JP2010138024A - Polyester film for laminated glass, and laminated glass - Google Patents

Polyester film for laminated glass, and laminated glass Download PDF

Info

Publication number
JP2010138024A
JP2010138024A JP2008315144A JP2008315144A JP2010138024A JP 2010138024 A JP2010138024 A JP 2010138024A JP 2008315144 A JP2008315144 A JP 2008315144A JP 2008315144 A JP2008315144 A JP 2008315144A JP 2010138024 A JP2010138024 A JP 2010138024A
Authority
JP
Japan
Prior art keywords
film
polyester
laminated glass
glass
polyester film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008315144A
Other languages
Japanese (ja)
Inventor
Hiromochi Nishikawa
博以 西河
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Plastics Inc
Original Assignee
Mitsubishi Plastics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Plastics Inc filed Critical Mitsubishi Plastics Inc
Priority to JP2008315144A priority Critical patent/JP2010138024A/en
Publication of JP2010138024A publication Critical patent/JP2010138024A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laminated polyester film for transparent electroconductive films capable of preventing dust adhesion in a process by imparting antistatic properties by reducing the amount of an oligomer deposited on the surface of the polyester film upon being heat-processed. <P>SOLUTION: There are provided a polyester film for laminated glass having stress at 100% elongation in the range of 100-180 MPa in the longitudinal and lateral directions, and a laminated glass prepared by laminating glasses on both surfaces of the polyester film through a flexible resin layer. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、成型性に優れた合わせガラス用ポリエステルフィルムおよび合わせガラスに関する。詳しくは、本発明は、屈曲したガラスと積層する場合にも生産性を落とすことなく、好適に使用することができる合わせガラス用ポリエステルフィルムおよび合わせガラスに関するものである。   The present invention relates to a polyester film for laminated glass and laminated glass having excellent moldability. Specifically, the present invention relates to a polyester film for laminated glass and a laminated glass that can be suitably used without lowering productivity even when laminated with a bent glass.

従来、自動車用窓ガラスには厳しい光学特性が要求されているが、それに加えて、車内への熱線透過量を減少させた断熱ガラスとしての性能向上が、省エネルギーの見地から求められてきている。この種の断熱ガラスとしては、ガラスをFeリッチとし、熱線を吸収するとともに、微量成分で色調を調整した熱線吸収ガラスや、PVB(ポリビニルブチラール)中間層を有する合わせガラスのガラス内面に種々の金属薄膜をコーティングした合わせ熱線反射ガラスが一部の高級グレードの車種に適用されてきた。これに対して比較的安価な合わせ熱線反射ガラスを実現する技術として、金属薄膜をコーティングしたPET(ポリエチレンテレフタレート)フィルムを、PVBシート層や、厚さの異なる接着剤層でサンドイッチ状に挟み込んだタイプ等が提案されている(例えば特許文献1)。   Conventionally, window glass for automobiles has been required to have strict optical characteristics, but in addition to that, improvement in performance as heat insulating glass with reduced heat ray transmission into the vehicle has been demanded from the viewpoint of energy saving. As this type of heat insulating glass, various metals are used on the glass inner surface of heat-absorbing glass that is glass rich in Fe, absorbs heat rays, and has a color tone adjusted with trace components, and laminated glass having PVB (polyvinyl butyral) intermediate layer. Laminated heat ray reflective glass coated with a thin film has been applied to some high-grade grades. On the other hand, as a technology to realize a relatively inexpensive laminated heat ray reflective glass, a PET (polyethylene terephthalate) film coated with a metal thin film is sandwiched between PVB sheet layers and adhesive layers having different thicknesses. Etc. have been proposed (for example, Patent Document 1).

しかし、従来のPETフィルムをガラスと積層する場合、積層工程においてPETフィルムを屈曲したガラス形状に追従させることが困難であることが多く、本用途にPETフィルムを使用することができるガラス形状は極めて限定されたものである。   However, when laminating a conventional PET film with glass, it is often difficult to follow the shape of the bent PET film in the laminating process, and the glass shape that can be used for this purpose is extremely Limited.

特表平11−509794号公報Japanese National Patent Publication No. 11-509794

本発明は、上記実情に鑑みなされたものであって、その解決課題は、屈曲したガラスと積層する場合にも生産性を落とすことなく、好適に使用することができる合わせガラス用ポリエステルフィルムおよび合わせガラスを提供することにある。   The present invention has been made in view of the above circumstances, and the problem to be solved is a polyester film for laminated glass and a laminated glass that can be suitably used without reducing productivity even when laminated with bent glass. To provide glass.

本発明者は、上記課題に鑑み鋭意検討した結果、特定の構成を有するポリエステルフィルムによれば、上記課題を容易に解決できることを見いだし、本発明を完成するに至った。   As a result of intensive studies in view of the above problems, the present inventors have found that the above problems can be easily solved by a polyester film having a specific configuration, and have completed the present invention.

すなわち、本発明の要旨は、フィルムの縦方向と横方向の100%伸び時応力が100〜180MPaの範囲であるポリエステルフィルムからなることを特徴とする合わせガラス用ポリエステルフィルム、および当該ポリエステルフィルムの両面に軟質樹脂層を介してガラスを積層してなることを特徴とする合わせガラスに存する。   That is, the gist of the present invention consists of a polyester film for laminated glass characterized by comprising a polyester film having a stress at 100% elongation of 100 to 180 MPa in the machine and transverse directions of the film, and both sides of the polyester film. The laminated glass is characterized in that glass is laminated through a soft resin layer.

以下、本発明をさらに詳細に説明する。
本発明のフィルムを構成するポリエステルは、ジカルボン酸成分としては、テレフタル酸が好ましく、これらのほかに、シュウ酸、マロン酸、コハク酸、アジピン酸、アゼライン酸、セバシン酸、フタル酸、イソフタル酸、ナフタレンジカルボン酸、ジフェニルエーテルジカルボン酸、シクロヘキサンジカルボン酸などの公知のジカルボン酸の一種以上を、共重合成分として含んでいてもよい。また、ジオール成分としては、エチレングリコールが好ましく、これらのほかに、プロピレングリコール、トリメチレングリコール、テトラメチレングリコール、ヘキサメチレングリコール、1,4−シクロヘキサンジメタノール、ジエチレングリコール、トリエチレングリコール、ポリアルキレングリコール、ネオペンチルグリコールなどの公知のジオールの一種以上を、共重合成分として含んでいてもよい。
Hereinafter, the present invention will be described in more detail.
The polyester constituting the film of the present invention is preferably terephthalic acid as the dicarboxylic acid component. Besides these, oxalic acid, malonic acid, succinic acid, adipic acid, azelaic acid, sebacic acid, phthalic acid, isophthalic acid, One or more known dicarboxylic acids such as naphthalenedicarboxylic acid, diphenyl ether dicarboxylic acid, and cyclohexanedicarboxylic acid may be included as a copolymerization component. As the diol component, ethylene glycol is preferable. Besides these, propylene glycol, trimethylene glycol, tetramethylene glycol, hexamethylene glycol, 1,4-cyclohexanedimethanol, diethylene glycol, triethylene glycol, polyalkylene glycol, One or more known diols such as neopentyl glycol may be included as a copolymerization component.

また、ポリエステルの構成成分としては、上記のジカルボン酸成分およびジオール成分のほか、種々の酸成分およびアルコール成分を含むことができる。例えば、p−オキシ安息香酸のようなオキシカルボン酸、安息香酸、ベンゾイル安息香酸、メトキシポリアルキレングリコールなどの一官能性化合物は修飾成分として、トリメシン酸、トリメリト酸、グリセリン、ペンタエリスリトールなどの多官能性化合物は共重合成分として、生成物ポリエステルが実質的に線状の高分子を保持し得る範囲内で、使用することができる。   In addition to the above-mentioned dicarboxylic acid component and diol component, various acid components and alcohol components can be included as a constituent component of the polyester. For example, monofunctional compounds such as oxycarboxylic acid such as p-oxybenzoic acid, benzoic acid, benzoylbenzoic acid, and methoxypolyalkylene glycol are used as modifying components, and polyfunctional such as trimesic acid, trimellitic acid, glycerin, and pentaerythritol. The functional compound can be used as a copolymerization component as long as the product polyester can retain a substantially linear polymer.

本発明におけるポリエステルは、従来公知の方法で、例えばジカルボン酸とジオールの反応で直接低重合度ポリエステルを得る方法や、ジカルボン酸の低級アルキルエステルとジオールとを従来公知のエステル交換触媒で反応させた後、重合触媒の存在下で重合反応を行う方法で得ることができる。重合触媒としては、アンチモン化合物、ゲルマニウム化合物、チタン化合物等公知の触媒を使用することができる。   The polyester in the present invention is a conventionally known method, for example, a method of directly obtaining a low-polymerization degree polyester by reaction of a dicarboxylic acid and a diol, or a lower alkyl ester of a dicarboxylic acid and a diol reacted with a conventionally known transesterification catalyst. Then, it can obtain by the method of performing a polymerization reaction in presence of a polymerization catalyst. As the polymerization catalyst, a known catalyst such as an antimony compound, a germanium compound, or a titanium compound can be used.

なお、ポリエステルは、溶融重合後これをチップ化し、加熱減圧下または窒素等不活性気流中に必要に応じてさらに固相重合を施してもよい。得られるポリエステルの固有粘度は0.40dl/g以上であることが好ましく、0.40〜0.90dl/gであることがさらに好ましい   In addition, after melt-polymerizing polyester, this may be chipped, and solid-state polymerization may be further performed as necessary under heating under reduced pressure or in an inert gas stream such as nitrogen. The intrinsic viscosity of the obtained polyester is preferably 0.40 dl / g or more, more preferably 0.40 to 0.90 dl / g.

本発明のフィルムにおけるポリエステル層中には、易滑性付与を主たる目的として粒子を配合してもよい。配合する粒子の種類は、易滑性付与可能な粒子であれば特に限定されるものではなく、具体例としては、例えば、シリカ、炭酸カルシウム、炭酸マグネシウム、炭酸バリウム、硫酸カルシウム、リン酸カルシウム、カオリン、酸化アルミニウム、酸化チタン等の粒子が挙げられる。また、特公昭59−5216号公報、特開昭59−217755号公報等に記載されている耐熱性有機粒子を用いてもよい。この他の耐熱性有機粒子の例として、熱硬化性尿素樹脂、熱硬化性フェノール樹脂、熱硬化性エポキシ樹脂、ベンゾグアナミン樹脂等が挙げられる。さらに、ポリエステル製造工程中、触媒等の金属化合物の一部を沈殿、微分散させた析出粒子を用いることもできる。   You may mix | blend particle | grains in the polyester layer in the film of this invention with the main objective of providing easy slipperiness. The type of particles to be blended is not particularly limited as long as it is a particle capable of imparting slipperiness, and specific examples include, for example, silica, calcium carbonate, magnesium carbonate, barium carbonate, calcium sulfate, calcium phosphate, kaolin, Examples of the particles include aluminum oxide and titanium oxide. Further, the heat-resistant organic particles described in JP-B-59-5216, JP-A-59-217755 and the like may be used. Examples of other heat-resistant organic particles include thermosetting urea resins, thermosetting phenol resins, thermosetting epoxy resins, benzoguanamine resins, and the like. Furthermore, precipitated particles obtained by precipitating and finely dispersing a part of a metal compound such as a catalyst during the polyester production process may be used.

一方、使用する粒子の形状に関しても特に限定されるわけではなく、球状、塊状、棒状、扁平状等のいずれを用いてもよい。また、その硬度、比重、色等についても特に制限はない。これら一連の粒子は、必要に応じて2種類以上を併用してもよい。   On the other hand, the shape of the particles to be used is not particularly limited, and any of a spherical shape, a block shape, a rod shape, a flat shape, and the like may be used. Moreover, there is no restriction | limiting in particular also about the hardness, specific gravity, a color, etc. These series of particles may be used in combination of two or more as required.

また、用いる粒子の平均粒径は、通常0.01〜5μmが好ましい。平均粒径が0.01μm未満の場合には、粒子が凝集しやすく、分散性が不十分な場合があり、一方、5μmを超える場合には、フィルムの粒子が起点となり、変形時に破れるなどの不具合が発生することがある。   Further, the average particle size of the particles used is usually preferably 0.01 to 5 μm. If the average particle size is less than 0.01 μm, the particles tend to aggregate and the dispersibility may be insufficient. On the other hand, if the average particle size exceeds 5 μm, the film particles will be the starting point and may be broken during deformation. Problems may occur.

ポリエステル中に粒子を添加する方法としては、特に限定されるものではなく、従来公知の方法を採用しうる。例えば、ポリエステルを製造する任意の段階において添加することができるが、好ましくはエステル化の段階、もしくはエステル交換反応終了後、重縮合反応を進めてもよい。また、ベント付き混練押出機を用い、エチレングリコールまたは水などに分散させた粒子のスラリーとポリエステル原料とをブレンドする方法、または、混練押出機を用い、乾燥させた粒子とポリエステル原料とをブレンドする方法などによって行われる。   The method for adding particles to the polyester is not particularly limited, and a conventionally known method can be adopted. For example, it can be added at any stage for producing the polyester, but the polycondensation reaction may proceed preferably after the esterification stage or after the transesterification reaction. Also, a method of blending a slurry of particles dispersed in ethylene glycol or water with a vented kneading extruder and a polyester raw material, or a blending of dried particles and a polyester raw material using a kneading extruder. It is done by methods.

なお、本発明のポリエステルフィルム中には、上述の粒子以外に必要に応じて従来公知の酸化防止剤、熱安定剤、潤滑剤、帯電防止剤、蛍光増白剤、染料、顔料等を添加することができる。また用途によっては、紫外線吸収剤特にベンゾオキサジノン系紫外線吸収剤等を含有させてもよい。   In addition to the above-mentioned particles, conventionally known antioxidants, heat stabilizers, lubricants, antistatic agents, fluorescent brighteners, dyes, pigments and the like are added to the polyester film of the present invention as necessary. be able to. Depending on the application, an ultraviolet absorber, particularly a benzoxazinone-based ultraviolet absorber, may be contained.

本発明のフィルムは、共押出法を用いて積層構造とすることができ、例えば最外層を構成するポリエステルを含有オリゴマー量が少ないものとすることで、加工中の熱履歴等によりオリゴマーが析出して生産ラインの汚染やフィルム表面の異物による成型品の表面の品質を悪化させることを防止することができる。かかる効果を得るためには最外層の厚みを3μm以上にすることが好ましい。また、フィルムの粒子が起点になり、成型時に破れるなどの不具合が発生することがある。この不具合を起こさないためには最外層に配合される粒子量を減らすことが必要であり、最外層の厚みを総厚みの1/4以下にすることが好ましい。一方単層で実施する際には、耐溶剤性などの不具合が発生することがあり、後工程の塗布層の選択などに注意が必要である。フィルムには可能な限り粒子を含有させないようにし、表裏の塗布層に粒子を含有させることも好ましい。   The film of the present invention can be formed into a laminated structure using a coextrusion method. For example, by forming the polyester constituting the outermost layer with a small amount of oligomers, oligomers are precipitated due to thermal history during processing. Thus, it is possible to prevent deterioration of the surface quality of the molded product due to contamination of the production line or foreign matter on the film surface. In order to obtain such an effect, the thickness of the outermost layer is preferably 3 μm or more. In addition, film particles may be the starting point, and defects such as tearing may occur during molding. In order to prevent this problem, it is necessary to reduce the amount of particles blended in the outermost layer, and the thickness of the outermost layer is preferably set to ¼ or less of the total thickness. On the other hand, when carried out with a single layer, problems such as solvent resistance may occur, and care must be taken in selecting a coating layer in a subsequent step. It is also preferable to prevent particles from being contained in the film as much as possible, and to contain particles in the front and back coating layers.

本発明のフィルム厚さは、通常50〜200μmであり、好ましくは75〜150μmである。フィルム厚さが50μmよりも小さい場合、合わせガラスを作成する際にシワ等が入りやすい傾向があり、フィルム厚さが200μmよりも大きい場合は、フィルム中の粒子による光の散乱のため、高透明な合わせガラスを得ることが困難となる場合がある。   The film thickness of this invention is 50-200 micrometers normally, Preferably it is 75-150 micrometers. When the film thickness is less than 50 μm, there is a tendency for wrinkles or the like to easily enter when making a laminated glass. When the film thickness is greater than 200 μm, the film is highly transparent due to light scattering by particles in the film. It may be difficult to obtain a laminated glass.

本発明のフィルムは、ポリエステルフィルムをガラスと積層させる工程において、屈曲したガラス形状にも好適に使用できるという観点から、ポリエステルフィルムの縦横の100%伸び時応力がいずれも100〜180MPaの範囲にあることが必要である。100%伸び応力が100MPaよりも小さい場合には、合わせガラスを作成する工程であるオートクレーブの加圧条件下(120〜150℃、圧力1.0〜1.5MPa)において発生する熱収縮応力のためにフィルムが縮んでしまい、ガラスの端部までポリエステルフィルムが存在しない積層ガラスとなってしまう。また、100%伸び応力が180MPaよりも大きい場合には、合わせガラスを作成する工程において、特に3次元曲げ形状の厳しい部分において追従性が悪く、シワやクラックが入った均一でない積層ガラスとなってしまい好ましくない。   From the viewpoint that the film of the present invention can be suitably used for a bent glass shape in the step of laminating the polyester film with glass, the stress at 100% elongation in the vertical and horizontal directions of the polyester film is in the range of 100 to 180 MPa. It is necessary. When the 100% elongation stress is smaller than 100 MPa, the heat shrinkage stress is generated under the autoclave pressurization condition (120 to 150 ° C., pressure 1.0 to 1.5 MPa), which is a process for producing a laminated glass. The film shrinks to a laminated glass in which no polyester film exists up to the edge of the glass. Further, when the 100% elongation stress is larger than 180 MPa, in the process of making the laminated glass, the followability is poor particularly in a severe part of the three-dimensional bending shape, and the laminated glass is not uniform with wrinkles and cracks. It is not preferable.

以下、本発明のポリエステルフィルムの製造方法に関して具体的に説明するが、本発明の要旨を満足する限り、本発明は以下の例示に特に限定されるものではない。   Hereinafter, although the manufacturing method of the polyester film of this invention is demonstrated concretely, as long as the summary of this invention is satisfied, this invention is not specifically limited to the following illustrations.

まず、公知の手法により乾燥したまたは未乾燥のポリエステルチップを溶融押出装置に供給し、それぞれのポリマーの融点以上である温度に加熱し溶融する。次いで、溶融したポリマーをダイから押出し、回転冷却ドラム上でガラス転移温度以下の温度になるように急冷固化し、実質的に非晶状態の未配向シートを得る。この場合、シートの平面性を向上させるため、シートと回転冷却ドラムとの密着性を高めることが好ましく、本発明においては静電印加密着法および/または液体塗布密着法が好ましく採用される。   First, a dried or undried polyester chip by a known method is supplied to a melt extrusion apparatus and heated to a temperature equal to or higher than the melting point of each polymer and melted. Next, the molten polymer is extruded from a die and rapidly cooled and solidified on a rotary cooling drum so that the temperature is equal to or lower than the glass transition temperature to obtain a substantially amorphous unoriented sheet. In this case, in order to improve the flatness of the sheet, it is preferable to improve the adhesion between the sheet and the rotary cooling drum. In the present invention, an electrostatic application adhesion method and / or a liquid application adhesion method is preferably employed.

本発明においては、このようにして得られたシートを2軸方向に延伸してフィルム化する。延伸条件について具体的に述べると、前記未延伸シートを、好ましくはMD方向に70〜145℃で2〜6倍に延伸し、縦1軸延伸フィルムとした後、TD方向に90〜160℃で2〜6倍延伸を行い、150〜240℃で1〜600秒間熱処理を行うことが好ましい。さらにこの際、熱処理の最高温度ゾーンおよび/または熱処理出口のクーリングゾーンにおいて、縦方向および/または横方向に0.1〜20%弛緩する方法が好ましい。また、必要に応じて再縦延伸、再横延伸を付加することも可能である。特に100%伸び応力の低減のためには縦横延伸後のフィルムを高温熱処理と同時に幅方向の弛緩率を高めることが有効である。   In the present invention, the sheet thus obtained is stretched biaxially to form a film. Specifically describing the stretching conditions, the unstretched sheet is preferably stretched 2 to 6 times at 70 to 145 ° C. in the MD direction to form a longitudinal uniaxially stretched film, and then at 90 to 160 ° C. in the TD direction. It is preferable to perform 2-6 times stretching and to heat-process at 150-240 degreeC for 1 to 600 seconds. Further, at this time, a method of relaxing 0.1 to 20% in the longitudinal direction and / or the transverse direction in the maximum temperature zone of the heat treatment and / or the cooling zone at the heat treatment outlet is preferable. Further, it is possible to add re-longitudinal stretching and re-lateral stretching as necessary. In particular, in order to reduce 100% elongation stress, it is effective to increase the relaxation rate in the width direction simultaneously with the high-temperature heat treatment of the film after longitudinal and transverse stretching.

本発明においては、前記の通りポリエステルの溶融押出機を2台または3台以上用いて、いわゆる共押出法により2層または3層以上の積層フィルムとすることができる。層の構成としては、A原料とB原料とを用いたA/B構成、またはA/B/C構成またはそれ以外の構成のフィルムとすることができる。例えばA原料として特定の粒子を用いてA層の表面形状を設計し、B原料としては粒子を含有しない原料を用い、A/B構成のフィルムとすることができる。この場合B層の原料を自由に選択できることからコスト的な利点などが大きい。また当該フィルムの再生原料をB層に配合しても表層であるA層により表面粗度の設計ができるので、さらにコスト的な利点が大きくなる。   In the present invention, as described above, two or three or more polyester melt extruders can be used to form a laminated film of two layers or three or more layers by a so-called coextrusion method. As a structure of a layer, it can be set as the film of A / B structure using A raw material and B raw material, or A / B / C structure, or another structure. For example, the surface shape of the A layer can be designed using specific particles as the A raw material, and a film containing no particles can be used as the B raw material to form an A / B film. In this case, since the raw material of B layer can be selected freely, a cost advantage etc. are large. Further, even if the recycled material of the film is blended with the B layer, the surface roughness can be designed by the surface A layer, so that the cost advantage is further increased.

前記延伸工程においてまたはその後に、フィルムに接着性、帯電防止性、滑り性、離型性等を付与するために、フィルムの片面または両面に塗布層を形成したり、コロナ処理等の放電処理を施したりすることもできる。   In the stretching step or after, in order to impart adhesion, antistatic property, slipperiness, releasability, etc. to the film, a coating layer is formed on one or both sides of the film, or a discharge treatment such as corona treatment is performed. It can also be applied.

本発明のフィルムは、形状の複雑な屈曲したガラスと積層する場合にも使用することができ、不具合のない合わせガラスを提供することができ、その技術的価値は高い。   The film of the present invention can be used even when laminated with a bent glass having a complicated shape, can provide a laminated glass free from defects, and has high technical value.

以下、本発明を実施例によりさらに詳細に説明するが、本発明はその要旨を越えない限り、以下の実施例に限定されるものではない。また、本発明で用いた測定法は次のとおりである。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to a following example, unless the summary is exceeded. The measuring method used in the present invention is as follows.

(1)極限粘度
測定試料をフェノール/テトラクロロエタン=50/50(重量部)の溶媒に溶解させて濃度c=0.01g/cmの溶液を調製し、30℃にて溶媒との相対粘度ηを測定し、極限粘度[η]を求めた。
(1) Intrinsic viscosity A measurement sample was dissolved in a solvent of phenol / tetrachloroethane = 50/50 (parts by weight) to prepare a solution having a concentration c = 0.01 g / cm 3 , and the relative viscosity with the solvent at 30 ° C. η r was measured to determine the intrinsic viscosity [η].

(2)厚さ
マイクロメータにより求めた。
(2) Thickness Determined with a micrometer.

(3)融解ピーク温度Tm
TA Instruments社製の示差走査熱量計「DSC−2920型」を使用し、試料5mgを0℃から300℃まで20℃/minの速度で昇温させた際に得られる吸熱ピークの温度をTmとした。上記の方法にて複数のピークが得られる場合はそれぞれを融解ピーク温度として記載した。
(3) Melting peak temperature Tm
Using a differential scanning calorimeter “DSC-2920 type” manufactured by TA Instruments, the temperature of the endothermic peak obtained when the sample was heated from 0 ° C. to 300 ° C. at a rate of 20 ° C./min is Tm did. When a plurality of peaks were obtained by the above method, each was described as a melting peak temperature.

(4)100%伸び応力
(株)インテスコ製引張試験機インテスコモデル2001型を用いて、温度25℃において長さ50mm,幅15mmの試料フィルムを、200mm/分の速度で引張試験を行い、縦方向および横方向の100%伸び時の応力を求めた。
(4) 100% elongation stress Using an Intesco tensile tester Intesco Model 2001, a sample film having a length of 50 mm and a width of 15 mm at a temperature of 25 ° C. is subjected to a tensile test at a speed of 200 mm / min. The stress at 100% elongation in the vertical and horizontal directions was determined.

(5)合わせガラス用フィルムとしての耐熱性
ポリエステルフィルムの両側からポリエステルフィルムと同じ大きさのポリビニルブチラールによる樹脂シートで挟み、さらにその積層体の両側からポリエステルフィルムと同じ大きさのガラスで挟んだ合計5層からなる積層体を作成した。その積層体を130℃、1.0MPaの条件下で30分保持し降温後、下の基準にて耐熱性の評価を行った。
○:ポリエステルフィルムとガラスの大きさが等しい
△:ポリエステルフィルムが収縮し、わずかにガラスより小さい
×:ポリエステルフィルムが大きく収縮し、明らかにガラスより小さい
(5) Heat resistance as a film for laminated glass The total sandwiched between both sides of a polyester film with a resin sheet made of polyvinyl butyral of the same size as the polyester film, and further sandwiched with glass of the same size as the polyester film from both sides of the laminate A laminate composed of five layers was prepared. The laminate was held at 130 ° C. and 1.0 MPa for 30 minutes, the temperature was lowered, and the heat resistance was evaluated according to the following criteria.
○: The size of the polyester film is equal to that of the glass. Δ: The polyester film shrinks slightly and is slightly smaller than the glass.

(6)合わせガラス用フィルムとしての成形性
曲面ガラスを想定した実験をするためにガラスとして直径120mmφの石英時計皿を使用し、上記(5)と同様の条件で作製した積層体を下の基準にて評価を行った。
○:ポリエステルフィルムはガラスの形状に完全に追従する
△:一部曲率の大きい部位においてポリエステルフィルムがガラスに追従しない
×:ポリエステルがガラスに追従せずシワが発生するために、良好な積層体が採取できない
(6) Formability as a film for laminated glass In order to conduct an experiment assuming curved glass, a quartz watch glass having a diameter of 120 mmφ was used as the glass, and a laminate produced under the same conditions as in (5) above was used as the reference below. Was evaluated.
○: The polyester film completely follows the shape of the glass. Δ: The polyester film does not follow the glass at a part where the curvature is large. ×: The polyester does not follow the glass and wrinkles are generated. Cannot be collected

以下に実施例および比較例を示すが、これに用いたポリエステルの製造方法は次のとおりである。
〈ポリエステルの製造〉
(ポリエステルAの製造方法)
テレフタル酸ジメチル100重量部とエチレングリコール60重量部とを出発原料とし、触媒として酢酸マグネシウム・四水塩0.09重量部を反応器にとり、反応開始温度を150℃とし、メタノールの留去とともに徐々に反応温度を上昇させ、3時間後に230℃とした。4時間後、実質的にエステル交換反応を終了させた。この反応混合物にエチルアシッドフォスフェート0.04部を添加した後、三酸化アンチモン0.03部を加えて、4時間重縮合反応を行った。すなわち、温度を230℃から徐々に昇温し280℃とした。一方、圧力は常圧より徐々に減じ、最終的には0.3mmHgとした。反応開始後、反応槽の攪拌動力の変化により、極限粘度0.680に相当する時点で反応を停止し、窒素加圧下ポリマーを吐出させた。得られたポリエステルAの極限粘度は0.680で
あった。
Examples and Comparative Examples are shown below, and the method for producing the polyester used in the Examples and Comparative Examples is as follows.
<Manufacture of polyester>
(Method for producing polyester A)
100 parts by weight of dimethyl terephthalate and 60 parts by weight of ethylene glycol are used as starting materials, 0.09 parts by weight of magnesium acetate tetrahydrate as a catalyst is placed in the reactor, the reaction start temperature is set to 150 ° C., and the methanol is gradually distilled off. The reaction temperature was raised to 230 ° C. after 3 hours. After 4 hours, the transesterification reaction was substantially terminated. After 0.04 part of ethyl acid phosphate was added to this reaction mixture, 0.03 part of antimony trioxide was added and a polycondensation reaction was carried out for 4 hours. That is, the temperature was gradually raised from 230 ° C. to 280 ° C. On the other hand, the pressure was gradually reduced from normal pressure, and finally 0.3 mmHg. After the start of the reaction, the reaction was stopped at a time corresponding to an intrinsic viscosity of 0.680 due to a change in stirring power of the reaction tank, and the polymer was discharged under nitrogen pressure. The intrinsic viscosity of the obtained polyester A was 0.680.

(ポリエステルBの製造方法)
ジカルボン酸成分としてイソフタル酸およびテレフタル酸、多価アルコール成分としてエチレングリコールをそれぞれ使用し、定法の溶融重縮合法で製造したものを使用した。得られたポリエステルBの極限粘度は0.700、ジカルボン酸成分中のイソフタル酸の含有量は22モル%であった。
(Method for producing polyester B)
Isophthalic acid and terephthalic acid were used as the dicarboxylic acid component, and ethylene glycol was used as the polyhydric alcohol component, respectively, and those produced by the usual melt polycondensation method were used. The obtained polyester B had an intrinsic viscosity of 0.700, and the content of isophthalic acid in the dicarboxylic acid component was 22 mol%.

(ポリエステルCの製造方法)
ポリエステルAの製造方法において、エチルアシッドフォスフェート0.04部を添加後、エチレングリコールに分散させた平均粒子径2.5μmのシリカ粒子を3部、三酸化アンチモン0.03部を加えて、極限粘度0.650に相当する時点で重縮合反応を停止した以外は、ポリエステルAの製造方法と同様の方法を用いてポリエステルCを得た。得られたポリエステルCは、極限粘度0.650であった。
(Method for producing polyester C)
In the polyester A production method, after adding 0.04 part of ethyl acid phosphate, 3 parts of silica particles having an average particle diameter of 2.5 μm dispersed in ethylene glycol and 0.03 part of antimony trioxide were added to the limit. Polyester C was obtained using the same method as the production method of polyester A except that the polycondensation reaction was stopped at a time corresponding to a viscosity of 0.650. The obtained polyester C had an intrinsic viscosity of 0.650.

〈ポリエステルフィルムの製造〉
実施例1:
前述のポリエステルA、Cをそれぞれ97重量部、3重量部の割合で混合した混合原料をA層、ポリエステルAを100重量部としたものをB層の原料として、2台のベント式二軸押出機に各々を供給し、それぞれ285℃で溶融し、A層を最外層(表層)、B層を中間層とする2種3層(A/B/A)の層構成で共押出して、40℃に冷却したキャスティングドラム上で冷却固化させて未延伸フィルムを得た。次いで、ロール周速差を利用して縦延伸温度80℃で縦方向に3.5倍延伸した。その後テンターに導き、横方向に120℃で3.8倍延伸し、245℃で10秒間の熱処理を行うと同時に幅方向に10%弛緩をし、厚み100μmのポリエステルフィルムを得た。得られたフィルムの各層の厚みは5/90/5μmであった。得られた結果を下記表1に記載した。この結果より、耐熱性、成形性ともに良好な結果が得られた。
<Manufacture of polyester film>
Example 1:
Two vented twin-screw extrusions using the above-mentioned polyesters A and C mixed in 97 parts by weight and 3 parts by weight, respectively, with the mixed raw material as layer A and polyester A as 100 parts by weight as the raw material for layer B Each was supplied to a machine, melted at 285 ° C., and coextruded in a layer configuration of two types and three layers (A / B / A) with the A layer as the outermost layer (surface layer) and the B layer as the intermediate layer The film was cooled and solidified on a casting drum cooled to 0 ° C. to obtain an unstretched film. Next, the film was stretched 3.5 times in the longitudinal direction at a longitudinal stretching temperature of 80 ° C. using the difference in peripheral speed of the roll. Thereafter, the film was guided to a tenter, stretched 3.8 times in the transverse direction at 120 ° C., and subjected to heat treatment at 245 ° C. for 10 seconds. The thickness of each layer of the obtained film was 5/90/5 μm. The obtained results are shown in Table 1 below. From this result, good results were obtained in both heat resistance and moldability.

実施例2:
実施例1において、縦方向に3.1倍に延伸し、横方向に4.0倍に延伸した以外は実施例1と同様にして厚み100μmのポリエステルフィルムを得た。本フィルムを使用した積層体は僅かにフィルムの横方向のサイズが小さく、また、一部曲率の大きい部位に対するフィルムの追従性には劣るものであったが、ガラスの形状によっては十分に使用できるものであった。
Example 2:
A polyester film having a thickness of 100 μm was obtained in the same manner as in Example 1 except that the film was stretched 3.1 times in the longitudinal direction and 4.0 times in the lateral direction. Laminates using this film are slightly smaller in the lateral direction of the film, and the film has poor trackability for parts with large curvatures, but can be used sufficiently depending on the shape of the glass. It was a thing.

比較例1:
前述のポリエステルA、Cをそれぞれ97重量部、3重量部の割合で混合した混合原料をA層、ポリエステルAを100重量部としたものをB層の原料として、2台のベント式二軸押出機に各々を供給し、それぞれ285℃で溶融し、A層を最外層(表層)、B層を中間層とする2種3層(A/B/A)の層構成で共押出して、40℃に冷却したキャスティングドラム上で冷却固化させて未延伸フィルムを得た。次いで、ロール周速差を利用して縦延伸温度80℃で縦方向に3.5倍延伸した。その後テンターに導き、横方向に120℃で3.8倍延伸し、235℃で10秒間の熱処理を行った後に170℃で幅方向に3%弛緩をし、厚み100μmのポリエステルフィルムを得た。本フィルムを使用した積層体はフィルムの縮みはなく、耐熱性は良好であったが、フィルムがガラスに追従せず、成形性に関しては劣るものであった。
Comparative Example 1:
Two vented twin-screw extrusions using the above-mentioned polyesters A and C mixed in 97 parts by weight and 3 parts by weight, respectively, with the mixed raw material as layer A and polyester A as 100 parts by weight as the raw material for layer B Each was supplied to a machine, melted at 285 ° C., and coextruded in a layer configuration of two types and three layers (A / B / A) with the A layer as the outermost layer (surface layer) and the B layer as the intermediate layer. The film was cooled and solidified on a casting drum cooled to 0 ° C. to obtain an unstretched film. Next, the film was stretched 3.5 times in the longitudinal direction at a longitudinal stretching temperature of 80 ° C. using the difference in peripheral speed of the roll. Thereafter, the film was guided to a tenter, stretched 3.8 times in the transverse direction at 120 ° C., subjected to heat treatment at 235 ° C. for 10 seconds, and then relaxed 3% in the width direction at 170 ° C. to obtain a polyester film having a thickness of 100 μm. The laminate using this film had no shrinkage of the film and good heat resistance, but the film did not follow the glass, and the moldability was poor.

比較例2:
比較例1において、B層の原料配合をポリエステルA、Bをそれぞれ20重量部、80重量部にし、200℃で10秒間の熱処理を行った以外は比較例1と同様にして厚み100μmのポリエステルフィルムを得た。本フィルムを使用した積層体はフィルムの縮みが大きく、劣るものであった。尚成形性に関しては良好であった。
Comparative Example 2:
In Comparative Example 1, a polyester film having a thickness of 100 μm was prepared in the same manner as in Comparative Example 1, except that polyester A and B were 20 parts by weight and 80 parts by weight, respectively, and heat treatment was performed at 200 ° C. for 10 seconds. Got. The laminate using this film had a large shrinkage of the film and was inferior. The formability was good.

得られたフィルムの物性値及び合わせガラス用ポリエステルフィルムとしての適性について表1にまとめた。本発明の要件を満たすフィルムは、合わせガラス用としての適性が高いことがわかる。   The physical properties of the obtained film and suitability as a polyester film for laminated glass are summarized in Table 1. It can be seen that a film satisfying the requirements of the present invention has high suitability for laminated glass.

Figure 2010138024
Figure 2010138024

本発明のフィルムは、合わせガラス用のフィルムとして好適に利用することができる。   The film of the present invention can be suitably used as a film for laminated glass.

Claims (2)

フィルムの縦方向と横方向の100%伸び時応力が100〜180MPaの範囲であるポリエステルフィルムからなることを特徴とする合わせガラス用ポリエステルフィルム。 A polyester film for laminated glass, comprising a polyester film having a stress at 100% elongation of 100 to 180 MPa in the vertical and horizontal directions of the film. 請求項1に記載のポリエステルフィルムの両面に軟質樹脂層を介してガラスを積層してなることを特徴とする合わせガラス。 A laminated glass comprising glass laminated on both sides of the polyester film according to claim 1 through a soft resin layer.
JP2008315144A 2008-12-11 2008-12-11 Polyester film for laminated glass, and laminated glass Pending JP2010138024A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008315144A JP2010138024A (en) 2008-12-11 2008-12-11 Polyester film for laminated glass, and laminated glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008315144A JP2010138024A (en) 2008-12-11 2008-12-11 Polyester film for laminated glass, and laminated glass

Publications (1)

Publication Number Publication Date
JP2010138024A true JP2010138024A (en) 2010-06-24

Family

ID=42348494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008315144A Pending JP2010138024A (en) 2008-12-11 2008-12-11 Polyester film for laminated glass, and laminated glass

Country Status (1)

Country Link
JP (1) JP2010138024A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010138261A (en) * 2008-12-11 2010-06-24 Mitsubishi Plastics Inc Polyester film for laminated glass, and its layered product
JP2010138262A (en) * 2008-12-11 2010-06-24 Mitsubishi Plastics Inc Polyester film for laminated glass, and its layered product
JP2010215494A (en) * 2009-02-18 2010-09-30 Mitsubishi Plastics Inc Polyester film for laminated glass
JP2010215496A (en) * 2009-02-18 2010-09-30 Mitsubishi Plastics Inc Polyester film for laminated glass
JP2010215495A (en) * 2009-02-18 2010-09-30 Mitsubishi Plastics Inc Polyester film for laminated glass

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05507889A (en) * 1990-06-18 1993-11-11 モンサント・カンパニー Safety glazing laminate
JPH0679776A (en) * 1992-02-25 1994-03-22 Toray Ind Inc Flexible polyester film
JPH11509794A (en) * 1995-07-24 1999-08-31 サウスウォール テクノロジーズ インコーポレイテッド Improved laminated structure and manufacturing process thereof
JP2001106556A (en) * 1999-10-07 2001-04-17 Sekisui Chem Co Ltd Intermediate film for sandwich glass and sandwich glass
JP2005068238A (en) * 2003-08-21 2005-03-17 Toyobo Co Ltd Polyester film for molding and dummy container obtained from the same
JP2005139358A (en) * 2003-11-07 2005-06-02 Toyobo Co Ltd Polyester film for forming and forming member for dummy vessel
JP2005186613A (en) * 2003-12-05 2005-07-14 Toray Ind Inc Biaxial oriented laminated film, film for laminated glass, and laminated glass
JP2008095084A (en) * 2006-09-13 2008-04-24 Toyobo Co Ltd Polyester film for molding
JP2010138262A (en) * 2008-12-11 2010-06-24 Mitsubishi Plastics Inc Polyester film for laminated glass, and its layered product
JP2010138261A (en) * 2008-12-11 2010-06-24 Mitsubishi Plastics Inc Polyester film for laminated glass, and its layered product

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05507889A (en) * 1990-06-18 1993-11-11 モンサント・カンパニー Safety glazing laminate
JPH0679776A (en) * 1992-02-25 1994-03-22 Toray Ind Inc Flexible polyester film
JPH11509794A (en) * 1995-07-24 1999-08-31 サウスウォール テクノロジーズ インコーポレイテッド Improved laminated structure and manufacturing process thereof
JP2001106556A (en) * 1999-10-07 2001-04-17 Sekisui Chem Co Ltd Intermediate film for sandwich glass and sandwich glass
JP2005068238A (en) * 2003-08-21 2005-03-17 Toyobo Co Ltd Polyester film for molding and dummy container obtained from the same
JP2005139358A (en) * 2003-11-07 2005-06-02 Toyobo Co Ltd Polyester film for forming and forming member for dummy vessel
JP2005186613A (en) * 2003-12-05 2005-07-14 Toray Ind Inc Biaxial oriented laminated film, film for laminated glass, and laminated glass
JP2008095084A (en) * 2006-09-13 2008-04-24 Toyobo Co Ltd Polyester film for molding
JP2010138262A (en) * 2008-12-11 2010-06-24 Mitsubishi Plastics Inc Polyester film for laminated glass, and its layered product
JP2010138261A (en) * 2008-12-11 2010-06-24 Mitsubishi Plastics Inc Polyester film for laminated glass, and its layered product

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010138261A (en) * 2008-12-11 2010-06-24 Mitsubishi Plastics Inc Polyester film for laminated glass, and its layered product
JP2010138262A (en) * 2008-12-11 2010-06-24 Mitsubishi Plastics Inc Polyester film for laminated glass, and its layered product
JP2010215494A (en) * 2009-02-18 2010-09-30 Mitsubishi Plastics Inc Polyester film for laminated glass
JP2010215496A (en) * 2009-02-18 2010-09-30 Mitsubishi Plastics Inc Polyester film for laminated glass
JP2010215495A (en) * 2009-02-18 2010-09-30 Mitsubishi Plastics Inc Polyester film for laminated glass

Similar Documents

Publication Publication Date Title
JP7103430B2 (en) Biaxially oriented polyester film and its manufacturing method
KR20190125958A (en) Polyester film and method for reproducing polyester container using same
JP5234690B2 (en) Polyester film for simultaneous transfer of molding
JP2010138261A (en) Polyester film for laminated glass, and its layered product
WO2010110211A1 (en) White film for reflector
JP4734237B2 (en) Method for producing laminated film for reflector
JP5234689B2 (en) Polyester film for simultaneous transfer of molding
JP2010138024A (en) Polyester film for laminated glass, and laminated glass
JP2010138262A (en) Polyester film for laminated glass, and its layered product
JP4971690B2 (en) Biaxially stretched film
JP5236315B2 (en) Polyester film for simultaneous transfer of molding
JP2010224446A (en) White film for reflection film of backlight unit of liquid crystal display device
JP4782617B2 (en) Polyester laminated film roll
JP5021974B2 (en) Laminated film
JP4563822B2 (en) Biaxially oriented laminated film
JP6036589B2 (en) Polyester film, solar battery back sheet, solar battery
JP5147470B2 (en) Laminated biaxially stretched polyester film
JP4896454B2 (en) Laminated film
JP4799066B2 (en) Laminated polyester film
JP2008163275A (en) Polyester film for simultaneous forming and transfer printing
JP2009214489A (en) Method of manufacturing laminated biaxially stretched polyester film
JP2010018649A (en) Shaped film formed of crystalline resin
JP5074215B2 (en) Biaxially oriented laminated film
JP2012066586A (en) Polyester film for molding simultaneous transfer
JP2005008740A (en) Biaxially oriented polyester film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130416

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130812