JP2012045942A - Polyester film for in-mold transfer - Google Patents

Polyester film for in-mold transfer Download PDF

Info

Publication number
JP2012045942A
JP2012045942A JP2011232344A JP2011232344A JP2012045942A JP 2012045942 A JP2012045942 A JP 2012045942A JP 2011232344 A JP2011232344 A JP 2011232344A JP 2011232344 A JP2011232344 A JP 2011232344A JP 2012045942 A JP2012045942 A JP 2012045942A
Authority
JP
Japan
Prior art keywords
film
polyester
layer
mpa
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011232344A
Other languages
Japanese (ja)
Inventor
Takaaki Kojima
孝明 小嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Plastics Inc
Original Assignee
Mitsubishi Plastics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Plastics Inc filed Critical Mitsubishi Plastics Inc
Priority to JP2011232344A priority Critical patent/JP2012045942A/en
Publication of JP2012045942A publication Critical patent/JP2012045942A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a biaxially stretched polyester film having sufficient moldability, heat resistance and transfer properties.SOLUTION: The polyester film for in-mold transfer includes a structure that an A-layer comprising a polyester in which the main constituent component is contained in an amount of 80 mol% or above is laminated at least on one side of a B-layer comprising a polyester which contains at least one kind of a copolymer component other than its main constituent component and in which the main constituent component is contained in an amount of 90 mol% or below. The maximum value of a storage elastic modulus E' in the temperature range of 80-180°C is in the range of 810-1,100 MPa. The tensile break elongation at 100°C is 180% or higher. The tensile break strength at 100°C is 50 MPa or less.

Description

本発明は成型性に優れた成型同時転写用ポリエステルフィルムに関する。詳しくは、優れた成型性、耐熱性および転写適正を有することから、しぼり率の高い深絞り成型に好適な成型転写用ポリエステルフィルムに関するものである。   The present invention relates to a polyester film for simultaneous molding and transfer having excellent moldability. Specifically, the present invention relates to a polyester film for molding transfer suitable for deep drawing with a high squeezing ratio because it has excellent moldability, heat resistance and transfer suitability.

近年、成型品への印刷手法として、成型と同時に転写印刷も行う、いわゆる成型同時転写法が普及しつつある。この方法に使用するフィルムとして、強度、耐熱性等の特性の点から、二軸延伸ポリエステルフィルムが用いられている。   In recent years, a so-called simultaneous molding transfer method in which transfer printing is performed simultaneously with molding has become widespread as a printing method for molded products. As a film used in this method, a biaxially stretched polyester film is used from the viewpoint of properties such as strength and heat resistance.

最近では、成型時のしぼり率がますます高くなるとともに、高品質な成型転写が要求されるようになり、特に成型品として、冷蔵庫や自動車用途の様に、大型でかつしぼり率が高いものが求められるようになるにつれ、従来のフィルムに対し深絞り成型性と寸法安定性に関する高度な特性が求められるようになり、フィルムの改良が強く望まれるようになった。   In recent years, the molding rate has been increasing, and high-quality molding transfer has been required. As the demand has increased, advanced characteristics relating to deep drawability and dimensional stability have been demanded of conventional films, and improvement of the film has been strongly desired.

さらに、しぼり率が高くなるため、変形させる際に加熱しフィルムの変形性を向上させる必要があることから、高温でのフィルムの耐久性も必要となる。耐久性とは、加工温度でフィルムが融解しないこと、高温にて軟化しても金型とフィルム間の空気の膨張によりフィルムが変形して裂ける等の問題が起こらないことを言う。   Furthermore, since the squeezing rate is increased, it is necessary to improve the deformability of the film by heating at the time of deformation, so that the durability of the film at high temperatures is also required. Durability means that the film does not melt at the processing temperature, and that even if softened at a high temperature, problems such as deformation and tearing of the film due to expansion of air between the mold and the film do not occur.

また、フィルムを金型に沿わせた(以下、予備成型と表記)後、樹脂を射出する際、樹脂の温度は通常200℃以上であるため、フィルムの結晶化度が低すぎると、樹脂の熱と射出による樹脂とのずり応力により、フィルムにシワが入り、精密な転写ができないという問題が発生する。かかる観点からも優れた転写適性を有したフィルムが望まれている。   In addition, when the resin is injected after the film is placed along the mold (hereinafter referred to as pre-molding), the temperature of the resin is usually 200 ° C. or higher. Therefore, if the crystallinity of the film is too low, Due to the shear stress between the heat and the resin due to the injection, there is a problem that wrinkles enter the film and precise transfer cannot be performed. From this point of view, a film having excellent transferability is desired.

特開昭64−40400号公報JP-A 64-40400 特開平7−196821号公報Japanese Patent Laid-Open No. 7-196821 特開平8−3227号公報JP-A-8-3227 特開2006−281732号公報JP 2006-281732 A

本発明は、上記実状に鑑みなされたものであり、その解決課題は、十分な成型性、耐熱性および転写適性を有する二軸延伸ポリエステルフィルムを提供することにある。   This invention is made | formed in view of the said actual condition, The solution subject is to provide the biaxially stretched polyester film which has sufficient moldability, heat resistance, and transferability.

本発明者は、上記課題に鑑み鋭意検討した結果、特定の構成を有するフィルムによれば、上記課題を容易に解決できることを見いだし、本発明を完成するに至った。   As a result of intensive studies in view of the above problems, the present inventor has found that the above problems can be easily solved by a film having a specific configuration, and has completed the present invention.

すなわち、本発明の要旨は、主たる構成成分以外の共重合成分を1種以上含有し、かつ主たる構成成分の含有量が90モル%以下であるポリエステルからなるB層の少なくとも片側に、主たる構成成分の含有量が80モル%以上であるポリエステルからなるA層を積層した構造を有するフィルムであって、80℃から180℃の温度範囲における貯蔵弾性率E’の最大値が810〜1100MPaの範囲であり、100℃における引張破断伸度が180%以上であり、100℃における引張破断強度が50MPa以下であることを特徴とする成型同時転写用ポリエステルフィルムに存する。   That is, the gist of the present invention is that at least one side of a B layer comprising a polyester containing at least one copolymer component other than the main component and having a main component content of 90 mol% or less is a main component. A film having a structure in which an A layer made of polyester having a content of 80 mol% or more is laminated, and the maximum value of the storage elastic modulus E ′ in the temperature range of 80 ° C. to 180 ° C. is in the range of 810 to 1100 MPa. Yes, the polyester film for simultaneous molding and transfer has a tensile elongation at break at 100 ° C. of 180% or more and a tensile strength at 100 ° C. of 50 MPa or less.

本発明によれば、融点および貯蔵弾性率を特定の範囲内に納めることにより、優れた成型性、耐熱性および転写適性を有する、深絞り成型同時転写に適したフィルムが得られ、これまで難しかった用途への適用も可能とすることができ、本発明の工業的価値は高い。   According to the present invention, by keeping the melting point and storage elastic modulus within specific ranges, a film suitable for deep drawing simultaneous transfer having excellent moldability, heat resistance and transferability can be obtained. The present invention can be applied to other uses, and the industrial value of the present invention is high.

本発明のフィルムの評価を行う成型同時転写装置の概念図であるIt is a conceptual diagram of the simultaneous molding transfer apparatus which evaluates the film of this invention.

まず、本発明における主たる構成成分とは、ジカルボン酸とジオールの脱水縮合により得られる、いわゆる繰り返し単位と呼ばれる、ヒドロキシカルボン酸のことを指す。   First, the main component in the present invention refers to a hydroxycarboxylic acid called a repeating unit obtained by dehydration condensation of a dicarboxylic acid and a diol.

本発明のフィルムを構成するポリエステルは、ジカルボン酸成分としては、テレフタル酸が好ましく、これらのほかに、シュウ酸、マロン酸、コハク酸、アジピン酸、アゼライン酸、セバシン酸、フタル酸、イソフタル酸、ナフタレンジカルボン酸、ジフェニルエーテルジカルボン酸、シクロヘキサンジカルボン酸などの公知のジカルボン酸の一種以上を、共重合成分として含んでいてもよい。また、ジオール成分としては、エチレングリコールが好ましく、これらのほかに、プロピレングリコール、トリメチレングリコール、テトラメチレングリコール、ヘキサメチレングリコール、1,4−シクロヘキサンジメタノール、ジエチレングリコール、トリエチレングリコール、ポリアルキレングリコール、ネオペンチルグリコールなどの公知のジオールの一種以上を、共重合成分として含んでいてもよい。   The polyester constituting the film of the present invention is preferably terephthalic acid as the dicarboxylic acid component. Besides these, oxalic acid, malonic acid, succinic acid, adipic acid, azelaic acid, sebacic acid, phthalic acid, isophthalic acid, One or more known dicarboxylic acids such as naphthalenedicarboxylic acid, diphenyl ether dicarboxylic acid, and cyclohexanedicarboxylic acid may be included as a copolymerization component. The diol component is preferably ethylene glycol. Besides these, propylene glycol, trimethylene glycol, tetramethylene glycol, hexamethylene glycol, 1,4-cyclohexanedimethanol, diethylene glycol, triethylene glycol, polyalkylene glycol, One or more known diols such as neopentyl glycol may be included as a copolymerization component.

本発明において、ポリエステルの構成成分としては、上記のジカルボン酸成分およびジオール成分のほか、種々の酸成分およびアルコール成分を含むことができる。例えば、p−オキシ安息香酸のようなオキシカルボン酸、安息香酸、ベンゾイル安息香酸、メトキシポリアルキレングリコールなどの一官能性化合物は修飾成分として、トリメシン酸、トリメリト酸、グリセリン、ペンタエリスリトールなどの多官能性化合物は共重合成分として、生成物ポリエステルが実質的に線状の高分子を保持し得る範囲内で、使用することができる。   In the present invention, the constituent components of the polyester can include various acid components and alcohol components in addition to the above-mentioned dicarboxylic acid component and diol component. For example, monofunctional compounds such as oxycarboxylic acid such as p-oxybenzoic acid, benzoic acid, benzoylbenzoic acid, and methoxypolyalkylene glycol are used as modifying components, and polyfunctional such as trimesic acid, trimellitic acid, glycerin, and pentaerythritol. The functional compound can be used as a copolymerization component as long as the product polyester can retain a substantially linear polymer.

次に本発明におけるA層を構成するポリエステル樹脂としては、上述の主たる構成成分が好ましく用いられるが、耐熱性、寸法安定性の観点から、主たる構成成分の含有量が80モル%以上であることが必要であり、好ましくは85モル%以上である。   Next, as the polyester resin constituting the A layer in the present invention, the main constituents described above are preferably used, but from the viewpoint of heat resistance and dimensional stability, the content of the main constituents is 80 mol% or more. Is required, preferably 85 mol% or more.

一方、B層を構成するポリエステル樹脂は、上述の主たる構成成分以外の共重合成分を1種類以上含有する必要がある。B層が主たる構成成分以外の共重合成分を含有しない場合、十分な耐熱性は得られるが成形性を失ってしまうため、好ましくない。また、耐熱性、成形性の両立の観点から、主たる構成成分の含有量が90モル%以下であることが必要であり、好ましくは80モル%以下である。   On the other hand, the polyester resin constituting the B layer needs to contain at least one copolymer component other than the main constituent components described above. When the layer B does not contain a copolymer component other than the main constituent component, it is not preferable because sufficient heat resistance can be obtained but moldability is lost. Further, from the viewpoint of achieving both heat resistance and moldability, the content of the main constituent component is required to be 90 mol% or less, and preferably 80 mol% or less.

本発明において、耐熱性、成型加工性、転写適性の観点から、動的粘弾性測定装置による周波数10Hzで80〜180℃測定した貯蔵弾性率E’の最大値が810〜1100MPaの範囲であり、好ましくは100℃〜180℃の温度範囲で10MPa以上400MPa以下の範囲、さらに好ましくは120℃〜180℃の温度範囲で10MPa以上200MPa以下の範囲である。   In the present invention, from the viewpoint of heat resistance, molding processability, transferability, the maximum value of the storage elastic modulus E ′ measured at 80 to 180 ° C. at a frequency of 10 Hz by a dynamic viscoelasticity measuring device is in the range of 810 to 1100 MPa. It is preferably in the range of 10 MPa to 400 MPa in the temperature range of 100 ° C. to 180 ° C., more preferably in the range of 10 MPa to 200 MPa in the temperature range of 120 ° C. to 180 ° C.

また、本発明において、100℃における引張破断伸度が180%以上、好ましくは190%以上、さらに好ましくは200%以上であり、かつ引張破断強度が50MPa以下、好ましくは45MPa以下、さらに好ましくは40MPa以下である必要がある。引張破断伸度が200%未満あるいは引張破断強度が50MPaを超える場合は、成型性、生産性に劣るため好ましくない。   In the present invention, the tensile breaking elongation at 100 ° C. is 180% or more, preferably 190% or more, more preferably 200% or more, and the tensile breaking strength is 50 MPa or less, preferably 45 MPa or less, more preferably 40 MPa. Must be: If the tensile elongation at break is less than 200% or the tensile strength at break exceeds 50 MPa, the moldability and productivity are inferior.

本発明において、フィルムの面配向係数ΔPは、通常0.020〜0.150の範囲であり、0.030〜0.140の範囲であることが好ましい。面配向係数ΔPが0.150を超える場合は、成型性に劣る傾向があり、0.020未満である場合は、耐熱性に劣る傾向がある。   In the present invention, the plane orientation coefficient ΔP of the film is usually in the range of 0.020 to 0.150, and preferably in the range of 0.030 to 0.140. When the plane orientation coefficient ΔP exceeds 0.150, the moldability tends to be inferior, and when it is less than 0.020, the heat resistance tends to be inferior.

また、本発明において、フィルムの複屈折率Δnは、通常0.020以下であり、0.015以下であることが好ましい。Δnが0.020を超える場合は、成型時の伸び率にばらつきが生じ、印刷歪みの原因となることがある。   In the present invention, the birefringence Δn of the film is usually 0.020 or less and preferably 0.015 or less. When Δn exceeds 0.020, the elongation at the time of molding varies, which may cause printing distortion.

また、本発明において、A層の融点は190℃〜260℃の範囲であることが好ましく、さらには200℃〜255℃の範囲であることが好ましい。B層の融点は180℃〜225℃の範囲であることが好ましく、さらには185℃〜220℃の範囲であることが好ましい。A層の融点が190℃未満である場合は、耐熱性、転写適性に劣る傾向があり、B層の融点が225℃を超える場合は、成型性に劣る傾向がある。   In the present invention, the melting point of the A layer is preferably in the range of 190 ° C to 260 ° C, and more preferably in the range of 200 ° C to 255 ° C. The melting point of the B layer is preferably in the range of 180 ° C to 225 ° C, and more preferably in the range of 185 ° C to 220 ° C. When the melting point of the A layer is less than 190 ° C., the heat resistance and the transferability tend to be inferior, and when the melting point of the B layer exceeds 225 ° C., the moldability tends to be inferior.

本発明のフィルムの収縮特性に関し、その測定法については後に詳記するが、150℃で3分間処理後の加熱収縮率が、縦、横両方ともに4.0%以下であることが好ましい。縦または横の加熱収縮率が4.0%を上回るフィルムは、加工工程中の加熱区間においてフィルムの縮みが大きくなり、操作上好ましくない場合がある。   Regarding the shrinkage characteristics of the film of the present invention, the measurement method will be described in detail later, but it is preferable that the heat shrinkage ratio after treatment at 150 ° C. for 3 minutes is 4.0% or less in both the vertical and horizontal directions. A film having a vertical or horizontal heat shrinkage ratio of more than 4.0% may be unfavorable in terms of operation because the film shrinks greatly in the heating zone during the processing step.

本発明において、フィルムの易滑性向上等を付与するために、粒子を添加することも好ましい。例えば、フィルムの易滑性を向上させるためには、ポリエステル組成物は、有機、無機の微粒子を配合したものが好ましく、必要に応じて安定剤、着色剤、酸化防止剤、消泡剤、帯電防止剤などの添加剤をさらに配合してもよい。滑り性を付与する微粒子は、配合の方法に従い、外部粒子と内部粒子とに大別される。前者の例としては、カオリン、クレー、各種炭酸カルシウム、酸化ケイ素、テレフタル酸カルシウム、α−、γ−、δ−、θ−等の酸化アルミニウム、酸化チタン、リン酸カルシウム、フッ化リチウム、カーボンブラックなどの公知の不活性外部粒子が挙げられる。また、後者の例としては、ポリエステルの溶融製膜に際して不溶な高融点有機化合物、単分散球状有機粒子、粉砕型の有機粒子、架橋ポリマーおよびポリエステル合成時に使用する金属化合物触媒、例えばアルカリ金属化合物、アルカリ土類金属化合物などによってポリエステル製造時にポリマー内部に形成される内部粒子などが挙げられる。これらの微粒子は、フィルム中の表面を構成する層に対する含有量が通常0.002〜2.0重量%の範囲内であり、平均粒径が0.001〜3.5μmの範囲内にあるのが好ましい。   In the present invention, it is also preferable to add particles in order to improve the slipperiness of the film. For example, in order to improve the slipperiness of the film, the polyester composition preferably contains organic and inorganic fine particles, and if necessary, a stabilizer, a colorant, an antioxidant, an antifoaming agent, a charging agent. An additive such as an inhibitor may be further blended. The fine particles imparting slipperiness are roughly classified into external particles and internal particles according to the blending method. Examples of the former include kaolin, clay, various calcium carbonates, silicon oxide, calcium terephthalate, aluminum oxide such as α-, γ-, δ-, θ-, titanium oxide, calcium phosphate, lithium fluoride, carbon black, etc. Known inert external particles may be mentioned. Examples of the latter include high-melting-point organic compounds that are insoluble during melt film formation of polyester, monodispersed spherical organic particles, pulverized organic particles, cross-linked polymers, and metal compound catalysts used during polyester synthesis, such as alkali metal compounds, Examples thereof include internal particles formed inside the polymer by the alkaline earth metal compound during the production of the polyester. These fine particles usually have a content of 0.002 to 2.0% by weight with respect to the layer constituting the surface in the film, and an average particle size in the range of 0.001 to 3.5 μm. Is preferred.

また、本発明のフィルムの2次元表面粗さRaは40nm以下であることが好ましく、さらには35nm以下であることが好ましい。Raが40nmを超える場合は、表面粗さが印刷層に転写されて成型品の表面光沢が失われることがある。   The two-dimensional surface roughness Ra of the film of the present invention is preferably 40 nm or less, and more preferably 35 nm or less. When Ra exceeds 40 nm, the surface roughness may be transferred to the printing layer and the surface gloss of the molded product may be lost.

次に、本発明のフィルムの製造法を具体的に説明するが、本発明の構成要件を満足する限り、以下の例示のみに限定されるものではない。   Next, although the manufacturing method of the film of this invention is demonstrated concretely, as long as the structural requirements of this invention are satisfied, it is not limited only to the following illustrations.

滑り剤として、有機、無機の微粒子を適量配合してチップ化したポリエステル組成物を、ホッパードライヤー、パドルドライヤー、オーブンなどの、通常用いられる乾燥機または真空乾燥機を用いて乾燥する。前段で、チップを結晶化させて相互の融着が起こらないように(予備結晶化ともいう)、また後段で、水分量を十分に減少させるように(本乾燥ともいう)、乾燥を行う。このように乾燥した後、200〜320℃でシートに押出す。押出しに際しては、ポリエステルの溶融押出機を2台または3台以上用いて、いわゆる共押出法により2層または3層以上の積層フィルムとすることができる。層の構成としては、A原料とB原料とを用いたA/B構成、またはA/B/A構成、さらにC原料を用いてA/B/C構成またはそれ以外の構成のフィルムとすることができる。例えばA原料として特定の粒子を用いてA層の表面形状を設計し、B原料としては粒子を含有しない原料を用い、A/BまたはA/B/A構成のフィルムとすることができる。この場合B層の原料を自由に選択できることからコスト的な利点などが大きい。また当該フィルムの再生原料をB層に配合しても表層であるA層により表面粗度の設計ができるので、さらにコスト的な利点が大きくなる。次いで、溶融したポリマーをダイから押出し、回転冷却ドラム上でガラス転移温度以下の温度になるように急冷固化し、実質的に非晶状態の未配向シートを得る。この場合、シートの平面性を向上させるため、シートと回転冷却ドラムとの密着性を高めることが好ましく、本発明においては静電印加密着法および/または液体塗布密着法が好ましく採用される。   A polyester composition obtained by blending appropriate amounts of organic and inorganic fine particles as a slipping agent into a chip is dried using a commonly used dryer or vacuum dryer such as a hopper dryer, paddle dryer or oven. In the former stage, the chips are crystallized so that mutual fusion does not occur (also referred to as preliminary crystallization), and in the latter stage, the moisture content is sufficiently reduced (also referred to as main drying). After drying in this way, it is extruded into sheets at 200-320 ° C. At the time of extrusion, two or three or more polyester melt extruders can be used to form a laminated film of two layers or three or more layers by a so-called coextrusion method. As the layer structure, an A / B structure using an A raw material and a B raw material, or an A / B / A structure, and further using a C raw material to form an A / B / C structure or other film. Can do. For example, the surface shape of the A layer can be designed using specific particles as the A raw material, and a film having an A / B or A / B / A structure can be formed using a raw material not containing particles as the B raw material. In this case, since the raw material of B layer can be selected freely, a cost advantage etc. are large. Further, even if the recycled material of the film is blended with the B layer, the surface roughness can be designed by the surface A layer, so that the cost advantage is further increased. Next, the molten polymer is extruded from a die and rapidly cooled and solidified on a rotary cooling drum so that the temperature is equal to or lower than the glass transition temperature to obtain a substantially amorphous unoriented sheet. In this case, in order to improve the flatness of the sheet, it is preferable to improve the adhesion between the sheet and the rotary cooling drum. In the present invention, an electrostatic application adhesion method and / or a liquid application adhesion method is preferably employed.

得られた未配向シートを、縦および横方向に少なくとも面積倍率で6倍以上、好ましくは8倍以上、更に好ましくは8倍以上16倍以下となるよう延伸して、二軸配向フィルムを得る。必要に応じて、該フィルムを縦および/または横方向に再延伸を行なった後、好ましくは120℃〜210℃の範囲内の温度で熱処理を行ない、所望のフィルムを得る。   The obtained unoriented sheet is stretched in the longitudinal and transverse directions so as to be at least 6 times, preferably 8 times or more, more preferably 8 times or more and 16 times or less in the area magnification to obtain a biaxially oriented film. If necessary, the film is restretched in the machine direction and / or transverse direction, and then heat-treated at a temperature preferably in the range of 120 ° C. to 210 ° C. to obtain a desired film.

熱処理工程の好ましい態様は、熱処理の最高温度のゾーンおよび/または熱処理出口のクーリングゾーンにおいて、横方向および/または縦方向に0.1〜15%の弛緩を行うことである。特に、横方向には、1〜15%の弛緩を行うことが好ましい。また、熱処理工程は、二段にわけて行うこともできる。   A preferred embodiment of the heat treatment step is to perform 0.1-15% relaxation in the transverse direction and / or the longitudinal direction in the zone of the highest temperature of the heat treatment and / or the cooling zone at the heat treatment outlet. In particular, it is preferable to perform 1 to 15% relaxation in the lateral direction. Further, the heat treatment step can be performed in two stages.

前記延伸工程においてまたはその後に、フィルムに接着性、帯電防止性、滑り性、離型性等を付与するために、フィルムの片面または両面に塗布層を形成したり、コロナ処理等の放電処理を施したりすることなどもできる。   In the stretching step or after, in order to impart adhesion, antistatic property, slipperiness, releasability, etc. to the film, a coating layer is formed on one or both sides of the film, or a discharge treatment such as corona treatment is performed. It can also be given.

本発明のフィルムの厚さは、通常10〜200μmであり、好ましくは20〜150μm、さらに好ましくは30〜100μmである。   The thickness of the film of this invention is 10-200 micrometers normally, Preferably it is 20-150 micrometers, More preferably, it is 30-100 micrometers.

以下、実施例によって本発明を更に具体的に説明するが、本発明はその趣旨を越えない限り、この実施例に限定されるものではない。フィルムの諸物性の測定および評価方法は以下に示すとおりである。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples unless it exceeds the gist. The measurement and evaluation methods of various physical properties of the film are as follows.

(1)貯蔵弾性率E’
アイティー計測制御(株)製動的粘弾性測定装置(DVA−200型)を使用した。幅5mmのフィルムをチャック間20mmとなるように測定装置にセットし、0℃から30℃まで10℃/min.の速度で昇温させながら、周波数10Hzで粘弾性の推移を測定した。
(1) Storage elastic modulus E ′
A dynamic viscoelasticity measuring device (DVA-200 type) manufactured by IT Measurement Control Co., Ltd. was used. A film with a width of 5 mm was set in a measuring apparatus so that the distance between chucks was 20 mm, and the temperature was changed from 0 ° C. to 30 ° C. at 10 ° C./min. The transition of viscoelasticity was measured at a frequency of 10 Hz while raising the temperature at a rate of.

(2)引張試験
(株)インテスコ製恒温槽付き引張試験機インテスコ2001型を使用し、その恒温槽を100℃に設定し、幅15mmのフィルムをチャック間50mmとなるように試験機にセットして2分間放置後、引張速度200mm/minで引っ張り、引張応力−ひずみ曲線より、次の各値を求める。
引張破断強度は次の式によって計算する。
引張破断強度(MPa)=F/A
ただし、上記式中、Fは破断時に於ける荷重(N)であり、Aは試験片の元の断面積(mm)である。
引張破断伸度は次の式によって計算する。
引張破断伸度(%)=100×(L−L)/L
ただし、上記式中、Lは破断時の標点間距離(mm)であり、Lは元の標点間距離(mm)である。
(2) Tensile test Using an Intesco Corporation tensile testing machine Intesco 2001 type with a thermostat, set the thermostat to 100 ° C, and set a film with a width of 15 mm on the tester so that the gap between chucks is 50 mm. After standing for 2 minutes, pulling at a pulling speed of 200 mm / min, and obtaining the following values from the tensile stress-strain curve.
The tensile strength at break is calculated by the following formula.
Tensile strength at break (MPa) = F / A
However, in said formula, F is the load (N) in the time of a fracture | rupture, A is the original cross-sectional area (mm < 2 >) of a test piece.
The tensile elongation at break is calculated by the following formula.
Tensile elongation at break (%) = 100 × (L−L 0 ) / L 0
However, in the above formula, L is the distance between the gauge marks at break (mm), L 0 is between the original gage length (mm).

(3)面配向度(ΔP)、複屈折率(Δn)
アタゴ製アッベ式屈折計を使用した。ヨウ化メチレンをマウントして、試料フィルムを測定面が下になるようにプリズムに密着させ、単色光ナトリウムD線(589nm)を光源として、主配向方向の屈折率nγ、それに対し面内垂直方向の屈折率nβ、および厚み方向の屈折率nαを測定した。得られた値から下記式により各層の面配向係数ΔPおよび複屈折率Δnを求めた。尚、測定試料は製品マスターロールの中央部より採取した。
ΔP=(nγ+nβ)/2−nα
Δn=nγ−nβ
(3) Degree of plane orientation (ΔP), birefringence (Δn)
An Atago Abbe refractometer was used. Methylene iodide is mounted, the sample film is closely attached to the prism so that the measurement surface is down, and the refractive index nγ in the main orientation direction, with the monochromatic light sodium D line (589 nm) as the light source. The refractive index nβ and the refractive index nα in the thickness direction were measured. From the obtained values, the plane orientation coefficient ΔP and birefringence Δn of each layer were determined by the following formula. The measurement sample was collected from the center of the product master roll.
ΔP = (nγ + nβ) / 2−nα
Δn = nγ−nβ

(4)中心線平均粗さ(Ra)
中心線平均粗さRa(μm)をもって表面粗さとする。(株)小坂研究所社製表面粗さ測定機(SE−3F)を用いて次のようにして求めた。すなわち、フィルム断面曲線からその中心線の方向に基準長さL(2.5mm)の部分を抜き取り、この抜き取り部分の中心線をx軸、縦倍率の方向をy軸として粗さ曲線y=f(x)で表したとき、次の式で与えられた値を〔μm〕で表す。中心線平均粗さは、試料フィルム表面から10本の断面曲線を求め、これらの断面曲線から求めた抜き取り部分の中心線平均粗さの平均値で表わした。なお、触針の先端半径は2μm、荷重は30mgとし、カットオフ値は0.08mmとした。
Ra=1/L∫ |f(x)|dx
(4) Centerline average roughness (Ra)
The center line average roughness Ra (μm) is defined as the surface roughness. It calculated | required as follows using the Kosaka Laboratory Co., Ltd. surface roughness measuring machine (SE-3F). That is, a portion having a reference length L (2.5 mm) is extracted from the film cross-sectional curve in the direction of the center line, the roughness line y = f with the center line of the extracted portion as the x axis and the direction of the vertical magnification as the y axis. When represented by (x), the value given by the following equation is represented by [μm]. The center line average roughness was represented by the average value of the center line average roughness of the extracted portion obtained from 10 cross section curves obtained from the sample film surface. The tip radius of the stylus was 2 μm, the load was 30 mg, and the cutoff value was 0.08 mm.
Ra = 1 / L∫ 0 L | f (x) | dx

(5)融解ピーク温度(Tm)
TA Instruments社製の示差走査熱量計「DSC−2920型」を使用し、試料5mgを0℃から300℃まで20℃/min.の速度で昇温させた際に得られる融解に伴う吸熱ピークの温度をTmとした。上述の方法により得た融解ピーク温度の内、B層融点は、製膜したフィルムの表層(A層)を除去したフィルムから得られた融解ピーク温度とし、A層融点は、B層融点と異なる融解ピーク温度とした。
(5) Melting peak temperature (Tm)
Using a differential scanning calorimeter “DSC-2920 type” manufactured by TA Instruments, a sample of 5 mg from 0 ° C. to 300 ° C. at 20 ° C./min. The temperature of the endothermic peak that accompanies the melting obtained when the temperature was raised at a rate of T was defined as Tm. Among melting peak temperatures obtained by the above-mentioned method, the B layer melting point is the melting peak temperature obtained from the film obtained by removing the surface layer (A layer) of the formed film, and the A layer melting point is different from the B layer melting point. The melting peak temperature was taken.

(6)極限粘度
測定試料をフェノール/テトラクロロエタン=50/50(重量部)の溶媒に溶解させて濃度c=0.01g/cmの溶液を調製し、30℃にて溶媒との相対粘度nγを測定し、極限粘度[η]を求めた。
(6) Intrinsic viscosity A measurement sample was dissolved in a solvent of phenol / tetrachloroethane = 50/50 (parts by weight) to prepare a solution having a concentration c = 0.01 g / cm 3 , and a relative viscosity with the solvent at 30 ° C. nγ was measured to determine the intrinsic viscosity [η].

(7)加熱収縮率
150±2℃の温度のオーブン中において、縦10cm、横10cmのフィルムを無負荷の状態で3分間収縮させ、縦および横方向についての加熱収縮率を次式により算出した。
加熱収縮率(%)=100×(L−L)/L
ただし、上記式中、Lは原長(cm)であり、Lは収縮後の長さ(cm)である。
(7) Heat shrinkage rate In an oven at a temperature of 150 ± 2 ° C., a film 10 cm long and 10 cm wide was shrunk for 3 minutes in an unloaded state, and the heat shrinkage rate in the vertical and horizontal directions was calculated by the following equation. .
Heat shrinkage rate (%) = 100 × (L 0 −L) / L 0
In the above formula, L 0 is the original length (cm), and L is the length after contraction (cm).

(8)成型同時転写用フィルムとしての耐熱性
図1に示すポリエステルフィルム(3)に離型層、印刷層および接着層(4)を形成し、縦35cm、横25cm、最大深さ3.0cmの金型(1)を用い、IRヒーターで予備加熱後、金型内部に真空または圧空成型法により予備成型を実施した。予備加熱によるフィルムの融解状況より、下記基準で耐熱性の評価を行った。
○:加工温度に耐久でき、予備成型に対応できる
△:予備成型に対応できるが、稀にフィルム軟化による膨張が発生する
×:フィルム融解による穴開きあるいは、フィルム軟化による膨張が頻繁に発生
(8) Heat resistance as a film for molding simultaneous transfer A release layer, a printing layer and an adhesive layer (4) are formed on the polyester film (3) shown in FIG. 1, and the length is 35 cm, the width is 25 cm, and the maximum depth is 3.0 cm. The mold (1) was preheated with an IR heater and then premolded inside the mold by vacuum or compressed air molding. The heat resistance was evaluated according to the following criteria based on the state of melting of the film by preheating.
○: Can withstand processing temperatures and can be used for preforming △: Can be used for preforming, but rarely expands due to film softening ×: Frequent expansion due to film melting or softening of film occurs

(9)成型同時転写用フィルムとしての成型性
上記(8)の方法にて予備成型を実施した際、成型によるフィルムの破断の頻度により、下記基準で成型性の評価を行った。
◎:フィルム破断がなく均一な厚さで成型され、金型に沿っている
○:フィルム破断がなく均一な厚さで成型されるが、金型との間に隙間ができる
△:フィルム破断はしないが、局所的にフィルムが極めて薄い部分が存在する
×:フィルムが頻発に破断する
(9) Formability as a film for simultaneous molding transfer When preforming was carried out by the method of (8) above, the formability was evaluated according to the following criteria by the frequency of breakage of the film by molding.
A: Molded at a uniform thickness with no film rupture and conforms to the mold. O: Molded at a uniform thickness without a film rupture, but a gap is formed between the molds. No, but there is a part where the film is extremely thin locally ×: The film breaks frequently

(10)成型同時転写用フィルムとしての適性
上記(8)の方法にて予備成型を実施した後、樹脂を射出し、成型転写を行った。得られた成型品への印刷の図柄の抜けや歪みの状態により、下記基準で適性の評価を行った。
○:印刷抜け、歪みが全くない
△:印刷抜け、歪みがほとんどない
×:印刷抜け、歪みがある
(10) Suitability as a film for simultaneous molding and transfer Preliminary molding was performed by the method of (8) above, and then a resin was injected to perform molding and transfer. The suitability was evaluated according to the following criteria, depending on the state of missing or distorted patterns of printing on the obtained molded product.
○: No printing omission or distortion △: No printing omission or distortion ×: Printing omission or distortion

次に実施例および比較例において使用したポリエステル原料について説明する。
<ポリエステル(1)の製造法>
テレフタル酸ジメチル100重量部とエチレングリコール60重量部とを出発原料とし、触媒として酢酸マグネシウム・四水塩0.09重量部を反応器にとり、反応開始温度を150℃とし、メタノールの留去とともに徐々に反応温度を上昇させ、3時間後に230℃とした。4時間後、実質的にエステル交換反応を終了させた。この反応混合物にエチルアシッドフォスフェート0.04部を添加した後、三酸化アンチモン0.03部を加えて、4時間重縮合反応を行った。すなわち、温度を230℃から徐々に昇温し280℃とした。一方、圧力は常圧より徐々に減じ、最終的には0.3mmHgとした。反応開始後、反応槽の攪拌動力の変化により、極限粘度0.680に相当する時点で反応を停止し、窒素加圧下ポリマーを吐出させた。得られたポリエステル(1)の極限粘度は0.680であった。
Next, the polyester raw materials used in Examples and Comparative Examples will be described.
<Method for producing polyester (1)>
Using 100 parts by weight of dimethyl terephthalate and 60 parts by weight of ethylene glycol as starting materials, 0.09 parts by weight of magnesium acetate tetrahydrate as a catalyst is placed in the reactor, the reaction start temperature is set to 150 ° C., and the methanol is distilled off gradually. The reaction temperature was raised to 230 ° C. after 3 hours. After 4 hours, the transesterification reaction was substantially terminated. After 0.04 part of ethyl acid phosphate was added to this reaction mixture, 0.03 part of antimony trioxide was added and a polycondensation reaction was carried out for 4 hours. That is, the temperature was gradually raised from 230 ° C. to 280 ° C. On the other hand, the pressure was gradually reduced from normal pressure, and finally 0.3 mmHg. After the start of the reaction, the reaction was stopped at a time corresponding to an intrinsic viscosity of 0.680 due to a change in stirring power of the reaction vessel, and the polymer was discharged under nitrogen pressure. The intrinsic viscosity of the obtained polyester (1) was 0.680.

<ポリエステル(2)の製造法>
出発原料をテレフタル酸ジメチル100重量部とエチレングリコール54重量部と1,4−シクロヘキサンジメタノール25重量部とし、触媒としてテトラブチルチタネート0.011重量部を反応器にとり、反応開始温度を150℃とし、メタノールの留去とともに徐々に反応温度を上昇させ、3時間後に230℃とし、更に1時間反応を継続した。その後、温度を230℃から徐々に昇温すると共に圧力を常圧より徐々に減じ、最終的に温度を280℃、圧力を0.3mmHgとした。反応開始後、反応槽の攪拌動力の変化により、極限粘度0.70に相当する時点で反応を停止し、窒素加圧下ポリマーを吐出させた。得られたポリエステル(2)の極限粘度は0.700、1,4−シクロヘキサンジメタノールの含有量は33モル%であった。
<Method for producing polyester (2)>
The starting material is 100 parts by weight of dimethyl terephthalate, 54 parts by weight of ethylene glycol and 25 parts by weight of 1,4-cyclohexanedimethanol, 0.011 part by weight of tetrabutyl titanate is used as a catalyst, and the reaction start temperature is 150 ° C. The reaction temperature was gradually raised with the distillation of methanol, and the temperature was raised to 230 ° C. after 3 hours, and the reaction was continued for another hour. Thereafter, the temperature was gradually raised from 230 ° C. and the pressure was gradually reduced from the normal pressure, and finally the temperature was 280 ° C. and the pressure was 0.3 mmHg. After the start of the reaction, the reaction was stopped at a time corresponding to an intrinsic viscosity of 0.70 due to a change in stirring power of the reaction vessel, and the polymer was discharged under nitrogen pressure. The intrinsic viscosity of the obtained polyester (2) was 0.700, and the content of 1,4-cyclohexanedimethanol was 33 mol%.

<ポリエステル(3)の製造法>
ポリエステル(1)の製造方法において、エチルアシッドフォスフェート0.04部を添加後、エチレングリコールに分散させた平均粒子径2.2μmのシリカ粒子を0.3部、三酸化アンチモン0.03部を加えて、極限粘度0.610に相当する時点で重縮合反応を停止した以外は、ポリエステル(1)の製造方法と同様の方法を用いてポリエステル(3)を得た。得られたポリエステル(3)は、極限粘度0.610であった。
<Method for producing polyester (3)>
In the production method of polyester (1), after adding 0.04 part of ethyl acid phosphate, 0.3 part of silica particles having an average particle diameter of 2.2 μm dispersed in ethylene glycol and 0.03 part of antimony trioxide are added. In addition, polyester (3) was obtained using the same method as the production method of polyester (1) except that the polycondensation reaction was stopped at the time corresponding to the intrinsic viscosity of 0.610. The obtained polyester (3) had an intrinsic viscosity of 0.610.

<ポリエステル(4)の製造法>
ジカルボン酸成分としてイソフタル酸およびテレフタル酸、多価アルコール成分としてエチレングリコールをそれぞれ使用し、定法の溶融重縮合法で製造したものを使用した。この原料のジカルボン酸成分中イソフタル酸の含有量は22モル%であった。
<Method for producing polyester (4)>
Isophthalic acid and terephthalic acid were used as the dicarboxylic acid component, and ethylene glycol was used as the polyhydric alcohol component, respectively, and those produced by the usual melt polycondensation method were used. The content of isophthalic acid in the dicarboxylic acid component of this raw material was 22 mol%.

実施例1:
ポリエステル(3)とポリエステル(4)とを35:65の配合比で室温にて十分に攪拌・混合したものをA層、ポリエステル(1)とポリエステル(2)とポリエステル(4)とを10:50:40の配合比で同様に攪拌・混合したものをB層に相当するように、280℃でTダイを有する押出機より押出し、静電印加法を適用して急冷固化し、無定形シートを得た。得られたシートを縦方向に80℃で3.4倍延伸した後、続いて100℃で横方向に3.4倍延伸し、5%の幅方向の弛緩を行ないながら182℃で熱処理を行なった。得られたフィルムの平均厚さは75μmであった。得られたフィルムの特性は下記表1のとおりであり、優れた特性を示した。
Example 1:
Polyester (3) and polyester (4) are mixed and mixed at a room temperature of 35:65 at room temperature. Layer A, polyester (1), polyester (2) and polyester (4) are mixed with 10: An amorphous sheet that was similarly stirred and mixed at a blending ratio of 50:40 was extruded from an extruder having a T die at 280 ° C. so as to correspond to layer B, and rapidly cooled and solidified by applying an electrostatic application method. Got. The obtained sheet was stretched 3.4 times in the longitudinal direction at 80 ° C., then stretched 3.4 times in the transverse direction at 100 ° C., and heat-treated at 182 ° C. while relaxing in the width direction of 5%. It was. The average thickness of the obtained film was 75 μm. The properties of the obtained film are as shown in Table 1 below and showed excellent properties.

実施例2:
A層に使用する樹脂の混合比をポリエステル(3):ポリエステル(4)=70:30に変更し、B層に1,4−シクロヘキサンジメタノールの含有量が16モル%、イソフタル酸の含有量が7モル%となるように重合したポリエチレンテレフタレートを用いる以外は実施例1と同様の方法で厚み75μmのフィルムを得た。得られたフィルムの特性は表1のとおりであり、優れた特性を示した。
Example 2:
The mixing ratio of the resin used in the A layer was changed to polyester (3): polyester (4) = 70: 30, and the B layer had a 1,4-cyclohexanedimethanol content of 16 mol% and an isophthalic acid content. A film having a thickness of 75 μm was obtained in the same manner as in Example 1 except that polyethylene terephthalate polymerized so as to be 7 mol% was used. The properties of the obtained film are as shown in Table 1 and showed excellent properties.

比較例1:
A層に使用する樹脂の混合比をポリエステル(3):ポリエステル(4)=25:75、B層に使用する樹脂の混合比をポリエステル(2):ポリエステル(4)=50:50に変更した以外は実施例1と同様の方法で厚み75μmのフィルムを得た。得られたフィルムの特性は表1のとおりであり、80℃から180℃の温度域で貯蔵弾性率が下限値10MPaを下回るため耐熱性に劣り、また引張破断伸度が小さいため成形性にも劣っていた。
Comparative Example 1:
The mixing ratio of the resin used for the A layer was changed to polyester (3): polyester (4) = 25: 75, and the mixing ratio of the resin used for the B layer was changed to polyester (2): polyester (4) = 50: 50. Except for the above, a film having a thickness of 75 μm was obtained in the same manner as in Example 1. The characteristics of the obtained film are as shown in Table 1. Since the storage elastic modulus is lower than the lower limit of 10 MPa in the temperature range from 80 ° C. to 180 ° C., the heat resistance is inferior. It was inferior.

比較例2:
A層に使用する樹脂の混合比をポリエステル(1):ポリエステル(3)=70:30、B層に使用する樹脂の混合比をポリエステル(1):ポリエステル(4)=60:40に変更した以外、実施例1と同様の方法で厚み75μmのフィルムを得た。得られたフィルムの特性は表1のとおりであり、80℃から180℃の温度域で貯蔵弾性率が上限値2000MPaを上回るため耐熱性に優れていたが、引張破断強度も高いため成型性に劣っていた。
Comparative Example 2:
The mixing ratio of the resin used for the A layer was changed to polyester (1): polyester (3) = 70: 30, and the mixing ratio of the resin used for the B layer was changed to polyester (1): polyester (4) = 60: 40. Except for the above, a film having a thickness of 75 μm was obtained in the same manner as in Example 1. The characteristics of the obtained film are as shown in Table 1, and the storage elastic modulus exceeded the upper limit of 2000 MPa in the temperature range from 80 ° C. to 180 ° C., which was excellent in heat resistance. It was inferior.

比較例3:
A層に使用する樹脂の混合比をポリエステル(3):ポリエステル(4)=70:30、B層に使用する樹脂の混合比をポリエステル(1):ポリエステル(2):ポリエステル(4)=10:50:40に変更した以外、実施例1と同様の方法で厚み75μmのフィルムを得た。得られたフィルムの特性は表1のとおりであり、80℃から180℃の温度域で貯蔵弾性率は10MPaから2000MPaの範囲内に入るため耐熱性は良好だったが、引張破断伸度が小さいため成型性に劣り、成型同時転写用フィルムとして十分な適性を示さなかった。
Comparative Example 3:
The mixing ratio of the resin used for the A layer is polyester (3): polyester (4) = 70: 30, and the mixing ratio of the resin used for the B layer is polyester (1): polyester (2): polyester (4) = 10. : A film having a thickness of 75 μm was obtained in the same manner as in Example 1 except that the ratio was changed to 50:40. The characteristics of the obtained film are as shown in Table 1. The storage elastic modulus was within the range of 10 MPa to 2000 MPa in the temperature range of 80 ° C. to 180 ° C., but the heat resistance was good, but the tensile elongation at break was small. Therefore, it was inferior in moldability and did not show sufficient suitability as a film for simultaneous transfer of molding.

比較例4:
ポリエステル(2)とポリエステル(3)とポリエステル(4)とを配合比55:5:40でブレンドしたものを280℃でTダイを有する押出機より単層で押出し、実施例1と同様の方法で厚み50μmのフィルムを得た。得られたフィルムの特性は表1のとおりであり、単層かつ80℃から180℃の温度域で貯蔵弾性率が下限値10MPaを下回るため耐熱性に劣り、予備成型にも耐えられなかったため成型性の評価はできなかった。
Comparative Example 4:
Polyester (2), polyester (3), and polyester (4) blended at a blending ratio of 55: 5: 40 were extruded in a single layer at 280 ° C. from an extruder having a T die, and the same method as in Example 1 A film having a thickness of 50 μm was obtained. The characteristics of the obtained film are as shown in Table 1. Since the storage elastic modulus is lower than the lower limit of 10 MPa in a single layer and in the temperature range from 80 ° C. to 180 ° C., the film is inferior in heat resistance and cannot be pre-molded. The sex could not be evaluated.

Figure 2012045942
Figure 2012045942

上記表中、IPAはイソフタル酸、CHDMは1,4−シクロヘキサンジメタノール、ETはエチレンテレフタレートをそれぞれ意味する。   In the above table, IPA means isophthalic acid, CHDM means 1,4-cyclohexanedimethanol, and ET means ethylene terephthalate.

本発明のフィルムは、例えば、成形同時転写用のベースフィルムとして好適に利用することができる。   The film of the present invention can be suitably used as a base film for simultaneous molding and transfer, for example.

1 金型
2 射出成型機
3 フィルム
4 離型層、印刷層および接着層からなる層
DESCRIPTION OF SYMBOLS 1 Mold 2 Injection molding machine 3 Film 4 Layer which consists of mold release layer, printing layer, and adhesive layer

Claims (1)

主たる構成成分以外の共重合成分を1種以上含有し、かつ主たる構成成分の含有量が90モル%以下であるポリエステルからなるB層の少なくとも片側に、主たる構成成分の含有量が80モル%以上であるポリエステルからなるA層を積層した構造を有するフィルムであって、80℃から180℃の温度範囲における貯蔵弾性率E’の最大値が810〜1100MPaの範囲であり、100℃における引張破断伸度が180%以上であり、100℃における引張破断強度が50MPa以下であることを特徴とする成型同時転写用ポリエステルフィルム。 The content of the main component is 80 mol% or more on at least one side of the B layer made of polyester containing at least one copolymer component other than the main component and the content of the main component being 90 mol% or less. A film having a structure in which an A layer made of polyester is laminated, wherein the maximum value of the storage elastic modulus E ′ in the temperature range of 80 ° C. to 180 ° C. is in the range of 810 to 1100 MPa, and the tensile elongation at break at 100 ° C. A polyester film for simultaneous molding transfer, having a degree of 180% or more and a tensile strength at 100 ° C of 50 MPa or less.
JP2011232344A 2011-10-24 2011-10-24 Polyester film for in-mold transfer Pending JP2012045942A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011232344A JP2012045942A (en) 2011-10-24 2011-10-24 Polyester film for in-mold transfer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011232344A JP2012045942A (en) 2011-10-24 2011-10-24 Polyester film for in-mold transfer

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006356962A Division JP5234689B2 (en) 2006-12-31 2006-12-31 Polyester film for simultaneous transfer of molding

Publications (1)

Publication Number Publication Date
JP2012045942A true JP2012045942A (en) 2012-03-08

Family

ID=45901356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011232344A Pending JP2012045942A (en) 2011-10-24 2011-10-24 Polyester film for in-mold transfer

Country Status (1)

Country Link
JP (1) JP2012045942A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005290354A (en) * 2003-09-03 2005-10-20 Toyobo Co Ltd Polyester film for forming
JP2006233138A (en) * 2005-02-28 2006-09-07 Toyobo Co Ltd Polyester film for molding
JP2006281732A (en) * 2005-04-05 2006-10-19 Teijin Dupont Films Japan Ltd Polyester film for in-mold molding

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005290354A (en) * 2003-09-03 2005-10-20 Toyobo Co Ltd Polyester film for forming
JP2006233138A (en) * 2005-02-28 2006-09-07 Toyobo Co Ltd Polyester film for molding
JP2006281732A (en) * 2005-04-05 2006-10-19 Teijin Dupont Films Japan Ltd Polyester film for in-mold molding

Similar Documents

Publication Publication Date Title
JP5234690B2 (en) Polyester film for simultaneous transfer of molding
JP5234689B2 (en) Polyester film for simultaneous transfer of molding
JP5236315B2 (en) Polyester film for simultaneous transfer of molding
JP2010138261A (en) Polyester film for laminated glass, and its layered product
KR101218145B1 (en) Biaxially-oriented polyester film excellent in formability and manufacturing method thereof
JP4583699B2 (en) Polyester film, polyester film for molding, and molded member using the same
JP2010138024A (en) Polyester film for laminated glass, and laminated glass
JP2010138262A (en) Polyester film for laminated glass, and its layered product
JP2012066586A (en) Polyester film for molding simultaneous transfer
JPH03159727A (en) Biaxially oriented polyester film for forming
JP5450941B2 (en) Biaxially stretched laminated polyester film for molding
JP5206937B2 (en) Molding film
JP2611415B2 (en) Biaxially oriented polyester film for molding, film for molding transfer, and film for molding container
JP6154626B2 (en) Softening polyester film
JP2008163275A (en) Polyester film for simultaneous forming and transfer printing
JPH0832499B2 (en) Heat resistant polyester film for transfer film
JP2692284B2 (en) Biaxially oriented polyester film for molding
JP5127295B2 (en) Polyester film for molded simultaneous transfer foil
JP2012045942A (en) Polyester film for in-mold transfer
JPH0832498B2 (en) Polyester film for transfer film
JP5164608B2 (en) Polyester film for simultaneous transfer of molding
JP2012140498A (en) Biaxially oriented polyester film for concurrent deep drawing and transfer
JPH07196821A (en) Polyester film for deep drawing and similtaneous transfer printing
JP2007182509A (en) Biaxially stretched polyester film for molding transfer
JP6005450B2 (en) Method for producing polyester film for simultaneous molding transfer

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121022

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130611