WO2018198374A1 - Resistance-temperature characteristic calculation method, treatment system, and resistance-temperature characteristic calculation program - Google Patents

Resistance-temperature characteristic calculation method, treatment system, and resistance-temperature characteristic calculation program Download PDF

Info

Publication number
WO2018198374A1
WO2018198374A1 PCT/JP2017/017078 JP2017017078W WO2018198374A1 WO 2018198374 A1 WO2018198374 A1 WO 2018198374A1 JP 2017017078 W JP2017017078 W JP 2017017078W WO 2018198374 A1 WO2018198374 A1 WO 2018198374A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
resistance
heating resistor
temperature characteristic
resistance value
Prior art date
Application number
PCT/JP2017/017078
Other languages
French (fr)
Japanese (ja)
Inventor
亮 松井
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to PCT/JP2017/017078 priority Critical patent/WO2018198374A1/en
Publication of WO2018198374A1 publication Critical patent/WO2018198374A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/08Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by means of electrically-heated probes

Definitions

  • the present invention relates to a resistance temperature characteristic calculation method, a treatment system, and a resistance temperature characteristic calculation program.
  • Patent Document 1 a treatment system that treats (joins (or anastomoses), incises, etc.) a living tissue by applying thermal energy to the living tissue is known (for example, see Patent Document 1).
  • the treatment system described in Patent Document 1 is a treatment instrument (thermocoagulation forceps) provided with a heating resistor (heater) that generates thermal energy, and energization control of the heating resistor (controlling the heating resistor to a target temperature).
  • a control device power supply device.
  • the control device converts the resistance value of the heating resistor into a temperature based on the resistance temperature characteristic, and controls the heating resistor to the target temperature by feedback control while recognizing the temperature.
  • the resistance-temperature characteristic is a characteristic between the resistance value and the temperature of the heating resistor, and is calculated (acquired) in advance in an inspection process or the like when manufacturing the treatment instrument.
  • the resistance temperature characteristic varies depending on the configuration of the heating resistor. That is, even when a plurality of heating resistors are manufactured with the same material and shape, if a manufacturing error occurs, the resistance temperature characteristics of the plurality of heating resistors are different. For this reason, when energization control of the heating resistor described in Patent Document 1 is executed, it is necessary to accurately calculate the resistance temperature characteristic for each individual. As a calculation method of the resistance temperature characteristic, for example, the resistance value of the heating resistor is measured at various temperatures while the heating resistor is placed in a thermostat and the heating resistor is set to various temperatures. Thus, the resistance temperature characteristic is calculated.
  • the resistance temperature characteristics can be obtained. calculate.
  • the resistance temperature characteristic is calculated as described above, there is a problem that the workload of the operator who calculates the resistance temperature characteristic becomes large, and as a result, the cost reduction of the treatment system is hindered. .
  • the present invention has been made in view of the above, and an object thereof is to provide a resistance temperature characteristic calculation method, a treatment system, and a resistance temperature characteristic calculation program capable of reducing the cost.
  • a resistance temperature characteristic calculation method includes a first heating resistor having a linear resistance temperature characteristic, and a self temperature with the first temperature as the maximum temperature.
  • a second heating resistor having a temperature control characteristic, and used in a treatment system that applies thermal energy generated respectively to the first heating resistor and the second heating resistor to a living tissue,
  • a resistance temperature characteristic calculation method for calculating a resistance temperature characteristic wherein a temperature setting step of energizing the second heating resistor and setting the second heating resistor to the first temperature, and the temperature setting After the step, a first resistance value measuring step for measuring a resistance value of the first heating resistor to which heat from the second heating resistor is transmitted, and a first resistance value measuring step Of the first heating resistor measured Comprising an anti-value, on the basis of the self temperature control characteristics, and a resistance-temperature characteristic calculating step of calculating the resistance-temperature characteristic.
  • the treatment system includes a first heating resistor having a linear resistance temperature characteristic and a second heating resistor having a self-temperature control characteristic in which the first temperature is a maximum temperature, An energy applying unit that applies thermal energy generated respectively to the first heating resistor and the second heating resistor to a living tissue; a resistance temperature characteristic calculating unit that calculates the resistance temperature characteristic; A resistance value measuring unit that measures a resistance value of the heating resistor, and the resistance temperature characteristic calculation unit energizes the second heating resistor and causes the second heating resistor to pass through the first temperature. Based on the temperature setting unit to be set to 1, the resistance value of the first heating resistor to which the heat from the second heating resistor having reached the first temperature is transmitted, and the self-temperature control characteristic And a characteristic calculation unit for calculating the resistance temperature characteristic.
  • the resistance temperature characteristic calculation program according to the present invention causes a computer to execute the above-described resistance temperature characteristic calculation method.
  • FIG. 1 is a diagram schematically illustrating a treatment system according to the first embodiment.
  • FIG. 2 is a view showing a distal end portion of the treatment instrument.
  • FIG. 3 is a view showing a distal end portion of the treatment instrument.
  • FIG. 4 is a block diagram illustrating configurations of the control device and the foot switch.
  • FIG. 5 is a flowchart showing the operation of the control device.
  • FIG. 6 is a flowchart showing step S2.
  • FIG. 7 is a flowchart showing step S5.
  • FIG. 8 is a block diagram showing the configuration of the treatment system according to the second embodiment.
  • FIG. 9 is a flowchart showing step S2 according to the second embodiment.
  • FIG. 1 is a diagram schematically illustrating a treatment system 1 according to the first embodiment.
  • the treatment system 1 treats (joins (or anastomoses), incises, etc.) the living tissue by applying thermal energy to the living tissue to be treated.
  • the treatment system 1 includes a treatment tool 2, a control device 3, and a foot switch 4.
  • the treatment tool 2 is a part corresponding to the energy applying unit according to the present invention, and is, for example, a linear-type surgical treatment tool for performing treatment on a living tissue through the abdominal wall.
  • the treatment tool 2 includes a handle 5, a shaft 6, and a grip portion 7.
  • the handle 5 is a part that the surgeon holds by hand.
  • the handle 5 is provided with an operation knob 51 as shown in FIG.
  • the shaft 6 has a substantially cylindrical shape, and one end (right end portion in FIG. 1) is connected to the handle 5.
  • a gripping portion 7 is attached to the other end of the shaft 6 (left end portion in FIG. 1).
  • An opening / closing mechanism (illustrated) is provided inside the shaft 6 for opening and closing the first and second gripping members 8 and 9 (FIG. 1) constituting the gripping portion 7 in accordance with the operation of the operation knob 51 by the operator. Abbreviation) is provided. Further, in the shaft 6, an electric cable C (FIG. 1) connected to the control device 3 is connected to the other end side (in FIG. 1) from one end side (right end side in FIG. 1) via the handle 5. (Up to the left end side).
  • FIGS. 1 to 3 are views showing the distal end portion of the treatment instrument 2.
  • FIG. 2 is a diagram in which the grip portion 7 is cut along a cut surface along a longitudinal direction from the distal end to the base end of the grip portion 7.
  • FIG. 3 is a view in which the grip portion 7 is cut along a cut surface perpendicular to the longitudinal direction of the grip portion 7.
  • the gripping part 7 is a part that grips a living tissue and treats the living tissue.
  • the grip portion 7 includes first and second grip members 8 and 9. The first and second gripping members 8 and 9 are supported by the other end (left end portion in FIGS.
  • FIG. 2 shows a configuration in which the first gripping member 8 positioned above is fixed to the shaft 6 and the second gripping member 9 positioned below is pivotally supported by the shaft 6. Not limited to this, both the first and second gripping members 8 and 9 may be supported by the shaft 6. Alternatively, the first gripping member 8 may be pivotally supported on the shaft 6 and the second gripping member 9 may be fixed to the shaft 6.
  • the first gripping member 8 includes a first cover member 10 and a first heat generating structure 11.
  • the first cover member 10 is composed of a long plate extending in the longitudinal direction of the gripping portion 7 (left and right direction in FIGS. 1 and 2).
  • a recess 101 is formed on the lower surface in FIGS. 2 and 3.
  • the recess 101 is located at the center in the width direction of the first cover member 10 and extends along the longitudinal direction of the first cover member 10.
  • the base end side wall portion is omitted.
  • the first cover member 10 is fixed to the shaft 6 while supporting the first heat generating structure 11 while the concave portion 101 faces downward in FIGS. 2 and 3.
  • the first heat generating structure 11 is attached to the first cover member 10 in a state where a part thereof is accommodated in the recess 101.
  • the first heat generating structure 11 generates heat energy under the control of the control device 3.
  • the first heat generating structure 11 includes a first heat transfer member 12 and a first heat generating resistor 13.
  • the first heat transfer member 12 has a long shape (long length extending in the longitudinal direction of the gripping portion 7) made of a high heat conductive ceramic such as aluminum nitride or a high heat conductive metal material such as copper or aluminum. And is attached to the first cover member 10 so as to close the recess 101.
  • the first heat treatment resistor 121 functions as a first treatment surface 121 that transfers heat from the first heating resistor 13 to the living tissue (applies thermal energy to the living tissue).
  • the first treatment surface 121 has a convex shape in which the central region in the width direction protrudes downward with respect to other regions as shown in FIG.
  • the first heating resistor 13 is a part that generates heat and functions as a sheet heater that heats the first heat transfer member 12 by the heat generation. As shown in FIG. 2 or FIG. Is housed in.
  • the first heating resistor 13 has a configuration in which a resistance pattern made of a conductive material such as platinum is formed on a ceramic substrate having high thermal conductivity such as aluminum nitride or alumina. As the resistance pattern, a material having a substantially linear resistance temperature characteristic in a temperature range used for treatment of a living tissue can be used.
  • the first heating resistor 13 is connected via a bonding metal layer (for example, a multilayer film made of titanium, platinum, and gold) provided on the back side of the surface on which the resistance pattern is formed on the substrate.
  • a bonding metal layer for example, a multilayer film made of titanium, platinum, and gold
  • first lead wires C1 constituting the electric cable C are joined (connected) to both ends (electrode portions) of the resistance pattern. 2 and 4, only one first lead C1 is shown for convenience of explanation.
  • the resistance pattern generates heat when a voltage is applied (energized) through the two first lead wires C ⁇ b> 1 under the control of the control device 3.
  • the first cover member 10 includes the first heat transfer member 12 and the first heat generating resistor. It is preferable to use a material having a thermal conductivity lower than 13. Further, a heat insulating member made of a resin having low thermal conductivity or the like may be disposed between the first cover member 10 and the first heat generating structure 11.
  • the second gripping member 9 includes a second cover member 14 and a second heat generating structure 15.
  • the second cover member 14 has the same shape as the first cover member 10. That is, the 2nd cover member 14 has the recessed part 141 similar to the recessed part 101, as shown in FIG. 2 or FIG.
  • the second cover member 14 supports the second heat generating structure 15 and is pivotally supported on the shaft 6 with the recess 141 facing upward in FIG. 2 and FIG. 3 (the posture facing the recess 101). Is done.
  • the second heat generating structure 15 is attached to the second cover member 14 in a state where a part thereof is accommodated in the recess 141.
  • the second heat generating structure 15 generates heat energy under the control of the control device 3.
  • the second heat generating structure 15 includes a second heat transfer member 16 and a second heat generating resistor 17.
  • the second heat transfer member 16 has a long shape (long length extending in the longitudinal direction of the gripping portion 7) made of a high heat conductive ceramic such as aluminum nitride or a high heat conductive metal material such as copper or aluminum. And is attached to the second cover member 14 so as to close the concave portion 141.
  • the upper surface of the second heat transfer member 16 is in contact with the living tissue while the living tissue is gripped by the first and second gripping members 8 and 9. It functions as a second treatment surface 161 that transfers heat from the second heating resistor 17 to the living tissue (applies thermal energy to the living tissue).
  • the second heat transfer member 16 is in a state where the first and second gripping members 8 and 9 are closed in a state where there is no living tissue between the first and second gripping members 8 and 9. 1 heat transfer member 12 is contacted.
  • the second treatment surface 161 has a flat shape as shown in FIG.
  • the second heating resistor 17 is a PTC heater using a PTC material such as a semiconductor ceramic mainly composed of barium titanate (BaTiO 3) having a positive temperature coefficient (hereinafter referred to as PTC) characteristic as a heating resistor. It is configured and fixed to the back surface of the second treatment surface 161 of the second heat transfer member 16 using a bonding material mainly composed of ceramic such as alumina, which has high thermal conductivity and is non-conductive.
  • the second heating resistor 17 is accommodated in the recess 141 as shown in FIG. 2 or FIG. Specifically, the second heating resistor 17 is provided with a plurality of electrodes on a base material made of a PTC material.
  • the second heating resistor 17 generates heat when a voltage is applied between the electrodes via the second lead C2 under the control of the control device 3 (by energizing the PTC material).
  • the second heating resistor 17 (PTC heater) is driven by applying a constant voltage, and the temperature rises due to heat generation, so that the PTC material becomes the Curie temperature Tc (corresponding to the first temperature according to the present invention). When reaching the value, the resistance value increases rapidly.
  • the second heating resistor 17 has a self-temperature control characteristic in which the current value is reduced and the amount of heat generated by the PTC material is suppressed, and as a result, the temperature is controlled in the vicinity of the Curie temperature Tc.
  • the PTC material a material having a Curie temperature Tc equal to or higher than the target temperature for heating the living tissue during the treatment by the treatment system 1 is used.
  • the second cover member 14 includes the second heat transfer member 16 and the second heat generation resistor. It is preferable to use a material having a thermal conductivity lower than 17. Further, a heat insulating member made of a resin having low thermal conductivity or the like may be disposed between the second cover member 14 and the second heat generating structure 15.
  • FIG. 4 is a block diagram illustrating configurations of the control device 3 and the foot switch 4.
  • the foot switch 4 is a part operated by the operator with his / her foot. And according to the said operation to the foot switch 4, the control apparatus 3 starts the treatment of a biological tissue. Note that the means for starting the treatment of the living tissue is not limited to the foot switch 4 and may be a switch operated by hand.
  • the control device 3 includes a CPU (Central Processing Unit) and the like, and comprehensively controls the operation of the treatment instrument 2 according to a predetermined control program. As shown in FIG. 4, the control device 3 includes first and second heating element driving circuits 31 and 32, a control unit 33, an input unit 34, a display unit 35, and a storage unit 36.
  • CPU Central Processing Unit
  • the first heating element driving circuit 31 supplies power to the first heating resistor 13 through the first lead C ⁇ b> 1 under the control of the control unit 33.
  • the first heating element drive circuit 31 detects the voltage value and the current value applied to the first heating resistor 13 under the control of the control unit 33, and the resistance of the first heating resistor 13 is detected.
  • a first resistance value measuring unit 311 (FIG. 4) for measuring the value is provided.
  • the first resistance value measuring unit 311 corresponds to the resistance value measuring unit according to the present invention.
  • the second heating element driving circuit 32 supplies power to the second heating resistor 17 through the second lead wire C ⁇ b> 2 under the control of the control unit 33.
  • the second heating element driving circuit 32 detects the voltage value and the current value applied to the second heating resistor 17 under the control of the control unit 33, and the resistance of the second heating resistor 17.
  • a second resistance value measuring unit 321 (FIG. 4) for measuring the value is provided.
  • the control unit 33 includes a CPU and the like, and operates the first and second heating element drive circuits 31 and 32 according to a control program (including the resistance temperature characteristic calculation program according to the present invention) stored in the storage unit 36. To control. As shown in FIG. 4, the control unit 33 includes an energization control unit 331 and a resistance temperature characteristic calculation unit 332. The energization control unit 331 controls the operation of the first and second heating element drive circuits 31 and 32 and executes energization control of the first and second heating resistors 13 and 17.
  • the resistance temperature characteristic calculation unit 332 calculates the resistance temperature characteristic of the first heating resistor 13. As shown in FIG. 4, the resistance temperature characteristic calculation unit 332 includes a temperature setting unit 333 and a characteristic calculation unit 334.
  • the temperature setting unit 333 controls the operation of the second heat generating element drive circuit 32, energizes the second heat generating resistor 17, and sets the second heat generating resistor 17 to the Curie temperature Tc.
  • the characteristic calculation unit 334 controls the operation of the first heating element drive circuit 31 and supplies a minimum output power to the first heating resistor 13 (the voltage value applied to the first heating resistor 13). And the resistance value of the first heating resistor 13 to which the heat from the second heating resistor 17 that has reached the Curie temperature Tc is transferred to the first resistance value measuring unit. 311 is measured.
  • the characteristic calculation unit 334 determines the first heating resistor based on the resistance value of the first heating resistor 13 and the self-temperature control characteristic (Curie temperature Tc) of the second heating resistor 17. 13 resistance temperature characteristics are calculated.
  • the input unit 34 includes various input devices such as a keyboard, a mouse, a touch panel, and various switches, and outputs an input signal corresponding to an operation input to the control unit 33.
  • the display unit 35 includes a display device such as an LCD (Liquid Crystal Display) or an EL (Electro Luminescence) display, and displays various screens under the control of the control unit 33.
  • the storage unit 36 stores a control program (including a resistance temperature calculation program according to the present invention) executed by the control unit 33, data necessary for processing by the control unit 33, and the like. Examples of data necessary for the processing by the control unit 33 include resistance temperature characteristics (gradient SL and intercept IN described later) calculated by the resistance temperature characteristic calculation unit 332, and the like.
  • FIG. 5 is a flowchart showing the operation of the control device 3.
  • the control unit 33 constantly monitors whether or not the treatment instrument 2 is connected to the control device 3 via the electric cable C (step S1).
  • the control unit 33 executes an initialization process as described below (step S2).
  • FIG. 6 is a flowchart showing step S2.
  • Step S2 corresponds to the resistance temperature characteristic calculation method according to the present invention.
  • the control unit 33 acquires the resistance temperature coefficient ⁇ and the Curie temperature Tc of the first heating resistor 13 from the treatment instrument 2 via the electric cable C (step S21: resistance temperature coefficient acquisition step).
  • the resistance temperature coefficient ⁇ is a rate of change per unit temperature of the resistance value of the first heating resistor 13 with respect to the Curie temperature Tc. That is, the resistance temperature coefficient ⁇ is a value indicating the ratio of how much the resistance value changes due to a temperature change.
  • the resistance value of the first heating resistor 13 varies depending on the width and thickness of the resistance pattern constituting the first heating resistor 13, the resistance value varies depending on the individual.
  • I is a value determined by the material (platinum, aluminum, SUS, or the like) constituting the resistance pattern of the first heating resistor 13, so that the individual first heating resistors 13 have almost no variation and are considered to be the same. And can be a known value.
  • the Curie temperature Tc is a value determined by the PTC material constituting the second heating resistor 17 and can be regarded as the same with almost no variation among individuals, and is a known value. That is, since the Curie temperature Tc and the resistance temperature coefficient ⁇ are values determined by the configurations of the first and second heating resistors 13 and 17, these values are stored in a nonvolatile memory (not shown) provided in the treatment instrument 2. ) Etc.
  • the control unit 33 determines that the treatment tool 2 is connected to the control device 3 via the electric cable C, the control unit 33 acquires the resistance temperature coefficient ⁇ and the Curie temperature Tc from the nonvolatile memory.
  • step S21 the control unit 33 constantly monitors whether or not there has been an operation input of an initialization start instruction to the input unit 34 by the operator (step S22). Specifically, after step S21, the control unit 33 operates the operation knob 51 to prompt the operator to set the gripping unit 7 in a closed state, and to prompt the operator to start the initialization process. The message is displayed on the display unit 35. Then, the surgeon confirms the message, sets the gripping unit 7 in a closed state, and executes an operation input of an initialization start instruction that instructs the input unit 34 to start the initialization process.
  • step S22 Yes
  • the temperature setting unit 333 controls the operation of the second heat generating element drive circuit 32 to the second heat generating resistor 17. Is started (step S23).
  • the temperature setting unit 333 constantly monitors whether or not the temperature of the second heating resistor 17 has reached the Curie temperature Tc (step S24).
  • the determination of whether or not the temperature of the second heating resistor 17 has reached the Curie temperature Tc can be exemplified by the following method.
  • the temperature setting unit 333 sets the temperature of the second heating resistor 17 to the Curie temperature Tc when a predetermined time has elapsed after starting energization of the second heating resistor 17 (step S23). Judge that it has reached.
  • the temperature setting unit 333 causes the second resistance value measurement unit 321 to measure the current value flowing through the second heating resistor 17 at a constant period, and when the current value becomes a predetermined value or less, It is determined that the temperature of the second heating resistor 17 has reached the Curie temperature Tc. Further, for example, the temperature setting unit 333 causes the first resistance value measurement unit 311 to measure the resistance value or current value of the first heating resistor 13 at a constant period, and the resistance value or current value per unit time. When the change rate of the second heating resistor 17 is equal to or less than a predetermined value, it is determined that the temperature of the second heating resistor 17 has reached the Curie temperature Tc. Steps S23 and S24 described above correspond to the temperature setting step according to the present invention.
  • the characteristic calculation unit 334 controls the operation of the first heating element driving circuit 31;
  • the first resistance value measuring unit 311 is caused to measure the resistance value Rc of the first heating resistor 13 while supplying the minimum output power to the first heating resistor 13 (step S25: first resistance value measurement).
  • the gripping part 7 is set in a closed state. Therefore, the first and second heat transfer members 12 and 16 are in contact with each other.
  • the 1st, 2nd heat-transfer members 12 and 16 are comprised with the high heat conductive ceramic and metal material, the 1st heat_generation
  • step S25 the resistance value Rc of the first heating resistor 13 that has reached the Curie temperature Tc is measured.
  • the controller 33 stops energization of the second heating resistor 17 (step S26).
  • the characteristic calculation unit 334 stores the calculated slope SL and intercept IN in the storage unit 36.
  • step S3 the control unit 33 performs energy output setting (step S3). Specifically, in step S3, the control unit 33 causes the display unit 35 to display a screen for setting an output condition of the treatment instrument 2 (for example, a target temperature T_target for heating the living tissue, a heating time, etc.), and the input unit 34 The operator is prompted to input the output condition to the operator. Then, after confirming the screen and performing an operation input of the output condition to the input unit 34, the surgeon holds the treatment tool 2 by hand, and the distal end portion of the treatment tool 2 (the gripping portion 7 and the shaft 6). For example) is inserted into the abdominal cavity through the abdominal wall using a trocar or the like. Further, the operator operates the operation knob 51 and grips the living tissue to be treated by the grip portion 7. Further, the surgeon operates the foot switch 4 to start treatment of the living tissue.
  • an output condition of the treatment instrument 2 for example, a target temperature T_target for heating the living tissue, a heating time, etc.
  • the input unit 34 The operator is prompted
  • step S3 the control unit 33 determines whether or not there is an operation (treatment start instruction) on the foot switch 4 (step S4). When it is determined that there is no operation on the foot switch 4 (step S4: No), the control device 3 returns to step S3. On the other hand, when it is determined that the foot switch 4 has been operated (step S4: Yes), the energization control unit 331 energizes the first and second heating resistors 13, 17 as shown below. Control (treatment of living tissue) is executed (step S5).
  • FIG. 7 is a flowchart showing step S5.
  • the energization control unit 331 controls the operations of the first and second resistance value measuring units 311 and 321 to measure the resistance values R1 and R2 of the first and second heating resistors 13 and 17 (steps). S51).
  • the energization control unit 331 supplies the minimum output power from the first and second heating element drive circuits 31 and 32 to the first and second heating resistors 13 and 17. Of each of the first and second heating resistors 13 and 17 (while making the voltage value and the current value applied to the first and second heating resistors 13 and 17 detectable).
  • the resistance values R1 and R2 are measured by the first and second resistance value measuring units 311 and 321.
  • k1 is a control gain, and a predetermined value is set.
  • simple proportional control based on the temperature difference between the target temperature T_target set in step S3 and the current temperature T1 of the first heating resistor 13 is used, but PID is used for more stable control. Control may be used.
  • the second heating resistor 17 is connected to the first heating resistor 13 by supplying the second heating resistor 17 with the same power P2 as the power P1 supplied to the first heating resistor 13. It can be controlled to an equivalent temperature.
  • the area of the living tissue which contacts the 1st, 2nd heat-transfer members 12 and 16 differs greatly by the difference (for example, width etc.) of the 1st, 2nd heat-transfer members 12 and 16 differs.
  • the proportionality constant k2 may be a value corresponding to the area ratio. Further, the proportionality constant k2 may be changed in the middle of processing instead of a constant value.
  • the energy required to raise the temperature of the first heat transfer member 12 by a predetermined temperature ⁇ T by heating the first heating resistor 13 without holding the tissue is Q1
  • the second heating resistor When the energy required to raise the temperature of the second heat transfer member 16 by the predetermined temperature ⁇ T by heating 17 is Q2, the temperature of the first heating resistor 13 reaches the target temperature T_target from the start of power application.
  • the 2nd heat generating resistor 17 is made. It is possible to raise the temperature to the same target temperature T_target at the same temperature rise rate as the first heating resistor 13.
  • T_target the same target temperature
  • these values are obtained in advance. Can be stored in the treatment instrument, and these values can be obtained in step S21.
  • the energization control unit 331 controls the operation of the first and second heating element driving circuits 31 and 32, and supplies the electric power P1 and P2 to the first and second heating resistors 13 and 17, respectively.
  • Step S55 the energization control unit 331 applies the output voltage V1 of the first heating element drive circuit 31 (applied to the first heating resistor 13 so that electric power P1 is input to the first heating resistor 13. Voltage) is controlled so as to satisfy the following formula (1).
  • the energization control unit 331 outputs the voltage V2 of the second heating element drive circuit 32 (the voltage applied to the second heating resistor 17 so that the electric power P2 is input to the second heating resistor 17. ) Is controlled to be the following expression (2).
  • the energization control unit 331 determines whether or not the heating time set in step S3 has elapsed since the foot switch 4 was operated (step S4: Yes), or the foot switch 4 was operated (treatment end instruction). ) Is determined (whether or not to end the treatment) (step S56). When it is determined that the heating time has not elapsed and the foot switch 4 has not been operated (treatment termination instruction) (step S56: No), the energization control unit 331 returns to step S51. On the other hand, when it is determined that the heating time has elapsed or that the foot switch 4 has been operated (procedure end instruction) (step S56: Yes), the energization control unit 331 ends the treatment of the living tissue.
  • the first and second heat transfer members 12 and 16 are heated by the first and second heating resistors 13 and 17 at the target temperature T_target.
  • the living tissue in contact with the first and second treatment surfaces 121 and 161 is heated at the target temperature T_target and solidifies. Furthermore, the living tissue is pressed by the gripping force of the gripping unit 7 so that the living tissue is incised.
  • the resistance-temperature characteristic calculation method (step S2) according to the first embodiment is executed in an initialization process when the treatment instrument 2 is connected to the control device 3 via the electric cable C.
  • the first heat generating resistor 13 is heated to the Curie temperature Tc by setting the second heat generating resistor 17 to the Curie temperature Tc, and the first temperature at the Curie temperature Tc is set.
  • the resistance value Rc of the heating resistor 13 is measured.
  • the slope of the resistance temperature characteristic of the first heating resistor 13 is based on the Curie temperature Tc, the resistance value Rc, and the resistance temperature coefficient ⁇ of the first heating resistor 13. SL and intercept IN are calculated.
  • the resistance temperature characteristic of the first heating resistor 13 for each individual using a thermostatic bath, a thermocouple, or the like in the inspection process at the time of manufacturing the treatment instrument 2, and the work load on the calculation is reduced. Can be omitted.
  • the heating of the first heating resistor 13 to the Curie temperature Tc is performed using the second heating resistor 17 that generates thermal energy to be applied to the living tissue. There is no need to add configuration. Therefore, according to the resistance temperature characteristic calculation method according to the first embodiment, there is an effect that the cost of the treatment system 1 can be reduced.
  • the power P2 supplied to the second heating resistor 17 is determined based on the power P1 supplied to the first heating resistor 13. To do. Therefore, the temperature of the second heating resistor 17 is controlled to the same temperature as that of the first heating resistor 13 without separately providing a temperature sensor or the like for measuring the temperature of the second heating resistor 17. Can do. That is, the second heating resistor 17 can be controlled to an arbitrary target temperature T_target that is equal to or lower than the Curie temperature Tc according to the treatment content.
  • the energization control unit 331 sets the voltage value V2 applied to the second heating resistor 17 as a predetermined constant value,
  • the temperature of the second heating resistor 17 may be controlled to the Curie temperature Tc (target temperature T_target) by the self-temperature control characteristic of the second heating resistor 17.
  • FIG. 8 is a block diagram showing a configuration of the treatment system 1A according to the second embodiment. Specifically, FIG. 8 corresponds to FIG. In the treatment system 1A (control device 3A) according to the second embodiment, as shown in FIG. 8, a temperature sensor 37 is added to the treatment system 1 (control device) described in the first embodiment. ing.
  • a control unit 33A (resistance temperature characteristic calculation unit) having a changed resistance temperature characteristic calculation function.
  • 332A temperature setting unit 333 and characteristic calculation unit 334A
  • the temperature sensor 37 measures the environmental temperature (room temperature) at the installation location of the control device 3A under the control of the control unit 33A. Then, the temperature sensor 37 outputs a detection signal corresponding to the measured room temperature to the control unit 33A.
  • the function of the resistance temperature characteristic calculation unit 332A (characteristic calculation unit 334A) will be described in describing the operation of the control device 3A according to the second embodiment.
  • FIG. 9 is a flowchart showing step S2 according to the second embodiment.
  • steps S21A and S27A are employed instead of steps S21 and S27, and steps S28 and S29 are added.
  • step S21A, S27A, S28, S29 is mainly demonstrated.
  • Step S21A is executed when it is determined that the treatment instrument 2 is connected (step S1: Yes). Specifically, the control unit 33A acquires only the Curie temperature Tc from the treatment instrument 2 via the electric cable C in step S21A. Thereafter, the control device 3A proceeds to step S22.
  • Step S28 is executed when it is determined that there is an instruction to start initialization (step S22: Yes). Specifically, the characteristic calculation unit 334A causes the temperature sensor 37 to measure the room temperature T0 at the installation location of the control device 3A in step S28 (environment temperature measurement step). After step S28, the characteristic calculation unit 334A controls the operation of the first heat generating element drive circuit 31 and supplies the minimum output power to the first heat generating resistor 13 (to the first heat generating resistor 13). The first resistance value measuring unit 311 is caused to measure the resistance value R0 of the first heating resistor 13 (while making the applied voltage value and current value detectable) (step S29: second resistance value measurement). Step). Thereafter, the control device 3A proceeds to step S23.
  • the resistance temperature coefficient ⁇ described in the first embodiment is not used. That is, it is not necessary to previously store the resistance temperature coefficient ⁇ depending on the material of the resistance pattern in the first heating resistor 13 in the nonvolatile memory in the treatment instrument 2, and the resistance temperature coefficient of the individual treatment instrument 2 It is possible to reduce the temperature error due to the variation of ⁇ .
  • the first heating resistor 13 is provided on the first gripping member 8 and the second heating resistor 17 is provided on the second gripping member 9. Absent.
  • the first and second heating resistors 13 and 17 may be provided only on one of the first and second gripping members 8 and 9. That is, you may employ
  • high-frequency energy or ultrasonic energy may be further applied to the living tissue in addition to thermal energy.
  • the first treatment surface 121 is formed in a convex shape and the second treatment surface 161 is formed in a flat surface, but the first and second treatment surfaces 121 and 161 are formed.
  • the shape of may be other shapes (for example, both the first and second treatment surfaces 121 and 161 are convex).
  • the shape of the treatment instrument 2 is merely an example, and may have another shape, for example, a forceps shape, or the shaft as long as it has the same function. You may employ
  • the initialization process may be performed only once when the treatment instrument 2 is connected to the control devices 3 and 3A via the electric cable C.
  • a treatment tool identifier for identifying the treatment tool 2 is stored in the nonvolatile memory in the treatment tool 2.
  • the control devices 3 and 3A acquire the treatment instrument identifier from the treatment instrument 2, and use the slope SL and the intercept IN of the resistance temperature characteristic calculated in the initialization process as the treatment instrument.
  • the information is stored in the storage unit 36 in association with the identifier.
  • the control devices 3 and 3A acquire the treatment instrument identifier from the treatment instrument 2, and the inclination SL associated with the treatment instrument identifier is stored in the storage unit 36. Whether or not the intercept IN is stored is checked, and if it does not exist, the initialization process is executed. If it exists, the process proceeds to step S3 without executing the initialization process.
  • the treatment instrument 2 once connected to the control devices 3 and 3A and subjected to the initialization process is initialized even when it is removed from the control devices 3 and 3A and connected again. There is no need to perform processing, and user convenience can be improved.

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Otolaryngology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Surgical Instruments (AREA)

Abstract

A treatment system 1 including: an energy applying unit which comprises a first heat resistor 13 having a linear resistance-temperature characteristic and a second heat resistor 17 having a self-regulating temperature characteristic where a first temperature is defined as the maximum temperature, the energy applying unit applying thermal energy generated in the first heat resistor 13 and the second heat resistor 17 to biological tissue; a resistance-temperature characteristic calculation section 332 that calculates a resistance temperature characteristic; and a resistance value measurement section 311 that measures the resistance value of the first heat resistor 13. The resistance-temperature characteristic calculation section 332 includes: a temperature setting section 333 which energizes the second heat resistor 17 and sets the second heat resistor 17 to the first temperature; and a characteristic calculation section 334 that calculates the resistance-temperature characteristic on the basis of the self-regulating temperature characteristic and the resistance value of the first heat resistor 13 to which heat from the second heat resistor 17 which is at the first temperature is transmitted.

Description

抵抗温度特性算出方法、処置システム、及び抵抗温度特性算出プログラムResistance temperature characteristic calculation method, treatment system, and resistance temperature characteristic calculation program
 本発明は、抵抗温度特性算出方法、処置システム、及び抵抗温度特性算出プログラムに関する。 The present invention relates to a resistance temperature characteristic calculation method, a treatment system, and a resistance temperature characteristic calculation program.
 従来、熱エネルギを生体組織に付与することで、当該生体組織を処置(接合(若しくは吻合)及び切開等)する処置システムが知られている(例えば、特許文献1参照)。
 特許文献1に記載の処置システムは、熱エネルギを発生する発熱抵抗体(ヒータ)が設けられた処置具(熱凝固切開鉗子)と、発熱抵抗体の通電制御(発熱抵抗体を目標温度に制御)を実行する制御装置(電源装置)とを備える。ここで、制御装置は、抵抗温度特性に基づいて発熱抵抗体の抵抗値を温度に換算し、当該温度を認識しながらフィードバック制御によって当該発熱抵抗体を目標温度に制御する。なお、抵抗温度特性は、発熱抵抗体の抵抗値と温度との特性であって、処置具製造時の検査工程等において、予め算出(取得)されている。
2. Description of the Related Art Conventionally, a treatment system that treats (joins (or anastomoses), incises, etc.) a living tissue by applying thermal energy to the living tissue is known (for example, see Patent Document 1).
The treatment system described in Patent Document 1 is a treatment instrument (thermocoagulation forceps) provided with a heating resistor (heater) that generates thermal energy, and energization control of the heating resistor (controlling the heating resistor to a target temperature). And a control device (power supply device). Here, the control device converts the resistance value of the heating resistor into a temperature based on the resistance temperature characteristic, and controls the heating resistor to the target temperature by feedback control while recognizing the temperature. The resistance-temperature characteristic is a characteristic between the resistance value and the temperature of the heating resistor, and is calculated (acquired) in advance in an inspection process or the like when manufacturing the treatment instrument.
特開2001-190561号公報JP 2001-190561 A
 ところで、抵抗温度特性は、発熱抵抗体の構成により変動するものである。すなわち、同一の材料及び形状で発熱抵抗体を複数、製造した場合であっても、製造誤差が生じている場合には、当該複数の発熱抵抗体で抵抗温度特性が異なるものとなってしまう。このため、特許文献1に記載の発熱抵抗体の通電制御を実行する場合には、抵抗温度特性を個体毎に正確に算出しておく必要がある。当該抵抗温度特性の算出方法としては、例えば、発熱抵抗体を恒温槽に入れ、当該発熱抵抗体を種々の温度に設定しながら、当該種々の温度の時の当該発熱抵抗体の抵抗値を測定することで、抵抗温度特性を算出する。また、例えば、発熱抵抗体に通電しながら、熱電対等を用いて当該発熱抵抗体の温度を測定し、種々の温度の時の当該発熱抵抗体の抵抗値を測定することで、抵抗温度特性を算出する。
 以上のように抵抗温度特性を算出する場合には、当該抵抗温度特性を算出する作業者の作業負荷が大きいものとなり、結果として、処置システムの低コスト化を阻害してしまう、という問題がある。
Incidentally, the resistance temperature characteristic varies depending on the configuration of the heating resistor. That is, even when a plurality of heating resistors are manufactured with the same material and shape, if a manufacturing error occurs, the resistance temperature characteristics of the plurality of heating resistors are different. For this reason, when energization control of the heating resistor described in Patent Document 1 is executed, it is necessary to accurately calculate the resistance temperature characteristic for each individual. As a calculation method of the resistance temperature characteristic, for example, the resistance value of the heating resistor is measured at various temperatures while the heating resistor is placed in a thermostat and the heating resistor is set to various temperatures. Thus, the resistance temperature characteristic is calculated. In addition, for example, by measuring the temperature of the heating resistor using a thermocouple while energizing the heating resistor and measuring the resistance value of the heating resistor at various temperatures, the resistance temperature characteristics can be obtained. calculate.
When the resistance temperature characteristic is calculated as described above, there is a problem that the workload of the operator who calculates the resistance temperature characteristic becomes large, and as a result, the cost reduction of the treatment system is hindered. .
 本発明は、上記に鑑みてなされたものであって、低コスト化を図ることができる抵抗温度特性算出方法、処置システム、及び抵抗温度特性算出プログラムを提供することを目的とする。 The present invention has been made in view of the above, and an object thereof is to provide a resistance temperature characteristic calculation method, a treatment system, and a resistance temperature characteristic calculation program capable of reducing the cost.
 上述した課題を解決し、目的を達成するために、本発明に係る抵抗温度特性算出方法は、線形の抵抗温度特性を有する第1の発熱抵抗体と、第1の温度を最高温度とする自己温度制御特性を有する第2の発熱抵抗体とを備え、前記第1の発熱抵抗体と前記第2の発熱抵抗体とにそれぞれ発生した熱エネルギを生体組織に付与する処置システムに用いられ、前記抵抗温度特性を算出する抵抗温度特性算出方法であって、前記第2の発熱抵抗体に通電し、当該第2の発熱抵抗体を前記第1の温度に設定する温度設定ステップと、前記温度設定ステップの後、前記第2の発熱抵抗体からの熱が伝達された前記第1の発熱抵抗体の抵抗値を測定する第1の抵抗値測定ステップと、前記第1の抵抗値測定ステップにて測定した前記第1の発熱抵抗体の抵抗値と、前記自己温度制御特性とに基づいて、前記抵抗温度特性を算出する抵抗温度特性算出ステップとを備える。 In order to solve the above-described problems and achieve the object, a resistance temperature characteristic calculation method according to the present invention includes a first heating resistor having a linear resistance temperature characteristic, and a self temperature with the first temperature as the maximum temperature. A second heating resistor having a temperature control characteristic, and used in a treatment system that applies thermal energy generated respectively to the first heating resistor and the second heating resistor to a living tissue, A resistance temperature characteristic calculation method for calculating a resistance temperature characteristic, wherein a temperature setting step of energizing the second heating resistor and setting the second heating resistor to the first temperature, and the temperature setting After the step, a first resistance value measuring step for measuring a resistance value of the first heating resistor to which heat from the second heating resistor is transmitted, and a first resistance value measuring step Of the first heating resistor measured Comprising an anti-value, on the basis of the self temperature control characteristics, and a resistance-temperature characteristic calculating step of calculating the resistance-temperature characteristic.
 また、本発明に係る処置システムは、線形の抵抗温度特性を有する第1の発熱抵抗体と、第1の温度を最高温度とする自己温度制御特性を有する第2の発熱抵抗体とを含み、前記第1の発熱抵抗体と前記第2の発熱抵抗体とにそれぞれ発生した熱エネルギを生体組織に付与するエネルギ付与部と、前記抵抗温度特性を算出する抵抗温度特性算出部と、前記第1の発熱抵抗体の抵抗値を測定する抵抗値測定部とを備え、前記抵抗温度特性算出部は、前記第2の発熱抵抗体に通電し、当該第2の発熱抵抗体を前記第1の温度に設定する温度設定部と、前記第1の温度になった前記第2の発熱抵抗体からの熱が伝達された前記第1の発熱抵抗体の抵抗値と、前記自己温度制御特性とに基づいて、前記抵抗温度特性を算出する特性算出部とを備える。 Further, the treatment system according to the present invention includes a first heating resistor having a linear resistance temperature characteristic and a second heating resistor having a self-temperature control characteristic in which the first temperature is a maximum temperature, An energy applying unit that applies thermal energy generated respectively to the first heating resistor and the second heating resistor to a living tissue; a resistance temperature characteristic calculating unit that calculates the resistance temperature characteristic; A resistance value measuring unit that measures a resistance value of the heating resistor, and the resistance temperature characteristic calculation unit energizes the second heating resistor and causes the second heating resistor to pass through the first temperature. Based on the temperature setting unit to be set to 1, the resistance value of the first heating resistor to which the heat from the second heating resistor having reached the first temperature is transmitted, and the self-temperature control characteristic And a characteristic calculation unit for calculating the resistance temperature characteristic.
 また、本発明に係る抵抗温度特性算出プログラムは、上述した抵抗温度特性算出方法をコンピュータに実行させる。 The resistance temperature characteristic calculation program according to the present invention causes a computer to execute the above-described resistance temperature characteristic calculation method.
 本発明に係る抵抗温度特性算出方法、処置システム、及び抵抗温度特性算出プログラムによれば、低コスト化を図ることができる、という効果を奏する。 According to the resistance temperature characteristic calculation method, treatment system, and resistance temperature characteristic calculation program according to the present invention, there is an effect that the cost can be reduced.
図1は、本実施の形態1に係る処置システムを模式的に示す図である。FIG. 1 is a diagram schematically illustrating a treatment system according to the first embodiment. 図2は、処置具の先端部分を示す図である。FIG. 2 is a view showing a distal end portion of the treatment instrument. 図3は、処置具の先端部分を示す図である。FIG. 3 is a view showing a distal end portion of the treatment instrument. 図4は、制御装置及びフットスイッチの構成を示すブロック図である。FIG. 4 is a block diagram illustrating configurations of the control device and the foot switch. 図5は、制御装置の動作を示すフローチャートである。FIG. 5 is a flowchart showing the operation of the control device. 図6は、ステップS2を示すフローチャートである。FIG. 6 is a flowchart showing step S2. 図7は、ステップS5を示すフローチャートである。FIG. 7 is a flowchart showing step S5. 図8は、本実施の形態2に係る処置システムの構成を示すブロック図である。FIG. 8 is a block diagram showing the configuration of the treatment system according to the second embodiment. 図9は、本実施の形態2に係るステップS2を示すフローチャートである。FIG. 9 is a flowchart showing step S2 according to the second embodiment.
 以下、図面を参照して、本発明を実施するための形態(以下、実施の形態)について説明する。なお、以下に説明する実施の形態によって本発明が限定されるものではない。さらに、図面の記載において、同一の部分には同一の符号を付している。 Hereinafter, embodiments for carrying out the present invention (hereinafter referred to as embodiments) will be described with reference to the drawings. The present invention is not limited to the embodiments described below. Furthermore, the same code | symbol is attached | subjected to the same part in description of drawing.
(実施の形態1)
 〔処置システムの概略構成〕
 図1は、本実施の形態1に係る処置システム1を模式的に示す図である。
 処置システム1は、処置対象である生体組織に熱エネルギを付与することにより、当該生体組織を処置(接合(若しくは吻合)及び切開等)する。この処置システム1は、図1に示すように、処置具2と、制御装置3と、フットスイッチ4とを備える。
(Embodiment 1)
[Schematic configuration of treatment system]
FIG. 1 is a diagram schematically illustrating a treatment system 1 according to the first embodiment.
The treatment system 1 treats (joins (or anastomoses), incises, etc.) the living tissue by applying thermal energy to the living tissue to be treated. As illustrated in FIG. 1, the treatment system 1 includes a treatment tool 2, a control device 3, and a foot switch 4.
 〔処置具の構成〕
 処置具2は、本発明に係るエネルギ付与部に相当する部分であり、例えば、腹壁を通して生体組織に処置を行うためのリニアタイプの外科医療用処置具である。この処置具2は、図1に示すように、ハンドル5と、シャフト6と、把持部7とを備える。
 ハンドル5は、術者が手で持つ部分である。そして、このハンドル5には、図1に示すように、操作ノブ51が設けられている。
 シャフト6は、図1に示すように、略円筒形状を有し、一端(図1中、右端部)がハンドル5に接続されている。また、シャフト6の他端(図1中、左端部)には、把持部7が取り付けられている。そして、このシャフト6の内部には、術者による操作ノブ51の操作に応じて、把持部7を構成する第1,第2の把持部材8,9(図1)を開閉させる開閉機構(図示略)が設けられている。また、このシャフト6の内部には、制御装置3に接続された電気ケーブルC(図1)がハンドル5を介して一端側(図1中、右端部側)から他端側(図1中、左端部側)まで配設されている。
[Configuration of treatment tool]
The treatment tool 2 is a part corresponding to the energy applying unit according to the present invention, and is, for example, a linear-type surgical treatment tool for performing treatment on a living tissue through the abdominal wall. As shown in FIG. 1, the treatment tool 2 includes a handle 5, a shaft 6, and a grip portion 7.
The handle 5 is a part that the surgeon holds by hand. The handle 5 is provided with an operation knob 51 as shown in FIG.
As shown in FIG. 1, the shaft 6 has a substantially cylindrical shape, and one end (right end portion in FIG. 1) is connected to the handle 5. A gripping portion 7 is attached to the other end of the shaft 6 (left end portion in FIG. 1). An opening / closing mechanism (illustrated) is provided inside the shaft 6 for opening and closing the first and second gripping members 8 and 9 (FIG. 1) constituting the gripping portion 7 in accordance with the operation of the operation knob 51 by the operator. Abbreviation) is provided. Further, in the shaft 6, an electric cable C (FIG. 1) connected to the control device 3 is connected to the other end side (in FIG. 1) from one end side (right end side in FIG. 1) via the handle 5. (Up to the left end side).
 〔把持部の構成〕
 図2及び図3は、処置具2の先端部分を示す図である。具体的に、図2は、把持部7の先端から基端に向かう長手方向に沿う切断面にて当該把持部7を切断した図である。図3は、把持部7の長手方向に直交する切断面にて当該把持部7を切断した図である。
 把持部7は、生体組織を把持して、当該生体組織を処置する部分である。この把持部7は、図1ないし図3に示すように、第1,第2の把持部材8,9を備える。
 第1,第2の把持部材8,9は、矢印Ar(図2)方向に開閉可能にシャフト6の他端(図1,図2中、左端部)に支持され、術者による操作ノブ51の操作に応じて、生体組織を把持可能とする。
 なお、図2では、上方に位置する第1の把持部材8がシャフト6に固定され、下方に位置する第2の把持部材9がシャフト6に軸支された構成を示しているが、これに限らず、第1,第2の把持部材8,9の双方がシャフト6に軸支された構成としても構わない。また、第1の把持部材8がシャフト6に軸支され、第2の把持部材9がシャフト6に固定された構成としても構わない。
(Configuration of gripping part)
2 and 3 are views showing the distal end portion of the treatment instrument 2. FIG. Specifically, FIG. 2 is a diagram in which the grip portion 7 is cut along a cut surface along a longitudinal direction from the distal end to the base end of the grip portion 7. FIG. 3 is a view in which the grip portion 7 is cut along a cut surface perpendicular to the longitudinal direction of the grip portion 7.
The gripping part 7 is a part that grips a living tissue and treats the living tissue. As shown in FIGS. 1 to 3, the grip portion 7 includes first and second grip members 8 and 9.
The first and second gripping members 8 and 9 are supported by the other end (left end portion in FIGS. 1 and 2) of the shaft 6 so as to be openable and closable in the direction of the arrow Ar (FIG. 2). The living tissue can be grasped according to the operation.
FIG. 2 shows a configuration in which the first gripping member 8 positioned above is fixed to the shaft 6 and the second gripping member 9 positioned below is pivotally supported by the shaft 6. Not limited to this, both the first and second gripping members 8 and 9 may be supported by the shaft 6. Alternatively, the first gripping member 8 may be pivotally supported on the shaft 6 and the second gripping member 9 may be fixed to the shaft 6.
 〔第1の把持部材の構成〕
 なお、以下で記載する「先端側」は、把持部7の先端側であって、図1,図2中、左側を意味する。また、以下で記載する「基端側」は、把持部7のシャフト6側であって、図1,図2中、右側を意味する。
 第1の把持部材8は、図2または図3に示すように、第1のカバー部材10と、第1の発熱構造体11とを備える。
 第1のカバー部材10は、把持部7の長手方向(図1,図2中、左右方向)に延在する長尺状の板体で構成されている。この第1のカバー部材10において、図2,図3中、下方側の面には、凹部101が形成されている。
 凹部101は、第1のカバー部材10における幅方向の中心に位置し、当該第1のカバー部材10の長手方向に沿って延在する。また、凹部101を構成する側壁部のうち、基端側の側壁部は、省略されている。そして、第1のカバー部材10は、第1の発熱構造体11を支持しつつ、凹部101が図2,図3中、下方に向く姿勢でシャフト6に固定される。
[Configuration of first gripping member]
The “tip side” described below is the tip side of the gripping part 7 and means the left side in FIGS. Further, the “base end side” described below means the shaft 6 side of the gripping portion 7 and the right side in FIGS. 1 and 2.
As shown in FIG. 2 or 3, the first gripping member 8 includes a first cover member 10 and a first heat generating structure 11.
The first cover member 10 is composed of a long plate extending in the longitudinal direction of the gripping portion 7 (left and right direction in FIGS. 1 and 2). In the first cover member 10, a recess 101 is formed on the lower surface in FIGS. 2 and 3.
The recess 101 is located at the center in the width direction of the first cover member 10 and extends along the longitudinal direction of the first cover member 10. Of the side wall portions constituting the recess 101, the base end side wall portion is omitted. The first cover member 10 is fixed to the shaft 6 while supporting the first heat generating structure 11 while the concave portion 101 faces downward in FIGS. 2 and 3.
 第1の発熱構造体11は、一部が凹部101内に収容された状態で、第1のカバー部材10に取り付けられる。そして、第1の発熱構造体11は、制御装置3による制御の下、熱エネルギを発生する。この第1の発熱構造体11は、図2または図3に示すように、第1の伝熱部材12と、第1の発熱抵抗体13とを備える。
 第1の伝熱部材12は、窒化アルミニウム等の高熱伝導性のセラミックや銅やアルミニウム等の高熱伝導性の金属材料で構成された長尺状(把持部7の長手方向に延在する長尺状)の板体で構成され、凹部101を閉塞するように第1のカバー部材10に取り付けられる。
 この第1の伝熱部材12において、図2,図3中、下方側の面は、第1,第2の把持部材8,9にて生体組織を把持した状態で、当該生体組織に接触し、第1の発熱抵抗体13からの熱を当該生体組織に伝達する(熱エネルギを生体組織に付与する)第1の処置面121として機能する。
 本実施の形態1では、第1の処置面121は、図3に示すように、幅方向の中心領域が他の領域に対して下方に突出した凸形状を有する。
The first heat generating structure 11 is attached to the first cover member 10 in a state where a part thereof is accommodated in the recess 101. The first heat generating structure 11 generates heat energy under the control of the control device 3. As shown in FIG. 2 or 3, the first heat generating structure 11 includes a first heat transfer member 12 and a first heat generating resistor 13.
The first heat transfer member 12 has a long shape (long length extending in the longitudinal direction of the gripping portion 7) made of a high heat conductive ceramic such as aluminum nitride or a high heat conductive metal material such as copper or aluminum. And is attached to the first cover member 10 so as to close the recess 101.
2 and 3, the lower surface of the first heat transfer member 12 is in contact with the living tissue while the living tissue is gripped by the first and second gripping members 8 and 9. The first heat treatment resistor 121 functions as a first treatment surface 121 that transfers heat from the first heating resistor 13 to the living tissue (applies thermal energy to the living tissue).
In the first embodiment, the first treatment surface 121 has a convex shape in which the central region in the width direction protrudes downward with respect to other regions as shown in FIG.
 第1の発熱抵抗体13は、一部が発熱し、当該発熱により第1の伝熱部材12を加熱するシートヒータとして機能する部分であり、図2または図3に示すように、凹部101内に収容される。この第1の発熱抵抗体13は、例えば、窒化アルミニウムやアルミナ等の高熱伝導性のセラミックの基板上に、プラチナ等の導電性材料からなる抵抗パターンが形成された構成を有する。当該抵抗パターンは、生体組織の処置に使用する温度範囲で略線形の抵抗温度特性を有する材料を用いることができ、プラチナに限らず、アルミニウムやSUS等を用いても構わない。そして、第1の発熱抵抗体13は、基板における抵抗パターンが形成された面の裏面側に設けられた接合用金属層(例えば、チタンとプラチナと金とからなる多層の膜)を介して、第1の伝熱部材12における第1の処置面121の裏面に対して、AuSn合金、銀ペースト、あるいは、アルミナ等のセラミックを主成分とした熱伝導性の高い接合材料を用いて固定される。また、当該抵抗パターンの両端(電極部)には、電気ケーブルCを構成する2つの第1のリード線C1(図2,図4参照)がそれぞれ接合(接続)される。なお、図2及び図4では、説明の便宜上、第1のリード線C1を1本のみ図示している。そして、当該抵抗パターンは、制御装置3による制御の下、2つの第1のリード線C1を介して電圧が印加(通電)されることにより、発熱する。 The first heating resistor 13 is a part that generates heat and functions as a sheet heater that heats the first heat transfer member 12 by the heat generation. As shown in FIG. 2 or FIG. Is housed in. The first heating resistor 13 has a configuration in which a resistance pattern made of a conductive material such as platinum is formed on a ceramic substrate having high thermal conductivity such as aluminum nitride or alumina. As the resistance pattern, a material having a substantially linear resistance temperature characteristic in a temperature range used for treatment of a living tissue can be used. The first heating resistor 13 is connected via a bonding metal layer (for example, a multilayer film made of titanium, platinum, and gold) provided on the back side of the surface on which the resistance pattern is formed on the substrate. It fixes to the back surface of the 1st treatment surface 121 in the 1st heat-transfer member 12 using the bonding material with high heat conductivity which has AuSn alloy, silver paste, or ceramics, such as an alumina, as a main component. . Further, two first lead wires C1 (see FIGS. 2 and 4) constituting the electric cable C are joined (connected) to both ends (electrode portions) of the resistance pattern. 2 and 4, only one first lead C1 is shown for convenience of explanation. The resistance pattern generates heat when a voltage is applied (energized) through the two first lead wires C <b> 1 under the control of the control device 3.
 なお、第1の発熱抵抗体13で生じた熱を効率良く第1の伝熱部材12に伝えるため、第1のカバー部材10としては、第1の伝熱部材12や第1の発熱抵抗体13よりも低い熱伝導率を有する材料で構成することが好ましい。また、第1のカバー部材10と第1の発熱構造体11との間に熱伝導率の低い樹脂等で構成される断熱部材を配置してもよい。 In order to efficiently transfer the heat generated in the first heat generating resistor 13 to the first heat transfer member 12, the first cover member 10 includes the first heat transfer member 12 and the first heat generating resistor. It is preferable to use a material having a thermal conductivity lower than 13. Further, a heat insulating member made of a resin having low thermal conductivity or the like may be disposed between the first cover member 10 and the first heat generating structure 11.
 〔第2の把持部材の構成〕
 第2の把持部材9は、図2または図3に示すように、第2のカバー部材14と、第2の発熱構造体15とを備える。
 第2のカバー部材14は、第1のカバー部材10と同一の形状を有する。すなわち、第2のカバー部材14は、図2または図3に示すように、凹部101と同様の凹部141を有する。そして、第2のカバー部材14は、第2の発熱構造体15を支持しつつ、凹部141が図2,図3中、上方に向く姿勢(凹部101に対向する姿勢)でシャフト6に軸支される。
[Configuration of Second Holding Member]
As shown in FIG. 2 or 3, the second gripping member 9 includes a second cover member 14 and a second heat generating structure 15.
The second cover member 14 has the same shape as the first cover member 10. That is, the 2nd cover member 14 has the recessed part 141 similar to the recessed part 101, as shown in FIG. 2 or FIG. The second cover member 14 supports the second heat generating structure 15 and is pivotally supported on the shaft 6 with the recess 141 facing upward in FIG. 2 and FIG. 3 (the posture facing the recess 101). Is done.
 第2の発熱構造体15は、一部が凹部141内に収容された状態で、第2のカバー部材14に取り付けられる。そして、第2の発熱構造体15は、制御装置3による制御の下、熱エネルギを発生する。この第2の発熱構造体15は、図2または図3に示すように、第2の伝熱部材16と、第2の発熱抵抗体17とを備える。
 第2の伝熱部材16は、窒化アルミニウム等の高熱伝導性のセラミックや銅やアルミニウム等の高熱伝導性の金属材料で構成された長尺状(把持部7の長手方向に延在する長尺状)の板体で構成され、凹部141を閉塞するように第2のカバー部材14に取り付けられる。
 この第2の伝熱部材16において、図2,図3中、上方側の面は、第1,第2の把持部材8,9にて生体組織を把持した状態で、当該生体組織に接触し、第2の発熱抵抗体17からの熱を当該生体組織に伝達する(熱エネルギを生体組織に付与する)第2の処置面161として機能する。なお、第2の伝熱部材16は、第1,第2の把持部材8,9間に生体組織が存在しない状態では、第1,第2の把持部材8,9を閉じた際に、第1の伝熱部材12に接触する。
 本実施の形態1では、第2の処置面161は、図3に示すように、平坦形状を有する。
The second heat generating structure 15 is attached to the second cover member 14 in a state where a part thereof is accommodated in the recess 141. The second heat generating structure 15 generates heat energy under the control of the control device 3. As shown in FIG. 2 or FIG. 3, the second heat generating structure 15 includes a second heat transfer member 16 and a second heat generating resistor 17.
The second heat transfer member 16 has a long shape (long length extending in the longitudinal direction of the gripping portion 7) made of a high heat conductive ceramic such as aluminum nitride or a high heat conductive metal material such as copper or aluminum. And is attached to the second cover member 14 so as to close the concave portion 141.
2 and 3, the upper surface of the second heat transfer member 16 is in contact with the living tissue while the living tissue is gripped by the first and second gripping members 8 and 9. It functions as a second treatment surface 161 that transfers heat from the second heating resistor 17 to the living tissue (applies thermal energy to the living tissue). The second heat transfer member 16 is in a state where the first and second gripping members 8 and 9 are closed in a state where there is no living tissue between the first and second gripping members 8 and 9. 1 heat transfer member 12 is contacted.
In the first embodiment, the second treatment surface 161 has a flat shape as shown in FIG.
 第2の発熱抵抗体17は、Positive Temperature Coefficient(以下、PTCと記載)特性を有するチタン酸バリウム(BaTiO3)等を主成分とした半導体セラミック等のPTC材料を発熱抵抗体として用いたPTCヒータで構成され、第2の伝熱部材16における第2の処置面161の裏面に対して、熱伝導性が高く非導電性である例えばアルミナ等のセラミックを主成分とした接合材料を用いて固定される。そして、第2の発熱抵抗体17は、図2または図3に示すように、凹部141内に収容される。
 具体的に、第2の発熱抵抗体17は、PTC材料で構成された基材に複数の電極が設けられている。また、当該電極には、電気ケーブルCを構成する複数の第2のリード線C2(図2,図4参照)がそれぞれ接合(接続)される。なお、図2及び図4では、説明の便宜上、第2のリード線C2を1本のみ図示している。そして、第2の発熱抵抗体17は、制御装置3による制御の下、第2のリード線C2を介して電極間に電圧が印加されることで(PTC材料に通電することで)発熱する。ここで、第2の発熱抵抗体17(PTCヒータ)は、一定電圧を印加して駆動するだけで、発熱による温度上昇によりPTC材料がキュリー温度Tc(本発明に係る第1の温度に相当)に到達すると急激に抵抗値が増加する。このため、第2の発熱抵抗体17は、電流値が低下しPTC材料の発熱量が抑制され、結果としてキュリー温度Tc近傍に温度制御される自己温度制御特性を有している。なお、PTC材料には、処置システム1による処置の際に生体組織を加熱する目標温度と同じか、それ以上のキュリー温度Tcを有する材料を用いる。
The second heating resistor 17 is a PTC heater using a PTC material such as a semiconductor ceramic mainly composed of barium titanate (BaTiO 3) having a positive temperature coefficient (hereinafter referred to as PTC) characteristic as a heating resistor. It is configured and fixed to the back surface of the second treatment surface 161 of the second heat transfer member 16 using a bonding material mainly composed of ceramic such as alumina, which has high thermal conductivity and is non-conductive. The The second heating resistor 17 is accommodated in the recess 141 as shown in FIG. 2 or FIG.
Specifically, the second heating resistor 17 is provided with a plurality of electrodes on a base material made of a PTC material. In addition, a plurality of second lead wires C2 (see FIGS. 2 and 4) constituting the electric cable C are joined (connected) to the electrodes. 2 and 4, only one second lead C2 is shown for convenience of explanation. The second heating resistor 17 generates heat when a voltage is applied between the electrodes via the second lead C2 under the control of the control device 3 (by energizing the PTC material). Here, the second heating resistor 17 (PTC heater) is driven by applying a constant voltage, and the temperature rises due to heat generation, so that the PTC material becomes the Curie temperature Tc (corresponding to the first temperature according to the present invention). When reaching the value, the resistance value increases rapidly. For this reason, the second heating resistor 17 has a self-temperature control characteristic in which the current value is reduced and the amount of heat generated by the PTC material is suppressed, and as a result, the temperature is controlled in the vicinity of the Curie temperature Tc. As the PTC material, a material having a Curie temperature Tc equal to or higher than the target temperature for heating the living tissue during the treatment by the treatment system 1 is used.
 なお、第2の発熱抵抗体17で生じた熱を効率良く第2の伝熱部材16に伝えるため、第2のカバー部材14としては、第2の伝熱部材16や第2の発熱抵抗体17よりも低い熱伝導率を有する材料で構成することが好ましい。また、第2のカバー部材14と第2の発熱構造体15との間に熱伝導率の低い樹脂等で構成される断熱部材を配置してもよい。 In order to efficiently transmit the heat generated in the second heat generating resistor 17 to the second heat transfer member 16, the second cover member 14 includes the second heat transfer member 16 and the second heat generation resistor. It is preferable to use a material having a thermal conductivity lower than 17. Further, a heat insulating member made of a resin having low thermal conductivity or the like may be disposed between the second cover member 14 and the second heat generating structure 15.
 〔制御装置及びフットスイッチの構成〕
 図4は、制御装置3及びフットスイッチ4の構成を示すブロック図である。
 フットスイッチ4は、術者が足で操作する部分である。そして、フットスイッチ4への当該操作に応じて、制御装置3は、生体組織の処置を開始する。
 なお、生体組織の処置を開始させる手段としては、フットスイッチ4に限らず、その他、手で操作するスイッチ等を採用しても構わない。
 制御装置3は、CPU(Central Processing Unit)等を含んで構成され、所定の制御プログラムにしたがって、処置具2の動作を統括的に制御する。この制御装置3は、図4に示すように、第1,第2の発熱素子駆動回路31,32と、制御部33と、入力部34と、表示部35と、記憶部36とを備える。
[Configuration of control device and foot switch]
FIG. 4 is a block diagram illustrating configurations of the control device 3 and the foot switch 4.
The foot switch 4 is a part operated by the operator with his / her foot. And according to the said operation to the foot switch 4, the control apparatus 3 starts the treatment of a biological tissue.
Note that the means for starting the treatment of the living tissue is not limited to the foot switch 4 and may be a switch operated by hand.
The control device 3 includes a CPU (Central Processing Unit) and the like, and comprehensively controls the operation of the treatment instrument 2 according to a predetermined control program. As shown in FIG. 4, the control device 3 includes first and second heating element driving circuits 31 and 32, a control unit 33, an input unit 34, a display unit 35, and a storage unit 36.
 第1の発熱素子駆動回路31は、制御部33による制御の下、第1のリード線C1を介して、第1の発熱抵抗体13に電力を供給する。また、第1の発熱素子駆動回路31は、制御部33による制御の下、第1の発熱抵抗体13に印加されている電圧値及び電流値を検出し、第1の発熱抵抗体13の抵抗値を測定する第1の抵抗値測定部311(図4)を備える。この第1の抵抗値測定部311は、本発明に係る抵抗値測定部に相当する。
 第2の発熱素子駆動回路32は、制御部33による制御の下、第2のリード線C2を介して、第2の発熱抵抗体17に電力を供給する。また、第2の発熱素子駆動回路32は、制御部33による制御の下、第2の発熱抵抗体17に印加されている電圧値及び電流値を検出し、第2の発熱抵抗体17の抵抗値を測定する第2の抵抗値測定部321(図4)を備える。
The first heating element driving circuit 31 supplies power to the first heating resistor 13 through the first lead C <b> 1 under the control of the control unit 33. The first heating element drive circuit 31 detects the voltage value and the current value applied to the first heating resistor 13 under the control of the control unit 33, and the resistance of the first heating resistor 13 is detected. A first resistance value measuring unit 311 (FIG. 4) for measuring the value is provided. The first resistance value measuring unit 311 corresponds to the resistance value measuring unit according to the present invention.
The second heating element driving circuit 32 supplies power to the second heating resistor 17 through the second lead wire C <b> 2 under the control of the control unit 33. Further, the second heating element driving circuit 32 detects the voltage value and the current value applied to the second heating resistor 17 under the control of the control unit 33, and the resistance of the second heating resistor 17. A second resistance value measuring unit 321 (FIG. 4) for measuring the value is provided.
 制御部33は、CPU等で構成され、記憶部36に記憶された制御プログラム(本発明に係る抵抗温度特性算出プログラムを含む)にしたがって第1,第2の発熱素子駆動回路31,32の動作を制御する。この制御部33は、図4に示すように、通電制御部331と、抵抗温度特性算出部332とを備える。
 通電制御部331は、第1,第2の発熱素子駆動回路31,32の動作を制御し、第1,第2の発熱抵抗体13,17の通電制御を実行する。
The control unit 33 includes a CPU and the like, and operates the first and second heating element drive circuits 31 and 32 according to a control program (including the resistance temperature characteristic calculation program according to the present invention) stored in the storage unit 36. To control. As shown in FIG. 4, the control unit 33 includes an energization control unit 331 and a resistance temperature characteristic calculation unit 332.
The energization control unit 331 controls the operation of the first and second heating element drive circuits 31 and 32 and executes energization control of the first and second heating resistors 13 and 17.
 抵抗温度特性算出部332は、第1の発熱抵抗体13の抵抗温度特性を算出する。この抵抗温度特性算出部332は、図4に示すように、温度設定部333と、特性算出部334とを備える。
 温度設定部333は、第2の発熱素子駆動回路32の動作を制御し、第2の発熱抵抗体17に通電して当該第2の発熱抵抗体17をキュリー温度Tcに設定する。
 特性算出部334は、第1の発熱素子駆動回路31の動作を制御し、第1の発熱抵抗体13に最小出力の電力を供給しつつ(第1の発熱抵抗体13に印加された電圧値及び電流値を検出可能な状態としつつ)、キュリー温度Tcになった第2の発熱抵抗体17からの熱が伝達された第1の発熱抵抗体13の抵抗値を第1の抵抗値測定部311に測定させる。そして、特性算出部334は、当該第1の発熱抵抗体13の抵抗値と、第2の発熱抵抗体17の自己温度制御特性(キュリー温度Tc)とに基づいて、当該第1の発熱抵抗体13の抵抗温度特性を算出する。
The resistance temperature characteristic calculation unit 332 calculates the resistance temperature characteristic of the first heating resistor 13. As shown in FIG. 4, the resistance temperature characteristic calculation unit 332 includes a temperature setting unit 333 and a characteristic calculation unit 334.
The temperature setting unit 333 controls the operation of the second heat generating element drive circuit 32, energizes the second heat generating resistor 17, and sets the second heat generating resistor 17 to the Curie temperature Tc.
The characteristic calculation unit 334 controls the operation of the first heating element drive circuit 31 and supplies a minimum output power to the first heating resistor 13 (the voltage value applied to the first heating resistor 13). And the resistance value of the first heating resistor 13 to which the heat from the second heating resistor 17 that has reached the Curie temperature Tc is transferred to the first resistance value measuring unit. 311 is measured. The characteristic calculation unit 334 then determines the first heating resistor based on the resistance value of the first heating resistor 13 and the self-temperature control characteristic (Curie temperature Tc) of the second heating resistor 17. 13 resistance temperature characteristics are calculated.
 入力部34は、例えば、キーボードやマウス、タッチパネル、各種スイッチ等の各種入力装置で構成され、操作入力に応じた入力信号を制御部33に出力する。
 表示部35は、LCD(Liquid Crystal Display)やEL(Electro Luminescence)ディスプレイ等の表示装置で構成され、制御部33による制御の下、各種画面を表示する。
 記憶部36は、制御部33が実行する制御プログラム(本発明に係る抵抗温度算出プログラムを含む)や制御部33による処理で必要なデータ等を記憶する。制御部33による処理で必要なデータとしては、抵抗温度特性算出部332にて算出された抵抗温度特性(後述する傾きSL及び切片IN)等を例示することができる。
The input unit 34 includes various input devices such as a keyboard, a mouse, a touch panel, and various switches, and outputs an input signal corresponding to an operation input to the control unit 33.
The display unit 35 includes a display device such as an LCD (Liquid Crystal Display) or an EL (Electro Luminescence) display, and displays various screens under the control of the control unit 33.
The storage unit 36 stores a control program (including a resistance temperature calculation program according to the present invention) executed by the control unit 33, data necessary for processing by the control unit 33, and the like. Examples of data necessary for the processing by the control unit 33 include resistance temperature characteristics (gradient SL and intercept IN described later) calculated by the resistance temperature characteristic calculation unit 332, and the like.
 〔制御装置の動作〕
 次に、上述した制御装置3の動作について説明する。
 図5は、制御装置3の動作を示すフローチャートである。
 先ず、制御部33は、制御装置3に対して電気ケーブルCを介して処置具2が接続されたか否かを常時、監視する(ステップS1)。
 処置具2が接続されたと判断した場合(ステップS1:Yes)には、制御部33は、以下に示すように、初期化処理を実行する(ステップS2)。
[Operation of control device]
Next, the operation of the control device 3 described above will be described.
FIG. 5 is a flowchart showing the operation of the control device 3.
First, the control unit 33 constantly monitors whether or not the treatment instrument 2 is connected to the control device 3 via the electric cable C (step S1).
When it is determined that the treatment tool 2 is connected (step S1: Yes), the control unit 33 executes an initialization process as described below (step S2).
 図6は、ステップS2を示すフローチャートである。
 なお、ステップS2は、本発明に係る抵抗温度特性算出方法に相当する。
 先ず、制御部33は、電気ケーブルCを介して、処置具2から第1の発熱抵抗体13の抵抗温度係数α及びキュリー温度Tcを取得する(ステップS21:抵抗温度係数取得ステップ)。
 なお、抵抗温度係数αは、キュリー温度Tcを基準とした第1の発熱抵抗体13の抵抗値の単位温度当たりの変化率である。すなわち、抵抗温度係数αは、温度変化によりどれだけ抵抗値が変化するのかの比率を示す値である。ここで、第1の発熱抵抗体13の抵抗値は、当該第1の発熱抵抗体13を構成する抵抗パターンの幅や厚さ等により変動するため、個体毎にバラつくが、抵抗温度係数αは、第1の発熱抵抗体13の抵抗パターンを構成する材料(プラチナ、アルミニウム、あるいはSUS等)により決まる値であるため、個々の第1の発熱抵抗体13のバラつきはほとんどなく同一と見做すことができ、かつ、既知の値である。また、キュリー温度Tcは、第2の発熱抵抗体17を構成するPTC材料により決まる値であり、個体毎のバラつきはほとんどなく同一と見做すことができ、かつ、既知の値である。すなわち、キュリー温度Tc及び抵抗温度係数αは、第1,第2の発熱抵抗体13,17の構成により決まる値であるため、これらの値を処置具2に設けられた不揮発性メモリ(図示略)等に記憶しておく。そして、制御部33は、制御装置3に対して電気ケーブルCを介して処置具2が接続されたと判断した時に当該不揮発性メモリから抵抗温度係数α及びキュリー温度Tcを取得する。
FIG. 6 is a flowchart showing step S2.
Step S2 corresponds to the resistance temperature characteristic calculation method according to the present invention.
First, the control unit 33 acquires the resistance temperature coefficient α and the Curie temperature Tc of the first heating resistor 13 from the treatment instrument 2 via the electric cable C (step S21: resistance temperature coefficient acquisition step).
The resistance temperature coefficient α is a rate of change per unit temperature of the resistance value of the first heating resistor 13 with respect to the Curie temperature Tc. That is, the resistance temperature coefficient α is a value indicating the ratio of how much the resistance value changes due to a temperature change. Here, since the resistance value of the first heating resistor 13 varies depending on the width and thickness of the resistance pattern constituting the first heating resistor 13, the resistance value varies depending on the individual. Is a value determined by the material (platinum, aluminum, SUS, or the like) constituting the resistance pattern of the first heating resistor 13, so that the individual first heating resistors 13 have almost no variation and are considered to be the same. And can be a known value. Further, the Curie temperature Tc is a value determined by the PTC material constituting the second heating resistor 17 and can be regarded as the same with almost no variation among individuals, and is a known value. That is, since the Curie temperature Tc and the resistance temperature coefficient α are values determined by the configurations of the first and second heating resistors 13 and 17, these values are stored in a nonvolatile memory (not shown) provided in the treatment instrument 2. ) Etc. When the control unit 33 determines that the treatment tool 2 is connected to the control device 3 via the electric cable C, the control unit 33 acquires the resistance temperature coefficient α and the Curie temperature Tc from the nonvolatile memory.
 ステップS21の後、制御部33は、術者による入力部34への初期化開始指示の操作入力があったか否かを常時、監視する(ステップS22)。
 具体的に、制御部33は、ステップS21の後、操作ノブ51を操作して把持部7を閉じた状態に設定することを術者に促すメッセージ、及び初期化処理の開始を術者に促すメッセージを表示部35に表示させる。そして、術者は、当該メッセージを確認し、把持部7を閉じた状態に設定するとともに、入力部34に初期化処理の開始を指示する初期化開始指示の操作入力を実行する。
 そして、初期化開始指示があったと判断された場合(ステップS22:Yes)には、温度設定部333は、第2の発熱素子駆動回路32の動作を制御し、第2の発熱抵抗体17への通電を開始する(ステップS23)。
After step S21, the control unit 33 constantly monitors whether or not there has been an operation input of an initialization start instruction to the input unit 34 by the operator (step S22).
Specifically, after step S21, the control unit 33 operates the operation knob 51 to prompt the operator to set the gripping unit 7 in a closed state, and to prompt the operator to start the initialization process. The message is displayed on the display unit 35. Then, the surgeon confirms the message, sets the gripping unit 7 in a closed state, and executes an operation input of an initialization start instruction that instructs the input unit 34 to start the initialization process.
When it is determined that there is an initialization start instruction (step S22: Yes), the temperature setting unit 333 controls the operation of the second heat generating element drive circuit 32 to the second heat generating resistor 17. Is started (step S23).
 ステップS23の後、温度設定部333は、第2の発熱抵抗体17の温度がキュリー温度Tcに到達したか否かを常時、監視する(ステップS24)。
 ここで、第2の発熱抵抗体17の温度がキュリー温度Tcに到達したか否かの判断は、以下の方法を例示することができる。
 例えば、温度設定部333は、第2の発熱抵抗体17への通電を開始(ステップS23)してから所定の時間が経過した場合に、第2の発熱抵抗体17の温度がキュリー温度Tcに到達したと判断する。また、例えば、温度設定部333は、第2の抵抗値測定部321に第2の発熱抵抗体17に流れる電流値を一定周期で測定させ、当該電流値が所定値以下となった場合に、第2の発熱抵抗体17の温度がキュリー温度Tcに到達したと判断する。さらに、例えば、温度設定部333は、第1の抵抗値測定部311に第1の発熱抵抗体13の抵抗値若しくは電流値を一定周期で測定させ、単位時間当たりの当該抵抗値若しくは当該電流値の変化率が所定値以下となった場合に、第2の発熱抵抗体17の温度がキュリー温度Tcに到達したと判断する。
 以上説明したステップS23及びステップS24は、本発明に係る温度設定ステップに相当する。
After step S23, the temperature setting unit 333 constantly monitors whether or not the temperature of the second heating resistor 17 has reached the Curie temperature Tc (step S24).
Here, the determination of whether or not the temperature of the second heating resistor 17 has reached the Curie temperature Tc can be exemplified by the following method.
For example, the temperature setting unit 333 sets the temperature of the second heating resistor 17 to the Curie temperature Tc when a predetermined time has elapsed after starting energization of the second heating resistor 17 (step S23). Judge that it has reached. Further, for example, the temperature setting unit 333 causes the second resistance value measurement unit 321 to measure the current value flowing through the second heating resistor 17 at a constant period, and when the current value becomes a predetermined value or less, It is determined that the temperature of the second heating resistor 17 has reached the Curie temperature Tc. Further, for example, the temperature setting unit 333 causes the first resistance value measurement unit 311 to measure the resistance value or current value of the first heating resistor 13 at a constant period, and the resistance value or current value per unit time. When the change rate of the second heating resistor 17 is equal to or less than a predetermined value, it is determined that the temperature of the second heating resistor 17 has reached the Curie temperature Tc.
Steps S23 and S24 described above correspond to the temperature setting step according to the present invention.
 第2の発熱抵抗体17の温度がキュリー温度Tcに到達したと判断された場合(ステップS24:Yes)には、特性算出部334は、第1の発熱素子駆動回路31の動作を制御し、第1の発熱抵抗体13に最小出力の電力を供給しつつ、第1の発熱抵抗体13の抵抗値Rcを第1の抵抗値測定部311に測定させる(ステップS25:第1の抵抗値測定ステップ)。
 ここで、把持部7は、閉じた状態に設定されている。このため、第1,第2の伝熱部材12,16は、互いに接触した状態になっている。また、第1,第2の伝熱部材12,16は、高熱伝導性のセラミックや金属材料で構成されているため、第1の伝熱部材12に接合されている第1の発熱抵抗体13の温度は、キュリー温度Tcまで加熱されている。すなわち、ステップS25では、キュリー温度Tcとなった第1の発熱抵抗体13の抵抗値Rcを測定している。
 ステップS25の後、制御部33は、第2の発熱抵抗体17への通電を停止する(ステップS26)。
When it is determined that the temperature of the second heating resistor 17 has reached the Curie temperature Tc (step S24: Yes), the characteristic calculation unit 334 controls the operation of the first heating element driving circuit 31; The first resistance value measuring unit 311 is caused to measure the resistance value Rc of the first heating resistor 13 while supplying the minimum output power to the first heating resistor 13 (step S25: first resistance value measurement). Step).
Here, the gripping part 7 is set in a closed state. Therefore, the first and second heat transfer members 12 and 16 are in contact with each other. Moreover, since the 1st, 2nd heat- transfer members 12 and 16 are comprised with the high heat conductive ceramic and metal material, the 1st heat_generation | fever resistor 13 joined to the 1st heat-transfer member 12 is used. Is heated to the Curie temperature Tc. That is, in step S25, the resistance value Rc of the first heating resistor 13 that has reached the Curie temperature Tc is measured.
After step S25, the controller 33 stops energization of the second heating resistor 17 (step S26).
 ステップS26の後、特性算出部334は、ステップS21で取得したキュリー温度Tc及び抵抗温度係数αと、ステップS25で測定した第1の発熱抵抗体13の抵抗値Rcとに基づいて、T=SL×R+INで表される抵抗温度特性(T:温度、R:抵抗値)の傾きSLと切片INとをSL=1/(α×Rc)、IN=Tc-1/αによりそれぞれ算出する(ステップS27:抵抗温度特性算出ステップ)。そして、特性算出部334は、当該算出した傾きSL及び切片INを記憶部36に記憶する。
 具体的に、上述した傾きSL及び切片INの各式は、キュリー温度Tc及び抵抗値Rcの組と、抵抗温度係数αを利用してキュリー温度Tcから1℃上昇した時の温度(Tc+1)及び抵抗値(Rc+α×Rc)の組との2組を用いてT=SL×R+INからそれぞれ算出された式である。
After step S26, the characteristic calculation unit 334 calculates T = SL based on the Curie temperature Tc and the resistance temperature coefficient α acquired in step S21 and the resistance value Rc of the first heating resistor 13 measured in step S25. The slope SL and intercept IN of the resistance temperature characteristic (T: temperature, R: resistance value) represented by × R + IN are calculated by SL = 1 / (α × Rc) and IN = Tc−1 / α, respectively (step S27: Resistance temperature characteristic calculation step). Then, the characteristic calculation unit 334 stores the calculated slope SL and intercept IN in the storage unit 36.
Specifically, the above-described equations for the slope SL and the intercept IN are expressed as follows: a set of the Curie temperature Tc and the resistance value Rc, a temperature (Tc + 1) when the temperature rises by 1 ° C. from the Curie temperature Tc using the resistance temperature coefficient α, and These are equations calculated from T = SL × R + IN using two sets of resistance values (Rc + α × Rc).
 ステップS2の後、制御部33は、エネルギ出力設定を実行する(ステップS3)。
 具体的に、制御部33は、ステップS3において、処置具2の出力条件(例えば、生体組織を加熱する目標温度T_targetや加熱時間等)を設定する画面を表示部35に表示させ、入力部34への当該出力条件の操作入力を術者に促す。そして、術者は、当該画面を確認し、入力部34に当該出力条件の操作入力を行った後、処置具2を手で持ち、当該処置具2の先端部分(把持部7及びシャフト6の一部)を、例えば、トロッカ等を用いて腹壁を通して腹腔内に挿入する。また、術者は、操作ノブ51を操作し、把持部7にて処置対象の生体組織を把持する。さらに、術者は、フットスイッチ4を操作し、当該生体組織の処置を開始させる。
After step S2, the control unit 33 performs energy output setting (step S3).
Specifically, in step S3, the control unit 33 causes the display unit 35 to display a screen for setting an output condition of the treatment instrument 2 (for example, a target temperature T_target for heating the living tissue, a heating time, etc.), and the input unit 34 The operator is prompted to input the output condition to the operator. Then, after confirming the screen and performing an operation input of the output condition to the input unit 34, the surgeon holds the treatment tool 2 by hand, and the distal end portion of the treatment tool 2 (the gripping portion 7 and the shaft 6). For example) is inserted into the abdominal cavity through the abdominal wall using a trocar or the like. Further, the operator operates the operation knob 51 and grips the living tissue to be treated by the grip portion 7. Further, the surgeon operates the foot switch 4 to start treatment of the living tissue.
 ステップS3の後、制御部33は、フットスイッチ4への操作(処置開始指示)があったか否かを判断する(ステップS4)。
 フットスイッチ4への操作がないと判断された場合(ステップS4:No)には、制御装置3は、ステップS3に戻る。
 一方、フットスイッチ4への操作があったと判断された場合(ステップS4:Yes)には、通電制御部331は、以下に示すように、第1,第2の発熱抵抗体13,17の通電制御(生体組織の処置)を実行する(ステップS5)。
After step S3, the control unit 33 determines whether or not there is an operation (treatment start instruction) on the foot switch 4 (step S4).
When it is determined that there is no operation on the foot switch 4 (step S4: No), the control device 3 returns to step S3.
On the other hand, when it is determined that the foot switch 4 has been operated (step S4: Yes), the energization control unit 331 energizes the first and second heating resistors 13, 17 as shown below. Control (treatment of living tissue) is executed (step S5).
 図7は、ステップS5を示すフローチャートである。
 先ず、通電制御部331は、第1,第2の抵抗値測定部311,321の動作を制御し、第1,第2の発熱抵抗体13,17の抵抗値R1,R2を測定させる(ステップS51)。なお、ステップS51~S56の1回目のループでは、通電制御部331は、第1,第2の発熱素子駆動回路31,32から第1,第2の発熱抵抗体13,17に最小出力の電力をそれぞれ供給しつつ(第1,第2の発熱抵抗体13,17に印加された電圧値及び電流値をそれぞれ検出可能な状態としつつ)、第1,第2の発熱抵抗体13,17の抵抗値R1,R2を第1,第2の抵抗値測定部311,321に測定させる。
FIG. 7 is a flowchart showing step S5.
First, the energization control unit 331 controls the operations of the first and second resistance value measuring units 311 and 321 to measure the resistance values R1 and R2 of the first and second heating resistors 13 and 17 (steps). S51). In the first loop of steps S51 to S56, the energization control unit 331 supplies the minimum output power from the first and second heating element drive circuits 31 and 32 to the first and second heating resistors 13 and 17. Of each of the first and second heating resistors 13 and 17 (while making the voltage value and the current value applied to the first and second heating resistors 13 and 17 detectable). The resistance values R1 and R2 are measured by the first and second resistance value measuring units 311 and 321.
 ステップS51の後、通電制御部331は、第1の発熱抵抗体13の温度T1を算出する(ステップS52)。
 具体的に、通電制御部331は、ステップS51において、ステップS27で記憶部36に記憶された傾きSL及び切片INを読み出す。そして、通電制御部331は、抵抗温度特性を表すT=SL×R+INの式に当該傾きSL、当該切片IN、及びステップS51で測定した第1の発熱抵抗体13の抵抗値R1を代入し、第1の発熱抵抗体13の温度T1を算出する。
After step S51, the energization control unit 331 calculates the temperature T1 of the first heating resistor 13 (step S52).
Specifically, in step S51, the energization control unit 331 reads the slope SL and the intercept IN stored in the storage unit 36 in step S27. Then, the energization control unit 331 substitutes the slope SL, the intercept IN, and the resistance value R1 of the first heating resistor 13 measured in step S51 into the equation of T = SL × R + IN representing the resistance temperature characteristic, The temperature T1 of the first heating resistor 13 is calculated.
 ステップS52の後、通電制御部331は、第1の発熱抵抗体13に投入する電力P1を決定する(ステップS53)。
 具体的に、通電制御部331は、ステップS53において、P1=k1×(T_target-T1)の式により電力P1を決定する。ここで、k1は、制御ゲインであり所定の値が設定されている。なお、ここではステップS3で設定された目標温度T_targetと現在の第1の発熱抵抗体13の温度T1の温度差に基づく単純な比例制御を用いているが、より安定した制御を行うためにPID制御を用いても構わない。
After step S52, the energization control unit 331 determines the power P1 to be input to the first heating resistor 13 (step S53).
Specifically, in step S53, the energization control unit 331 determines the power P1 using the equation P1 = k1 × (T_target−T1). Here, k1 is a control gain, and a predetermined value is set. Here, simple proportional control based on the temperature difference between the target temperature T_target set in step S3 and the current temperature T1 of the first heating resistor 13 is used, but PID is used for more stable control. Control may be used.
 ステップS53の後、通電制御部331は、第2の発熱抵抗体17に投入する電力P2を決定する(ステップS54)。
 具体的に、通電制御部331は、ステップS54において、P2=k2×P1の式により電力P2を決定する。ここで、k2は、比例定数であり所定の値が設定されている。例えば、k2=1として、第1の発熱抵抗体13に供給する電力P1と同一の電力P2を第2の発熱抵抗体17に供給するように制御しても構わない。生体組織を把持したときに第1,第2の伝熱部材12,16に接触している生体組織の面積は略等しく同等の熱負荷がかかっていると見做せる。したがって、第1の発熱抵抗体13に供給する電力P1と同一の電力P2を第2の発熱抵抗体17に供給することで、第2の発熱抵抗体17は、第1の発熱抵抗体13と同等の温度に制御することができる。
 なお、第1,第2の伝熱部材12,16の形状の違い(例えば幅が異なる等)により、当該第1,第2の伝熱部材12,16に接触する生体組織の面積が大きく異なる場合は、比例定数k2は、その面積比に応じた値としてもよい。
 また、比例定数k2は、一定の値ではなく処理の途中で変更するようにしてもよい。例えば、組織を把持していない状態で、第1の発熱抵抗体13の加熱により第1の伝熱部材12を所定温度ΔTだけ昇温させるのに必要なエネルギをQ1、第2の発熱抵抗体17の加熱により第2の伝熱部材16を所定温度ΔTだけ昇温させるのに必要なエネルギをQ2としたとき、電力投入開始から第1の発熱抵抗体13の温度が目標温度T_targetに到達するまでの間だけ、比例定数k2を上述したエネルギQ1,Q2の比率に応じた値、例えばk2=Q2/Q1としてもよい。このようにすることで、処置具2の把持部7の構成により第1,第2の発熱抵抗体13,17により加熱される部材の熱容量が大きく異なる場合でも、第2の発熱抵抗体17を第1の発熱抵抗体13と同等の昇温速度で同等の目標温度T_targetまで昇温させることが可能となる。なお、第1,第2の伝熱部材12,16と接触する生体組織の面積比、及び、上述したエネルギQ1,Q2の比率は、処置具の構成により決まる既知であるので、予めこれらの値を処置具に格納しておき、ステップS21においてこれらの値を取得するようにすることができる。
After step S53, the energization control unit 331 determines the power P2 to be input to the second heating resistor 17 (step S54).
Specifically, in step S54, the energization control unit 331 determines the power P2 using the formula P2 = k2 × P1. Here, k2 is a proportionality constant and is set to a predetermined value. For example, assuming that k2 = 1, the same power P2 as the power P1 supplied to the first heating resistor 13 may be controlled to be supplied to the second heating resistor 17. It can be considered that the area of the living tissue that is in contact with the first and second heat transfer members 12 and 16 when the living tissue is gripped is substantially equal and is subjected to the same thermal load. Therefore, the second heating resistor 17 is connected to the first heating resistor 13 by supplying the second heating resistor 17 with the same power P2 as the power P1 supplied to the first heating resistor 13. It can be controlled to an equivalent temperature.
In addition, the area of the living tissue which contacts the 1st, 2nd heat- transfer members 12 and 16 differs greatly by the difference (for example, width etc.) of the 1st, 2nd heat- transfer members 12 and 16 differs. In this case, the proportionality constant k2 may be a value corresponding to the area ratio.
Further, the proportionality constant k2 may be changed in the middle of processing instead of a constant value. For example, the energy required to raise the temperature of the first heat transfer member 12 by a predetermined temperature ΔT by heating the first heating resistor 13 without holding the tissue is Q1, and the second heating resistor When the energy required to raise the temperature of the second heat transfer member 16 by the predetermined temperature ΔT by heating 17 is Q2, the temperature of the first heating resistor 13 reaches the target temperature T_target from the start of power application. The proportional constant k2 may be set to a value corresponding to the ratio of the energy Q1 and Q2 described above, for example, k2 = Q2 / Q1. By doing in this way, even when the heat capacity of the member heated by the 1st, 2nd heat generating resistors 13 and 17 changes greatly with composition of grasping part 7 of treatment implement 2, the 2nd heat generating resistor 17 is made. It is possible to raise the temperature to the same target temperature T_target at the same temperature rise rate as the first heating resistor 13. In addition, since the area ratio of the living tissue that contacts the first and second heat transfer members 12 and 16 and the ratio of the energy Q1 and Q2 described above are known depending on the configuration of the treatment instrument, these values are obtained in advance. Can be stored in the treatment instrument, and these values can be obtained in step S21.
 ステップS54の後、通電制御部331は、第1,第2の発熱素子駆動回路31,32の動作を制御し、第1,第2の発熱抵抗体13,17に電力P1,P2をそれぞれ投入する(ステップS55)。
 具体的に、通電制御部331は、第1の発熱抵抗体13に電力P1が投入されるように、第1の発熱素子駆動回路31の出力電圧V1(第1の発熱抵抗体13に印加される電圧)を以下の式(1)となるように制御する。また、通電制御部331は、第2の発熱抵抗体17に電力P2が投入されるように、第2の発熱素子駆動回路32の出力電圧V2(第2の発熱抵抗体17に印加される電圧)を以下の式(2)となるように制御する。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
After step S54, the energization control unit 331 controls the operation of the first and second heating element driving circuits 31 and 32, and supplies the electric power P1 and P2 to the first and second heating resistors 13 and 17, respectively. (Step S55).
Specifically, the energization control unit 331 applies the output voltage V1 of the first heating element drive circuit 31 (applied to the first heating resistor 13 so that electric power P1 is input to the first heating resistor 13. Voltage) is controlled so as to satisfy the following formula (1). In addition, the energization control unit 331 outputs the voltage V2 of the second heating element drive circuit 32 (the voltage applied to the second heating resistor 17 so that the electric power P2 is input to the second heating resistor 17. ) Is controlled to be the following expression (2).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 ステップS55の後、通電制御部331は、フットスイッチ4が操作(ステップS4:Yes)されてからステップS3で設定された加熱時間が経過したか否か、若しくはフットスイッチ4の操作(処置終了指示)があったか否か(処置を終了するか否か)を判断する(ステップS56)。
 加熱時間が経過していない、かつフットスイッチ4の操作(処置終了指示)がなかったと判断した場合(ステップS56:No)には、通電制御部331は、ステップS51に戻る。
 一方、加熱時間が経過した、若しくはフットスイッチ4の操作(処置終了指示)があったと判断した場合(ステップS56:Yes)には、通電制御部331は、生体組織の処置を終了する。
 以上のステップS51~S56を繰り返し実行することにより、第1,第2の伝熱部材12,16は、第1,第2の発熱抵抗体13,17により目標温度T_targetで加熱される。また、第1,第2の処置面121,161に接触している生体組織は、目標温度T_targetで加熱され、凝固する。さらに、把持部7による把持力によって生体組織が圧迫されることで当該生体組織の切開が行われる。
After step S55, the energization control unit 331 determines whether or not the heating time set in step S3 has elapsed since the foot switch 4 was operated (step S4: Yes), or the foot switch 4 was operated (treatment end instruction). ) Is determined (whether or not to end the treatment) (step S56).
When it is determined that the heating time has not elapsed and the foot switch 4 has not been operated (treatment termination instruction) (step S56: No), the energization control unit 331 returns to step S51.
On the other hand, when it is determined that the heating time has elapsed or that the foot switch 4 has been operated (procedure end instruction) (step S56: Yes), the energization control unit 331 ends the treatment of the living tissue.
By repeatedly executing the above steps S51 to S56, the first and second heat transfer members 12 and 16 are heated by the first and second heating resistors 13 and 17 at the target temperature T_target. In addition, the living tissue in contact with the first and second treatment surfaces 121 and 161 is heated at the target temperature T_target and solidifies. Furthermore, the living tissue is pressed by the gripping force of the gripping unit 7 so that the living tissue is incised.
 以上説明した本実施の形態1によれば、以下の効果を奏する。
 本実施の形態1に係る抵抗温度特性算出方法(ステップS2)は、電気ケーブルCを介して処置具2を制御装置3に接続した際の初期化処理で実行される。また、当該抵抗温度特性算出方法では、第2の発熱抵抗体17をキュリー温度Tcに設定することで第1の発熱抵抗体13を当該キュリー温度Tcに加熱し、当該キュリー温度Tcでの第1の発熱抵抗体13の抵抗値Rcを測定する。そして、当該抵抗温度特性算出方法では、当該キュリー温度Tc、当該抵抗値Rc、及び第1の発熱抵抗体13の抵抗温度係数αに基づいて、第1の発熱抵抗体13の抵抗温度特性の傾きSL及び切片INを算出する。
 このため、処置具2製造時の検査工程等において、恒温槽や熱電対等を用いて第1の発熱抵抗体13の抵抗温度特性を個体毎に算出する必要がなく、当該算出に掛かる作業負荷を省略することができる。また、キュリー温度Tcへの第1の発熱抵抗体13の加熱は、生体組織に付与する熱エネルギを発生する第2の発熱抵抗体17を用いて実行しているため、処置具2に別途、構成を追加する必要がない。
 したがって、本実施の形態1に係る抵抗温度特性算出方法によれば、処置システム1の低コスト化を図ることができる、という効果を奏する。
According to the first embodiment described above, the following effects are obtained.
The resistance-temperature characteristic calculation method (step S2) according to the first embodiment is executed in an initialization process when the treatment instrument 2 is connected to the control device 3 via the electric cable C. In the resistance temperature characteristic calculation method, the first heat generating resistor 13 is heated to the Curie temperature Tc by setting the second heat generating resistor 17 to the Curie temperature Tc, and the first temperature at the Curie temperature Tc is set. The resistance value Rc of the heating resistor 13 is measured. In the resistance temperature characteristic calculation method, the slope of the resistance temperature characteristic of the first heating resistor 13 is based on the Curie temperature Tc, the resistance value Rc, and the resistance temperature coefficient α of the first heating resistor 13. SL and intercept IN are calculated.
For this reason, it is not necessary to calculate the resistance temperature characteristic of the first heating resistor 13 for each individual using a thermostatic bath, a thermocouple, or the like in the inspection process at the time of manufacturing the treatment instrument 2, and the work load on the calculation is reduced. Can be omitted. In addition, the heating of the first heating resistor 13 to the Curie temperature Tc is performed using the second heating resistor 17 that generates thermal energy to be applied to the living tissue. There is no need to add configuration.
Therefore, according to the resistance temperature characteristic calculation method according to the first embodiment, there is an effect that the cost of the treatment system 1 can be reduced.
 また、本実施の形態1に係る処置システム1では、生体組織を処置する際、第2の発熱抵抗体17に供給する電力P2を第1の発熱抵抗体13に供給する電力P1に基づいて決定する。
 このため、第2の発熱抵抗体17の温度を測定する温度センサ等を別途、設けることなく、第2の発熱抵抗体17の温度を第1の発熱抵抗体13と同等の温度に制御することができる。すなわち、処置内容に応じてキュリー温度Tc以下の任意の目標温度T_targetに第2の発熱抵抗体17を制御することが可能となる。
 なお、目標温度T_targetが第2の発熱抵抗体17のキュリー温度Tcと等しい場合には、通電制御部331は、第2の発熱抵抗体17に印加する電圧値V2を所定の一定値として、第2の発熱抵抗体17の自己温度制御特性により第2の発熱抵抗体17の温度をキュリー温度Tc(目標温度T_target)に制御するようにしてもよい。
Further, in the treatment system 1 according to the first embodiment, when the living tissue is treated, the power P2 supplied to the second heating resistor 17 is determined based on the power P1 supplied to the first heating resistor 13. To do.
Therefore, the temperature of the second heating resistor 17 is controlled to the same temperature as that of the first heating resistor 13 without separately providing a temperature sensor or the like for measuring the temperature of the second heating resistor 17. Can do. That is, the second heating resistor 17 can be controlled to an arbitrary target temperature T_target that is equal to or lower than the Curie temperature Tc according to the treatment content.
When the target temperature T_target is equal to the Curie temperature Tc of the second heating resistor 17, the energization control unit 331 sets the voltage value V2 applied to the second heating resistor 17 as a predetermined constant value, The temperature of the second heating resistor 17 may be controlled to the Curie temperature Tc (target temperature T_target) by the self-temperature control characteristic of the second heating resistor 17.
(実施の形態2)
 次に、本実施の形態2について説明する。
 以下の説明では、上述した実施の形態1と同様の構成及びステップには同一符号を付し、その詳細な説明は省略または簡略化する。
 図8は、本実施の形態2に係る処置システム1Aの構成を示すブロック図である。具体的に、図8は、図4に対応した図である。
 本実施の形態2に係る処置システム1A(制御装置3A)では、図8に示すように、上述した実施の形態1で説明した処置システム1(制御装置)に対して、温度センサ37を追加している。また、処置システム1Aでは、制御部33(抵抗温度特性算出部332(温度設定部333及び特性算出部334)の代わりに、抵抗温度特性の算出機能を変更した制御部33A(抵抗温度特性算出部332A(温度設定部333及び特性算出部334A)を採用している。
 温度センサ37は、制御部33Aによる制御の下、制御装置3Aの設置場所における環境温度(室温)を測定する。そして、温度センサ37は、測定した室温に応じた検出信号を制御部33Aに出力する。
 なお、抵抗温度特性算出部332A(特性算出部334A)の機能については、本実施の形態2に係る制御装置3Aの動作を説明する中で説明する。
(Embodiment 2)
Next, the second embodiment will be described.
In the following description, the same reference numerals are given to the same configurations and steps as those in the above-described first embodiment, and the detailed description thereof is omitted or simplified.
FIG. 8 is a block diagram showing a configuration of the treatment system 1A according to the second embodiment. Specifically, FIG. 8 corresponds to FIG.
In the treatment system 1A (control device 3A) according to the second embodiment, as shown in FIG. 8, a temperature sensor 37 is added to the treatment system 1 (control device) described in the first embodiment. ing. In addition, in the treatment system 1A, instead of the control unit 33 (resistance temperature characteristic calculation unit 332 (temperature setting unit 333 and characteristic calculation unit 334), a control unit 33A (resistance temperature characteristic calculation unit) having a changed resistance temperature characteristic calculation function. 332A (temperature setting unit 333 and characteristic calculation unit 334A) is employed.
The temperature sensor 37 measures the environmental temperature (room temperature) at the installation location of the control device 3A under the control of the control unit 33A. Then, the temperature sensor 37 outputs a detection signal corresponding to the measured room temperature to the control unit 33A.
The function of the resistance temperature characteristic calculation unit 332A (characteristic calculation unit 334A) will be described in describing the operation of the control device 3A according to the second embodiment.
 本実施の形態2に係る制御装置3Aの動作は、上述した実施の形態2で説明した制御装置3の動作に対して、ステップS2のみが異なる。このため、以下では、本実施の形態2に係るステップS2について説明する。
 図9は、本実施の形態2に係るステップS2を示すフローチャートである。
 本実施の形態2に係るステップS2では、図9に示すように、ステップS21,S27の代わりにステップS21A,S27Aを採用するとともに、ステップS28,S29を追加している。このため、以下では、ステップS21A,S27A,S28,S29を主に説明する。
The operation of the control device 3A according to the second embodiment is different from the operation of the control device 3 described in the second embodiment only in step S2. For this reason, step S2 according to the second embodiment will be described below.
FIG. 9 is a flowchart showing step S2 according to the second embodiment.
In step S2 according to the second embodiment, as shown in FIG. 9, steps S21A and S27A are employed instead of steps S21 and S27, and steps S28 and S29 are added. For this reason, below, step S21A, S27A, S28, S29 is mainly demonstrated.
 ステップS21Aは、処置具2が接続されたと判断された場合(ステップS1:Yes)に実行される。
 具体的に、制御部33Aは、ステップS21Aにおいて、電気ケーブルCを介して、処置具2からキュリー温度Tcのみを取得する。この後、制御装置3Aは、ステップS22に移行する。
Step S21A is executed when it is determined that the treatment instrument 2 is connected (step S1: Yes).
Specifically, the control unit 33A acquires only the Curie temperature Tc from the treatment instrument 2 via the electric cable C in step S21A. Thereafter, the control device 3A proceeds to step S22.
 ステップS28は、初期化開始指示があったと判断された場合(ステップS22:Yes)に実行される。
 具体的に、特性算出部334Aは、ステップS28(環境温度測定ステップ)において、制御装置3Aの設置場所における室温T0を温度センサ37に測定させる。
 ステップS28の後、特性算出部334Aは、第1の発熱素子駆動回路31の動作を制御し、第1の発熱抵抗体13に最小出力の電力を供給しつつ(第1の発熱抵抗体13に印加された電圧値及び電流値を検出可能な状態としつつ)、第1の発熱抵抗体13の抵抗値R0を第1の抵抗値測定部311に測定させる(ステップS29:第2の抵抗値測定ステップ)。この後、制御装置3Aは、ステップS23に移行する。
Step S28 is executed when it is determined that there is an instruction to start initialization (step S22: Yes).
Specifically, the characteristic calculation unit 334A causes the temperature sensor 37 to measure the room temperature T0 at the installation location of the control device 3A in step S28 (environment temperature measurement step).
After step S28, the characteristic calculation unit 334A controls the operation of the first heat generating element drive circuit 31 and supplies the minimum output power to the first heat generating resistor 13 (to the first heat generating resistor 13). The first resistance value measuring unit 311 is caused to measure the resistance value R0 of the first heating resistor 13 (while making the applied voltage value and current value detectable) (step S29: second resistance value measurement). Step). Thereafter, the control device 3A proceeds to step S23.
 ステップS27Aは、ステップS26の後に実行される。
 具体的に、特性算出部334Aは、ステップS27A(抵抗温度特性算出ステップ)において、ステップS21Aで取得したキュリー温度Tcと、ステップS28で測定した室温T0と、ステップS29で測定した第1の発熱抵抗体13の抵抗値R0と、ステップS25で測定した第1の発熱抵抗体13の抵抗値Rcとに基づいて、T=SL×R+INで表される抵抗温度特性(T:温度、R:抵抗値)の傾きSLと切片INとをSL=(Tc-T0)/(Rc-R0)、IN=Tc-SL×Rcによりそれぞれ算出する。そして、特性算出部334は、当該算出した傾きSL及び切片INを記憶部36に記憶する。
 具体的に、上述した傾きSL及び切片INの各式は、キュリー温度Tc及び抵抗値Rcの組と、室温T0及び抵抗値R0の組との2組を用いてT=SL×R+INからそれぞれ算出された式である。
 この後、制御装置3Aは、ステップS3に移行する。
Step S27A is executed after step S26.
Specifically, in step S27A (resistance temperature characteristic calculation step), the characteristic calculation unit 334A determines the Curie temperature Tc acquired in step S21A, the room temperature T0 measured in step S28, and the first heating resistance measured in step S29. Based on the resistance value R0 of the body 13 and the resistance value Rc of the first heating resistor 13 measured in step S25, resistance temperature characteristics represented by T = SL × R + IN (T: temperature, R: resistance value) ) Slope SL and intercept IN are calculated by SL = (Tc−T0) / (Rc−R0) and IN = Tc−SL × Rc, respectively. Then, the characteristic calculation unit 334 stores the calculated slope SL and intercept IN in the storage unit 36.
Specifically, the equations for the slope SL and the intercept IN described above are calculated from T = SL × R + IN using two sets of a set of Curie temperature Tc and resistance value Rc and a set of room temperature T0 and resistance value R0, respectively. Is the formula.
Thereafter, the control device 3A proceeds to step S3.
 上述した本実施の形態2によれば、上述した実施の形態1と同様の効果の他、以下の効果を奏する。
 本実施の形態2に係る抵抗温度特性算出方法(ステップS2)では、上述した実施の形態1で説明した抵抗温度係数αを用いない。すなわち、第1の発熱抵抗体13における抵抗パターンの材料に依存する抵抗温度係数αを予め処置具2内の不揮発性メモリに記憶しておく必要がなくなるとともに、個別の処置具2の抵抗温度係数αのバラつきによる温度誤差を低減することができる。
According to the second embodiment described above, the following effects can be obtained in addition to the same effects as those of the first embodiment described above.
In the resistance temperature characteristic calculation method (step S2) according to the second embodiment, the resistance temperature coefficient α described in the first embodiment is not used. That is, it is not necessary to previously store the resistance temperature coefficient α depending on the material of the resistance pattern in the first heating resistor 13 in the nonvolatile memory in the treatment instrument 2, and the resistance temperature coefficient of the individual treatment instrument 2 It is possible to reduce the temperature error due to the variation of α.
(その他の実施形態)
 ここまで、本発明を実施するための形態を説明してきたが、本発明は上述した実施の形態1,2によってのみ限定されるべきものではない。
 上述した実施の形態1,2では、第1の発熱抵抗体13を第1の把持部材8に設け、第2の発熱抵抗体17を第2の把持部材9に設けていたが、これに限らない。例えば、第1,第2の発熱抵抗体13,17を第1,第2の把持部材8,9の一方の把持部材にのみ設けても構わない。すなわち、第1,第2の把持部材8,9の一方の把持部材からのみ生体組織に熱エネルギを付与する構成を採用しても構わない。また、この際、他方の把持部材を省略しても構わない。
(Other embodiments)
The embodiments for carrying out the present invention have been described so far, but the present invention should not be limited only by the above-described first and second embodiments.
In the first and second embodiments described above, the first heating resistor 13 is provided on the first gripping member 8 and the second heating resistor 17 is provided on the second gripping member 9. Absent. For example, the first and second heating resistors 13 and 17 may be provided only on one of the first and second gripping members 8 and 9. That is, you may employ | adopt the structure which gives a thermal energy to a biological tissue only from one holding member of the 1st, 2nd holding members 8 and 9. FIG. At this time, the other gripping member may be omitted.
 上述した実施の形態1,2において、生体組織に対して熱エネルギの他、高周波エネルギや超音波エネルギをさらに付与する構成としても構わない。
 上述した実施の形態1,2では、第1の処置面121を凸形状で構成し、第2の処置面161を平坦面で構成していたが、第1,第2の処置面121,161の形状は、その他の形状(例えば、第1,第2の処置面121,161の双方を凸形状)としてもよい。
 上述した実施の形態1,2において、処置具2の形状は、あくまでも一例であり、同一の機能を有していれば、他の形状、例えば、鉗子のような形状としてもよく、あるいは、シャフト6を湾曲させた構成を採用しても構わない。
In the first and second embodiments described above, high-frequency energy or ultrasonic energy may be further applied to the living tissue in addition to thermal energy.
In the first and second embodiments described above, the first treatment surface 121 is formed in a convex shape and the second treatment surface 161 is formed in a flat surface, but the first and second treatment surfaces 121 and 161 are formed. The shape of may be other shapes (for example, both the first and second treatment surfaces 121 and 161 are convex).
In the first and second embodiments described above, the shape of the treatment instrument 2 is merely an example, and may have another shape, for example, a forceps shape, or the shaft as long as it has the same function. You may employ | adopt the structure which curved 6th.
 上述した実施の形態1,2において、初期化処理(ステップS2)は、処置具2が電気ケーブルCを介して制御装置3,3Aに接続された時に一度だけ実施すればよい。
 例えば、処置具2内の不揮発性メモリにキュリー温度Tcや抵抗温度係数αの他に、当該処置具2を識別するための処置具識別子を記憶しておく。また、制御装置3,3Aは、初期化処理(ステップS2)において、処置具2から処置具識別子を取得するとともに、当該初期化処理で算出した抵抗温度特性の傾きSL及び切片INを当該処置具識別子と関連付けて記憶部36に記憶する。そして、制御装置3,3Aは、電気ケーブルCを介して処置具2が接続された時に、処置具2から処置具識別子を取得し、記憶部36に当該処置具識別子と関連付けられた傾きSL及び切片INが記憶されているかを確認し、存在していない場合にのみ初期化処理を実行し、存在している場合には初期化処理を実行せずにステップS3に移行する。
 以上のように構成することで、一度、制御装置3,3Aに接続して初期化処理が実行された処置具2は、制御装置3,3Aから取り外されて再度、接続された場合でも初期化処理を行う必要がなくなり、ユーザの利便性を向上することができる。
In the first and second embodiments described above, the initialization process (step S2) may be performed only once when the treatment instrument 2 is connected to the control devices 3 and 3A via the electric cable C.
For example, in addition to the Curie temperature Tc and the resistance temperature coefficient α, a treatment tool identifier for identifying the treatment tool 2 is stored in the nonvolatile memory in the treatment tool 2. Further, in the initialization process (step S2), the control devices 3 and 3A acquire the treatment instrument identifier from the treatment instrument 2, and use the slope SL and the intercept IN of the resistance temperature characteristic calculated in the initialization process as the treatment instrument. The information is stored in the storage unit 36 in association with the identifier. Then, when the treatment instrument 2 is connected via the electric cable C, the control devices 3 and 3A acquire the treatment instrument identifier from the treatment instrument 2, and the inclination SL associated with the treatment instrument identifier is stored in the storage unit 36. Whether or not the intercept IN is stored is checked, and if it does not exist, the initialization process is executed. If it exists, the process proceeds to step S3 without executing the initialization process.
By configuring as described above, the treatment instrument 2 once connected to the control devices 3 and 3A and subjected to the initialization process is initialized even when it is removed from the control devices 3 and 3A and connected again. There is no need to perform processing, and user convenience can be improved.
 1,1A 処置システム
 2 処置具
 3,3A 制御装置
 4 フットスイッチ
 5 ハンドル
 6 シャフト
 7 把持部
 8,9 第1,第2の把持部材
 10 第1のカバー部材
 11 第1の発熱構造体
 12 第1の伝熱部材
 13 第1の発熱抵抗体
 14 第2のカバー部材
 15 第2の発熱構造体
 16 第2の伝熱部材
 17 第2の発熱抵抗体
 31,32 第1,第2の発熱素子駆動回路
 33,33A 制御部
 34 入力部
 35 表示部
 36 記憶部
 51 操作ノブ
 101 凹部
 121 第1の処置面
 141 凹部
 161 第2の処置面
 311,321 第1,第2の抵抗値測定部
 331 通電制御部
 332,332A 抵抗温度特性算出部
 333 温度設定部
 334,334A 特性算出部
 Ar 矢印
 C 電気ケーブル
 C1,C2 第1,第2のリード線
DESCRIPTION OF SYMBOLS 1,1A Treatment system 2 Treatment tool 3,3A Control apparatus 4 Foot switch 5 Handle 6 Shaft 7 Gripping part 8,9 1st, 2nd grasping member 10 1st cover member 11 1st heat generating structure 12 1st Heat transfer member 13 First heat generating resistor 14 Second cover member 15 Second heat generating structure 16 Second heat transfer member 17 Second heat generating resistor 31, 32 Driving first and second heat generating elements Circuit 33, 33A Control unit 34 Input unit 35 Display unit 36 Storage unit 51 Operation knob 101 Recess 121 First treatment surface 141 Concave 161 Second treatment surface 311, 321 First and second resistance value measurement unit 331 Energization control Unit 332, 332A Resistance temperature characteristic calculation unit 333 Temperature setting unit 334, 334A Characteristic calculation unit Ar Arrow C Electric cable C1, C2 First and second lead wires

Claims (6)

  1.  線形の抵抗温度特性を有する第1の発熱抵抗体と、第1の温度を最高温度とする自己温度制御特性を有する第2の発熱抵抗体とを備え、前記第1の発熱抵抗体と前記第2の発熱抵抗体とにそれぞれ発生した熱エネルギを生体組織に付与する処置システムに用いられ、前記抵抗温度特性を算出する抵抗温度特性算出方法であって、
     前記第2の発熱抵抗体に通電し、当該第2の発熱抵抗体を前記第1の温度に設定する温度設定ステップと、
     前記温度設定ステップの後、前記第2の発熱抵抗体からの熱が伝達された前記第1の発熱抵抗体の抵抗値を測定する第1の抵抗値測定ステップと、
     前記第1の抵抗値測定ステップにて測定した前記第1の発熱抵抗体の抵抗値と、前記自己温度制御特性とに基づいて、前記抵抗温度特性を算出する抵抗温度特性算出ステップとを備える抵抗温度特性算出方法。
    A first heating resistor having a linear resistance temperature characteristic; and a second heating resistor having a self-temperature control characteristic having a first temperature as a maximum temperature, the first heating resistor and the first heating resistor. A resistance temperature characteristic calculation method for calculating the resistance temperature characteristic, which is used in a treatment system that applies thermal energy generated in each of two heating resistors to a living tissue,
    A temperature setting step of energizing the second heating resistor and setting the second heating resistor to the first temperature;
    A first resistance value measuring step for measuring a resistance value of the first heat generating resistor to which heat from the second heat generating resistor is transferred after the temperature setting step;
    A resistance temperature characteristic calculating step of calculating the resistance temperature characteristic based on the resistance value of the first heating resistor measured in the first resistance value measuring step and the self temperature control characteristic. Temperature characteristic calculation method.
  2.  前記第1の発熱抵抗体の前記第1の温度における抵抗温度係数を取得する抵抗温度係数取得ステップをさらに備え、
     前記抵抗温度特性算出ステップでは、
     前記第1の温度をTc、前記第1の抵抗値測定ステップにて測定した前記第1の発熱抵抗体の抵抗値をRc、及び前記抵抗温度係数をαとした場合に、T=SL×R+INで表される前記抵抗温度特性の傾きSLと切片INとをSL=1/(α×Rc)、IN=Tc-1/αによりそれぞれ算出する
     請求項1に記載の抵抗温度特性算出方法。
    A resistance temperature coefficient obtaining step of obtaining a resistance temperature coefficient at the first temperature of the first heating resistor;
    In the resistance temperature characteristic calculation step,
    T = SL × R + IN where Tc is the first temperature, Rc is the resistance value of the first heating resistor measured in the first resistance value measurement step, and α is the resistance temperature coefficient. The resistance temperature characteristic calculation method according to claim 1, wherein a slope SL and an intercept IN of the resistance temperature characteristic represented by: are calculated by SL = 1 / (α × Rc) and IN = Tc−1 / α, respectively.
  3.  環境温度を測定する環境温度測定ステップと、
     前記環境温度での前記第1の発熱抵抗体の抵抗値を測定する第2の抵抗値測定ステップとをさらに備え、
     前記抵抗温度特性算出ステップでは、
     前記第1の温度をTc、前記第1の抵抗値測定ステップにて測定した第1の発熱抵抗体の抵抗値をRc、前記環境温度をT0、及び前記第2の抵抗値測定ステップにて測定した前記第1の発熱抵抗体の抵抗値をR0とした場合に、T=SL×R+INで表される前記抵抗温度特性の傾きSLと切片INとをSL=(Tc-T0)/(Rc-R0)、IN=Tc-SL×Rcによりそれぞれ算出する
     請求項1に記載の抵抗温度特性算出方法。
    An environmental temperature measuring step for measuring the environmental temperature;
    A second resistance value measuring step of measuring a resistance value of the first heating resistor at the environmental temperature,
    In the resistance temperature characteristic calculation step,
    The first temperature is Tc, the resistance value of the first heating resistor measured in the first resistance value measuring step is Rc, the environmental temperature is measured in T0, and the second resistance value measuring step. When the resistance value of the first heating resistor is R0, the slope SL and the intercept IN of the resistance temperature characteristic expressed by T = SL × R + IN is SL = (Tc−T0) / (Rc− R0), IN = Tc−SL × Rc, respectively. The resistance-temperature characteristic calculation method according to claim 1.
  4.  線形の抵抗温度特性を有する第1の発熱抵抗体と、第1の温度を最高温度とする自己温度制御特性を有する第2の発熱抵抗体とを含み、前記第1の発熱抵抗体と前記第2の発熱抵抗体とにそれぞれ発生した熱エネルギを生体組織に付与するエネルギ付与部と、
     前記抵抗温度特性を算出する抵抗温度特性算出部と、
     前記第1の発熱抵抗体の抵抗値を測定する抵抗値測定部とを備え、
     前記抵抗温度特性算出部は、
     前記第2の発熱抵抗体に通電し、当該第2の発熱抵抗体を前記第1の温度に設定する温度設定部と、
     前記第1の温度になった前記第2の発熱抵抗体からの熱が伝達された前記第1の発熱抵抗体の抵抗値と、前記自己温度制御特性とに基づいて、前記抵抗温度特性を算出する特性算出部とを備える処置システム。
    A first heat generating resistor having a linear resistance temperature characteristic; and a second heat generating resistor having a self-temperature control characteristic having a first temperature as a maximum temperature. An energy applying unit that applies thermal energy generated in each of the two heating resistors to the living tissue;
    A resistance temperature characteristic calculation unit for calculating the resistance temperature characteristic;
    A resistance value measuring unit for measuring a resistance value of the first heating resistor,
    The resistance temperature characteristic calculator is
    A temperature setting unit for energizing the second heating resistor and setting the second heating resistor to the first temperature;
    The resistance temperature characteristic is calculated based on the resistance value of the first heating resistor to which the heat from the second heating resistor having reached the first temperature is transmitted and the self-temperature control characteristic. A treatment system comprising a characteristic calculating unit.
  5.  前記抵抗温度特性算出部にて算出された前記抵抗温度特性と前記抵抗値測定部にて測定された前記第1の発熱抵抗体の抵抗値とに基づいて前記第1の発熱抵抗体の通電制御を実行するとともに、前記第2の発熱抵抗体の通電制御を実行する通電制御部をさらに備え、
     前記通電制御部は、
     前記第2の発熱抵抗体に供給する電力を前記第1の発熱抵抗体に供給する電力に基づいて決定する
     請求項4に記載の処置システム。
    The energization control of the first heating resistor based on the resistance temperature characteristic calculated by the resistance temperature characteristic calculator and the resistance value of the first heating resistor measured by the resistance value measuring unit. And further including an energization control unit that performs energization control of the second heating resistor,
    The energization control unit
    The treatment system according to claim 4, wherein the power supplied to the second heating resistor is determined based on the power supplied to the first heating resistor.
  6.  請求項1~3のいずれか一つに記載の抵抗温度特性算出方法をコンピュータに実行させる抵抗温度特性算出プログラム。 A resistance temperature characteristic calculation program for causing a computer to execute the resistance temperature characteristic calculation method according to any one of claims 1 to 3.
PCT/JP2017/017078 2017-04-28 2017-04-28 Resistance-temperature characteristic calculation method, treatment system, and resistance-temperature characteristic calculation program WO2018198374A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/017078 WO2018198374A1 (en) 2017-04-28 2017-04-28 Resistance-temperature characteristic calculation method, treatment system, and resistance-temperature characteristic calculation program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/017078 WO2018198374A1 (en) 2017-04-28 2017-04-28 Resistance-temperature characteristic calculation method, treatment system, and resistance-temperature characteristic calculation program

Publications (1)

Publication Number Publication Date
WO2018198374A1 true WO2018198374A1 (en) 2018-11-01

Family

ID=63918129

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/017078 WO2018198374A1 (en) 2017-04-28 2017-04-28 Resistance-temperature characteristic calculation method, treatment system, and resistance-temperature characteristic calculation program

Country Status (1)

Country Link
WO (1) WO2018198374A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10118092A (en) * 1996-10-17 1998-05-12 Olympus Optical Co Ltd Thermocautery hemostatic device
JP2013022354A (en) * 2011-07-25 2013-02-04 Olympus Corp Therapeutical treatment apparatus
JP2013034568A (en) * 2011-08-05 2013-02-21 Olympus Corp Therapeutical treatment apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10118092A (en) * 1996-10-17 1998-05-12 Olympus Optical Co Ltd Thermocautery hemostatic device
JP2013022354A (en) * 2011-07-25 2013-02-04 Olympus Corp Therapeutical treatment apparatus
JP2013034568A (en) * 2011-08-05 2013-02-21 Olympus Corp Therapeutical treatment apparatus

Similar Documents

Publication Publication Date Title
US9937001B2 (en) Therapeutic treatment apparatus
US10441341B2 (en) Treatment system and actuation method for treatment system
US9414882B2 (en) Treatment system and actuation method for treatment system
JP6537110B2 (en) Living tissue joining system and operating method of living tissue joining system
JP5816774B2 (en) Biological tissue joining system, treatment instrument control device, and operating method of biological tissue joining system
JP5820649B2 (en) Therapeutic treatment device
EP2719349A1 (en) Treatment system, and control method of treatment system
WO2013088891A1 (en) Treatment system, and method for controlling treatment system
JP5767053B2 (en) Therapeutic treatment device
WO2017090165A1 (en) Treatment system and treatment instrument
WO2018198374A1 (en) Resistance-temperature characteristic calculation method, treatment system, and resistance-temperature characteristic calculation program
US20180368904A1 (en) Thermal energy treatment device
US10314636B2 (en) Treatment apparatus and method for controlling the same
JP5959789B1 (en) Control device for energy treatment device and energy treatment system
WO2018055778A1 (en) Treatment instrument and treatment system
WO2020003360A1 (en) Treatment system, control method, and control program
WO2019224924A1 (en) Treatment system, control method, and control program
WO2019116449A1 (en) Treatment system
WO2018198208A1 (en) Treatment system
WO2017094193A1 (en) Thermal energy treatment device, and method for operating thermal energy treatment device
JP2005230189A (en) Treatment apparatus for surgery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17907692

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17907692

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP