIG. 2).
  • the living tissue can be grasped according to the operation.
  • the energy applying structures 10 and 10 ′ have the same configuration, and are different only in that the vertical posture is reversed. For this reason, below, the structure of the energy provision structure 10 is mainly demonstrated. And about energy provision structure 10 ', the same code
  • FIG. 3 is a perspective view of the energy applying structure 10 as viewed from below in FIG.
  • FIG. 4 is a cross-sectional view of the energy application structure 10 cut along a vertical plane that passes through the high-frequency connection portion 131 (first through hole 133) and extends in the longitudinal direction of the energy application structure 10.
  • the “tip side” described below means the tip side of the gripping portion 7 and the left side in FIG. 3 or FIG.
  • the “proximal end side” described below is the shaft 6 side of the grip portion 7 and means the right side in FIG. 3 or FIG.
  • the energy application structure 10 generates heat energy and high frequency energy under the control of the control device 3.
  • the energy applying structure 10 includes a treatment member 11, a heat generating member 12, and an energizing member 13.
  • the treatment member 11 is made of a conductive material such as copper, for example. Further, as shown in FIG. 3, the treatment member 11 has a long shape having a recess 111 on one plate surface (the upper plate surface in FIG. 3) (longitudinal direction from the distal end of the gripping portion 7 to the proximal end). (A long shape extending in the left-right direction in FIGS. 1 and 2)).
  • the recess 111 is located at the center in the width direction of the treatment member 11 and extends along the longitudinal direction of the treatment member 11. Moreover, the side wall part is not formed in the base end side among the side wall parts which comprise the recessed part 111.
  • the treatment member 11 supports the members 12 and 13 in the recess 111, and the recess 111 with respect to the upper surface of the first jaw 8 disposed on the lower side in FIG. 1 or 2.
  • the other plate surface (in FIG. 3, the plate surface on the lower side in FIG. 3) is attached in a posture facing upward.
  • the other plate surface corresponds to the first main surface PS1 (FIGS. 2 to 4) according to the present invention.
  • the bottom surface of the recess 111 corresponds to the second main surface PS2 (FIGS. 3 and 4) according to the present invention.
  • the bottom portion of the plate-like recess 111 having the first and second main surfaces PS1 and PS2 corresponds to the bottom surface portion 112 (FIGS. 2 to 4) according to the present invention.
  • the side wall of the recess 111 protrudes from the outer edge of the second main surface PS2 in the out-of-plane direction of the second main surface PS2, and corresponds to the side wall 113 (FIGS. 2 to 4) according to the present invention.
  • the heat generating member 12 has a heat generating pattern 152 that generates heat when energized, and the treatment member 11 is heated by the heat of the heat generating pattern 152.
  • the heat generating member 12 includes an insulating member 14, a wiring pattern 15, and an insulating layer 16 (FIG. 4).
  • the insulating layer 16 is not shown for convenience of explanation.
  • the insulating member 14 is made of an insulating material such as alumina or aluminum nitride having a high thermal conductivity, for example, and transfers the heat of the heat generation pattern 152 to the treatment member 11.
  • the insulating member 14 is configured by a long plate (long shape extending in the longitudinal direction of the grip portion 7).
  • one plate surface corresponds to the third main surface PS3 (FIGS. 3 and 4) according to the present invention.
  • the other plate surface corresponds to the fourth main surface PS4 (FIGS. 3 and 4) according to the present invention.
  • the wiring pattern 15 is obtained by processing a platinum thin film, and includes a pair of heating connection portions 151 (FIG. 3) and a heating pattern 152 as shown in FIG. 3 or FIG.
  • the wiring pattern 15 is formed by patterning a platinum thin film formed on the fourth main surface PS4 by vapor deposition, sputtering, or the like by photolithography.
  • the material of the wiring pattern 15 is not limited to a platinum thin film, and a conductive thin film material such as nickel or titanium may be used.
  • the wiring pattern 15 is not limited to a configuration in which a thin film is patterned on the fourth main surface PS4, and a configuration in which a thick film paste material such as ruthenium oxide is formed on the fourth main surface PS4 by a printing technique. You may adopt.
  • the pair of heat generating connection portions 151 are configured by a layer structure such as an adhesion layer inserted between the insulating members 14 as necessary, an adhesion layer added to the surface side, and a protective layer, as shown in FIG. , Provided at each corner portion on the distal end side and the proximal end side which are diagonal positions on the fourth main surface PS4.
  • a pair of heat generating lead wires C1 constituting the electric cable C are joined (connected) to the pair of heat generating connecting portions 151, respectively.
  • each position where the pair of heat generating lead wires C1 are joined is referred to as a second joining position P2 (FIG. 3).
  • One end of the heat generation pattern 152 is connected (conducted) to one heat generation connecting portion 151, and substantially the entire surface excluding the central region ArO (see FIG. 5) in the fourth main surface PS4 while meandering from the one end.
  • the other end is connected (conducted) to the other heat generating connecting portion 151.
  • the heat generation pattern 152 generates heat when a voltage is applied (energized) to the pair of heat generating connection portions 151 through the pair of heat generating lead wires C1 under the control of the control device 3. That is, the heating lead C1 serves as an energization path for power supplied to the heating pattern 152, and corresponds to the heating wiring member according to the present invention.
  • the insulating layer 16 is made of an insulating material such as polyimide having a low thermal conductivity, for example.
  • the insulating layer 16 is formed of a long plate (long shape extending in the longitudinal direction of the gripping portion 7) having the same width and length as the insulating member 14.
  • the insulating layer 16 has one plate surface (the lower plate surface in FIG. 4) bonded to the fourth main surface PS4 (heat generation pattern 152). Further, in the insulating layer 16, at positions facing a pair of heat generating connection portions 151 and a high frequency connection portion 131 described later, an opening portion 161 (through the front and back surfaces and exposing these connection portions 151 and 131 to the outside is provided. 4) are formed. In FIG. 4, for convenience of explanation, only the opening 161 that faces the high-frequency connection 131 is shown among the three openings 161.
  • one plate surface corresponds to the fifth main surface PS5 (FIG. 4) according to the present invention.
  • the other plate surface corresponds to the sixth main surface PS6 (FIG. 4) according to the present invention.
  • the thermal resistance of the insulating layer 16 is larger than the thermal resistance of the insulating member 14.
  • the insulating layer 16 may be made of the same material as the insulating member 14. In this case, if the thickness dimension of the insulating layer 16 is made larger than the thickness dimension of the insulating member 14, the thermal resistance of the insulating layer 16 can be made larger than the thermal resistance of the insulating member 14. Thus, by making the thermal resistance of the insulating layer 16 larger than the thermal resistance of the insulating member 14, the heat generated in the heat generating pattern 152 can be transmitted to the insulating member 14 side.
  • the energizing member 13 is provided on the heat generating member 12, and a high-frequency lead C2 (FIGS. 3 and 4) constituting the electric cable C is joined to electrically connect the high-frequency lead C2 and the treatment member 11. Connecting. As shown in FIG. 3 or FIG. 4, the energizing member 13 includes a high-frequency connection portion 131, a back electrode 132, and a first through hole 133 (FIG. 4).
  • the high frequency connection portion 131 has a layer structure similar to that of the pair of heat generation connection portions 151, and is a pad electrode having substantially the same size as the pair of heat generation connection portions 151 as shown in FIG.
  • the high frequency connection portion 131 is formed in the central region ArO (see FIG. 5) in the fourth main surface PS4.
  • the high frequency lead 131 is joined to the high frequency connection portion 131.
  • the position where the high-frequency lead wire C2 is bonded is referred to as a first bonding position P1 (FIGS. 3 and 4).
  • the back electrode 132 has a layer structure similar to that of the pair of heating connection portions 151 and has a long shape (the length extending in the longitudinal direction of the grip portion 7) having the same width and length as the insulating member 14. Electrode) and is formed on the third main surface PS3.
  • the insulating member 14 is bonded to the second main surface PS2 via the back electrode 132 and the conductive bonding material 17 (FIGS. 3 and 4) provided on the entire surface of the back electrode 132. Further, the back electrode 132 is electrically connected to the treatment member 11 via the bonding material 17.
  • the first through hole 133 is located in the central region ArO (see FIG. 5) in the fourth main surface PS4, and between the third main surface PS3 and the fourth main surface PS4. To penetrate.
  • the first through hole 133 electrically connects the high-frequency connection part 131 and the back electrode 132. That is, the first through hole 133 corresponds to the high-frequency energization path portion according to the present invention.
  • FIG. 5 is a diagram showing the positional relationship between the first and second joining positions P1 and P2.
  • FIG. 5 is a view of the first and second joining positions P1 and P2 seen from above in FIG. 3 (viewed along the direction in which the treatment member 11 and the heating member 12 face each other). It is.
  • the first bonding position P1 is set in the central area ArO of the fourth main surface PS4 and at the central position CP of the formation area ArH where the wiring pattern 15 is formed.
  • the pair of second joining positions P2 sandwiches the first joining position P1 and is spaced from the first joining position P1 by the same distance (a tip that is a diagonal position on the fourth main surface PS4). Side and base end sides).
  • the foot switch 4 is a part operated by the operator with his / her foot. Then, according to the operation on the foot switch 4, on / off of energization from the control device 3 to the treatment instrument 2 (the heat generating connection portion 151 and the high frequency connection portion 131) is switched. Note that the means for switching on and off is not limited to the foot switch 4, and a switch operated by hand or the like may be employed.
  • the control device 3 includes a CPU (Central Processing Unit) and the like, and comprehensively controls the operation of the treatment instrument 2 according to a predetermined control program.
  • CPU Central Processing Unit
  • control device 3 applies a voltage to the pair of heating connection portions 151 via the pair of heating lead wires C1 in response to an operation of the foot switch 4 by the operator (an operation to turn on the power). Apply.
  • the control device 3 supplies high-frequency power to the high-frequency connection portions 131 of the energy applying structures 10 and 10 ′ via the two high-frequency lead wires C ⁇ b> 2.
  • the high-frequency lead wire C2 serves as an energization path for the high-frequency power supplied to the treatment member 11, and corresponds to the high-frequency wiring member according to the present invention.
  • Heat from the heat generation pattern 152 is transmitted to the treatment member 11 through the insulating member 14, the back electrode 132, and the bonding material 17. Then, the living tissue that is in contact with the treatment member 11 (first main surface PS1) is treated by the heat of the treatment member 11 (application of thermal energy).
  • the control device 3 supplies high-frequency power to the high-frequency connection portions 131 of the energy applying structures 10 and 10 ′ via the two high-frequency lead wires C ⁇ b> 2. As a result, high frequency power is supplied to each treatment member 11 through the energization path of the high frequency connection portion 131, the first through hole 133, the back electrode 132, the bonding material 17, and the treatment member 11.
  • the living tissue grasped by each treatment member 11 is given high-frequency energy and treated with the high-frequency energy.
  • the timing which gives a thermal energy and high frequency energy to a biological tissue may be a simultaneous timing, or may be a different timing.
  • the energy application structure 10 (10 ′) according to the first embodiment described above has the following effects.
  • the high-frequency lead wire C2 is electrically connected to the treatment member 11 via the energization member 13 provided on the heat generating member 12. That is, the high-frequency lead wire C2 is not directly joined to the treatment member 11.
  • the energizing member 13 can be a path for heat to escape from the treatment member 11 to the high-frequency lead wire C ⁇ b> 2, but is provided in the heat generating member 12, so that heat is transmitted from the heat generating member 12 to the treatment member 11. It will also be a route to.
  • the heat generating member 12 includes the insulating member 14 having a high thermal conductivity interposed between the heat generating pattern 152 and the treatment member 11. For this reason, the heat from the heat generation pattern 152 is soaked in the insulating member 14 and then transmitted to the treatment member 11.
  • the treatment member 11 is also made of a material having a high thermal conductivity, the temperature is similarly equalized in the treatment member 11 as well. Further, due to the double soaking effect in the insulating member 14 and the treatment member 11, higher soaking performance can be realized.
  • the temperature distribution has a temperature at which the temperature at the center position CP of the formation region ArH is highest and the temperature of the outer edge is lowest. Therefore, in the energy application structure 10 (10 ′) according to the first embodiment, the first joining position P1 where the high-frequency lead wire C2 is joined to the energizing member 13 is set to the center position CP. That is, by setting a portion where heat is easily released to the high-frequency lead C2 and the temperature is likely to be lowered to a position where the temperature is highest in the above-described temperature distribution, the above-described temperature distribution is smoothed, and higher soaking performance is achieved. Can be realized.
  • the first joint position P1 is set at a position separated by the same distance. That is, by dispersing the first and second joining positions P1 and P2, the influence of heat escape to the pair of lead wires C1 for heating and the lead wire for high frequency C2 is reduced, and higher soaking performance is realized. can do.
  • the energy application structure according to the second exemplary embodiment has a connection structure between the heat generation lead C1 and the heat generation pattern 152 with respect to the energy application structure 10 (10 ′) described in the first exemplary embodiment, and The connection structure between the high-frequency lead wire C2 and the back electrode 132 is different.
  • FIG. 6 and 7 are diagrams showing an energy application structure 10A (10A ') according to the second embodiment.
  • FIG. 6 corresponds to FIG.
  • the insulating layer 16A according to the second embodiment is illustrated.
  • FIG. 7 is a cross-sectional view corresponding to FIG.
  • the energy application structure 10 ⁇ / b> A according to the second embodiment corresponds to the energy application structure 10 described in the first embodiment and is provided in the first jaw 8.
  • the energy application structure 10A ′ according to the second embodiment corresponds to the energy application structure 10 ′ described in the first embodiment and is provided in the second jaw 8 ′.
  • energy provision structure 10A, 10A ' has the same structure, and the points from which an up-and-down attitude
  • the three openings 161 are not formed with respect to the insulating layer 16 described in the first embodiment.
  • the pair of heat generating connection portions 151A and high frequency connection portions 131A according to the second embodiment are not provided on the fourth main surface PS4 but on the sixth main surface PS6. Is formed.
  • the arrangement positions of the pair of heating connection portions 151A and the high frequency connection portion 131A when viewed from the upper side in FIG. 6, the pair of heating connection portions 151 described in the first embodiment and The arrangement positions of the high-frequency connection portions 131 are the same.
  • the positional relationship between the pair of first joining positions P1 (FIGS. 6 and 7) and the second joining position P2 (FIG. 6) where the pair of heating lead wires C1 and the high-frequency lead wire C2 are joined is This is similar to the first embodiment described above.
  • the insulating layer 16A is located at each of the arrangement positions of the pair of heat generating connection portions 151A and the high frequency connection portions 131A and penetrates between the fifth main surface PS5 and the sixth main surface PS6.
  • Three second through holes 162 are formed. In FIG. 7, only the second through-hole 162 located at the position where the high-frequency connection portion 131 ⁇ / b> A is disposed is illustrated among the three second through-holes 162. Of these three second through-holes 162, the two second through-holes 162 located at the respective positions of the pair of heat-generating connection portions 151A are formed between the pair of heat-generating connection portions 151A and the heat generation pattern 152. Both ends are electrically connected to each other.
  • the two second through-holes 162 located at the respective arrangement positions of the pair of heat generating connection portions 151A correspond to the heat generating energization path portions according to the present invention. Further, the second through-hole 162 located at the position where the high-frequency connection portion 131A is disposed electrically connects the high-frequency connection portion 131A and the first through-hole 133.
  • the first through hole 133 described above and the second through hole 162 located at the position where the high frequency connecting portion 131A is disposed electrically connect the high frequency connecting portion 131A and the back electrode 132.
  • the high-frequency connection portion 131, the high-frequency energization path portion 133A, and the back electrode 132 electrically connect the high-frequency lead C2 and the treatment member 11, and the energization member 13A according to the present invention (FIG. 6). , FIG. 7).
  • the insulating member 14, the insulating layer 16A, the pair of heat generating connection portions 151A, the two second through holes 162 located at the respective positions of the pair of heat generating connection portions 151A, and the heat generation pattern 152 are provided in the present invention. This corresponds to the heat generating member 12A according to FIG.
  • the fourth main surface PS4 As in the first embodiment described above, the fourth main surface PS4.
  • the region where the heat generation pattern 152 is provided is a heat generation region having a relatively high temperature.
  • the region where the pair of heat generating connection portions 151 and the high frequency connection portion 131 are provided is a non-heat generating region having a relatively low temperature.
  • the connecting portions 151 are provided so that sufficient joining strength can be obtained.
  • 131 must be secured to some extent. Therefore, if an attempt is made to secure the size as much as possible, the substantial heat generation area is reduced.
  • the heat generation area relates to the heat generation performance of the treatment tool 2. For this reason, the decrease in the heat generation area leads to a decrease in the heat generation performance of the treatment instrument 2.
  • the heat generation pattern 152 is formed on the fourth main surface PS4.
  • the pair of heat generating connection portions 151A and the high frequency connection portion 131A are formed on the sixth main surface PS6. That is, the heat generation pattern 152, the pair of heat generation connection portions 151A, and the high frequency connection portion 131A are formed in different layers. For this reason, the pair of heat generating connection portions 151A and the high frequency connection portions 131A have a sufficient area on the sixth main surface PS6 so that the pair of heat generation lead wires C1 and the high frequency lead wires C2 can be joined respectively. Can be secured.
  • the fourth main surface PS4 is not limited in the region provided by the pair of heat generation connection portions 151A and the high frequency connection portion 131A. It can be formed uniformly over the entire surface of PS4. Therefore, high heat generation performance can be realized while sufficiently securing the bonding strength between the pair of heat generating lead C1 and the high frequency lead C2.
  • the energy application structure according to the third embodiment is different from the energy application structure 10 (10 ′) described in the first embodiment in the connection structure between the high-frequency lead C2 and the back electrode 132. .
  • FIG. 8 and 9 are diagrams showing an energy application structure 10B (10B ') according to the third embodiment.
  • FIG. 8 corresponds to FIG.
  • FIG. 9 is a cross-sectional view of the energy applying structure 10B (10B ′) taken along a vertical plane that passes through the high-frequency energizing path portion 133B and extends in the longitudinal direction of the energy applying structure 10B (10B ′).
  • the energy application structure 10 ⁇ / b> B according to the third embodiment corresponds to the energy application structure 10 described in the first embodiment and is provided in the first jaw 8.
  • the energy application structure 10B ′ according to the third embodiment corresponds to the energy application structure 10 ′ described in the first embodiment and is provided in the second jaw 8 ′.
  • energy provision structure 10B, 10B ' has the same structure, and the points from which an up-and-down attitude
  • the first through hole 133 is not formed with respect to the insulating member 14 described in the first embodiment.
  • the high frequency connection portion 131B according to the third embodiment includes a connection portion main body 1311 and a first extension portion 1312 as shown in FIG. 8 or FIG.
  • the connection portion main body 1311 is made of the same material as the high frequency connection portion 131 described in the first embodiment, has the same shape, and is provided at the same arrangement position.
  • the high frequency lead wire C ⁇ b> 2 is joined to the connection portion main body 1311.
  • the first extending portion 1312 is made of the same material as that of the connection portion main body 1311.
  • connection portion main body 1311 From the base end side edge of the connection portion main body 1311, the third main surface PS3 and the fourth main surface of the insulating member 14B. This is a portion extending to the side surface S7 (FIGS. 8 and 9) on the base end side that intersects PS4.
  • the high frequency connecting portion 131B and the back electrode 132 are electrically connected through a high frequency energizing path portion 133B as shown in FIG. 8 or FIG.
  • the high-frequency energizing path portion 133B is made of a conductive material such as copper, aluminum, or carbon, and is formed on the side surface S7 by vapor deposition or the like.
  • the high-frequency energizing path portion 133B is electrically connected to the high-frequency connection portion 131B (first extension portion 1312) and the back electrode 132, respectively.
  • the high frequency connecting portion 131B, the high frequency energizing path portion 133B, and the back electrode 132 described above electrically connect the high frequency lead C2 and the treatment member 11, and the energizing member 13B according to the present invention (FIG. 8 and FIG. 9).
  • the insulating member 14B, the wiring pattern 15, and the insulating layer 16 correspond to the heat generating member 12B according to the present invention (FIGS. 8 and 9).
  • the escape of heat from the high-frequency lead C2 depends on the cross-sectional area of the path through which the heat escapes.
  • the high-frequency lead wire C2 is connected to the first through-hole 133. In order to reduce the heat escape as much as possible, it is desirable to make the first through hole 133 thinner.
  • the first through hole 133 is formed by filling a through hole formed in the insulating member 14 with a conductive member, there is a limit to the minimum size of the diameter that can be formed.
  • the high-frequency energizing path portion 133B is formed on the side surface S7 of the insulating member 14B. For this reason, it becomes possible to make the high-frequency energization path portion 133B thin (small cross-sectional area), and to reduce heat escape from the high-frequency lead C2 as much as possible.
  • FIG. 10 and 11 are diagrams showing an energy application structure 10C (10C ′) according to the fourth embodiment.
  • FIG. 10 corresponds to FIG.
  • FIG. 11 is a cross-sectional view of the energy application structure 10C (10C ′) taken along a vertical plane that passes through the joint portion 134 and extends in the longitudinal direction of the energy application structure 10C (10C ′).
  • the energy application structure 10 ⁇ / b> C according to the fourth embodiment corresponds to the energy application structure 10 described in the first embodiment and is provided in the first jaw 8.
  • the energy application structure 10C ′ according to the fourth embodiment corresponds to the energy application structure 10 ′ described in the first embodiment and is provided in the second jaw 8 ′.
  • the energy application structures 10C and 10C ′ have the same configuration, and are different in that the vertical posture is reversed. For this reason, the same code
  • the energy application structure 10C (10C ′) according to the fourth embodiment as illustrated in FIG. 10 or FIG. 11, the energy application structure 10B (10B ′) described in the third embodiment described above, The back electrode 132 is not formed. Then, the insulating member 14B has the third main surface in a state where the side surface S8 (FIG. 11) on the front end side intersecting the third main surface PS3 and the fourth main surface PS4 is in contact with the side wall 113. It is bonded to the second main surface PS2 via a bonding material 17 provided on the entire surface of PS3. Further, as shown in FIG. 10 or FIG. 11, the high frequency connection portion 131C according to the fourth embodiment includes a second extension portion 1313 in addition to the connection portion main body 1311 described in the third embodiment. . The second extending portion 1313 is made of the same material as that of the connecting portion main body 1311 and extends from the leading edge of the connecting portion main body 1311 to the side surface S8 (FIG. 11) of the insulating member 14B. .
  • the insulating layer 16C according to the fourth embodiment has a distal end side end portion of the second extending portion 1313 with respect to the insulating layer 16 described in the third embodiment.
  • a notch portion 163 that exposes the end portion to the outside is formed at the facing position.
  • the high-frequency connection part 131C (second extending part 1313) and the treatment member 11 (side wall part 113) are connected via a notch part 163 as shown in FIG. Are electrically connected at the conductive joint 134.
  • the high frequency connecting portion 131C and the joining portion 134 described above electrically connect the high frequency lead wire C2 and the treatment member 11 (side wall portion 113), and the energizing member 13C according to the present invention (FIGS. 10 and 10). 11).
  • the insulating member 14B, the wiring pattern 15, and the insulating layer 16C correspond to the heat generating member 12C (FIGS. 10 and 11) according to the present invention.
  • the energization member 13C includes a high-frequency connection portion 131C and a joint portion 134. For this reason, the energization member 13C can be manufactured only by a general electric substrate manufacturing process, and the cost can be reduced.
  • FIG. 12 and 13 are diagrams showing an energy application structure 10D (10D ′) according to the fifth embodiment.
  • FIG. 12 corresponds to FIG.
  • the insulating layer 16D according to the fifth embodiment is illustrated.
  • FIG. 13 is a cross-sectional view corresponding to FIG.
  • the energy application structure 10 ⁇ / b> D according to the fifth embodiment corresponds to the energy application structure 10 ⁇ / b> C described in the fourth embodiment and is provided in the first jaw 8.
  • the energy application structure 10D ′ according to the fifth embodiment corresponds to the energy application structure 10C ′ described in the fourth embodiment and is provided in the second jaw 8 ′.
  • energy provision structure 10D, 10D ' has the same structure, and the points from which an up-and-down attitude
  • the pair of heat generating connecting portions 151D and the high frequency connecting portion 131D according to the fifth embodiment is the same as the pair of heat generating connecting portions 151 and the high frequency connecting portions described in the fourth embodiment.
  • the connecting portion 131C it is formed not on the fourth main surface PS4 but on the sixth main surface PS6.
  • the arrangement positions of the pair of heat generating connection portions 151D and the high frequency connection portion 131D are, as viewed from above in FIG. 12, the pair of heat generating connection portions 151 described in the fourth embodiment and It is the same as each arrangement position of the high frequency connection portion 151C.
  • the positional relationship between the pair of first joining positions P1 (FIGS. 12 and 13) and the second joining position P2 (FIG. 12) where the pair of heating lead wires C1 and the high-frequency lead wires C2 are joined is also as follows. This is the same as in the first and fourth embodiments.
  • the high-frequency connection portion 131D (connection portion main body) among the three second through holes 162 with respect to the insulating layer 16A described in the second embodiment. 1311) only the second through hole 162 located at the arrangement position is not formed.
  • the remaining two second through holes 162 electrically connect the pair of heat generating connection portions 151D and both end portions of the heat generation pattern 152, respectively, as in the second embodiment.
  • the high-frequency connecting portion 131D and the joining portion 134 described above electrically connect the high-frequency lead wire C2 and the treatment member 11 and correspond to the energizing member 13D (FIGS. 12 and 13) according to the present invention. .
  • the insulating member 14B, the insulating layer 16D, the pair of heat generating connection portions 151D, the two second through holes 162 located at the respective positions of the pair of heat generating connection portions 151D, and the heat generation pattern 152 are provided in the present invention. This corresponds to the heat generating member 12D (FIGS. 12 and 13).
  • FIG. 14 and 15 are diagrams showing an energy application structure 10E (10E ') according to the sixth embodiment.
  • FIG. 14 corresponds to FIG.
  • FIG. 15 is a cross-sectional view corresponding to FIG.
  • the energy application structure 10 ⁇ / b> E according to the sixth embodiment corresponds to the energy application structure 10 described in the first embodiment and is provided in the first jaw 8.
  • the energy application structure 10E ′ according to the sixth embodiment corresponds to the energy application structure 10 ′ described in the first embodiment and is provided in the second jaw 8 ′.
  • the energy provision structure 10E, 10E ' has the same structure, and the points from which an up-and-down attitude
  • the pair of heat generating connection portions 151 and the high frequency connection portion 131 are connected via the flexible substrate 18 as shown in FIG.
  • a pair of heat generating lead C1 and high frequency lead C2 are electrically connected to each other.
  • the flexible substrate 18 includes a base layer 181, a conductive layer 182, and a cover layer 183 (FIG. 15).
  • the base layer 181 is a long sheet made of an insulating material such as polyimide (long shape extending in the longitudinal direction from the distal end of the gripping portion 7 to the proximal end).
  • the conductive layer 182 is formed of a rolled copper foil, and is formed on one surface (the lower surface in FIG. 15) of the base layer 181 as shown in FIG.
  • the conductive layer 182 includes a pair of heat generating conductive lines 1821 (FIG. 14) and a high frequency conductive line 1822.
  • the pair of heat generating conductive lines 1821 extend on one surface of the base layer 181 from the proximal end side to the distal end side to positions facing the pair of heat generating connection portions 151.
  • a pair of heat generating lead wires C1 are joined to each end portion on the base end side.
  • the high-frequency conductive line 1822 is located between the pair of heat-generating conductive lines 1821 on one surface of the base layer 181 and extends from the base end side to the distal end side to a position facing the high-frequency connection portion 131. Exists.
  • a high-frequency lead wire C2 is joined to the proximal end.
  • the cover layer 183 is a sheet made of the same material as the base layer 181 and having the same shape.
  • the cover layer 183 is bonded to one surface of the base layer 181 and covers the conductive layer 182.
  • openings 1831 (FIG. 15) that expose the respective end portions to the outside at positions facing the respective end portions on the distal end side of the pair of heat generating conductive lines 1821 and the high frequency conductive lines 1822. are formed respectively.
  • FIG. 15 for convenience of explanation, of the three openings 1831, only the opening 1831 facing the end on the tip side of the high-frequency conductive line 1822 is shown.
  • the flexible substrate 18 has a pair of heat generating connecting lines 151 and a pair of heat generating conductive lines 1821 and a high frequency conductive line 1822 through the openings 161 and 1831 with a conductive bonding material 19 (FIG. 15). And it attaches to the energy provision structure 10E (10E ') by joining to the connection part 131 for high frequency, respectively. That is, the heat generating conductive line 1821 serves as an energization path for the power supplied to the heat generating pattern 152 and corresponds to the heat generating wiring member according to the present invention.
  • the high-frequency conductive line 1822 serves as an energization path for high-frequency power supplied to the treatment member 11 and corresponds to the high-frequency wiring member according to the present invention.
  • the following effects can be obtained in addition to the same effects as those of the first embodiment.
  • the pair of heating lead C1 and the high-frequency lead C2 are joined to the pair of heating connection 151 and the high-frequency connection 131, respectively, as in the first embodiment described above, usually, 1 It is necessary to join one by one, and the joining process may be complicated.
  • the pair of heat generating lead C1 and the high frequency lead C2 are attached to the energy application structure 10E (10E ′) via the flexible substrate 18.
  • the pair of heat generating conductive lines 1821 and the high frequency conductive lines 1822 with respect to the pair of heat generating connection portions 151 and the high frequency connection portions 131 of the energy application structure 10E (10E ′). Can be joined together. Therefore, the joining process can be easily performed.
  • FIG. 16 is a diagram showing a positional relationship between the first and second joining positions P1, P2 according to the modified examples of the first to sixth embodiments. Specifically, FIG. 16 corresponds to FIG. In the first to sixth embodiments described above, the position of the pair of second joining positions P2 is not limited to the position described in the first to sixth embodiments. If the pair of second joining positions P2 are positions spaced by the same distance from the first joining position P1 with the first joining position P1 interposed therebetween, as shown in FIG. You may set to both sides of the width direction (up-down direction in FIG. 16) of 4th main surface PS4 with respect to P1, respectively.
  • the energy application structures 10 (10A to 10E) and 10 ′ (10A ′ to 10E ′) according to the first to sixth embodiments described above are configured to apply thermal energy and high frequency energy to a living tissue.
  • the present invention is not limited to this, and other energy, for example, ultrasonic energy may be further applied.
  • the first main surface PS1 is a flat surface.
  • the cross-sectional shape of the first main surface PS1 may be a convex shape, a concave shape, or a mountain shape.
  • the energy application structures 10 (10A to 10E) and the energy application structures 10 ′ (10A ′ to 10E ′) may have different first cross sections on the first main surfaces PS1.
  • both have a heat generation function.
  • a configuration having a heat generating function may be used.
  • the size of the heat generating connecting portion 151 (151A, 151D), the high frequency connecting portion 131 (131A), and the connecting portion main body 1311 is the heat generating lead wire C1 (heat generating conductive wire).
  • the line 1821) and the high-frequency lead wire C2 (high-frequency conductive line 1822) may have other sizes as long as they have an area that can be joined.
  • all of the heat generating connection portions 151A and 151D and the high frequency connection portions 131A and 131D are formed on the sixth main surface PS6, but this is not restrictive.
  • the energy applying structure 10E (10E ′) and the control device 3 are electrically connected by the electric cable C and the flexible substrate 18, but not limited thereto, only the flexible substrate 18 is provided.
  • the energy applying structure 10E (10E ′) and the control device 3 may be electrically connected.
  • a configuration using the flexible substrate 18 may be adopted as in the above-described sixth embodiment.

Abstract

This energy applying structure 10 includes: a treatment member 11 which is formed from a conductive material and applies thermal energy and radio frequency energy to body tissue by contacting the body tissue; a heating member 12 which has a heating pattern 152 that generates heat when energized and which heats the treatment member 11 by the heat of the heating pattern 152; and an energizing member 13 which is provided on the heating member 12, is bonded to a radio frequency wiring member C2 which serves as a current flow path for radio frequency power to be supplied to the treatment member 11, and electrically connects the radio frequency wiring member C2 and the treatment member 11.

Description

エネルギ付与構造体及び処置具Energy imparting structure and treatment instrument
 本発明は、エネルギ付与構造体及び処置具に関する。 The present invention relates to an energy application structure and a treatment instrument.
 従来、生体組織にエネルギを付与するエネルギ付与構造体が設けられ、当該エネルギの付与により生体組織を処置(接合(若しくは吻合)及び切離等)する処置具が知られている(例えば、特許文献1参照)。
 特許文献1に記載のエネルギ付与構造体は、生体組織を把持する一対のジョー(顎部材)において、互いに対向する各処置面上にそれぞれ設けられている。また、当該エネルギ付与構造体は、導電性材料から構成された処置部材(導電性密封プレート)と、当該処置部材の内部に配置された発熱部材(加熱要素)とを備える。
 処置部材には、高周波電力の通電経路となるリード線等の高周波用配線部材が接合される。そして、一対のジョーにそれぞれ設けられた各エネルギ付与構造体における各処置部材に対して、各高周波用配線部材を介して高周波電力を供給することにより、当該一対のジョーにて把持された生体組織に対して高周波エネルギが付与される。
 発熱部材には、電力の通電経路となるリード線等の発熱用配線部材が接合される。そして、発熱部材は、発熱用配線部材を介した通電により発熱し、処置部材を加熱する。
2. Description of the Related Art Conventionally, there has been known a treatment instrument that is provided with an energy applying structure that applies energy to a living tissue, and that treats the living tissue (joining (or anastomosis), cutting, etc.) by applying the energy (for example, Patent Documents) 1).
The energy application structure described in Patent Document 1 is provided on each treatment surface facing each other in a pair of jaws (jaw members) that grip biological tissue. In addition, the energy application structure includes a treatment member (conductive sealing plate) made of a conductive material, and a heat generating member (heating element) disposed inside the treatment member.
A high-frequency wiring member such as a lead wire serving as a current-carrying path for high-frequency power is joined to the treatment member. Then, by supplying high-frequency power to each treatment member in each energy application structure provided in each of the pair of jaws via each high-frequency wiring member, the living tissue grasped by the pair of jaws Is applied with high frequency energy.
A heating wiring member such as a lead wire serving as a power supply path is joined to the heating member. The heat generating member generates heat by energization via the heat generating wiring member, and heats the treatment member.
特開2008-23335号公報JP 2008-23335 A
 しかしながら、特許文献1に記載のエネルギ付与構造体では、処置部材に対して高周波用配線部材が直接、接合されている。そして、処置部材において、高周波用配線部材の接合位置の周辺領域は、当該高周波用配線部材に熱が逃げ易いため、他の領域に対して比較的に温度が低くなってしまう。すなわち、処置部材を均一に加熱する(高い均熱性能を実現する)ことが難しい、という問題がある。 However, in the energy application structure described in Patent Document 1, the high-frequency wiring member is directly bonded to the treatment member. And in a treatment member, since the heat | fever tends to escape to the said high frequency wiring member in the peripheral region of the joining position of the high frequency wiring member, temperature becomes comparatively low with respect to another area | region. That is, there is a problem that it is difficult to uniformly heat the treatment member (to achieve high soaking performance).
 本発明は、上記に鑑みてなされたものであって、高い均熱性能を実現することができるエネルギ付与構造体及び処置具を提供することを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to provide an energy application structure and a treatment instrument that can realize high heat equalization performance.
 上述した課題を解決し、目的を達成するために、本発明に係るエネルギ付与構造体は、導電性材料から構成され、生体組織に接触して当該生体組織に熱エネルギ及び高周波エネルギを付与する処置部材と、通電により発熱する発熱パターンを有し、当該発熱パターンの熱により前記処置部材を加熱する発熱部材と、前記発熱部材に設けられるとともに、前記処置部材に供給する高周波電力の通電経路となる高周波用配線部材が接合され、当該高周波用配線部材と前記処置部材とを電気的に接続する通電部材とを備える。 In order to solve the above-described problems and achieve the object, the energy application structure according to the present invention is made of a conductive material, and is a treatment for applying thermal energy and high-frequency energy to the living tissue in contact with the living tissue. A heat generating pattern that generates heat when energized, the heat generating member that heats the treatment member with the heat of the heat generating pattern, and a high-frequency power supply path that is provided on the heat generating member and supplied to the treatment member A high-frequency wiring member is joined, and includes a current-carrying member that electrically connects the high-frequency wiring member and the treatment member.
 また、本発明に係る処置具は、上述したエネルギ付与構造を備える。 Moreover, the treatment tool according to the present invention includes the above-described energy application structure.
 本発明に係るエネルギ付与構造体及び処置具によれば、高い均熱性能を実現することができる、という効果を奏する。 According to the energy applying structure and the treatment tool according to the present invention, there is an effect that high heat equalization performance can be realized.
図1は、本実施の形態1に係る処置システムを模式的に示す図である。FIG. 1 is a diagram schematically illustrating a treatment system according to the first embodiment. 図2は、処置具の先端部分を拡大した図である。FIG. 2 is an enlarged view of the distal end portion of the treatment instrument. 図3は、エネルギ付与構造体を示す図である。FIG. 3 is a diagram showing an energy application structure. 図4は、エネルギ付与構造体を示す図である。FIG. 4 is a diagram showing an energy application structure. 図5は、第1,第2の接合位置の位置関係を示す図である。FIG. 5 is a diagram illustrating a positional relationship between the first and second joining positions. 図6は、本実施の形態2に係るエネルギ付与構造体を示す図である。FIG. 6 is a diagram showing an energy application structure according to the second embodiment. 図7は、本実施の形態2に係るエネルギ付与構造体を示す図である。FIG. 7 is a diagram showing an energy application structure according to the second embodiment. 図8は、本実施の形態3に係るエネルギ付与構造体を示す図である。FIG. 8 is a diagram showing an energy application structure according to the third embodiment. 図9は、本実施の形態3に係るエネルギ付与構造体を示す図である。FIG. 9 is a diagram showing an energy application structure according to the third embodiment. 図10は、本実施の形態4に係るエネルギ付与構造体を示す図である。FIG. 10 is a diagram showing an energy application structure according to the fourth embodiment. 図11は、本実施の形態4に係るエネルギ付与構造体を示す図である。FIG. 11 is a diagram showing an energy application structure according to the fourth embodiment. 図12は、本実施の形態5に係るエネルギ付与構造体を示す図である。FIG. 12 is a diagram showing an energy application structure according to the fifth embodiment. 図13は、本実施の形態5に係るエネルギ付与構造体を示す図である。FIG. 13 is a diagram showing an energy application structure according to the fifth embodiment. 図14は、本実施の形態6に係るエネルギ付与構造体を示す図である。FIG. 14 is a diagram showing an energy application structure according to the sixth embodiment. 図15は、本実施の形態6に係るエネルギ付与構造体を示す図である。FIG. 15 is a diagram showing an energy application structure according to the sixth embodiment. 図16は、本実施の形態1~6の変形例に係る第1,第2の接合位置の位置関係を示す図である。FIG. 16 is a diagram showing a positional relationship between the first and second joining positions according to the modified examples of the first to sixth embodiments.
 以下、図面を参照して、本発明を実施するための形態(以下、実施の形態)について説明する。なお、以下に説明する実施の形態によって本発明が限定されるものではない。さらに、図面の記載において、同一の部分には同一の符号を付している。 Hereinafter, embodiments for carrying out the present invention (hereinafter referred to as embodiments) will be described with reference to the drawings. The present invention is not limited to the embodiments described below. Furthermore, the same code | symbol is attached | subjected to the same part in description of drawing.
 〔処置システムの概略構成〕
 図1は、本実施の形態1に係る処置システム1を模式的に示す図である。
 処置システム1は、処置対象である生体組織に熱エネルギ及び高周波エネルギを付与することにより、当該生体組織を処置(接合(若しくは吻合)及び切離等)する。この処置システム1は、図1に示すように、処置具2と、制御装置3と、フットスイッチ4とを備える。
[Schematic configuration of treatment system]
FIG. 1 is a diagram schematically illustrating a treatment system 1 according to the first embodiment.
The treatment system 1 treats (joins (or anastomoses) and detaches, etc.) the living tissues by applying thermal energy and high frequency energy to the living tissues to be treated. As illustrated in FIG. 1, the treatment system 1 includes a treatment tool 2, a control device 3, and a foot switch 4.
 〔処置具の構成〕
 処置具2は、例えば、腹壁を通して生体組織に処置を行うためのリニアタイプの外科医療用処置具である。この処置具2は、図1に示すように、ハンドル5と、シャフト6と、把持部7とを備える。
 ハンドル5は、術者が手で持つ部分である。そして、このハンドル5には、図1に示すように、操作ノブ51が設けられている。
 シャフト6は、図1に示すように、略円筒形状を有し、一端(図1中、右端部)がハンドル5に接続されている。また、シャフト6の他端(図1中、左端部)には、把持部7が取り付けられている。そして、このシャフト6の内部には、術者による操作ノブ51の操作に応じて、把持部7を構成する第1,第2ジョー8,8´(図1)を開閉させる開閉機構(図示略)が設けられている。また、このシャフト6の内部には、制御装置3に接続された電気ケーブルC(図1)がハンドル5を介して一端側(図1中、右端部側)から他端側(図1中、左端部側)まで配設されている。
[Configuration of treatment tool]
The treatment tool 2 is, for example, a linear type surgical treatment tool for performing treatment on a living tissue through the abdominal wall. As shown in FIG. 1, the treatment tool 2 includes a handle 5, a shaft 6, and a grip portion 7.
The handle 5 is a part that the surgeon holds by hand. The handle 5 is provided with an operation knob 51 as shown in FIG.
As shown in FIG. 1, the shaft 6 has a substantially cylindrical shape, and one end (right end portion in FIG. 1) is connected to the handle 5. A gripping portion 7 is attached to the other end of the shaft 6 (left end portion in FIG. 1). An opening / closing mechanism (not shown) that opens and closes the first and second jaws 8 and 8 ′ (FIG. 1) constituting the gripping portion 7 in response to the operation of the operation knob 51 by the operator is provided inside the shaft 6. ) Is provided. Further, in the shaft 6, an electric cable C (FIG. 1) connected to the control device 3 is connected to the other end side (in FIG. 1) from one end side (right end side in FIG. 1) via the handle 5. (Up to the left end side).
 〔把持部の構成〕
 図2は、処置具2の先端部分を拡大した図である。
 把持部7は、生体組織を把持して、当該生体組織を処置する部分である。この把持部7は、図1または図2に示すように、第1,第2ジョー8,8´を備える。
 第1,第2ジョー8,8´は、矢印R1(図2)方向に開閉可能にシャフト6の他端(図1,図2中、左端部)に軸支され、術者による操作ノブ51の操作に応じて、生体組織を把持可能とする。
 そして、第1,第2ジョー8,8´には、図2に示すように、エネルギ付与構造体10,10´がそれぞれ設けられている。
 なお、エネルギ付与構造体10,10´は、同一の構成を有し、上下の姿勢が逆になる点のみが異なる。このため、以下では、エネルギ付与構造体10の構成を主に説明する。そして、エネルギ付与構造体10´については、エネルギ付与構造体10と同一の構成に同一の符号を付してその説明を省略する。
(Configuration of gripping part)
FIG. 2 is an enlarged view of the distal end portion of the treatment instrument 2.
The gripping part 7 is a part that grips a living tissue and treats the living tissue. As shown in FIG. 1 or 2, the grip portion 7 includes first and second jaws 8 and 8 ′.
The first and second jaws 8 and 8 'are pivotally supported on the other end (the left end portion in FIGS. 1 and 2) of the shaft 6 so as to be opened and closed in the direction of the arrow R1 (FIG. 2). The living tissue can be grasped according to the operation.
The first and second jaws 8 and 8 'are provided with energy applying structures 10 and 10', respectively, as shown in FIG.
The energy applying structures 10 and 10 ′ have the same configuration, and are different only in that the vertical posture is reversed. For this reason, below, the structure of the energy provision structure 10 is mainly demonstrated. And about energy provision structure 10 ', the same code | symbol is attached | subjected to the structure same as energy provision structure 10, and the description is abbreviate | omitted.
 〔エネルギ付与構造体の構成〕
 図3及び図4は、エネルギ付与構造体10を示す図である。具体的に、図3は、図2中、下方側からエネルギ付与構造体10を見た斜視図である。図4は、高周波用接続部131(第1のスルーホール133)を通り、エネルギ付与構造体10の長手方向に延びる鉛直面にて当該エネルギ付与構造体10を切断した断面図である。
 なお、以下で記載する「先端側」は、把持部7の先端側であって、図3または図4中、左側を意味する。また、以下で記載する「基端側」は、把持部7のシャフト6側であって、図3または図4中、右側を意味する。
 エネルギ付与構造体10は、制御装置3による制御の下、熱エネルギ及び高周波エネルギを発生する。このエネルギ付与構造体10は、図3または図4に示すように、処置部材11と、発熱部材12と、通電部材13とを備える。
[Configuration of energy application structure]
3 and 4 are diagrams showing the energy application structure 10. Specifically, FIG. 3 is a perspective view of the energy applying structure 10 as viewed from below in FIG. FIG. 4 is a cross-sectional view of the energy application structure 10 cut along a vertical plane that passes through the high-frequency connection portion 131 (first through hole 133) and extends in the longitudinal direction of the energy application structure 10.
The “tip side” described below means the tip side of the gripping portion 7 and the left side in FIG. 3 or FIG. In addition, the “proximal end side” described below is the shaft 6 side of the grip portion 7 and means the right side in FIG. 3 or FIG.
The energy application structure 10 generates heat energy and high frequency energy under the control of the control device 3. As shown in FIG. 3 or FIG. 4, the energy applying structure 10 includes a treatment member 11, a heat generating member 12, and an energizing member 13.
 処置部材11は、例えば、銅等の導電性材料で構成されている。また、処置部材11は、図3に示すように、一方の板面(図3中、上方側の板面)に凹部111を有する長尺状(把持部7の先端から基端に向かう長手方向(図1,図2中、左右方向)に延在する長尺状)の板体で構成されている。
 凹部111は、処置部材11における幅方向の中心に位置し、当該処置部材11の長手方向に沿って延在する。また、凹部111を構成する側壁部のうち、基端側には側壁部は形成されていない。そして、処置部材11は、凹部111内で各部材12,13を支持しつつ、図1または図2中、下方側に配設された第1ジョー8における上方側の面に対して、凹部111が形成されていない他方の板面(図3中、下方側の板面)が上方に向く姿勢で取り付けられる。
The treatment member 11 is made of a conductive material such as copper, for example. Further, as shown in FIG. 3, the treatment member 11 has a long shape having a recess 111 on one plate surface (the upper plate surface in FIG. 3) (longitudinal direction from the distal end of the gripping portion 7 to the proximal end). (A long shape extending in the left-right direction in FIGS. 1 and 2)).
The recess 111 is located at the center in the width direction of the treatment member 11 and extends along the longitudinal direction of the treatment member 11. Moreover, the side wall part is not formed in the base end side among the side wall parts which comprise the recessed part 111. FIG. Then, the treatment member 11 supports the members 12 and 13 in the recess 111, and the recess 111 with respect to the upper surface of the first jaw 8 disposed on the lower side in FIG. 1 or 2. The other plate surface (in FIG. 3, the plate surface on the lower side in FIG. 3) is attached in a posture facing upward.
 ここで、処置部材11において、他方の板面は、本発明に係る第1の主面PS1(図2~図4)に相当する。また、凹部111の底面は、本発明に係る第2の主面PS2(図3,図4)に相当する。さらに、第1,第2の主面PS1,PS2を有する板状の凹部111の底部分は、本発明に係る底面部112(図2~図4)に相当する。また、凹部111の側壁部は、第2の主面PS2の外縁から当該第2の主面PS2の面外方向に突出しており、本発明に係る側壁部113(図2~図4)に相当する。
 そして、処置部材11は、第1,第2ジョー8,8´にて生体組織を把持した状態で、第1の主面PS1が当該生体組織に接触し、熱エネルギ及び高周波エネルギを生体組織に付与する。
Here, in the treatment member 11, the other plate surface corresponds to the first main surface PS1 (FIGS. 2 to 4) according to the present invention. The bottom surface of the recess 111 corresponds to the second main surface PS2 (FIGS. 3 and 4) according to the present invention. Further, the bottom portion of the plate-like recess 111 having the first and second main surfaces PS1 and PS2 corresponds to the bottom surface portion 112 (FIGS. 2 to 4) according to the present invention. Further, the side wall of the recess 111 protrudes from the outer edge of the second main surface PS2 in the out-of-plane direction of the second main surface PS2, and corresponds to the side wall 113 (FIGS. 2 to 4) according to the present invention. To do.
Then, the treatment member 11 is in a state where the living tissue is gripped by the first and second jaws 8 and 8 ′, the first main surface PS1 is in contact with the living tissue, and heat energy and high frequency energy are applied to the living tissue. Give.
 発熱部材12は、通電により発熱する発熱パターン152を有し、当該発熱パターン152の熱により処置部材11を加熱する。この発熱部材12は、図3または図4に示すように、絶縁部材14と、配線パターン15と、絶縁層16(図4)とを備える。なお、図3では、説明の便宜上、絶縁層16の図示を省略している。
 絶縁部材14は、例えば、熱伝導率の高いアルミナや窒化アルミニウム等の絶縁性材料で構成され、発熱パターン152の熱を処置部材11に伝達する。また、絶縁部材14は、図3または図4に示すように、長尺状(把持部7の長手方向に延在する長尺状)の板体で構成されている。
 ここで、絶縁部材14において、一方の板面(図3,図4中、下方側の板面)は、本発明に係る第3の主面PS3(図3,図4)に相当する。また、絶縁部材14において、他方の板面(図3,図4中、上方側の板面)は、本発明に係る第4の主面PS4(図3,図4)に相当する。
The heat generating member 12 has a heat generating pattern 152 that generates heat when energized, and the treatment member 11 is heated by the heat of the heat generating pattern 152. As shown in FIG. 3 or FIG. 4, the heat generating member 12 includes an insulating member 14, a wiring pattern 15, and an insulating layer 16 (FIG. 4). In FIG. 3, the insulating layer 16 is not shown for convenience of explanation.
The insulating member 14 is made of an insulating material such as alumina or aluminum nitride having a high thermal conductivity, for example, and transfers the heat of the heat generation pattern 152 to the treatment member 11. In addition, as shown in FIG. 3 or FIG. 4, the insulating member 14 is configured by a long plate (long shape extending in the longitudinal direction of the grip portion 7).
Here, in the insulating member 14, one plate surface (the plate surface on the lower side in FIGS. 3 and 4) corresponds to the third main surface PS3 (FIGS. 3 and 4) according to the present invention. In the insulating member 14, the other plate surface (the plate surface on the upper side in FIGS. 3 and 4) corresponds to the fourth main surface PS4 (FIGS. 3 and 4) according to the present invention.
 配線パターン15は、プラチナ薄膜を加工したものであり、図3または図4に示すように、一対の発熱用接続部151(図3)と、発熱パターン152とを備える。そして、配線パターン15は、第4の主面PS4に蒸着やスパッタ等で成膜したプラチナ薄膜をフォトリソグラフィーでパターンニングすることで形成される。
 なお、配線パターン15の材料としては、プラチナ薄膜に限らず、ニッケルやチタン等の導電性薄膜材料を採用しても構わない。また、配線パターン15としては、第4の主面PS4に薄膜をパターンニングした構成に限らず、当該第4の主面PS4に、酸化ルテニウム等の厚膜ペースト材を印刷技術により形成した構成を採用しても構わない。
The wiring pattern 15 is obtained by processing a platinum thin film, and includes a pair of heating connection portions 151 (FIG. 3) and a heating pattern 152 as shown in FIG. 3 or FIG. The wiring pattern 15 is formed by patterning a platinum thin film formed on the fourth main surface PS4 by vapor deposition, sputtering, or the like by photolithography.
The material of the wiring pattern 15 is not limited to a platinum thin film, and a conductive thin film material such as nickel or titanium may be used. Further, the wiring pattern 15 is not limited to a configuration in which a thin film is patterned on the fourth main surface PS4, and a configuration in which a thick film paste material such as ruthenium oxide is formed on the fourth main surface PS4 by a printing technique. You may adopt.
 一対の発熱用接続部151は、必要に応じて絶縁部材14との間に挿入された密着層、表面側に付加された密着層、保護層といった層構造で構成され、図3に示すように、第4の主面PS4における対角位置となる先端側及び基端側の各角隅部分に設けられている。そして、一対の発熱用接続部151には、電気ケーブルCを構成する一対の発熱用リード線C1がそれぞれ接合(接続)される。以下、一対の発熱用接続部151において、一対の発熱用リード線C1がそれぞれ接合される各位置を第2の接合位置P2(図3)と記載する。
 発熱パターン152は、一端が一方の発熱用接続部151に接続(導通)し、当該一端から、波状に蛇行しながら、第4の主面PS4における中央領域ArO(図5参照)を除く略全面に亘って満遍なく延在し、他端が他方の発熱用接続部151に接続(導通)する。そして、発熱パターン152は、制御装置3による制御の下、一対の発熱用リード線C1を介して、一対の発熱用接続部151に電圧が印加(通電)されることにより、発熱する。すなわち、発熱用リード線C1は、発熱パターン152に供給する電力の通電経路となり、本発明に係る発熱用配線部材に相当する。
The pair of heat generating connection portions 151 are configured by a layer structure such as an adhesion layer inserted between the insulating members 14 as necessary, an adhesion layer added to the surface side, and a protective layer, as shown in FIG. , Provided at each corner portion on the distal end side and the proximal end side which are diagonal positions on the fourth main surface PS4. A pair of heat generating lead wires C1 constituting the electric cable C are joined (connected) to the pair of heat generating connecting portions 151, respectively. Hereinafter, in the pair of heat generating connection portions 151, each position where the pair of heat generating lead wires C1 are joined is referred to as a second joining position P2 (FIG. 3).
One end of the heat generation pattern 152 is connected (conducted) to one heat generation connecting portion 151, and substantially the entire surface excluding the central region ArO (see FIG. 5) in the fourth main surface PS4 while meandering from the one end. The other end is connected (conducted) to the other heat generating connecting portion 151. The heat generation pattern 152 generates heat when a voltage is applied (energized) to the pair of heat generating connection portions 151 through the pair of heat generating lead wires C1 under the control of the control device 3. That is, the heating lead C1 serves as an energization path for power supplied to the heating pattern 152, and corresponds to the heating wiring member according to the present invention.
 絶縁層16は、例えば、熱伝導率の低いポリイミド等の絶縁性材料で構成されている。また、絶縁層16は、絶縁部材14と同一の幅寸法及び長さ寸法を有する長尺状(把持部7の長手方向に延在する長尺状)の板体で構成されている。そして、絶縁層16は、一方の板面(図4中、下方側の板面)が第4の主面PS4(発熱パターン152)に接合される。また、絶縁層16において、一対の発熱用接続部151及び後述する高周波用接続部131に対向する位置には、表裏を貫通し、これら各接続部151,131を外部に露出する開口部161(図4)がそれぞれ形成されている。なお、図4では、説明の便宜上、3つの開口部161のうち、高周波用接続部131に対向する開口部161のみ図示している。 The insulating layer 16 is made of an insulating material such as polyimide having a low thermal conductivity, for example. The insulating layer 16 is formed of a long plate (long shape extending in the longitudinal direction of the gripping portion 7) having the same width and length as the insulating member 14. The insulating layer 16 has one plate surface (the lower plate surface in FIG. 4) bonded to the fourth main surface PS4 (heat generation pattern 152). Further, in the insulating layer 16, at positions facing a pair of heat generating connection portions 151 and a high frequency connection portion 131 described later, an opening portion 161 (through the front and back surfaces and exposing these connection portions 151 and 131 to the outside is provided. 4) are formed. In FIG. 4, for convenience of explanation, only the opening 161 that faces the high-frequency connection 131 is shown among the three openings 161.
 ここで、絶縁層16において、一方の板面は、本発明に係る第5の主面PS5(図4)に相当する。また、絶縁層16において、他方の板面(図4中、上方側の板面)は、本発明に係る第6の主面PS6(図4)に相当する。
 そして、本実施の形態1では、絶縁層16の熱抵抗は、絶縁部材14の熱抵抗よりも大きい。なお、絶縁層16を絶縁部材14と同一の材料で構成しても構わない。この場合、絶縁層16の厚み寸法を絶縁部材14の厚み寸法よりも大きくすれば、絶縁層16の熱抵抗を絶縁部材14の熱抵抗よりも大きくすることができる。このように絶縁層16の熱抵抗を絶縁部材14の熱抵抗よりも大きくすることにより、発熱パターン152で発生した熱をより絶縁部材14側に伝達することができる。
Here, in the insulating layer 16, one plate surface corresponds to the fifth main surface PS5 (FIG. 4) according to the present invention. In the insulating layer 16, the other plate surface (upper plate surface in FIG. 4) corresponds to the sixth main surface PS6 (FIG. 4) according to the present invention.
In the first embodiment, the thermal resistance of the insulating layer 16 is larger than the thermal resistance of the insulating member 14. The insulating layer 16 may be made of the same material as the insulating member 14. In this case, if the thickness dimension of the insulating layer 16 is made larger than the thickness dimension of the insulating member 14, the thermal resistance of the insulating layer 16 can be made larger than the thermal resistance of the insulating member 14. Thus, by making the thermal resistance of the insulating layer 16 larger than the thermal resistance of the insulating member 14, the heat generated in the heat generating pattern 152 can be transmitted to the insulating member 14 side.
 通電部材13は、発熱部材12に設けられるとともに、電気ケーブルCを構成する高周波用リード線C2(図3,図4)が接合され、当該高周波用リード線C2と処置部材11とを電気的に接続する。この通電部材13は、図3または図4に示すように、高周波用接続部131と、裏面電極132と、第1のスルーホール133(図4)とを備える。
 高周波用接続部131は、一対の発熱用接続部151と同様の層構造で構成され、図3に示すように、一対の発熱用接続部151と略同一の大きさを有するパッド電極である。この高周波用接続部131は、第4の主面PS4における中央領域ArO(図5参照)に形成されている。そして、高周波用接続部131には、高周波用リード線C2が接合される。以下、高周波用接続部131において、高周波用リード線C2が接合される位置を第1の接合位置P1(図3,図4)と記載する。
The energizing member 13 is provided on the heat generating member 12, and a high-frequency lead C2 (FIGS. 3 and 4) constituting the electric cable C is joined to electrically connect the high-frequency lead C2 and the treatment member 11. Connecting. As shown in FIG. 3 or FIG. 4, the energizing member 13 includes a high-frequency connection portion 131, a back electrode 132, and a first through hole 133 (FIG. 4).
The high frequency connection portion 131 has a layer structure similar to that of the pair of heat generation connection portions 151, and is a pad electrode having substantially the same size as the pair of heat generation connection portions 151 as shown in FIG. The high frequency connection portion 131 is formed in the central region ArO (see FIG. 5) in the fourth main surface PS4. Then, the high frequency lead 131 is joined to the high frequency connection portion 131. Hereinafter, in the high-frequency connection portion 131, the position where the high-frequency lead wire C2 is bonded is referred to as a first bonding position P1 (FIGS. 3 and 4).
 裏面電極132は、一対の発熱用接続部151と同様の層構造で構成され、絶縁部材14と同一の幅寸法及び長さ寸法を有する長尺状(把持部7の長手方向に延在する長尺状)の電極であり、第3の主面PS3に形成されている。そして、絶縁部材14は、裏面電極132と、当該裏面電極132全面に設けられた導電性の接合材17(図3,図4)とを介して、第2の主面PS2に接合される。また、裏面電極132は、接合材17を介して、処置部材11と電気的に接続する。
 第1のスルーホール133は、図4に示すように、第4の主面PS4における中央領域ArO(図5参照)に位置し、第3の主面PS3と第4の主面PS4との間を貫通する。そして、第1のスルーホール133は、高周波用接続部131と裏面電極132とを電気的に接続する。すなわち、第1のスルーホール133は、本発明に係る高周波用通電経路部に相当する。
The back electrode 132 has a layer structure similar to that of the pair of heating connection portions 151 and has a long shape (the length extending in the longitudinal direction of the grip portion 7) having the same width and length as the insulating member 14. Electrode) and is formed on the third main surface PS3. The insulating member 14 is bonded to the second main surface PS2 via the back electrode 132 and the conductive bonding material 17 (FIGS. 3 and 4) provided on the entire surface of the back electrode 132. Further, the back electrode 132 is electrically connected to the treatment member 11 via the bonding material 17.
As shown in FIG. 4, the first through hole 133 is located in the central region ArO (see FIG. 5) in the fourth main surface PS4, and between the third main surface PS3 and the fourth main surface PS4. To penetrate. The first through hole 133 electrically connects the high-frequency connection part 131 and the back electrode 132. That is, the first through hole 133 corresponds to the high-frequency energization path portion according to the present invention.
 〔第1,第2の接合位置の位置関係〕
 図5は、第1,第2の接合位置P1,P2の位置関係を示す図である。具体的に、図5は、図3中、上方側から第1,第2の接合位置P1,P2を見た(処置部材11と発熱部材12とが互いに対向する方向に沿って見た)図である。
 第1の接合位置P1は、図5に示すように、第4の主面PS4の中央領域ArO内であって、配線パターン15が形成された形成領域ArHの中心位置CPに設定されている。また、一対の第2の接合位置P2は、第1の接合位置P1を挟み、当該第1の接合位置P1から同一の距離だけ離間した位置(第4の主面PS4における対角位置となる先端側及び基端側の各角隅部分)に設定されている。
[Positional relationship between the first and second joining positions]
FIG. 5 is a diagram showing the positional relationship between the first and second joining positions P1 and P2. Specifically, FIG. 5 is a view of the first and second joining positions P1 and P2 seen from above in FIG. 3 (viewed along the direction in which the treatment member 11 and the heating member 12 face each other). It is.
As shown in FIG. 5, the first bonding position P1 is set in the central area ArO of the fourth main surface PS4 and at the central position CP of the formation area ArH where the wiring pattern 15 is formed. Further, the pair of second joining positions P2 sandwiches the first joining position P1 and is spaced from the first joining position P1 by the same distance (a tip that is a diagonal position on the fourth main surface PS4). Side and base end sides).
 〔制御装置及びフットスイッチの構成〕
 フットスイッチ4は、術者が足で操作する部分である。そして、フットスイッチ4への当該操作に応じて、制御装置3から処置具2(発熱用接続部151及び高周波用接続部131)への通電のオン及びオフが切り替えられる。
 なお、当該オン及びオフを切り替える手段としては、フットスイッチ4に限らず、その他、手で操作するスイッチ等を採用しても構わない。
 制御装置3は、CPU(Central Processing Unit)等を含んで構成され、所定の制御プログラムにしたがって、処置具2の動作を統括的に制御する。より具体的に、制御装置3は、術者によるフットスイッチ4への操作(通電オンの操作)に応じて、一対の発熱用リード線C1を介して、一対の発熱用接続部151に電圧を印加する。また、制御装置3は、エネルギ付与構造体10,10´の各高周波用接続部131に対して2つの高周波用リード線C2を介して高周波電力を供給する。
 ここで、高周波用リード線C2は、処置部材11に供給する高周波電力の通電経路となり、本発明に係る高周波用配線部材に相当する。
[Configuration of control device and foot switch]
The foot switch 4 is a part operated by the operator with his / her foot. Then, according to the operation on the foot switch 4, on / off of energization from the control device 3 to the treatment instrument 2 (the heat generating connection portion 151 and the high frequency connection portion 131) is switched.
Note that the means for switching on and off is not limited to the foot switch 4, and a switch operated by hand or the like may be employed.
The control device 3 includes a CPU (Central Processing Unit) and the like, and comprehensively controls the operation of the treatment instrument 2 according to a predetermined control program. More specifically, the control device 3 applies a voltage to the pair of heating connection portions 151 via the pair of heating lead wires C1 in response to an operation of the foot switch 4 by the operator (an operation to turn on the power). Apply. The control device 3 supplies high-frequency power to the high-frequency connection portions 131 of the energy applying structures 10 and 10 ′ via the two high-frequency lead wires C <b> 2.
Here, the high-frequency lead wire C2 serves as an energization path for the high-frequency power supplied to the treatment member 11, and corresponds to the high-frequency wiring member according to the present invention.
 〔処置システムの動作〕
 次に、上述した処置システム1の動作について説明する。
 術者は、処置具2を手で持ち、当該処置具2の先端部分(把持部7及びシャフト6の一部)を、例えば、トロッカ等を用いて腹壁を通して腹腔内に挿入する。そして、術者は、操作ノブ51を操作し、把持部7にて処置対象の生体組織を把持する。
 次に、術者は、フットスイッチ4を操作し、制御装置3から処置具2への通電をオンに切り替える。当該オンに切り替えられると、制御装置3は、一対の発熱用リード線C1を介して、一対の発熱用接続部151に電圧を印加し、発熱パターン152を発熱させる。当該発熱パターン152からの熱は、絶縁部材14、裏面電極132、及び接合材17を介して処置部材11に伝達する。そして、処置部材11(第1の主面PS1)に接触している生体組織は、当該処置部材11の熱(熱エネルギの付与)により処置される。また、制御装置3は、エネルギ付与構造体10,10´の各高周波用接続部131に対して2つの高周波用リード線C2を介して高周波電力を供給する。これにより、高周波用接続部131~第1のスルーホール133~裏面電極132~接合材17~処置部材11の通電経路を介して、各処置部材11に高周波電力が供給される。すなわち、各処置部材11に把持された生体組織は、高周波エネルギが付与され、当該高周波エネルギにて処置される。
 なお、生体組織に熱エネルギ及び高周波エネルギを付与するタイミングは、同時となるタイミングであってもよく、あるいは、異なるタイミングであっても構わない。
[Action system action]
Next, operation | movement of the treatment system 1 mentioned above is demonstrated.
The surgeon holds the treatment instrument 2 by hand, and inserts the distal end portion of the treatment instrument 2 (a part of the gripping portion 7 and the shaft 6) into the abdominal cavity through the abdominal wall using, for example, a trocar. Then, the surgeon operates the operation knob 51 and grips the living tissue to be treated by the grip portion 7.
Next, the surgeon operates the foot switch 4 to turn on the power supply from the control device 3 to the treatment instrument 2. When switched on, the control device 3 applies a voltage to the pair of heating connection portions 151 via the pair of heating lead wires C1 to cause the heating pattern 152 to generate heat. Heat from the heat generation pattern 152 is transmitted to the treatment member 11 through the insulating member 14, the back electrode 132, and the bonding material 17. Then, the living tissue that is in contact with the treatment member 11 (first main surface PS1) is treated by the heat of the treatment member 11 (application of thermal energy). The control device 3 supplies high-frequency power to the high-frequency connection portions 131 of the energy applying structures 10 and 10 ′ via the two high-frequency lead wires C <b> 2. As a result, high frequency power is supplied to each treatment member 11 through the energization path of the high frequency connection portion 131, the first through hole 133, the back electrode 132, the bonding material 17, and the treatment member 11. That is, the living tissue grasped by each treatment member 11 is given high-frequency energy and treated with the high-frequency energy.
In addition, the timing which gives a thermal energy and high frequency energy to a biological tissue may be a simultaneous timing, or may be a different timing.
 以上説明した本実施の形態1に係るエネルギ付与構造体10(10´)によれば、以下の効果を奏する。
 本実施の形態1に係るエネルギ付与構造体10(10´)では、高周波用リード線C2は、発熱部材12に設けられた通電部材13を介して処置部材11に電気的に接続する。すなわち、高周波用リード線C2は、処置部材11に直接、接合されていない。
 そして、通電部材13は、処置部材11から高周波用リード線C2へと熱が逃げる経路になり得るところ、発熱部材12に設けられているため、当該発熱部材12から処置部材11へと熱を伝達する経路にもなる。このため、当該通電部材13を介して、処置部材11から高周波用リード線C2へと熱が逃げることを抑制することができる。
 したがって、本実施の形態1に係るエネルギ付与構造体10(10´)によれば、処置部材11における第1の主面PS1に温度のムラが生じることを抑制し、高い均熱性能を実現することができる、という効果を奏する。
 特に、発熱部材12は、発熱パターン152と処置部材11との間に介装された熱伝導率の高い絶縁部材14を備える。このため、発熱パターン152からの熱は、絶縁部材14内で均熱化された後、処置部材11に伝達される。さらに、処置部材11も熱伝導率の高い材料で構成されているため、当該処置部材11内でも同様に均熱化される。そして、絶縁部材14及び処置部材11における二重の均熱効果により、さらに高い均熱性能を実現することができる。
The energy application structure 10 (10 ′) according to the first embodiment described above has the following effects.
In the energy application structure 10 (10 ′) according to the first embodiment, the high-frequency lead wire C2 is electrically connected to the treatment member 11 via the energization member 13 provided on the heat generating member 12. That is, the high-frequency lead wire C2 is not directly joined to the treatment member 11.
The energizing member 13 can be a path for heat to escape from the treatment member 11 to the high-frequency lead wire C <b> 2, but is provided in the heat generating member 12, so that heat is transmitted from the heat generating member 12 to the treatment member 11. It will also be a route to. For this reason, it is possible to prevent heat from escaping from the treatment member 11 to the high-frequency lead wire C <b> 2 via the energization member 13.
Therefore, according to the energy imparting structure 10 (10 ′) according to the first embodiment, temperature unevenness is prevented from occurring on the first main surface PS1 of the treatment member 11, and high soaking performance is realized. There is an effect that it is possible.
In particular, the heat generating member 12 includes the insulating member 14 having a high thermal conductivity interposed between the heat generating pattern 152 and the treatment member 11. For this reason, the heat from the heat generation pattern 152 is soaked in the insulating member 14 and then transmitted to the treatment member 11. Furthermore, since the treatment member 11 is also made of a material having a high thermal conductivity, the temperature is similarly equalized in the treatment member 11 as well. Further, due to the double soaking effect in the insulating member 14 and the treatment member 11, higher soaking performance can be realized.
 ところで、発熱パターン152を絶縁部材14の表面に満遍なく形成した場合、形成領域ArHの中心位置CPの温度が最も高くなり、外縁の温度が最も低くなる温度分布を有する。
 そこで、本実施の形態1に係るエネルギ付与構造体10(10´)では、通電部材13に高周波用リード線C2が接合する第1の接合位置P1は、中心位置CPに設定されている。すなわち、高周波用リード線C2に熱が逃げて温度が低くなり易い部位を上述した温度分布における最も温度が高くなる位置に設定することで、上述した温度分布を平滑化し、さらに高い均熱性能を実現することができる。
By the way, when the heat generation pattern 152 is uniformly formed on the surface of the insulating member 14, the temperature distribution has a temperature at which the temperature at the center position CP of the formation region ArH is highest and the temperature of the outer edge is lowest.
Therefore, in the energy application structure 10 (10 ′) according to the first embodiment, the first joining position P1 where the high-frequency lead wire C2 is joined to the energizing member 13 is set to the center position CP. That is, by setting a portion where heat is easily released to the high-frequency lead C2 and the temperature is likely to be lowered to a position where the temperature is highest in the above-described temperature distribution, the above-described temperature distribution is smoothed, and higher soaking performance is achieved. Can be realized.
 ところで、高周波用リード線C2と同様に、一対の発熱用リード線C1にも熱が逃げ易いものである。
 本実施の形態1に係るエネルギ付与構造体10(10´)では、発熱部材12に一対の発熱用リード線C1がそれぞれ接合する各第2の接合位置P2は、第1の接合位置P1を挟み、当該第1の接合位置P1から同一の距離だけ離間した位置に設定されている。
 すなわち、第1,第2の接合位置P1,P2を分散させることにより、一対の発熱用リード線C1及び高周波用リード線C2への熱の逃げの影響を軽減し、さらに高い均熱性能を実現することができる。
By the way, as with the high-frequency lead wire C2, heat easily escapes to the pair of heat-generating lead wires C1.
In the energy application structure 10 (10 ′) according to the first embodiment, each second joining position P2 where the pair of heating lead wires C1 are joined to the heating member 12 sandwiches the first joining position P1. The first joint position P1 is set at a position separated by the same distance.
That is, by dispersing the first and second joining positions P1 and P2, the influence of heat escape to the pair of lead wires C1 for heating and the lead wire for high frequency C2 is reduced, and higher soaking performance is realized. can do.
(実施の形態2)
 次に、本実施の形態2について説明する。
 以下の説明では、上述した実施の形態1と同様の構成には同一符号を付し、その詳細な説明は省略または簡略化する。
 本実施の形態2に係るエネルギ付与構造体は、上述した実施の形態1で説明したエネルギ付与構造体10(10´)に対して、発熱用リード線C1と発熱パターン152との接続構造、及び、高周波用リード線C2と裏面電極132との接続構造が異なる。
(Embodiment 2)
Next, the second embodiment will be described.
In the following description, the same reference numerals are given to the same components as those in the first embodiment described above, and detailed description thereof will be omitted or simplified.
The energy application structure according to the second exemplary embodiment has a connection structure between the heat generation lead C1 and the heat generation pattern 152 with respect to the energy application structure 10 (10 ′) described in the first exemplary embodiment, and The connection structure between the high-frequency lead wire C2 and the back electrode 132 is different.
 図6及び図7は、本実施の形態2に係るエネルギ付与構造体10A(10A´)を示す図である。具体的に、図6は、図3に対応した図である。なお、図6では、図3とは異なり、本実施の形態2に係る絶縁層16Aを図示している。図7は、図4に対応した断面図である。
 ここで、本実施の形態2に係るエネルギ付与構造体10Aは、上述した実施の形態1で説明したエネルギ付与構造体10に対応し、第1ジョー8に設けられる。また、本実施の形態2に係るエネルギ付与構造体10A´は、上述した実施の形態1で説明したエネルギ付与構造体10´に対応し、第2ジョー8´に設けられる。そして、エネルギ付与構造体10A,10A´は、同一の構成を有し、上下の姿勢が逆になる点が異なる。このため、エネルギ付与構造体10A,10A´の同一の構成には同一の符号を付す。
6 and 7 are diagrams showing an energy application structure 10A (10A ') according to the second embodiment. Specifically, FIG. 6 corresponds to FIG. In FIG. 6, unlike FIG. 3, the insulating layer 16A according to the second embodiment is illustrated. FIG. 7 is a cross-sectional view corresponding to FIG.
Here, the energy application structure 10 </ b> A according to the second embodiment corresponds to the energy application structure 10 described in the first embodiment and is provided in the first jaw 8. The energy application structure 10A ′ according to the second embodiment corresponds to the energy application structure 10 ′ described in the first embodiment and is provided in the second jaw 8 ′. And energy provision structure 10A, 10A 'has the same structure, and the points from which an up-and-down attitude | position becomes reverse are different. For this reason, the same code | symbol is attached | subjected to the same structure of energy provision structure 10A, 10A '.
 本実施の形態2に係る絶縁層16Aでは、図6または図7に示すように、上述した実施の形態1で説明した絶縁層16に対して、3つの開口部161が形成されていない。
 また、本実施の形態2に係る一対の発熱用接続部151A及び高周波用接続部131Aは、図6または図7に示すように、第4の主面PS4ではなく、第6の主面PS6に形成されている。なお、一対の発熱用接続部151A及び高周波用接続部131Aの各配設位置は、図6中、上方側から見た場合、上述した実施の形態1で説明した一対の発熱用接続部151及び高周波用接続部131の各配設位置とそれぞれ同一である。また、一対の発熱用リード線C1及び高周波用リード線C2が接合される一対の第1の接合位置P1(図6,図7)及び第2の接合位置P2(図6)の位置関係も、上述した実施の形態1と同様である。
In the insulating layer 16A according to the second embodiment, as shown in FIG. 6 or FIG. 7, the three openings 161 are not formed with respect to the insulating layer 16 described in the first embodiment.
Further, as shown in FIG. 6 or FIG. 7, the pair of heat generating connection portions 151A and high frequency connection portions 131A according to the second embodiment are not provided on the fourth main surface PS4 but on the sixth main surface PS6. Is formed. In addition, the arrangement positions of the pair of heating connection portions 151A and the high frequency connection portion 131A when viewed from the upper side in FIG. 6, the pair of heating connection portions 151 described in the first embodiment and The arrangement positions of the high-frequency connection portions 131 are the same. Also, the positional relationship between the pair of first joining positions P1 (FIGS. 6 and 7) and the second joining position P2 (FIG. 6) where the pair of heating lead wires C1 and the high-frequency lead wire C2 are joined is This is similar to the first embodiment described above.
 そして、絶縁層16Aには、一対の発熱用接続部151A及び高周波用接続部131Aの各配設位置に位置し、第5の主面PS5と第6の主面PS6との間をそれぞれ貫通する3つの第2のスルーホール162が形成されている。なお、図7では、3つの第2のスルーホール162のうち、高周波用接続部131Aの配設位置に位置する第2のスルーホール162のみ図示している。
 これら3つの第2のスルーホール162のうち、一対の発熱用接続部151Aの各配設位置に位置する2つの第2のスルーホール162は、当該一対の発熱用接続部151Aと発熱パターン152の両端部とをそれぞれ電気的に接続する。すなわち、一対の発熱用接続部151Aの各配設位置に位置する2つの第2のスルーホール162は、本発明に係る発熱用通電経路部に相当する。また、高周波用接続部131Aの配設位置に位置する第2のスルーホール162は、当該高周波用接続部131Aと第1のスルーホール133とを電気的に接続する。
The insulating layer 16A is located at each of the arrangement positions of the pair of heat generating connection portions 151A and the high frequency connection portions 131A and penetrates between the fifth main surface PS5 and the sixth main surface PS6. Three second through holes 162 are formed. In FIG. 7, only the second through-hole 162 located at the position where the high-frequency connection portion 131 </ b> A is disposed is illustrated among the three second through-holes 162.
Of these three second through-holes 162, the two second through-holes 162 located at the respective positions of the pair of heat-generating connection portions 151A are formed between the pair of heat-generating connection portions 151A and the heat generation pattern 152. Both ends are electrically connected to each other. That is, the two second through-holes 162 located at the respective arrangement positions of the pair of heat generating connection portions 151A correspond to the heat generating energization path portions according to the present invention. Further, the second through-hole 162 located at the position where the high-frequency connection portion 131A is disposed electrically connects the high-frequency connection portion 131A and the first through-hole 133.
 以上説明した第1のスルーホール133と、高周波用接続部131Aの配設位置に位置する第2のスルーホール162とは、高周波用接続部131Aと裏面電極132とを電気的に接続しており、本発明に係る高周波用通電経路部133A(図7)に相当する。また、高周波用接続部131、高周波用通電経路部133A、及び裏面電極132は、高周波用リード線C2と処置部材11とを電気的に接続しており、本発明に係る通電部材13A(図6,図7)に相当する。さらに、絶縁部材14、絶縁層16A、一対の発熱用接続部151A、一対の発熱用接続部151Aの各配設位置に位置する2つの第2のスルーホール162、及び発熱パターン152は、本発明に係る発熱部材12A(図6,図7)に相当する。 The first through hole 133 described above and the second through hole 162 located at the position where the high frequency connecting portion 131A is disposed electrically connect the high frequency connecting portion 131A and the back electrode 132. This corresponds to the high-frequency energization path portion 133A (FIG. 7) according to the present invention. Further, the high-frequency connection portion 131, the high-frequency energization path portion 133A, and the back electrode 132 electrically connect the high-frequency lead C2 and the treatment member 11, and the energization member 13A according to the present invention (FIG. 6). , FIG. 7). Further, the insulating member 14, the insulating layer 16A, the pair of heat generating connection portions 151A, the two second through holes 162 located at the respective positions of the pair of heat generating connection portions 151A, and the heat generation pattern 152 are provided in the present invention. This corresponds to the heat generating member 12A according to FIG.
 以上説明した本実施の形態2に係るエネルギ付与構造体10A(10A´)によれば、上述した実施の形態1と同様の効果の他、以下の効果を奏する。
 ところで、上述した実施の形態1のように、発熱パターン152、一対の発熱用接続部151、及び高周波用接続部131を第4の主面PS4に形成した場合には、第4の主面PS4において、発熱パターン152が設けられた領域は、比較的に温度の高い発熱領域となる。一方、第4の主面PS4において、一対の発熱用接続部151及び高周波用接続部131が設けられた領域は、比較的に温度の低い非発熱領域となる。
 ここで、一対の発熱用接続部151及び高周波用接続部131に一対の発熱用リード線C1及び高周波用リード線C2をそれぞれ接合する場合、十分な接合強度が得られるように、各接続部151,131の大きさ(面積)をある程度、確保する必要がある。そこで、当該大きさをなるべく大きく確保しようとすると実質的な発熱領域が減少することになる。当該発熱領域は、処置具2の発熱性能に関係する。このため、当該発熱領域の減少は、処置具2の発熱性能の低下に繋がってしまう。
According to energy grant structure 10A (10A ') concerning this 2nd embodiment explained above, in addition to the same effect as a 1st embodiment mentioned above, there are the following effects.
By the way, when the heat generation pattern 152, the pair of heat generation connection portions 151, and the high frequency connection portion 131 are formed on the fourth main surface PS4 as in the first embodiment described above, the fourth main surface PS4. In FIG. 5, the region where the heat generation pattern 152 is provided is a heat generation region having a relatively high temperature. On the other hand, in the fourth main surface PS4, the region where the pair of heat generating connection portions 151 and the high frequency connection portion 131 are provided is a non-heat generating region having a relatively low temperature.
Here, when the pair of heat generating lead wires C1 and the high frequency lead wire C2 are joined to the pair of heat generating connecting portions 151 and the high frequency connecting portion 131, the connecting portions 151 are provided so that sufficient joining strength can be obtained. , 131 must be secured to some extent. Therefore, if an attempt is made to secure the size as much as possible, the substantial heat generation area is reduced. The heat generation area relates to the heat generation performance of the treatment tool 2. For this reason, the decrease in the heat generation area leads to a decrease in the heat generation performance of the treatment instrument 2.
 本実施の形態2に係るエネルギ付与構造体10A(10A´)では、発熱パターン152は、第4の主面PS4に形成されている。一方、一対の発熱用接続部151A及び高周波用接続部131Aは、第6の主面PS6に形成されている。すなわち、発熱パターン152と一対の発熱用接続部151A及び高周波用接続部131Aとは、互いに異なる層にそれぞれ形成されている。
 このため、一対の発熱用接続部151A及び高周波用接続部131Aとしては、第6の主面PS6において、一対の発熱用リード線C1及び高周波用リード線C2をそれぞれ接合可能とする面積を十分に確保することができる。一方、発熱パターン152としては、第4の主面PS4において、一対の発熱用接続部151A及び高周波用接続部131Aにより配設される領域が制限されることがないため、当該第4の主面PS4全面に亘って満遍なく形成することができる。したがって、一対の発熱用リード線C1及び高周波用リード線C2の接合強度を十分に確保しつつ、高い発熱性能を実現することができる。
In the energy application structure 10A (10A ′) according to the second embodiment, the heat generation pattern 152 is formed on the fourth main surface PS4. On the other hand, the pair of heat generating connection portions 151A and the high frequency connection portion 131A are formed on the sixth main surface PS6. That is, the heat generation pattern 152, the pair of heat generation connection portions 151A, and the high frequency connection portion 131A are formed in different layers.
For this reason, the pair of heat generating connection portions 151A and the high frequency connection portions 131A have a sufficient area on the sixth main surface PS6 so that the pair of heat generation lead wires C1 and the high frequency lead wires C2 can be joined respectively. Can be secured. On the other hand, as the heat generation pattern 152, the fourth main surface PS4 is not limited in the region provided by the pair of heat generation connection portions 151A and the high frequency connection portion 131A. It can be formed uniformly over the entire surface of PS4. Therefore, high heat generation performance can be realized while sufficiently securing the bonding strength between the pair of heat generating lead C1 and the high frequency lead C2.
(実施の形態3)
 次に、本実施の形態3について説明する。
 以下の説明では、上述した実施の形態1と同様の構成には同一符号を付し、その詳細な説明は省略または簡略化する。
 本実施の形態3に係るエネルギ付与構造体は、上述した実施の形態1で説明したエネルギ付与構造体10(10´)に対して、高周波用リード線C2と裏面電極132との接続構造が異なる。
(Embodiment 3)
Next, the third embodiment will be described.
In the following description, the same reference numerals are given to the same components as those in the first embodiment described above, and detailed description thereof will be omitted or simplified.
The energy application structure according to the third embodiment is different from the energy application structure 10 (10 ′) described in the first embodiment in the connection structure between the high-frequency lead C2 and the back electrode 132. .
 図8及び図9は、本実施の形態3に係るエネルギ付与構造体10B(10B´)を示す図である。具体的に、図8は、図3に対応した図である。図9は、高周波用通電経路部133Bを通り、エネルギ付与構造体10B(10B´)の長手方向に延びる鉛直面にて当該エネルギ付与構造体10B(10B´)を切断した断面図である。
 ここで、本実施の形態3に係るエネルギ付与構造体10Bは、上述した実施の形態1で説明したエネルギ付与構造体10に対応し、第1ジョー8に設けられる。また、本実施の形態3に係るエネルギ付与構造体10B´は、上述した実施の形態1で説明したエネルギ付与構造体10´に対応し、第2ジョー8´に設けられる。そして、エネルギ付与構造体10B,10B´は、同一の構成を有し、上下の姿勢が逆になる点が異なる。このため、エネルギ付与構造体10B,10B´の同一の構成には同一の符号を付す。
8 and 9 are diagrams showing an energy application structure 10B (10B ') according to the third embodiment. Specifically, FIG. 8 corresponds to FIG. FIG. 9 is a cross-sectional view of the energy applying structure 10B (10B ′) taken along a vertical plane that passes through the high-frequency energizing path portion 133B and extends in the longitudinal direction of the energy applying structure 10B (10B ′).
Here, the energy application structure 10 </ b> B according to the third embodiment corresponds to the energy application structure 10 described in the first embodiment and is provided in the first jaw 8. The energy application structure 10B ′ according to the third embodiment corresponds to the energy application structure 10 ′ described in the first embodiment and is provided in the second jaw 8 ′. And energy provision structure 10B, 10B 'has the same structure, and the points from which an up-and-down attitude | position becomes reverse are different. For this reason, the same code | symbol is attached | subjected to the same structure of energy provision structure 10B, 10B '.
 本実施の形態3に係る絶縁部材14Bでは、図9に示すように、上述した実施の形態1で説明した絶縁部材14に対して、第1のスルーホール133が形成されていない。
 また、本実施の形態3に係る高周波用接続部131Bは、図8または図9に示すように、接続部本体1311と、第1延在部1312とを備える。
 接続部本体1311は、上述した実施の形態1で説明した高周波用接続部131と同一の材料で構成され、同一の形状を有し、同一の配設位置に設けられている。そして、接続部本体1311には、高周波用リード線C2が接合される。
 第1延在部1312は、接続部本体1311と同一の材料で構成され、当該接続部本体1311における基端側の端縁から、絶縁部材14Bにおける第3の主面PS3と第4の主面PS4とにそれぞれ交差する基端側の側面S7(図8,図9)まで延在した部分である。
In the insulating member 14B according to the third embodiment, as shown in FIG. 9, the first through hole 133 is not formed with respect to the insulating member 14 described in the first embodiment.
Further, the high frequency connection portion 131B according to the third embodiment includes a connection portion main body 1311 and a first extension portion 1312 as shown in FIG. 8 or FIG.
The connection portion main body 1311 is made of the same material as the high frequency connection portion 131 described in the first embodiment, has the same shape, and is provided at the same arrangement position. The high frequency lead wire C <b> 2 is joined to the connection portion main body 1311.
The first extending portion 1312 is made of the same material as that of the connection portion main body 1311. From the base end side edge of the connection portion main body 1311, the third main surface PS3 and the fourth main surface of the insulating member 14B. This is a portion extending to the side surface S7 (FIGS. 8 and 9) on the base end side that intersects PS4.
 そして、本実施の形態3では、高周波用接続部131Bと裏面電極132とは、図8または図9に示すように、高周波用通電経路部133Bにて電気的に接続される。
 高周波用通電経路部133Bは、銅、アルミニウム、カーボン等の導電性材料で構成され、側面S7に蒸着等により形成されている。そして、高周波用通電経路部133Bは、高周波用接続部131B(第1延在部1312)と裏面電極132とにそれぞれ電気的に接続する。
 以上説明した高周波用接続部131B、高周波用通電経路部133B、及び裏面電極132は、高周波用リード線C2と処置部材11とを電気的に接続しており、本発明に係る通電部材13B(図8,図9)に相当する。また、絶縁部材14B、配線パターン15、及び絶縁層16は、本発明に係る発熱部材12B(図8,図9)に相当する。
In the third embodiment, the high frequency connecting portion 131B and the back electrode 132 are electrically connected through a high frequency energizing path portion 133B as shown in FIG. 8 or FIG.
The high-frequency energizing path portion 133B is made of a conductive material such as copper, aluminum, or carbon, and is formed on the side surface S7 by vapor deposition or the like. The high-frequency energizing path portion 133B is electrically connected to the high-frequency connection portion 131B (first extension portion 1312) and the back electrode 132, respectively.
The high frequency connecting portion 131B, the high frequency energizing path portion 133B, and the back electrode 132 described above electrically connect the high frequency lead C2 and the treatment member 11, and the energizing member 13B according to the present invention (FIG. 8 and FIG. 9). The insulating member 14B, the wiring pattern 15, and the insulating layer 16 correspond to the heat generating member 12B according to the present invention (FIGS. 8 and 9).
 以上説明した本実施の形態3に係るエネルギ付与構造体10B(10B´)によれば、上述した実施の形態1と同様の効果の他、以下の効果を奏する。
 ところで、高周波用リード線C2からの熱の逃げは、当該熱が逃げる経路の断面積に依存する。そして、上述した実施の形態1のように、本発明に係る高周波用通電経路部として、絶縁部材14の内部に形成した第1のスルーホール133を採用した場合において、高周波用リード線C2からの熱の逃げを極力、低減させるためには、当該第1のスルーホール133を細くすることが望ましい。しかしながら、第1のスルーホール133は、絶縁部材14に形成した貫通孔に導電部材を充填して形成するため、形成可能な径寸法の最小サイズに限界がある。
 本実施の形態3に係るエネルギ付与構造体10B(10B´)では、高周波用通電経路部133Bは、絶縁部材14Bの側面S7に形成されている。このため、高周波用通電経路部133Bを薄く(断面積を小さく)することが可能となり、高周波用リード線C2からの熱の逃げを極力、低減することができる。
According to the energy provision structure 10B (10B ′) according to the third embodiment described above, the following effects can be obtained in addition to the same effects as those of the first embodiment.
Incidentally, the escape of heat from the high-frequency lead C2 depends on the cross-sectional area of the path through which the heat escapes. As in the first embodiment described above, when the first through hole 133 formed in the insulating member 14 is employed as the high-frequency energizing path portion according to the present invention, the high-frequency lead wire C2 is connected to the first through-hole 133. In order to reduce the heat escape as much as possible, it is desirable to make the first through hole 133 thinner. However, since the first through hole 133 is formed by filling a through hole formed in the insulating member 14 with a conductive member, there is a limit to the minimum size of the diameter that can be formed.
In the energy application structure 10B (10B ′) according to the third embodiment, the high-frequency energizing path portion 133B is formed on the side surface S7 of the insulating member 14B. For this reason, it becomes possible to make the high-frequency energization path portion 133B thin (small cross-sectional area), and to reduce heat escape from the high-frequency lead C2 as much as possible.
(実施の形態4)
 次に、本実施の形態4について説明する。
 以下の説明では、上述した実施の形態1,3と同様の構成には同一符号を付し、その詳細な説明は省略または簡略化する。
 本実施の形態4に係るエネルギ付与構造体は、上述した実施の形態1で説明したエネルギ付与構造体10(10´)に対して、高周波用リード線C2と処置部材11との接続構造が異なる。
(Embodiment 4)
Next, the fourth embodiment will be described.
In the following description, the same components as those in the first and third embodiments described above are denoted by the same reference numerals, and detailed description thereof is omitted or simplified.
The energy application structure according to the fourth embodiment is different from the energy application structure 10 (10 ') described in the first embodiment in the connection structure between the high-frequency lead C2 and the treatment member 11. .
 図10及び図11は、本実施の形態4に係るエネルギ付与構造体10C(10C´)を示す図である。具体的に、図10は、図3に対応した図である。図11は、接合部134を通り、エネルギ付与構造体10C(10C´)の長手方向に延びる鉛直面にて当該エネルギ付与構造体10C(10C´)を切断した断面図である。
 ここで、本実施の形態4に係るエネルギ付与構造体10Cは、上述した実施の形態1で説明したエネルギ付与構造体10に対応し、第1ジョー8に設けられる。また、本実施の形態4に係るエネルギ付与構造体10C´は、上述した実施の形態1で説明したエネルギ付与構造体10´に対応し、第2ジョー8´に設けられる。そして、エネルギ付与構造体10C,10C´は、同一の構成を有し、上下の姿勢が逆になる点が異なる。このため、エネルギ付与構造体10C,10C´の同一の構成には同一の符号を付す。
10 and 11 are diagrams showing an energy application structure 10C (10C ′) according to the fourth embodiment. Specifically, FIG. 10 corresponds to FIG. FIG. 11 is a cross-sectional view of the energy application structure 10C (10C ′) taken along a vertical plane that passes through the joint portion 134 and extends in the longitudinal direction of the energy application structure 10C (10C ′).
Here, the energy application structure 10 </ b> C according to the fourth embodiment corresponds to the energy application structure 10 described in the first embodiment and is provided in the first jaw 8. The energy application structure 10C ′ according to the fourth embodiment corresponds to the energy application structure 10 ′ described in the first embodiment and is provided in the second jaw 8 ′. The energy application structures 10C and 10C ′ have the same configuration, and are different in that the vertical posture is reversed. For this reason, the same code | symbol is attached | subjected to the same structure of energy provision structure 10C, 10C '.
 本実施の形態4に係るエネルギ付与構造体10C(10C´)では、図10または図11に示すように、上述した実施の形態3で説明したエネルギ付与構造体10B(10B´)に対して、裏面電極132が形成されていない。そして、絶縁部材14Bは、第3の主面PS3と第4の主面PS4とにそれぞれ交差する先端側の側面S8(図11)が側壁部113に当接した状態で、第3の主面PS3全面に設けられた接合材17を介して、第2の主面PS2に接合される。
 また、本実施の形態4に係る高周波用接続部131Cは、図10または図11に示すように、上述した実施の形態3で説明した接続部本体1311の他、第2延在部1313を備える。
 第2延在部1313は、接続部本体1311と同一の材料で構成され、当該接続部本体1311における先端側の端縁から、絶縁部材14Bの側面S8(図11)まで延在した部分である。
In the energy application structure 10C (10C ′) according to the fourth embodiment, as illustrated in FIG. 10 or FIG. 11, the energy application structure 10B (10B ′) described in the third embodiment described above, The back electrode 132 is not formed. Then, the insulating member 14B has the third main surface in a state where the side surface S8 (FIG. 11) on the front end side intersecting the third main surface PS3 and the fourth main surface PS4 is in contact with the side wall 113. It is bonded to the second main surface PS2 via a bonding material 17 provided on the entire surface of PS3.
Further, as shown in FIG. 10 or FIG. 11, the high frequency connection portion 131C according to the fourth embodiment includes a second extension portion 1313 in addition to the connection portion main body 1311 described in the third embodiment. .
The second extending portion 1313 is made of the same material as that of the connecting portion main body 1311 and extends from the leading edge of the connecting portion main body 1311 to the side surface S8 (FIG. 11) of the insulating member 14B. .
 また、本実施の形態4に係る絶縁層16Cは、図11に示すように、上述した実施の形態3で説明した絶縁層16に対して、第2延在部1313における先端側の端部に対向する位置に、当該端部を外部に露出する切欠部163が形成されている。
 そして、本実施の形態3では、高周波用接続部131C(第2延在部1313)と処置部材11(側壁部113)とは、図10または図11に示すように、切欠部163を介して、導電性の接合部134にて電気的に接続される。
 以上説明した高周波用接続部131C及び接合部134は、高周波用リード線C2と処置部材11(側壁部113)とを電気的に接続しており、本発明に係る通電部材13C(図10,図11)に相当する。また、絶縁部材14B、配線パターン15、及び絶縁層16Cは、本発明に係る発熱部材12C(図10,図11)に相当する。
In addition, as shown in FIG. 11, the insulating layer 16C according to the fourth embodiment has a distal end side end portion of the second extending portion 1313 with respect to the insulating layer 16 described in the third embodiment. A notch portion 163 that exposes the end portion to the outside is formed at the facing position.
In the third embodiment, the high-frequency connection part 131C (second extending part 1313) and the treatment member 11 (side wall part 113) are connected via a notch part 163 as shown in FIG. Are electrically connected at the conductive joint 134.
The high frequency connecting portion 131C and the joining portion 134 described above electrically connect the high frequency lead wire C2 and the treatment member 11 (side wall portion 113), and the energizing member 13C according to the present invention (FIGS. 10 and 10). 11). The insulating member 14B, the wiring pattern 15, and the insulating layer 16C correspond to the heat generating member 12C (FIGS. 10 and 11) according to the present invention.
 以上説明した本実施の形態4に係るエネルギ付与構造体10C(10C´)によれば、上述した実施の形態1,3と同様の効果の他、以下の効果を奏する。
 ところで、本発明に係る通電部材として、上述した実施の形態1のように第1のスルーホール133や、上述した実施の形態3のように高周波用通電経路部133Bを含む構成とした場合には、製造上、特別な加工工程が必要となり、高コストとなる虞がある。
 本実施の形態4に係るエネルギ付与構造体10C(10C´)では、通電部材13Cは、高周波用接続部131Cと、接合部134とを備える。このため、通電部材13Cを一般的な電気基板製造工程のみで製造することができ、低コスト化が可能となる。
According to energy grant structure 10C (10C ') concerning this 4th embodiment explained above, in addition to the same effect as the 1st and 3rd embodiments mentioned above, the following effects are produced.
By the way, when it is set as the structure which contains the 1st through-hole 133 like Embodiment 1 mentioned above and the electricity supply path | route part 133B for high frequencies like Embodiment 3 mentioned above as an electricity supply member which concerns on this invention. In production, a special processing step is required, which may increase the cost.
In the energy application structure 10C (10C ′) according to the fourth embodiment, the energization member 13C includes a high-frequency connection portion 131C and a joint portion 134. For this reason, the energization member 13C can be manufactured only by a general electric substrate manufacturing process, and the cost can be reduced.
(実施の形態5)
 次に、本実施の形態5について説明する。
 以下の説明では、上述した実施の形態1,2,4と同様の構成には同一符号を付し、その詳細な説明は省略または簡略化する。
 本実施の形態5に係るエネルギ付与構造体は、上述した実施の形態4で説明したエネルギ付与構造体10C(10C´)に対して、発熱用リード線C1と発熱パターン152との接続構造、及び、高周波用リード線C2と裏面電極132との接続構造が異なる。
(Embodiment 5)
Next, the fifth embodiment will be described.
In the following description, the same components as those in the first, second, and fourth embodiments described above are denoted by the same reference numerals, and detailed description thereof is omitted or simplified.
In the energy application structure according to the fifth embodiment, the connection structure of the heat generation lead C1 and the heat generation pattern 152 to the energy application structure 10C (10C ′) described in the fourth embodiment, and The connection structure between the high-frequency lead wire C2 and the back electrode 132 is different.
 図12及び図13は、本実施の形態5に係るエネルギ付与構造体10D(10D´)を示す図である。具体的に、図12は、図10に対応した図である。なお、図12では、図10とは異なり、本実施の形態5に係る絶縁層16Dを図示している。図13は、図11に対応した断面図である。
 ここで、本実施の形態5に係るエネルギ付与構造体10Dは、上述した実施の形態4で説明したエネルギ付与構造体10Cに対応し、第1ジョー8に設けられる。また、本実施の形態5に係るエネルギ付与構造体10D´は、上述した実施の形態4で説明したエネルギ付与構造体10C´に対応し、第2ジョー8´に設けられる。そして、エネルギ付与構造体10D,10D´は、同一の構成を有し、上下の姿勢が逆になる点が異なる。このため、エネルギ付与構造体10D,10D´の同一の構成には同一の符号を付す。
12 and 13 are diagrams showing an energy application structure 10D (10D ′) according to the fifth embodiment. Specifically, FIG. 12 corresponds to FIG. In FIG. 12, unlike FIG. 10, the insulating layer 16D according to the fifth embodiment is illustrated. FIG. 13 is a cross-sectional view corresponding to FIG.
Here, the energy application structure 10 </ b> D according to the fifth embodiment corresponds to the energy application structure 10 </ b> C described in the fourth embodiment and is provided in the first jaw 8. The energy application structure 10D ′ according to the fifth embodiment corresponds to the energy application structure 10C ′ described in the fourth embodiment and is provided in the second jaw 8 ′. And energy provision structure 10D, 10D 'has the same structure, and the points from which an up-and-down attitude | position becomes reverse are different. For this reason, the same code | symbol is attached | subjected to the same structure of energy provision structure 10D, 10D '.
 本実施の形態5に係る一対の発熱用接続部151D及び高周波用接続部131Dは、図12または図13に示すように、上述した実施の形態4で説明した一対の発熱用接続部151及び高周波用接続部131Cに対して、第4の主面PS4ではなく、第6の主面PS6に形成されている。なお、一対の発熱用接続部151D及び高周波用接続部131Dの各配設位置は、図12中、上方側から見た場合、上述した実施の形態4で説明した一対の発熱用接続部151及び高周波用接続部151Cの各配設位置とそれぞれ同一である。また、一対の発熱用リード線C1及び高周波用リード線C2が接合される一対の第1の接合位置P1(図12,図13)及び第2の接合位置P2(図12)の位置関係も、上述した実施の形態1,4と同様である。 As shown in FIG. 12 or FIG. 13, the pair of heat generating connecting portions 151D and the high frequency connecting portion 131D according to the fifth embodiment is the same as the pair of heat generating connecting portions 151 and the high frequency connecting portions described in the fourth embodiment. With respect to the connecting portion 131C, it is formed not on the fourth main surface PS4 but on the sixth main surface PS6. Note that the arrangement positions of the pair of heat generating connection portions 151D and the high frequency connection portion 131D are, as viewed from above in FIG. 12, the pair of heat generating connection portions 151 described in the fourth embodiment and It is the same as each arrangement position of the high frequency connection portion 151C. Further, the positional relationship between the pair of first joining positions P1 (FIGS. 12 and 13) and the second joining position P2 (FIG. 12) where the pair of heating lead wires C1 and the high-frequency lead wires C2 are joined is also as follows. This is the same as in the first and fourth embodiments.
 また、本実施の形態5に係る絶縁層16Dでは、上述した実施の形態2で説明した絶縁層16Aに対して、3つの第2のスルーホール162のうち、高周波用接続部131D(接続部本体1311)の配設位置に位置する第2のスルーホール162のみが形成されていない。そして、残りの2つの第2のスルーホール162は、上述した実施の形態2と同様に、一対の発熱用接続部151Dと発熱パターン152の両端部とをそれぞれ電気的に接続する。
 以上説明した高周波用接続部131D及び接合部134は、高周波用リード線C2と処置部材11とを電気的に接続しており、本発明に係る通電部材13D(図12,図13)に相当する。また、絶縁部材14B、絶縁層16D、一対の発熱用接続部151D、一対の発熱用接続部151Dの各配設位置に位置する2つの第2のスルーホール162、及び発熱パターン152は、本発明に係る発熱部材12D(図12,図13)に相当する。
In addition, in the insulating layer 16D according to the fifth embodiment, the high-frequency connection portion 131D (connection portion main body) among the three second through holes 162 with respect to the insulating layer 16A described in the second embodiment. 1311) only the second through hole 162 located at the arrangement position is not formed. The remaining two second through holes 162 electrically connect the pair of heat generating connection portions 151D and both end portions of the heat generation pattern 152, respectively, as in the second embodiment.
The high-frequency connecting portion 131D and the joining portion 134 described above electrically connect the high-frequency lead wire C2 and the treatment member 11 and correspond to the energizing member 13D (FIGS. 12 and 13) according to the present invention. . Further, the insulating member 14B, the insulating layer 16D, the pair of heat generating connection portions 151D, the two second through holes 162 located at the respective positions of the pair of heat generating connection portions 151D, and the heat generation pattern 152 are provided in the present invention. This corresponds to the heat generating member 12D (FIGS. 12 and 13).
 以上説明した本実施の形態5に係るエネルギ付与構造体10D(10D´)によれば、上述した実施の形態1,2,4と同様の効果を奏する。 According to the energy application structure 10D (10D ′) according to the fifth embodiment described above, the same effects as those of the first, second, and fourth embodiments described above can be obtained.
(実施の形態6)
 次に、本実施の形態6について説明する。
 以下の説明では、上述した実施の形態1と同様の構成には同一符号を付し、その詳細な説明は省略または簡略化する。
 本実施の形態6に係るエネルギ付与構造体では、上述した実施の形態1で説明したエネルギ付与構造体10(10´)に対して、一対の発熱用接続部151及び高周波用接続部131と一対の発熱用リード線C1及び高周波用リード線C2との接続構造が異なる。
(Embodiment 6)
Next, the sixth embodiment will be described.
In the following description, the same reference numerals are given to the same components as those in the first embodiment described above, and detailed description thereof will be omitted or simplified.
In the energy application structure according to the sixth embodiment, a pair of the heating connection portion 151 and the high frequency connection portion 131 and the energy application structure 10 (10 ′) described in the first embodiment are paired. The connecting structure of the heat generating lead C1 and the high frequency lead C2 is different.
 図14及び図15は、本実施の形態6に係るエネルギ付与構造体10E(10E´)を示す図である。具体的に、図14は、図3に対応した図である。図15は、図4に対応した断面図である。
 ここで、本実施の形態6に係るエネルギ付与構造体10Eは、上述した実施の形態1で説明したエネルギ付与構造体10に対応し、第1ジョー8に設けられる。また、本実施の形態6に係るエネルギ付与構造体10E´は、上述した実施の形態1で説明したエネルギ付与構造体10´に対応し、第2ジョー8´に設けられる。そして、エネルギ付与構造体10E,10E´は、同一の構成を有し、上下の姿勢が逆になる点が異なる。このため、エネルギ付与構造体10E,10E´の同一の構成には同一の符号を付す。
14 and 15 are diagrams showing an energy application structure 10E (10E ') according to the sixth embodiment. Specifically, FIG. 14 corresponds to FIG. FIG. 15 is a cross-sectional view corresponding to FIG.
Here, the energy application structure 10 </ b> E according to the sixth embodiment corresponds to the energy application structure 10 described in the first embodiment and is provided in the first jaw 8. Further, the energy application structure 10E ′ according to the sixth embodiment corresponds to the energy application structure 10 ′ described in the first embodiment and is provided in the second jaw 8 ′. And the energy provision structure 10E, 10E 'has the same structure, and the points from which an up-and-down attitude | position becomes reverse are different. For this reason, the same code | symbol is attached | subjected to the same structure of energy provision structure 10E, 10E '.
 本実施の形態6に係るエネルギ付与構造体10E(10E´)では、一対の発熱用接続部151及び高周波用接続部131は、図14または図15に示すように、フレキシブル基板18を介して、一対の発熱用リード線C1及び高周波用リード線C2にそれぞれ電気的に接続する。
 フレキシブル基板18は、図14または図15に示すように、ベース層181と、導電層182と、カバー層183(図15)とを備える。
 ベース層181は、ポリイミド等の絶縁性材料から構成された長尺状(把持部7の先端から基端に向かう長手方向に延在する長尺状)のシートである。
 導電層182は、圧延銅箔で構成され、図15に示すように、ベース層181の一方の面(図15中、下方側の面)に形成されている。この導電層182は、図14または図15に示すように、一対の発熱用導電ライン1821(図14)と、高周波用導電ライン1822とを備える。
In the energy application structure 10E (10E ′) according to the sixth embodiment, the pair of heat generating connection portions 151 and the high frequency connection portion 131 are connected via the flexible substrate 18 as shown in FIG. A pair of heat generating lead C1 and high frequency lead C2 are electrically connected to each other.
As shown in FIG. 14 or FIG. 15, the flexible substrate 18 includes a base layer 181, a conductive layer 182, and a cover layer 183 (FIG. 15).
The base layer 181 is a long sheet made of an insulating material such as polyimide (long shape extending in the longitudinal direction from the distal end of the gripping portion 7 to the proximal end).
The conductive layer 182 is formed of a rolled copper foil, and is formed on one surface (the lower surface in FIG. 15) of the base layer 181 as shown in FIG. As shown in FIG. 14 or 15, the conductive layer 182 includes a pair of heat generating conductive lines 1821 (FIG. 14) and a high frequency conductive line 1822.
 一対の発熱用導電ライン1821は、ベース層181の一方の面において、基端側から先端側に向けて、一対の発熱用接続部151に対向する位置までそれぞれ延在する。そして、基端側の各端部には、一対の発熱用リード線C1がそれぞれ接合される。
 高周波用導電ライン1822は、ベース層181の一方の面において、一対の発熱用導電ライン1821の間に位置し、基端側から先端側に向けて、高周波用接続部131に対向する位置まで延在する。そして、基端側の端部には、高周波用リード線C2が接合される。
The pair of heat generating conductive lines 1821 extend on one surface of the base layer 181 from the proximal end side to the distal end side to positions facing the pair of heat generating connection portions 151. A pair of heat generating lead wires C1 are joined to each end portion on the base end side.
The high-frequency conductive line 1822 is located between the pair of heat-generating conductive lines 1821 on one surface of the base layer 181 and extends from the base end side to the distal end side to a position facing the high-frequency connection portion 131. Exists. A high-frequency lead wire C2 is joined to the proximal end.
 カバー層183は、ベース層181と同一の材料で構成され、同一の形状を有するシートである。そして、カバー層183は、ベース層181の一方の面に接合され、導電層182を覆う。
 このカバー層183において、一対の発熱用導電ライン1821及び高周波用導電ライン1822における先端側の各端部に対向する位置には、当該各端部をそれぞれ外部に露出する開口部1831(図15)がそれぞれ形成されている。なお、図15では、説明の便宜上、3つの開口部1831のうち、高周波用導電ライン1822における先端側の端部に対向する開口部1831のみ図示している。
 そして、フレキシブル基板18は、各開口部161,1831を介して、一対の発熱用導電ライン1821及び高周波用導電ライン1822が導電性の接合材19(図15)にて一対の発熱用接続部151及び高周波用接続部131にそれぞれ接合されることにより、エネルギ付与構造体10E(10E´)に取り付けられる。
 すなわち、発熱用導電ライン1821は、発熱パターン152に供給する電力の通電経路となり、本発明に係る発熱用配線部材に相当する。また、高周波用導電ライン1822は、処置部材11に供給する高周波電力の通電経路となり、本発明に係る高周波用配線部材に相当する。
The cover layer 183 is a sheet made of the same material as the base layer 181 and having the same shape. The cover layer 183 is bonded to one surface of the base layer 181 and covers the conductive layer 182.
In this cover layer 183, openings 1831 (FIG. 15) that expose the respective end portions to the outside at positions facing the respective end portions on the distal end side of the pair of heat generating conductive lines 1821 and the high frequency conductive lines 1822. Are formed respectively. In FIG. 15, for convenience of explanation, of the three openings 1831, only the opening 1831 facing the end on the tip side of the high-frequency conductive line 1822 is shown.
The flexible substrate 18 has a pair of heat generating connecting lines 151 and a pair of heat generating conductive lines 1821 and a high frequency conductive line 1822 through the openings 161 and 1831 with a conductive bonding material 19 (FIG. 15). And it attaches to the energy provision structure 10E (10E ') by joining to the connection part 131 for high frequency, respectively.
That is, the heat generating conductive line 1821 serves as an energization path for the power supplied to the heat generating pattern 152 and corresponds to the heat generating wiring member according to the present invention. The high-frequency conductive line 1822 serves as an energization path for high-frequency power supplied to the treatment member 11 and corresponds to the high-frequency wiring member according to the present invention.
 以上説明した本実施の形態6によれば、上述した実施の形態1と同様の効果の他、以下の効果を奏する。
 ところで、上述した実施の形態1のように、一対の発熱用リード線C1及び高周波用リード線C2を一対の発熱用接続部151及び高周波用接続部131にそれぞれ接合する場合には、通常、1本ずつ接合する必要があり、当該接合工程が煩雑化する虞がある。
 本実施の形態6では、一対の発熱用リード線C1及び高周波用リード線C2は、フレキシブル基板18を介して、エネルギ付与構造体10E(10E´)に取り付けられる。すなわち、フレキシブル基板18を利用すれば、エネルギ付与構造体10E(10E´)の一対の発熱用接続部151及び高周波用接続部131に対して、一対の発熱用導電ライン1821及び高周波用導電ライン1822を一括して接合することができる。したがって、当該接合工程を容易に行うことができる。
According to the sixth embodiment described above, the following effects can be obtained in addition to the same effects as those of the first embodiment.
By the way, when the pair of heating lead C1 and the high-frequency lead C2 are joined to the pair of heating connection 151 and the high-frequency connection 131, respectively, as in the first embodiment described above, usually, 1 It is necessary to join one by one, and the joining process may be complicated.
In the sixth embodiment, the pair of heat generating lead C1 and the high frequency lead C2 are attached to the energy application structure 10E (10E ′) via the flexible substrate 18. In other words, if the flexible substrate 18 is used, the pair of heat generating conductive lines 1821 and the high frequency conductive lines 1822 with respect to the pair of heat generating connection portions 151 and the high frequency connection portions 131 of the energy application structure 10E (10E ′). Can be joined together. Therefore, the joining process can be easily performed.
(その他の実施形態)
 ここまで、本発明を実施するための形態を説明してきたが、本発明は上述した実施の形態1~6によってのみ限定されるべきものではない。
 図16は、上述した実施の形態1~6の変形例に係る第1,第2の接合位置P1,P2の位置関係を示す図である。具体的に、図16は、図5に対応した図である。
 上述した実施の形態1~6において、一対の第2の接合位置P2の位置は、上述した実施の形態1~6で説明した位置に限らない。一対の第2の接合位置P2は、第1の接合位置P1を挟み、当該第1の接合位置P1から同一の距離だけ離間した位置であれば、図16に示すように、第1の接合位置P1に対して、第4の主面PS4の幅方向(図16中、上下方向)の両側にそれぞれ設定しても構わない。
(Other embodiments)
The embodiments for carrying out the present invention have been described so far, but the present invention should not be limited only by the above-described first to sixth embodiments.
FIG. 16 is a diagram showing a positional relationship between the first and second joining positions P1, P2 according to the modified examples of the first to sixth embodiments. Specifically, FIG. 16 corresponds to FIG.
In the first to sixth embodiments described above, the position of the pair of second joining positions P2 is not limited to the position described in the first to sixth embodiments. If the pair of second joining positions P2 are positions spaced by the same distance from the first joining position P1 with the first joining position P1 interposed therebetween, as shown in FIG. You may set to both sides of the width direction (up-down direction in FIG. 16) of 4th main surface PS4 with respect to P1, respectively.
 上述した実施の形態1~6に係るエネルギ付与構造体10(10A~10E),10´(10A´~10E´)では、生体組織に対して熱エネルギ及び高周波エネルギを付与する構成としていたが、これに限らず、その他のエネルギ、例えば、超音波エネルギをさらに付与する構成としても構わない。
 上述した実施の形態1~6に係るエネルギ付与構造体10(10A~10E),10´(10A´~10E´)では、第1の主面PS1は、平坦面で構成されていたが、これに限らない。例えば、第1の主面PS1の断面形状を凸形状、凹形状、あるいは山形等で構成しても構わない。さらには、エネルギ付与構造体10(10A~10E)とエネルギ付与構造体10´(10A´~10E´)の各第1の主面PS1の断面形状が互いに異なる形状で構成しても構わない。
 上述した実施の形態1~6に係るエネルギ付与構造体10(10A~10E),10´(10A´~10E´)では、双方に発熱機能を有する構成としていたが、これに限らず、片方のみに発熱機能を有する構成としても構わない。
The energy application structures 10 (10A to 10E) and 10 ′ (10A ′ to 10E ′) according to the first to sixth embodiments described above are configured to apply thermal energy and high frequency energy to a living tissue. However, the present invention is not limited to this, and other energy, for example, ultrasonic energy may be further applied.
In the energy application structures 10 (10A to 10E) and 10 ′ (10A ′ to 10E ′) according to the first to sixth embodiments described above, the first main surface PS1 is a flat surface. Not limited to. For example, the cross-sectional shape of the first main surface PS1 may be a convex shape, a concave shape, or a mountain shape. Furthermore, the energy application structures 10 (10A to 10E) and the energy application structures 10 ′ (10A ′ to 10E ′) may have different first cross sections on the first main surfaces PS1.
In the energy application structures 10 (10A to 10E) and 10 ′ (10A ′ to 10E ′) according to Embodiments 1 to 6 described above, both have a heat generation function. Alternatively, a configuration having a heat generating function may be used.
 上述した実施の形態1~6において、発熱用接続部151(151A,151D)、高周波用接続部131(131A)、及び接続部本体1311の大きさとしては、発熱用リード線C1(発熱用導電ライン1821)及び高周波用リード線C2(高周波用導電ライン1822)を接合可能な面積を有していれば、その他の大きさとしても構わない。
 上述した実施の形態2,5では、発熱用接続部151A,151D及び高周波用接続部131A,131Dの全てを第6の主面PS6に形成していたが、これに限らない。例えば、発熱用接続部151A,151D及び高周波用接続部131A,131Dのいずれか一方のみを第6の主面PS6に形成し、いずれか他方を第4の主面PS4に形成した構成を採用しても構わない。
 上述した実施の形態6では、エネルギ付与構造体10E(10E´)と制御装置3とを電気ケーブルC及びフレキシブル基板18にて電気的に接続していたが、これに限らず、フレキシブル基板18のみでエネルギ付与構造体10E(10E´)と制御装置3とを電気的に接続しても構わない。また、上述した実施の形態2~5において、上述した実施の形態6と同様に、フレキシブル基板18を利用した構成を採用しても構わない。
In the first to sixth embodiments described above, the size of the heat generating connecting portion 151 (151A, 151D), the high frequency connecting portion 131 (131A), and the connecting portion main body 1311 is the heat generating lead wire C1 (heat generating conductive wire). The line 1821) and the high-frequency lead wire C2 (high-frequency conductive line 1822) may have other sizes as long as they have an area that can be joined.
In Embodiments 2 and 5 described above, all of the heat generating connection portions 151A and 151D and the high frequency connection portions 131A and 131D are formed on the sixth main surface PS6, but this is not restrictive. For example, a configuration in which only one of the heat generating connection portions 151A and 151D and the high frequency connection portions 131A and 131D is formed on the sixth main surface PS6 and the other is formed on the fourth main surface PS4 is adopted. It doesn't matter.
In the above-described sixth embodiment, the energy applying structure 10E (10E ′) and the control device 3 are electrically connected by the electric cable C and the flexible substrate 18, but not limited thereto, only the flexible substrate 18 is provided. The energy applying structure 10E (10E ′) and the control device 3 may be electrically connected. Further, in the above-described second to fifth embodiments, a configuration using the flexible substrate 18 may be adopted as in the above-described sixth embodiment.
 1 処置システム
 2 処置具
 3 制御装置
 4 フットスイッチ
 5 ハンドル
 6 シャフト
 7 把持部
 8,8´ 第1,第2ジョー
 10,10A~10E,10´,10A´~10E´ エネルギ付与構造体
 11 処置部材
 12,12A~12D 発熱部材
 13,13A~13D 通電部材
 14,14B 絶縁部材
 15 配線パターン
 16,16A,16D 絶縁層
 17 接合材
 18 フレキシブル基板
 19 接合材
 51 操作ノブ
 111 凹部
 112 底面部
 113 側壁部
 131,131A~131D 高周波用接続部
 132 裏面電極
 133 第1のスルーホール
 133A,133B 高周波用通電経路部
 134 接合部
 151,151A,151D 発熱用接続部
 152 発熱パターン
 161 開口部
 162 第2のスルーホール
 163 切欠部
 181 ベース層
 182 導電層
 183 カバー層
 1311 接続部本体
 1312,1313 第1,第2延在部
 1821 発熱用導電ライン
 1822 高周波用導電ライン
 1831 開口部
 ArH 形成領域
 ArO 中央領域
 C 電気ケーブル
 C1 発熱用リード線
 C2 高周波用リード線
 P1,P2 第1,第2の接合位置
 PS1~PS6 第1~第6の主面
 R1 矢印
 S7,S8 側面
DESCRIPTION OF SYMBOLS 1 Treatment system 2 Treatment tool 3 Control apparatus 4 Foot switch 5 Handle 6 Shaft 7 Grip part 8,8 '1st, 2nd jaw 10,10A-10E, 10', 10A'-10E 'Energy provision structure 11 Treatment member 12, 12A to 12D Heat generating member 13, 13A to 13D Conducting member 14, 14B Insulating member 15 Wiring pattern 16, 16A, 16D Insulating layer 17 Bonding material 18 Flexible substrate 19 Bonding material 51 Operation knob 111 Recessed portion 112 Bottom surface portion 113 Side wall portion 131 , 131A to 131D High-frequency connection part 132 Back electrode 133 First through- hole 133A, 133B High-frequency energization path part 134 Joint part 151, 151A, 151D Heating connection part 152 Heat generation pattern 161 Opening part 162 Second through-hole 163 Notch 181 Base layer 182 Conductive layer 183 Cover layer 1311 Connection portion main body 1312, 1313 First and second extending portions 1821 Heat generation conductive line 1822 High frequency conductive line 1831 Opening ArH formation region ArO Central region C Electric cable C1 Heat generation lead C2 High frequency Lead wire P1, P2 First and second joining positions PS1 to PS6 First to sixth main surfaces R1 Arrow S7, S8 Side surface

Claims (12)

  1.  導電性材料から構成され、生体組織に接触して当該生体組織に熱エネルギ及び高周波エネルギを付与する処置部材と、
     通電により発熱する発熱パターンを有し、当該発熱パターンの熱により前記処置部材を加熱する発熱部材と、
     前記発熱部材に設けられるとともに、前記処置部材に供給する高周波電力の通電経路となる高周波用配線部材が接合され、当該高周波用配線部材と前記処置部材とを電気的に接続する通電部材とを備えるエネルギ付与構造体。
    A treatment member made of a conductive material, which contacts the living tissue and applies thermal energy and high frequency energy to the living tissue;
    A heating member that generates heat when energized, and heats the treatment member with heat of the heating pattern;
    A high-frequency wiring member serving as a current-carrying path for high-frequency power supplied to the treatment member is bonded to the heat-generating member, and includes a current-carrying member that electrically connects the high-frequency wiring member and the treatment member. Energy application structure.
  2.  前記処置部材は、
     前記生体組織に接触する第1の主面と、
     前記第1の主面に対向する第2の主面とを有し、
     前記発熱部材は、
     前記第2の主面に接合する第3の主面と、当該第3の主面に対向し、前記発熱パターンが形成される第4の主面とを有する絶縁部材をさらに備え、
     前記通電部材は、
     前記第4の主面に形成され、前記高周波用配線部材が接合される高周波用接続部と、
     前記第3の主面に形成され、前記処置部材に電気的に接続する裏面電極と、
     前記高周波用接続部と前記裏面電極とを電気的に接続する高周波用通電経路部とを備える
     請求項1に記載のエネルギ付与構造体。
    The treatment member is
    A first main surface in contact with the living tissue;
    A second main surface opposite to the first main surface;
    The heating member is
    An insulating member having a third main surface joined to the second main surface and a fourth main surface facing the third main surface and forming the heat generation pattern;
    The energizing member is
    A high-frequency connection portion formed on the fourth main surface to which the high-frequency wiring member is joined;
    A back electrode formed on the third main surface and electrically connected to the treatment member;
    The energy application structure according to claim 1, further comprising: a high-frequency energizing path portion that electrically connects the high-frequency connection portion and the back electrode.
  3.  前記処置部材は、
     前記生体組織に接触する第1の主面と、
     前記第1の主面に対向する第2の主面とを有し、
     前記発熱部材は、
     前記第2の主面に接合する第3の主面と、当該第3の主面に対向し、前記発熱パターンが形成される第4の主面とを有する絶縁部材と、
     前記発熱パターンに接合する第5の主面と、当該第5の主面に対向する第6の主面とを有する絶縁層とをさらに備え、
     前記通電部材は、
     前記第6の主面に形成され、前記高周波用配線部材が接合される高周波用接続部と、
     前記第3の主面に形成され、前記処置部材に電気的に接続する裏面電極と、
     前記高周波用接続部と前記裏面電極とを電気的に接続する高周波用通電経路部とを備える
     請求項1に記載のエネルギ付与構造体。
    The treatment member is
    A first main surface in contact with the living tissue;
    A second main surface opposite to the first main surface;
    The heating member is
    An insulating member having a third main surface joined to the second main surface, and a fourth main surface facing the third main surface and forming the heat generation pattern;
    An insulating layer having a fifth main surface joined to the heat generation pattern and a sixth main surface facing the fifth main surface;
    The energizing member is
    A high-frequency connection portion formed on the sixth main surface to which the high-frequency wiring member is joined;
    A back electrode formed on the third main surface and electrically connected to the treatment member;
    The energy application structure according to claim 1, further comprising: a high-frequency energizing path portion that electrically connects the high-frequency connection portion and the back electrode.
  4.  前記高周波用通電経路部は、
     前記発熱部材を貫通するスルーホールである
     請求項2または3に記載のエネルギ付与構造体。
    The high-frequency energization path section is
    The energy application structure according to claim 2, wherein the energy application structure is a through hole penetrating the heat generating member.
  5.  前記高周波用通電経路部は、
     前記第3の主面と前記第4の主面とに交差する前記発熱部材の側面に形成されている
     請求項2または3に記載のエネルギ付与構造体。
    The high-frequency energization path part is:
    4. The energy application structure according to claim 2, wherein the energy application structure is formed on a side surface of the heat generating member intersecting the third main surface and the fourth main surface.
  6.  前記裏面電極と前記第2の主面とは、
     導電性の接合材にて互いに接合されている
     請求項2~5のいずれか一つに記載のエネルギ付与構造体。
    The back electrode and the second main surface are:
    The energy application structure according to any one of claims 2 to 5, wherein the energy application structures are bonded to each other with a conductive bonding material.
  7.  前記処置部材は、
     前記生体組織に接触する第1の主面と、当該第1の主面に対向する第2の主面とを有する底面部と、
     前記第2の主面の外縁から当該第2の主面の面外方向に突出する側壁部とを有し、
     前記発熱部材は、
     前記第2の主面に接合する第3の主面と、当該第3の主面に対向し、前記発熱パターンが形成される第4の主面とを有する絶縁部材をさらに備え、
     前記通電部材は、
     前記第4の主面に形成され、前記高周波用配線部材が接合される高周波用接続部と、
     前記高周波用接続部と前記側壁部とを電気的に接続する接合部とを備える
     請求項1に記載のエネルギ付与構造体。
    The treatment member is
    A bottom surface portion having a first main surface that contacts the living tissue and a second main surface facing the first main surface;
    A side wall portion protruding in an out-of-plane direction of the second main surface from an outer edge of the second main surface;
    The heating member is
    An insulating member having a third main surface joined to the second main surface and a fourth main surface facing the third main surface and forming the heat generation pattern;
    The energizing member is
    A high-frequency connection portion formed on the fourth main surface to which the high-frequency wiring member is joined;
    The energy application structure according to claim 1, further comprising a joint portion that electrically connects the high-frequency connection portion and the side wall portion.
  8.  前記処置部材は、
     前記生体組織に接触する第1の主面と、当該第1の主面に対向する第2の主面とを有する底面部と、
     前記第2の主面の外縁から当該第2の主面の面外方向に突出する側壁部とを有し、
     前記発熱部材は、
     前記第2の主面に接合する第3の主面と、当該第3の主面に対向し、前記発熱パターンが形成される第4の主面とを有する絶縁部材と、
     前記発熱パターンに接合する第5の主面と、当該第5の主面に対向する第6の主面とを有する絶縁層とをさらに備え、
     前記通電部材は、
     前記第6の主面に形成され、前記高周波用配線部材が接合される高周波用接続部と、
     前記高周波用接続部と前記側壁部とを電気的に接続する接合部とを備える
     請求項1に記載のエネルギ付与構造体。
    The treatment member is
    A bottom surface portion having a first main surface that contacts the living tissue and a second main surface facing the first main surface;
    A side wall portion protruding in an out-of-plane direction of the second main surface from an outer edge of the second main surface;
    The heating member is
    An insulating member having a third main surface joined to the second main surface, and a fourth main surface facing the third main surface and forming the heat generation pattern;
    An insulating layer having a fifth main surface joined to the heat generation pattern and a sixth main surface facing the fifth main surface;
    The energizing member is
    A high-frequency connection portion formed on the sixth main surface to which the high-frequency wiring member is joined;
    The energy application structure according to claim 1, further comprising a joint portion that electrically connects the high-frequency connection portion and the side wall portion.
  9.  前記発熱部材は、
     前記第6の主面に形成され、前記発熱パターンに供給する電力の通電経路となる一対の発熱用配線部材がそれぞれ接合される一対の発熱用接続部と、
     前記一対の発熱用接続部と前記発熱パターンとをそれぞれ電気的に接続する一対の発熱用通電経路部とをさらに備える
     請求項3または8に記載のエネルギ付与構造体。
    The heating member is
    A pair of heat generating connection portions formed on the sixth main surface, to which a pair of heat generating wiring members serving as energization paths for power supplied to the heat generating pattern are respectively joined;
    The energy application structure according to claim 3 or 8, further comprising a pair of heat generation path portions that electrically connect the pair of heat generation connection portions and the heat generation pattern, respectively.
  10.  前記通電部材に前記高周波用配線部材が接合する第1の接合位置は、
     前記処置部材と前記発熱部材とが互いに対向する方向に沿って見た場合に、前記発熱部材における前記発熱パターンの形成領域の中心位置を含む中央領域に設定されている
     請求項1~9のいずれか一つに記載のエネルギ付与構造体。
    The first joining position where the high-frequency wiring member is joined to the energizing member is:
    The center region including a center position of a region where the heat generating pattern is formed in the heat generating member when the treatment member and the heat generating member are viewed along a direction facing each other. The energy imparting structure according to claim 1.
  11.  前記発熱部材には、
     前記発熱パターンに供給する電力の通電経路となる一対の発熱用配線部材がそれぞれ接合され、
     前記発熱部材に前記一対の発熱用配線部材がそれぞれ接合する各第2の接合位置は、
     前記処置部材と前記発熱部材とが互いに対向する方向に沿って見た場合に、前記第1の接合位置を挟み、当該第1の接合位置から同一の距離だけ離間した位置に設定されている
     請求項10に記載のエネルギ付与構造体。
    In the heating member,
    A pair of heating wiring members that are energization paths for the power supplied to the heating pattern are joined,
    Each second joining position where the pair of heating wiring members are joined to the heating member,
    When the treatment member and the heat generating member are viewed along a direction in which they face each other, the first joining position is sandwiched, and the treatment member and the heat generating member are set at positions separated from the first joining position by the same distance. Item 11. The energy applying structure according to Item 10.
  12.  請求項1~11のいずれか一つに記載のエネルギ付与構造体を備える処置具。 A treatment instrument comprising the energy application structure according to any one of claims 1 to 11.
PCT/JP2017/004443 2017-02-07 2017-02-07 Energy applying structure and treatment tool WO2018146729A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/004443 WO2018146729A1 (en) 2017-02-07 2017-02-07 Energy applying structure and treatment tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/004443 WO2018146729A1 (en) 2017-02-07 2017-02-07 Energy applying structure and treatment tool

Publications (1)

Publication Number Publication Date
WO2018146729A1 true WO2018146729A1 (en) 2018-08-16

Family

ID=63107277

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/004443 WO2018146729A1 (en) 2017-02-07 2017-02-07 Energy applying structure and treatment tool

Country Status (1)

Country Link
WO (1) WO2018146729A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014124491A (en) * 2012-12-27 2014-07-07 Olympus Corp Therapeutic treatment device
JP2014144183A (en) * 2013-01-30 2014-08-14 Olympus Corp Therapeutic treatment device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014124491A (en) * 2012-12-27 2014-07-07 Olympus Corp Therapeutic treatment device
JP2014144183A (en) * 2013-01-30 2014-08-14 Olympus Corp Therapeutic treatment device

Similar Documents

Publication Publication Date Title
JP5631716B2 (en) Therapeutic treatment device
US10143511B2 (en) Therapeutic treatment device
US20150327909A1 (en) Treatment apparatus
US10603097B2 (en) Treatment energy application structure and medical treatment device
JP6487723B2 (en) Medical treatment device
WO2018185815A1 (en) Heat treatment tool
WO2018146729A1 (en) Energy applying structure and treatment tool
WO2018055778A1 (en) Treatment instrument and treatment system
WO2018150533A1 (en) Treatment tool
WO2018146730A1 (en) Energy applying structure and treatment tool
JP6833849B2 (en) Treatment tool
JP2006305236A (en) Heating treatment instrument
WO2019202717A1 (en) Treatment instrument
WO2020012622A1 (en) Treatment tool
US20180055555A1 (en) Therapeutic energy applying structure and medical treatment device
JP2012165948A (en) Treatment device for therapy and method for producing the same
WO2019150496A1 (en) Method for manufacturing treatment tool, and treatment tool
WO2020012623A1 (en) Treatment tool
WO2017163410A1 (en) Energy treatment tool
US20200275970A1 (en) Treatment device
US20190110831A1 (en) Treatment tool
WO2016132493A1 (en) Therapeutic energy-applying structure and medical treatment apparatus
JP2012196340A (en) Therapeutic treatment apparatus
WO2019092845A1 (en) Treatment tool
WO2020183681A1 (en) Medical heater, and treatment instrument

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17895869

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17895869

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP