JP2012059733A - Exposure device and device manufacturing method - Google Patents

Exposure device and device manufacturing method Download PDF

Info

Publication number
JP2012059733A
JP2012059733A JP2010198261A JP2010198261A JP2012059733A JP 2012059733 A JP2012059733 A JP 2012059733A JP 2010198261 A JP2010198261 A JP 2010198261A JP 2010198261 A JP2010198261 A JP 2010198261A JP 2012059733 A JP2012059733 A JP 2012059733A
Authority
JP
Japan
Prior art keywords
shape
optical system
parallel plate
parallel
projection optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010198261A
Other languages
Japanese (ja)
Other versions
JP5632685B2 (en
Inventor
Toru Okubo
徹 大久保
Seiji Fukami
清司 深見
Fumiyasu Ono
文靖 大野
Kyoichi Miyazaki
恭一 宮▲崎▼
Masato Hagiri
正人 羽切
Masato Sato
誠人 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2010198261A priority Critical patent/JP5632685B2/en
Publication of JP2012059733A publication Critical patent/JP2012059733A/en
Application granted granted Critical
Publication of JP5632685B2 publication Critical patent/JP5632685B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an exposure device advantageous for controlling both distortion aberration and astigmatism of a projection optical system to be within a target range.SOLUTION: The exposure device has a projection optical system for projecting a pattern of an original plate onto a substrate and exposes the substrate. The projection optical system includes a first parallel flat plate at a front side of a pupil thereof and a second parallel flat plate at a rear side of the pupil. Two shapes, which are obtained by bending points on the first parallel flat plate and the second parallel flat plate corresponding to each other so that each of the points moves to the same direction, are defined as a first shape and a second shape. And two shapes, which are obtained by bending points on the first parallel flat plate and the second parallel flat plate corresponding to each other so that each of the points moves to an opposite direction, are defined as a third shape and a fourth shape. Then, the distortion aberration and the astigmatism of the projection optical system are adjusted by deforming the first parallel flat plate so as to become a fifth shape obtained by synthesizing the first shape and the third shape, and by deforming the second parallel flat plate so as to become a sixth shape obtained by synthesizing the second shape and the fourth shape.

Description

本発明は、露光装置等及びデバイス製造方法に関する。   The present invention relates to an exposure apparatus and a device manufacturing method.

半導体や液晶パネルなどは、フォトリソグラフィ工程により製造される。フォトリソグラフィ工程では、マスクやレチクルと呼ばれる原版上のパターンを、投影光学系を介してレジストと呼ばれる感光剤が塗布されたガラス基板やウエハ上に投影する露光装置が使用されている。近年パターン線幅の微細化に伴って、露光装置の高性能化が進んでいる。そのため、厳しい装置仕様を満たすためにディストーション(歪曲収差)と非点収差とを補正することが必要となっている。ディストーションとは、理想格子を持つマスクを露光した場合、基板上の露光パターンの理想格子位置からのずれをいう。倍率の補正に関しては、特許文献1に示されるように、結像光学系の光路内に結像性能に影響を与えない程度の厚さをもった平行平板を配し、前記平行平板の形状を湾曲させることで倍率を補正することが行われている。ディストーションの補正に関しては、特許文献2に示されるように、結像光学系の光路内の平行平板を部分的に変形させることで補正することが行われている。非点収差の補正に関しては、投影光学系を構成する屈折型光学素子の位置調整や非球面加工が行われている。非球面加工とは、光学素子の少なくとも片面に収差を打ち消す特性を有する非球面形状への加工を施すことをいう。   Semiconductors, liquid crystal panels, and the like are manufactured by a photolithography process. In the photolithography process, an exposure apparatus that projects a pattern on an original plate called a mask or a reticle onto a glass substrate or wafer coated with a photosensitive agent called a resist via a projection optical system is used. In recent years, with the miniaturization of the pattern line width, the performance of the exposure apparatus has been improved. Therefore, it is necessary to correct distortion (distortion aberration) and astigmatism in order to satisfy strict apparatus specifications. Distortion refers to deviation of the exposure pattern on the substrate from the ideal lattice position when a mask having an ideal lattice is exposed. Regarding the correction of magnification, as shown in Patent Document 1, a parallel plate having a thickness that does not affect the imaging performance is arranged in the optical path of the imaging optical system, and the shape of the parallel plate is changed. The magnification is corrected by curving. As for distortion correction, as disclosed in Patent Document 2, correction is performed by partially deforming a parallel plate in the optical path of the imaging optical system. Regarding correction of astigmatism, position adjustment and aspherical processing of a refractive optical element constituting the projection optical system are performed. The aspherical surface processing means that at least one surface of the optical element is processed into an aspherical shape having a characteristic of canceling out aberration.

特開平08−306618号公報Japanese Patent Laid-Open No. 08-306618 特開2000−195784号公報JP 2000-195784 A

現状では、ディストーションと非点収差とは、それぞれ別々に補正されている。ターゲットとなる成分の補正を行うと別の収差が発生し、発生した収差が要因で像性能が低下したり、光学素子の加工や露光装置の組み直し作業などが入ることで補正に時間がかかったりする。   At present, distortion and astigmatism are corrected separately. If the target component is corrected, another aberration is generated, and the image performance deteriorates due to the generated aberration, and it takes time to correct it due to the processing of the optical element and reassembly of the exposure device. To do.

本発明は、投影光学系の歪曲収差と非点収差とをともに目標範囲内に収めるのに有利な露光装置の提供を例示的目的とする。   An object of the present invention is to provide an exposure apparatus that is advantageous for keeping both distortion and astigmatism of a projection optical system within a target range.

本発明は、原版のパターンを基板に投影する投影光学系を有し、前記基板の露光を行う露光装置であって、前記投影光学系は、その瞳の前側に第1平行平板を含み、かつ、前記瞳の後側に第2平行平板を含み、前記第1平行平板および前記第2平行平板の互いに対応する点をそれぞれ同方向に移動するように撓ませて得られる2つの形状を第1形状および第2形状とし、かつ、前記第1平行平板および前記第2平行平板の互いに対応する点を反対方向に移動するように撓ませて得られる2つの形状を第3形状および第4形状としたとき、前記第1形状と前記第3形状とを合成した第5形状となるように前記第1平行平板を変形させ、かつ、前記第2形状と前記第4形状とを合成した第6形状となるように前記第2平行平板を変形させて、前記投影光学系の歪曲収差および非点収差を調整する、ことを特徴とする。   The present invention is an exposure apparatus that has a projection optical system that projects an original pattern onto a substrate, and that exposes the substrate, the projection optical system including a first parallel plate on the front side of the pupil, and The first shape has two shapes obtained by including a second parallel plate behind the pupil and bending the corresponding points of the first parallel plate and the second parallel plate so as to move in the same direction. The two shapes obtained by bending the shape corresponding to the shape and the second shape and moving the corresponding points of the first parallel plate and the second parallel plate so as to move in opposite directions are the third shape and the fourth shape. Then, the first parallel plate is deformed so as to be a fifth shape obtained by combining the first shape and the third shape, and the sixth shape is formed by combining the second shape and the fourth shape. The second parallel plate is deformed so that Adjusting the distortion and the astigmatism of the projection optical system, characterized in that.

本発明によれば、例えば、投影光学系の歪曲収差と非点収差とをともに目標範囲内に収めるのに有利な露光装置を提供することができる。   According to the present invention, for example, it is possible to provide an exposure apparatus that is advantageous for keeping both distortion and astigmatism of a projection optical system within a target range.

本発明の一実施形態における露光装置の一部を示す図である。It is a figure which shows a part of exposure apparatus in one Embodiment of this invention. 本発明の一実施形態におけるディストーション、非点収差を補正する手順のフローチャートである。It is a flowchart of the procedure which correct | amends distortion and astigmatism in one Embodiment of this invention. 実施例1、2におけるディストーション又は非点収差を補正する作用を示す図である。It is a figure which shows the effect | action which corrects the distortion or astigmatism in Example 1,2. 実施例3におけるディストーション及び非点収差を補正する作用を示す図である。It is a figure which shows the effect | action which corrects the distortion and astigmatism in Example 3. FIG. 本発明の一実施形態における露光装置を示す図である。It is a figure which shows the exposure apparatus in one Embodiment of this invention.

以下に、本発明の実施形態を添付の図面に基づいて詳細に説明する。
〔露光装置〕
図1及び図5を参照しながら本発明の基板の露光を行う露光装置について説明する。はじめに、露光装置の光学系について説明し、その後、露光装置の平行平板部分について説明する。図5は本実施形態で用いる走査露光方式における光学系を示す図である。図5に示されるように、露光装置は、照明系11、原版1と基板7のアライメントマークを検出するアライメントスコープ10、原版1のパターンを基板7に投影する投影光学系12を有する。図5には示されてはいないが、照明系11は、例えば、光源、第1コンデンサーレンズ、フライアイレンズ、第2コンデンサーレンズ、スリット規定部材、結像光学系、平面鏡を含みうる。光源は、例えば、水銀ランプと、楕円ミラーとを含みうる。スリット規定部材は、原版1の照明範囲(即ち、原版1を照明するスリット形状光の断面形状)を規定する。結像光学系は、スリット規定部材によって規定されるスリットを物体面に結像させるように配置されている。平面鏡は、照明系11において光路を折り曲げる。
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
[Exposure equipment]
An exposure apparatus for exposing a substrate according to the present invention will be described with reference to FIGS. First, the optical system of the exposure apparatus will be described, and then the parallel plate portion of the exposure apparatus will be described. FIG. 5 is a diagram showing an optical system in the scanning exposure method used in this embodiment. As shown in FIG. 5, the exposure apparatus includes an illumination system 11, an alignment scope 10 that detects alignment marks on the original 1 and the substrate 7, and a projection optical system 12 that projects a pattern on the original 1 onto the substrate 7. Although not shown in FIG. 5, the illumination system 11 may include, for example, a light source, a first condenser lens, a fly-eye lens, a second condenser lens, a slit defining member, an imaging optical system, and a plane mirror. The light source can include, for example, a mercury lamp and an elliptical mirror. The slit defining member defines the illumination range of the original 1 (that is, the cross-sectional shape of the slit-shaped light that illuminates the original 1). The imaging optical system is arranged so as to image the slit defined by the slit defining member on the object plane. The plane mirror bends the optical path in the illumination system 11.

投影光学系12は、照明系11によって照明される原版1上のパターンの像を基板7上に投影する。原版1は投影光学系12の物体面に、基板7は投影光学系12の像面の位置に配置される。投影光学系12は、等倍結像光学系、拡大結像光学系及び縮小結像光学系のいずれとしても構成されうるが、本実施形態では等倍の光学系として構成されている。投影光学系12は、物体面から順に、第1平行平板2a、第1平面鏡14、第1凹面鏡、凸面鏡17、第2凹面鏡、及び第2平行平板2bが、物体面から像面に至る光路に配置されている。図5では、第1凹面鏡と第2凹面鏡とが、1つの凹面鏡16で構成されている。第1平面鏡14の鏡面を含む平面と第2平面鏡15の鏡面を含む平面とは、互いに90度の角度をなす。第1平面鏡14と第2平面鏡15とは、一体的に形成されていてもよい。第1平行平板2a及び第2平行平板2bは、同じ厚さを有している。照明系11によって照明される原版1上のパターンの像は、第1平行平板2a、第1平面鏡14、凹面鏡16、凸面鏡17、再度凹面鏡16、第2平面鏡15、そして第2平行平板2bを経て基板7に結像する。この状態において、基板7をy方向(走査方向)に沿って走査し、原版1上の全てのパターンを露光する。投影光学系12において、凸面鏡17は投影光学系12の瞳の位置にある。したがって、投影光学系12は、瞳の前側に第1平行平板2aを含み、かつ、瞳の後側に第2平行平板2bを含んでいる。   The projection optical system 12 projects an image of the pattern on the original 1 illuminated by the illumination system 11 onto the substrate 7. The original 1 is disposed on the object plane of the projection optical system 12, and the substrate 7 is disposed on the image plane of the projection optical system 12. Although the projection optical system 12 can be configured as any one of an equal magnification imaging optical system, an enlarged imaging optical system, and a reduced imaging optical system, in the present embodiment, it is configured as an equal magnification optical system. In the projection optical system 12, the first parallel plate 2a, the first plane mirror 14, the first concave mirror, the convex mirror 17, the second concave mirror, and the second parallel plate 2b are arranged in the optical path from the object plane to the image plane in order from the object plane. Has been placed. In FIG. 5, the first concave mirror and the second concave mirror are constituted by one concave mirror 16. The plane including the mirror surface of the first plane mirror 14 and the plane including the mirror surface of the second plane mirror 15 form an angle of 90 degrees with each other. The first plane mirror 14 and the second plane mirror 15 may be integrally formed. The first parallel plate 2a and the second parallel plate 2b have the same thickness. The pattern image on the original 1 illuminated by the illumination system 11 passes through the first parallel plate 2a, the first plane mirror 14, the concave mirror 16, the convex mirror 17, the concave mirror 16, the second plane mirror 15 and the second parallel plate 2b again. An image is formed on the substrate 7. In this state, the substrate 7 is scanned along the y direction (scanning direction), and all the patterns on the original 1 are exposed. In the projection optical system 12, the convex mirror 17 is at the pupil position of the projection optical system 12. Therefore, the projection optical system 12 includes the first parallel flat plate 2a on the front side of the pupil and the second parallel flat plate 2b on the rear side of the pupil.

図1は、本実施形態に係る走査型露光装置における照明系を除いた部分を示す概略図である。図中6は、投影光学系12から第1平行平板2a及び第2平行平板2bを除く第1平面鏡14、凹面鏡16、凸面鏡17、再度凹面鏡16、第2平面鏡15を含む光学系を表している。図中投影光学系12の光軸に平行にxyz座標系のz軸を取り、z軸に垂直な平面内で露光装置の走査方向にy軸を取る右手系の座標となっている。第1平行平板2a及び第2平行平板2bは各々、変形機構3a,3bによって変形される。平行平板2a,2bは、その結像位置のずれ以外の結像性能に対し実質的に影響を与えない程度の光学的厚さとする。平行平板2a,2bの材質は、i線露光装置の場合、例えば合成石英を用いるとよい。またその形状は、例えば板厚が均一であれば、露光光線の形状に合わせて円弧形状や矩形などを用いてもよい。変形機構3a,3bは、平行平板2a,2bの走査方向(y方向)と平行な向きに、平行平板2a,2bをはさんで向かい合った一対の駆動部と保持部を有する。駆動部は平行平板2a,2bの変形させる部分においてその面の法線方向(z方向)に駆動可能であり、平行平板2a,2bの面形状を変形させる。駆動部の保持間隔は補正すべき非線形歪みの周期に合わせた配置とする。例えば、駆動部の保持間隔は、より精密に非線形歪みを補正する場合は狭く、精密さを必要としない運用の場合は広くとることができる。測定系5a,5bは、平行平板2a,2b各々の基板位置を測定する。測定系5a,5bは、平行平板2a,2bまたは変形機構3a,3bの変位を計測する移動可能な変位計もしくは固定された複数の変位計からなり、接触式でも非接触式でも構成が可能である。測定系5a,5bは、基板7の駆動機構9、あるいは原版1の駆動機構8上に配置する。測定系5a,5bは、基板の駆動機構9、原版の駆動機構8以外の機構によって保持されていてもよい。   FIG. 1 is a schematic view showing a portion excluding the illumination system in the scanning exposure apparatus according to the present embodiment. In the figure, reference numeral 6 denotes an optical system including a first plane mirror 14, a concave mirror 16, a convex mirror 17, a concave mirror 16, and a second plane mirror 15 excluding the first parallel plate 2 a and the second parallel plate 2 b from the projection optical system 12. . In the drawing, the z-axis of the xyz coordinate system is taken in parallel to the optical axis of the projection optical system 12, and the right-handed coordinate is taken in the plane perpendicular to the z-axis in the scanning direction of the exposure apparatus. The first parallel plate 2a and the second parallel plate 2b are respectively deformed by the deformation mechanisms 3a and 3b. The parallel plates 2a and 2b have an optical thickness that does not substantially affect the imaging performance other than the shift of the imaging position. In the case of an i-line exposure apparatus, for example, synthetic quartz may be used as the material of the parallel plates 2a and 2b. For example, if the plate thickness is uniform, an arc shape or a rectangle may be used in accordance with the shape of the exposure light beam. The deformation mechanisms 3a and 3b have a pair of drive units and holding units facing each other across the parallel plates 2a and 2b in a direction parallel to the scanning direction (y direction) of the parallel plates 2a and 2b. The drive unit can be driven in the normal direction (z direction) of the plane of the parallel plates 2a and 2b to be deformed, and deforms the surface shape of the parallel plates 2a and 2b. The holding interval of the driving unit is arranged according to the period of the nonlinear distortion to be corrected. For example, the holding interval of the drive unit can be narrow when correcting nonlinear distortion more precisely, and can be wide when the operation does not require precision. The measurement systems 5a and 5b measure the substrate position of each of the parallel plates 2a and 2b. The measuring systems 5a and 5b are composed of a movable displacement meter or a plurality of fixed displacement meters that measure the displacement of the parallel plates 2a and 2b or the deformation mechanisms 3a and 3b, and can be configured as a contact type or a non-contact type. is there. The measurement systems 5 a and 5 b are arranged on the drive mechanism 9 of the substrate 7 or the drive mechanism 8 of the original 1. The measurement systems 5 a and 5 b may be held by a mechanism other than the substrate drive mechanism 9 and the original plate drive mechanism 8.

露光装置は、変形機構3a,3b各々を介して第1平行平板2a及び第2平行平板2bの変形を制御する制御部4を備える。制御部4は、変形機構3a,3b各々の駆動量を算出する演算部4a,4bを有する。制御部4は、投影露光後の基板上のパターンから測定したディストーション(歪曲収差)及び非点収差の測定値の入力部4cを有する。演算部4a,4bは、ディストーション及び非点収差の測定結果と所望のディストーション及び非点収差の状態との差、もしくはディストーション及び非点収差の無い状態との差を演算する。演算部4a,4bは、前記測定結果と所望の状態の差をなくすための平行平板2a,2bの面変形形状を決定し、面変形に必要な前記変形機構3a,3bの駆動量を算出する。制御部4は、変形機構3a,3bを駆動する駆動信号を出力する。また演算部4a,4bは、測定系5a,5bで測定した面変形後の平行平板2a,2bまたは変形機構3a,3bの変位量を入力する。そして演算部4a,4bは、面変形のために算出した駆動量と測定した変位量の差を算出し、駆動誤差を最小にする変形機構3a,3bの駆動量を算出する。演算部4a,4bは、例えばコンピュータを用いることで、一連の計算の自動化が容易である。   The exposure apparatus includes a control unit 4 that controls deformation of the first parallel plate 2a and the second parallel plate 2b via the deformation mechanisms 3a and 3b. The control unit 4 includes calculation units 4a and 4b that calculate the driving amounts of the deformation mechanisms 3a and 3b, respectively. The control unit 4 has an input unit 4c for distortion (distortion aberration) and astigmatism measurement values measured from the pattern on the substrate after projection exposure. The calculation units 4a and 4b calculate the difference between the distortion and astigmatism measurement results and the desired distortion and astigmatism state, or the difference between the distortion and astigmatism-free state. The calculation units 4a and 4b determine the surface deformation shape of the parallel plates 2a and 2b for eliminating the difference between the measurement result and a desired state, and calculate the driving amounts of the deformation mechanisms 3a and 3b necessary for the surface deformation. . The control unit 4 outputs a drive signal for driving the deformation mechanisms 3a and 3b. Further, the arithmetic units 4a and 4b input displacement amounts of the parallel flat plates 2a and 2b or the deformation mechanisms 3a and 3b after the surface deformation measured by the measurement systems 5a and 5b. Then, the calculation units 4a and 4b calculate the difference between the drive amount calculated for the surface deformation and the measured displacement amount, and calculate the drive amount of the deformation mechanisms 3a and 3b that minimize the drive error. The arithmetic units 4a and 4b can easily automate a series of calculations by using, for example, a computer.

次に、図2を参照しながら、ディストーション、非点収差を補正する手順について説明する。テスト露光により基板7に投影された原版1のパターンのディストーション及び非点収差を測定する。ディストーション及び非点収差の測定値が許容値に対して問題なければそのまま露光装置の使用を続ける。測定値が許容値に対して無視できない場合、演算部4a,4bにより補正に必要な平行平板2a,2bの面変形形状を算出し、各々の変形機構3a,3bの駆動量を決定する。制御部4は、変形機構3a,3bを駆動させ、平行平板2a,2bの面変形を行う。平行平板2a,2bは、変形機構3a,3bによって、少なくとも、走査方向と直交する方向と投影光学系12の光軸とを含む面内(xz平面内)、及び、走査方向と投影光学系12の光軸とを含む面内(yz平面内)の少なくとも一方において撓められる。測定系5a,5bにより平行平板2a,2b又は変形機構3a,3bの変位を測定し、演算部4a,4bで算出した平行平板2a,2bの面形状の変形量又は変形機構3a,3bの駆動量との誤差を算出し、制御部4は、算出された誤差が許容範囲内か否か判断する。制御部4は、駆動誤差が許容範囲内であれば補正を終了し露光装置の使用を始める。制御部4は、駆動誤差が許容値に対して無視できない場合、駆動誤差を最小にする変形機構3a,3bの駆動量を演算部4a,4bで算出し、再度前記変形機構3a,3bによる平行平板2a,2bの面変形を行う。   Next, a procedure for correcting distortion and astigmatism will be described with reference to FIG. The distortion and astigmatism of the pattern of the original 1 projected onto the substrate 7 by test exposure are measured. If the distortion and astigmatism measurement values are acceptable for the tolerance, the exposure apparatus continues to be used as it is. When the measured value is not negligible with respect to the allowable value, the surface deformation shapes of the parallel plates 2a and 2b necessary for correction are calculated by the calculation units 4a and 4b, and the driving amounts of the respective deformation mechanisms 3a and 3b are determined. The control unit 4 drives the deformation mechanisms 3a and 3b to perform surface deformation of the parallel plates 2a and 2b. The parallel plates 2a and 2b are deformed by the deformation mechanisms 3a and 3b in a plane (in the xz plane) including at least the direction orthogonal to the scanning direction and the optical axis of the projection optical system 12, and in the scanning direction and the projection optical system 12. And at least one of in-plane including the optical axis (in the yz plane). The displacements of the parallel plates 2a, 2b or the deformation mechanisms 3a, 3b are measured by the measurement systems 5a, 5b, and the deformation amount of the surface shape of the parallel plates 2a, 2b calculated by the calculation units 4a, 4b or the driving of the deformation mechanisms 3a, 3b. The control unit 4 determines whether the calculated error is within an allowable range. If the drive error is within the allowable range, the control unit 4 ends the correction and starts using the exposure apparatus. When the drive error cannot be ignored with respect to the allowable value, the control unit 4 calculates the drive amounts of the deformation mechanisms 3a and 3b that minimize the drive error by the calculation units 4a and 4b, and again the parallel by the deformation mechanisms 3a and 3b. Surface deformation of the flat plates 2a and 2b is performed.

[実施例1]
実施例1において、テスト露光後に測定した基板のパターンのディストーション及び非点収差の測定結果を図3Aに示す。図3A,3B,3Cにおいて、左側のグラフの縦軸はディストーション、右側のグラフの縦軸は非点収差を示す。横軸は、被露光基板の露光領域の図1におけるx方向の位置を示す。変形機構3a,3bに対し、駆動後の平行平板2a,2bのx方向の面形状がz=ax(a<0)で表される形状になるよう、各個所における駆動量を前記演算部4a,4bによって算出する。制御部4は、算出した駆動量にしたがって各個所の前記変形機構3a,3bを駆動する。駆動後、測定系5a,5bにより駆動誤差を測定する。駆動誤差が無視できない場合、制御部4は、駆動誤差を最小にする変形機構3a,3bの駆動量を演算部4a,4bで算出し、再度変形機構3a,3bによる平行平板2a,2bの面変形を行う。平行平板2a,2bの面変形後の装置で露光した基板のパターンのディストーション及び非点収差を測定すると、図3Bに示すようなディストーション及び非点収差の測定結果が得られる。第1平行平板2a、第2平行平板2bともに同じ面変形形状を与えた時、第1平行平板2aで発生する非点収差に対し、第2平行平板2bで、第1平行平板2aで発生する非点収差を打ち消すような非点収差が発生する。一方、ディストーションは各々の平行平板2a,2bで同じ量のディストーションが発生する。これより、第1平行平板2a、光学系6、第2平行平板2bを通過した露光像は、非点収差は変化せず、ディストーションのみが変化する。これにより、平行平板2a,2bに同一面形状を与えることで、非点収差に影響を与えることなく、ディストーションのみを独立に補正することができる。
[Example 1]
FIG. 3A shows the measurement results of the distortion of the substrate pattern and the astigmatism measured after the test exposure in Example 1. 3A, 3B, and 3C, the vertical axis of the left graph indicates distortion, and the vertical axis of the right graph indicates astigmatism. The horizontal axis indicates the position in the x direction in FIG. 1 of the exposure region of the substrate to be exposed. With respect to the deformation mechanisms 3a and 3b, the calculation unit is configured to calculate the drive amount at each location so that the x-direction surface shape of the driven parallel plates 2a and 2b is a shape represented by z = ax 3 (a <0). Calculated by 4a and 4b. The control unit 4 drives the deforming mechanisms 3a and 3b at each location according to the calculated driving amount. After driving, the driving error is measured by the measuring systems 5a and 5b. When the drive error cannot be ignored, the control unit 4 calculates the drive amounts of the deformation mechanisms 3a and 3b that minimize the drive error by the calculation units 4a and 4b, and again the surfaces of the parallel plates 2a and 2b by the deformation mechanisms 3a and 3b. Perform deformation. When the distortion and astigmatism of the pattern of the substrate exposed by the apparatus after the plane deformation of the parallel plates 2a and 2b are measured, the measurement results of distortion and astigmatism as shown in FIG. 3B are obtained. When both the first parallel plate 2a and the second parallel plate 2b have the same surface deformation shape, the second parallel plate 2b and the first parallel plate 2a generate astigmatism that occurs in the first parallel plate 2a. Astigmatism that cancels astigmatism occurs. On the other hand, the same amount of distortion occurs in each parallel plate 2a, 2b. As a result, the astigmatism of the exposure image that has passed through the first parallel plate 2a, the optical system 6, and the second parallel plate 2b does not change, and only the distortion changes. Thus, by giving the same plane shape to the parallel plates 2a and 2b, it is possible to independently correct only the distortion without affecting the astigmatism.

[実施例2]
テスト露光後に測定した基板のパターンのディストーション及び非点収差の測定結果を図3Aに示す。第1平行平板2aをx方向にz=−ax(a<0)、第2平行平板2bをx方向にz=ax(a<0)で表される面形状に変形を行った場合、図3Cに示すような結果が得られる。第1平行平板2aにz=−h(x)で表される面形状を与え、第2平行平板2bにz=h(x)で表される面形状を与えた場合、各々の面で同じ非点収差が発生する。ここで、h(x)は定数ではない。一方、ディストーションに関しては、第1平行平板2aで発生するディストーションに対し、第2平行平板2bで、第1平行平板2aで発生するディストーションを打ち消すようなディストーションが発生する。これにより、第1平行平板2a、光学系6、第2平行平板2bを通過した露光像は、ディストーションは変化せず、非点収差のみが変化する。これにより、第1平行平板2aにz=−h(x)で表されるz方向の変形量を付与し、第2平行平板2bにz=h(x)で表されるz方向の変形量を付与することで、ディストーションに影響を与えることなく、非点収差のみを独立に補正することができる。
[Example 2]
FIG. 3A shows the measurement results of the distortion and astigmatism of the substrate pattern measured after the test exposure. The first parallel flat plate 2a is deformed into a surface shape represented by z 1 = −ax 3 (a <0) in the x direction, and the second parallel flat plate 2b is deformed into z 2 = ax 3 (a <0) in the x direction. In such a case, a result as shown in FIG. 3C is obtained. When a surface shape represented by z 1 = −h (x) is given to the first parallel plate 2a and a surface shape represented by z 2 = h (x) is given to the second parallel plate 2b, each surface Cause the same astigmatism. Here, h (x) is not a constant. On the other hand, with respect to the distortion, a distortion that cancels the distortion generated in the first parallel flat plate 2a is generated in the second parallel flat plate 2b with respect to the distortion generated in the first parallel flat plate 2a. As a result, the distortion of the exposure image that has passed through the first parallel plate 2a, the optical system 6, and the second parallel plate 2b does not change, and only astigmatism changes. Thereby, the deformation amount in the z direction represented by z 1 = −h (x) is applied to the first parallel plate 2a, and the z direction in the z direction represented by z 2 = h (x) is applied to the second parallel plate 2b. By providing the deformation amount, it is possible to independently correct only astigmatism without affecting the distortion.

[実施例3]
実施例3において、テスト露光後に測定した基板のパターンのディストーション及び非点収差の測定結果を図4Aに示す。前記第1平行平板2aをx方向にz=bx−cx(b<0、c<0)、前記第2平行平板2bをx方向にz=bx+cxで表される面形状に変形を行った場合、図4Bに示すような結果が得られる。
[Example 3]
FIG. 4A shows the measurement results of the distortion of the substrate pattern and the astigmatism measured in Example 3 after the test exposure. The first parallel plate 2a is represented by z 1 = bx 4 -cx 3 (b <0, c <0) in the x direction, and the second parallel plate 2b is represented by z 2 = bx 4 + cx 3 in the x direction. When the shape is deformed, a result as shown in FIG. 4B is obtained.

x方向のディストーションを補正するために第1平行平板2a及び第2平行平板2bに付与されるべきz方向の変形量をg(x)とする。また、x方向の非点収差を補正するために第1平行平板2a及び第2平行平板2bに付与されるべきz方向の変形量をh(x)とする。g(x)とh(x)との少なくともいずれか一方は定数ではない。そして、第1平行平板2aをxz平面と平行な平面で切断したときの断面形状のz方向の位置zが、z=g(x)−h(x)+k(ただしkは定数)を満たすように、第1平行平板2aをz方向に変形させる。同時に、第2平行平板2bをxz平面と平行な平面で切断したときの断面形状のz方向の位置zが、z=g(x)+h(x)+k(ただしkは定数)を満たすように、第2平行平板2bをz方向に変形させる。そうすると、ディストーションは各々の平行平板2a、2bにz=g(x)で表される面形状を与えた際に発生するディストーションが発生する。一方、非点収差に関し、第1平行平板2aにz=−h(x)、第2平行平板2bにz=h(x)で表される面形状を与えた際に発生する非点収差が発生する。これより、x方向のディストーションと非点収差を独立に補正することができる。 Let g (x) be the amount of deformation in the z direction to be applied to the first parallel plate 2a and the second parallel plate 2b in order to correct the distortion in the x direction. Further, the deformation amount in the z direction to be applied to the first parallel plate 2a and the second parallel plate 2b in order to correct the astigmatism in the x direction is h (x). At least one of g (x) and h (x) is not a constant. The position z 1 in the z direction of the cross-sectional shape when the first parallel flat plate 2a is cut along a plane parallel to the xz plane is z 1 = g (x) −h (x) + k 1 (where k 1 is a constant) ) So that the first parallel flat plate 2a is deformed in the z direction. At the same time, the position z 2 in the z-direction cross-sectional shape obtained by cutting the second parallel plate 2b in xz plane parallel to the plane, z 2 = g (x) + h (x) + k 2 ( provided that k 2 is a constant) The second parallel flat plate 2b is deformed in the z direction so as to satisfy the above. As a result, distortion occurs when the parallel plate 2a, 2b is given a surface shape represented by z = g (x). On the other hand, astigmatism, astigmatism generated when a surface shape represented by z = −h (x) is given to the first parallel plate 2a and z = h (x) is given to the second parallel plate 2b, is astigmatism. appear. Thus, distortion in the x direction and astigmatism can be corrected independently.

本発明において、第1平行平板2a及び第2平行平板2bの面形状の変形方向はx方向だけに限定されるものではなく、y方向においても成立する。いま、y方向のディストーションを補正するために第1平行平板2a及び第2平行平板2bに付与されるべきz方向の変形量をm(y)とする。また、y方向の非点収差を補正するために第1平行平板2a及び第2平行平板2bに付与されるべきz方向の変形量をn(y)とする。ここで、m(y)とn(y)との少なくともいずれか一方は定数ではないとする。そのとき、第1平行平板2aをyz平面と平行な平面で切断したときの断面形状のz方向の位置zが、z=m(y)−n(y)+k(ただしkは定数)を満たすように第1平行平板2aをz方向に変形させる。同時に、第2平行平板2bをyz平面と平行な平面で切断したときの断面形状のz方向の位置zが、z=m(y)+n(y)+k(ただしkは定数)を満たすように、第2平行平板2bをz方向に変形させる。そうすると、y方向のディストーションと非点収差を独立に補正することができる。 In the present invention, the deformation direction of the surface shapes of the first parallel plate 2a and the second parallel plate 2b is not limited to the x direction, but also holds in the y direction. Now, let the deformation amount in the z direction to be applied to the first parallel plate 2a and the second parallel plate 2b in order to correct the distortion in the y direction be m (y). Further, the deformation amount in the z direction to be applied to the first parallel plate 2a and the second parallel plate 2b in order to correct the astigmatism in the y direction is n (y). Here, it is assumed that at least one of m (y) and n (y) is not a constant. At that time, the position z 3 in the z direction of the cross-sectional shape when the first parallel flat plate 2a is cut along a plane parallel to the yz plane is z 3 = m (y) −n (y) + k 3 (where k 3 is The first parallel plate 2a is deformed in the z direction so as to satisfy (constant). At the same time, the position z 4 in the z direction of the cross-sectional shape when the second parallel flat plate 2b is cut along a plane parallel to the yz plane is z 4 = m (y) + n (y) + k 4 (where k 4 is a constant). The second parallel flat plate 2b is deformed in the z direction so as to satisfy the above. Then, y-direction distortion and astigmatism can be corrected independently.

第1平行平板2a及び第2平行平板2bの面形状をy方向においても変更するための機構は、第1及び第2平行平板2a,2bの面形状をx方向において変更するための機構と同様のものを使用し得る。第1及び第2平行平板2a,2bのx方向とy方向の面変形を同時に行うことで、x方向とy方向のディストーションと非点収差を同時に補正することができる。   The mechanism for changing the surface shapes of the first parallel plate 2a and the second parallel plate 2b in the y direction is the same as the mechanism for changing the surface shapes of the first and second parallel plates 2a, 2b in the x direction. Can be used. By simultaneously performing surface deformation in the x direction and y direction of the first and second parallel plates 2a and 2b, distortion and astigmatism in the x direction and y direction can be corrected simultaneously.

本発明は等倍結像光学系だけに限定されるものではなく、拡大結像光学系および縮小結像光学系のいずれにおいても構成されうる。いま、第1平行平板2aおよび第2平行平板2bの互いに対応する点をそれぞれ同方向に移動するように撓ませて得られる2つの形状を第1形状および第2形状とする。また、第1平行平板2aおよび第2平行平板2bの互いに対応する点を反対方向に移動するように撓ませて得られる2つの形状を第3形状および第4形状とする。そのとき、第1形状と第3形状とを合成した第5形状となるように第1平行平板2aを変形させ、かつ、第2形状と第4形状とを合成した第6形状となるように第2平行平板2bを変形させる。そうすれば、投影光学系12が拡大結像光学系、縮小結像光学系であっても投影光学系12の歪曲収差および非点収差を調整することができる。   The present invention is not limited to the equal-magnification imaging optical system, and can be configured in any of an enlargement imaging optical system and a reduction imaging optical system. Now, two shapes obtained by bending the corresponding points of the first parallel plate 2a and the second parallel plate 2b so as to move in the same direction are defined as a first shape and a second shape. Two shapes obtained by bending the corresponding points of the first parallel plate 2a and the second parallel plate 2b so as to move in opposite directions are defined as a third shape and a fourth shape. At that time, the first parallel flat plate 2a is deformed so as to be a fifth shape obtained by synthesizing the first shape and the third shape, and a sixth shape obtained by synthesizing the second shape and the fourth shape is obtained. The second parallel plate 2b is deformed. Then, even if the projection optical system 12 is an enlargement imaging optical system or a reduction imaging optical system, the distortion aberration and astigmatism of the projection optical system 12 can be adjusted.

[デバイス製造方法]
本発明の好適な実施形態のデバイス製造方法は、例えば、半導体デバイス、FPDのデバイスの製造に好適である。前記方法は、感光剤が塗布された基板を、上記の露光装置を用いて露光する工程と、前記露光された基板を現像する工程とを含みうる。さらに、前記デバイス製造方法は、他の周知の工程(酸化、成膜、蒸着、ドーピング、平坦化、エッチング、レジスト剥離、ダイシング、ボンディング、パッケージング等)を含みうる。
[Device manufacturing method]
The device manufacturing method according to a preferred embodiment of the present invention is suitable for manufacturing a semiconductor device or an FPD device, for example. The method may include a step of exposing a substrate coated with a photosensitive agent using the above exposure apparatus, and a step of developing the exposed substrate. Furthermore, the device manufacturing method may include other well-known steps (oxidation, film formation, vapor deposition, doping, planarization, etching, resist stripping, dicing, bonding, packaging, and the like).

Claims (5)

原版のパターンを基板に投影する投影光学系を有し、前記基板の露光を行う露光装置であって、
前記投影光学系は、その瞳の前側に第1平行平板を含み、かつ、前記瞳の後側に第2平行平板を含み、
前記第1平行平板および前記第2平行平板の互いに対応する点をそれぞれ同方向に移動するように撓ませて得られる2つの形状を第1形状および第2形状とし、かつ、前記第1平行平板および前記第2平行平板の互いに対応する点を反対方向に移動するように撓ませて得られる2つの形状を第3形状および第4形状としたとき、前記第1形状と前記第3形状とを合成した第5形状となるように前記第1平行平板を変形させ、かつ、前記第2形状と前記第4形状とを合成した第6形状となるように前記第2平行平板を変形させて、前記投影光学系の歪曲収差および非点収差を調整する、
ことを特徴とする露光装置。
An exposure apparatus having a projection optical system for projecting a pattern of an original onto a substrate, and exposing the substrate,
The projection optical system includes a first parallel plate on the front side of the pupil, and a second parallel plate on the rear side of the pupil,
Two shapes obtained by bending the corresponding points of the first parallel plate and the second parallel plate so as to move in the same direction are defined as a first shape and a second shape, and the first parallel plate When the two shapes obtained by bending the corresponding points of the second parallel flat plate so as to move in opposite directions are the third shape and the fourth shape, the first shape and the third shape are The first parallel flat plate is deformed to be a combined fifth shape, and the second parallel flat plate is deformed to be a sixth shape obtained by combining the second shape and the fourth shape, Adjusting distortion and astigmatism of the projection optical system;
An exposure apparatus characterized by that.
前記投影光学系は、等倍の光学系であり、物体面から像面に至る光路に、前記第1平行平板、第1平面鏡、第1凹面鏡、凸面鏡、第2凹面鏡、第2平面鏡、及び、前記第2平行平板を順に含み、前記凸面鏡は、前記瞳の位置にある、ことを特徴とする請求項1に記載の露光装置。   The projection optical system is an equal-magnification optical system, and in the optical path from the object plane to the image plane, the first parallel plate, the first plane mirror, the first concave mirror, the convex mirror, the second concave mirror, the second plane mirror, and The exposure apparatus according to claim 1, wherein the exposure apparatus includes the second parallel plates in order, and the convex mirror is located at the position of the pupil. 前記露光は、前記原版および前記基板を走査方向に沿って走査させながら行い、
前記第1平行平板および前記第2平行平板は、前記走査方向とは直交する方向と前記投影光学系の光軸とを含む面内、および、前記走査方向と前記投影光学系の光軸とを含む面内の少なくとも一方において撓められる、
ことを特徴とする請求項1または請求項2に記載の露光装置。
The exposure is performed while scanning the original and the substrate along a scanning direction,
The first parallel plate and the second parallel plate have an in-plane including a direction orthogonal to the scanning direction and the optical axis of the projection optical system, and the scanning direction and the optical axis of the projection optical system. Deflected in at least one of the containing planes,
The exposure apparatus according to claim 1 or 2, wherein
前記第1平行平板および前記第2平行平板を変形させる駆動部と、
前記歪曲収差および前記非点収差に基づいて前記駆動部を制御する制御部と、
を有することを特徴とする請求項1ないし請求項3のいずれか1項に記載の露光装置。
A drive unit for deforming the first parallel plate and the second parallel plate;
A control unit that controls the drive unit based on the distortion and the astigmatism;
The exposure apparatus according to any one of claims 1 to 3, further comprising:
請求項1ないし請求項4のいずれか1項に記載の露光装置を用いて基板を露光する工程と、
前記工程で露光された基板を現像する工程と、
を含むことを特徴とするデバイス製造方法。
A step of exposing the substrate using the exposure apparatus according to any one of claims 1 to 4,
Developing the substrate exposed in the step;
A device manufacturing method comprising:
JP2010198261A 2010-09-03 2010-09-03 Exposure apparatus and device manufacturing method Active JP5632685B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010198261A JP5632685B2 (en) 2010-09-03 2010-09-03 Exposure apparatus and device manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010198261A JP5632685B2 (en) 2010-09-03 2010-09-03 Exposure apparatus and device manufacturing method

Publications (2)

Publication Number Publication Date
JP2012059733A true JP2012059733A (en) 2012-03-22
JP5632685B2 JP5632685B2 (en) 2014-11-26

Family

ID=46056545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010198261A Active JP5632685B2 (en) 2010-09-03 2010-09-03 Exposure apparatus and device manufacturing method

Country Status (1)

Country Link
JP (1) JP5632685B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017211493A (en) * 2016-05-25 2017-11-30 キヤノン株式会社 Exposure equipment, exposure method and manufacturing method of article

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6235619A (en) * 1985-08-09 1987-02-16 Canon Inc Projection exposure device
JP2005268818A (en) * 2005-05-06 2005-09-29 Canon Inc Exposure device and device manufacturing method
JP2008292801A (en) * 2007-05-25 2008-12-04 Canon Inc Exposure apparatus and method
JP2009206323A (en) * 2008-02-28 2009-09-10 Canon Inc Projection aligner

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6235619A (en) * 1985-08-09 1987-02-16 Canon Inc Projection exposure device
JP2005268818A (en) * 2005-05-06 2005-09-29 Canon Inc Exposure device and device manufacturing method
JP2008292801A (en) * 2007-05-25 2008-12-04 Canon Inc Exposure apparatus and method
JP2009206323A (en) * 2008-02-28 2009-09-10 Canon Inc Projection aligner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017211493A (en) * 2016-05-25 2017-11-30 キヤノン株式会社 Exposure equipment, exposure method and manufacturing method of article

Also Published As

Publication number Publication date
JP5632685B2 (en) 2014-11-26

Similar Documents

Publication Publication Date Title
JP6748482B2 (en) Exposure apparatus and method for manufacturing article
US8472009B2 (en) Exposure apparatus and device manufacturing method
JP5595001B2 (en) Projection optical system, exposure apparatus, and device manufacturing method
US9639008B2 (en) Lithography apparatus, and article manufacturing method
JPH113856A (en) Method and device for projection exposure
JP6410406B2 (en) Projection optical system, exposure apparatus, and article manufacturing method
JP6015930B2 (en) Exposure method, exposure apparatus, and device manufacturing method
KR101445426B1 (en) Exposure apparatus and device manufacturing method
JP7005364B2 (en) Projection optical system, exposure equipment, manufacturing method and adjustment method of articles
JP2001250760A (en) Aberration measuring method, mask detecting method to use said method and exposure method
JP5632685B2 (en) Exposure apparatus and device manufacturing method
JP2003197502A (en) Measuring method and exposing method, aligner, and method for manufacturing device
JP6541308B2 (en) Exposure method, exposure apparatus and device manufacturing method
JP6727554B2 (en) Exposure apparatus, flat panel display manufacturing method, device manufacturing method, and exposure method
JP2010192744A (en) Exposure apparatus, exposure method and device manufacturing method
JPH08264431A (en) Scanning projection aligner
JP2003031462A (en) Method of exposure and exposure system
JP6626273B2 (en) Exposure apparatus and article manufacturing method
CN114063393A (en) Adjustment method, exposure apparatus, and article manufacturing method
CN117170190A (en) Exposure apparatus, method for producing article, and exposure method
TW200903581A (en) Exposure apparatus
JP2023039136A (en) Exposure device, exposure method, and article manufacturing method
JP2022185783A (en) Exposure device, alignment measurement method and manufacturing method of articles
JP2022142981A (en) Exposure apparatus, exposure method, and production method of article
JP2015088586A (en) Exposure equipment and device manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141010

R151 Written notification of patent or utility model registration

Ref document number: 5632685

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151