JP2012140498A - Biaxially oriented polyester film for concurrent deep drawing and transfer - Google Patents

Biaxially oriented polyester film for concurrent deep drawing and transfer Download PDF

Info

Publication number
JP2012140498A
JP2012140498A JP2010292489A JP2010292489A JP2012140498A JP 2012140498 A JP2012140498 A JP 2012140498A JP 2010292489 A JP2010292489 A JP 2010292489A JP 2010292489 A JP2010292489 A JP 2010292489A JP 2012140498 A JP2012140498 A JP 2012140498A
Authority
JP
Japan
Prior art keywords
film
polyester
deep drawing
transfer
polyester film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010292489A
Other languages
Japanese (ja)
Inventor
Hiromochi Nishikawa
博以 西河
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Plastics Inc
Original Assignee
Mitsubishi Plastics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Plastics Inc filed Critical Mitsubishi Plastics Inc
Priority to JP2010292489A priority Critical patent/JP2012140498A/en
Publication of JP2012140498A publication Critical patent/JP2012140498A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a biaxially oriented polyester film for concurrent deep drawing and transfer, which is used for decorating the surface of a resin molding having a curved and slightly complicate shape, such as electric appliances and car parts, to a matte tone having little gloss unevenness, and is excellent in deep drawing.SOLUTION: The biaxially oriented polyester film for concurrent deep drawing and transfer includes a copolymerized polyester containing an isophthalic acid unit, wherein the average value of longitudinal and lateral elongations at break of the film in a tensile test at 100°C is ≥250%, and the average roughness (Ra) of the film surface is in the range of 0.10 to 0.50 μm.

Description

本発明は、電気製品や自動車部品などの曲面のある、やや形状が複雑な樹脂成型品の表面をマット調に装飾するために用いられる成型同時加飾シートの基材フィルムとして好適な深絞り成型同時転写用二軸延伸ポリエステルフィルムに関する。   The present invention is a deep drawing molding suitable as a base film for a simultaneous molding decorative sheet used to decorate the surface of a resin molded product having a curved surface, such as an electric product or an automobile part, with a slightly complicated shape. The present invention relates to a biaxially stretched polyester film for simultaneous transfer.

電化製品等の曲面を有するプラスチック成型品の加飾方法の一つとして、成型と同時に転写印刷を施す、いわゆるインモールド成型法が広く利用されている。インモールド成型法とは、あらかじめ離型層、インキ層、接着層等からなる印刷層を基材フィルムの上に積層させた転写シートを作成し、プラスチックの射出成型時の熱と圧力を利用して転写印刷する方法である。   As one method for decorating plastic molded products having curved surfaces such as electrical appliances, a so-called in-mold molding method in which transfer printing is performed simultaneously with molding is widely used. The in-mold molding method uses a heat and pressure during plastic injection molding to create a transfer sheet in which a printing layer consisting of a release layer, an ink layer, an adhesive layer, etc. is laminated on the base film in advance. Transfer printing.

基材フィルムの離型層と接する面は、マット調の外観を成型品に転写させるため、表面に微細な凹凸を有することが通常行われる。基材フィルムの表面に微細な凹凸を付ける方法は、エンボス加工や微細粒子を含有した塗布液をコートする方法があるが、基材フィルムの製造工程が増える問題がある。   The surface of the base film in contact with the release layer usually has fine irregularities on the surface in order to transfer the matte appearance to the molded product. As a method for providing fine irregularities on the surface of the base film, there are a method of embossing and coating a coating liquid containing fine particles, but there is a problem that the manufacturing process of the base film increases.

また、ポリエステルフィルム製造時に粒子を比較的大量に添加して表面を粗面化したフィルムが特許文献1に開示されているが、成型品の光沢度が十分に低いとはいえない。   Moreover, although the film which added the particle | grain relatively large at the time of polyester film manufacture and the surface was roughened is disclosed by patent document 1, it cannot be said that the glossiness of a molded article is low enough.

一方、フィルム表面粗さを大きくするためにフィルム中の粒子濃度を上げると、フィルムが成型同時転写加工時に破れる問題が発生する。   On the other hand, if the particle concentration in the film is increased in order to increase the film surface roughness, there arises a problem that the film is broken at the time of molding simultaneous transfer processing.

また、特許文献2によれば共押出積層構成の表層に粒子を添加した深絞り用に好適なポリエステルフィルムが提案されているが、成型品の平坦部と曲面部で光沢性が変わる問題がある。また表層と中間層の粒子濃度の差が大きい場合には転写後にフィルムを除去する工程でフィルムの表層と中間層の界面で剥離するという問題がある。   Further, according to Patent Document 2, a polyester film suitable for deep drawing in which particles are added to the surface layer of a co-extrusion laminated structure is proposed, but there is a problem that glossiness changes between a flat portion and a curved portion of a molded product. . Further, when the difference in particle concentration between the surface layer and the intermediate layer is large, there is a problem that the film is peeled off at the interface between the surface layer and the intermediate layer in the step of removing the film after transfer.

特開2007−268708号公報JP 2007-268708 A 特開2008−163275号公報JP 2008-163275 A

本発明は、上記実状に鑑みなされたものであり、その解決課題は、電気製品や自動車部品などの曲面のあるやや形状が複雑な樹脂成型品の表面を光沢ムラの少ないマット調に装飾するために用いる深絞り成型性に優れた成型同時転写用二軸延伸ポリエテルフィルムを提供することにある。   SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned actual situation, and its solution is to decorate the surface of a resin molded product having a curved surface and a slightly complicated shape such as an electric product or an automobile part in a matte tone with less gloss unevenness. Another object of the present invention is to provide a biaxially stretched polyester film for simultaneous molding and transfer that is excellent in deep drawing moldability.

本発明者は、上記課題に鑑み鋭意検討した結果、特定の構成を有するフィルムによれば、上記課題を容易に解決できることを見いだし、本発明を完成するに至った。   As a result of intensive studies in view of the above problems, the present inventor has found that the above problems can be easily solved by a film having a specific configuration, and has completed the present invention.

すなわち、本発明の要旨は、イソフタル酸単位を含む共重合ポリエステルからなるフィルムであり、100℃での引張試験における破断時伸び率のフィルム縦横の平均値が250%以上であり、フィルム表面の平均粗さ(Ra)が0.10〜0.50μmの範囲であることを特徴とする深絞り成型同時転写用二軸延伸ポリエテルフィルムに存する。   That is, the gist of the present invention is a film made of a copolyester containing an isophthalic acid unit, and the average value of the film length and width of the elongation at break in a tensile test at 100 ° C. is 250% or more. It exists in the biaxially-stretched polyether film for deep drawing simultaneous transfer characterized by the roughness (Ra) being in the range of 0.10 to 0.50 μm.

本発明によれば、電気製品や自動車部品などの曲面のあるやや形状が複雑な樹脂成型品の表面を光沢ムラの少ないマット調に装飾するために用いる深絞り成型性に優れた成型同時転写用二軸延伸ポリエテルフィルムを提供することができ、本発明の工業的価値は高い。   According to the present invention, for molding simultaneous transfer excellent in deep drawability, which is used to decorate the surface of a resin molded product having a curved surface and a slightly complicated shape such as an electric product or an automobile part in a matte tone with less gloss unevenness. A biaxially stretched polyether film can be provided, and the industrial value of the present invention is high.

本発明に用いるポリエステルは、イソフタル酸単位を通常5〜25モル%濃度、好ましくは7〜22モル%濃度、さらに好ましくは10〜20モル%含む共重合ポリエステルからなる。イソフタル酸単位を5〜25モル%濃度含む共重合ポリエステルとは、テレフタル酸またはナフタレン−2,6−ジカルボン酸等のような芳香族ジカルボン酸とイソフタル酸5〜25モル%濃度混合物とエチレングリコール、ジエチレングリコールまたはテトラメチレングリコールを縮重合してできたポリエステルである。イソフタル酸単位が5モル%濃度以下では、フィルムの伸び率が小さくなる傾向がある。一方、25モル%濃度を超えると、フィルムの成型同時転写加工時のフィルム収縮が大きくなり成型加工困難となることがある。または収縮率を小さくするために熱処理温度を上げるとフィルムが製膜時に破れるおそれもある。   The polyester used in the present invention consists of a copolyester containing an isophthalic acid unit usually in a concentration of 5 to 25 mol%, preferably 7 to 22 mol%, more preferably 10 to 20 mol%. A copolymer polyester containing 5 to 25 mol% of isophthalic acid unit is a mixture of an aromatic dicarboxylic acid such as terephthalic acid or naphthalene-2,6-dicarboxylic acid and 5 to 25 mol% of isophthalic acid, ethylene glycol, It is a polyester made by condensation polymerization of diethylene glycol or tetramethylene glycol. When the isophthalic acid unit is 5 mol% or less, the film elongation tends to be small. On the other hand, if the concentration exceeds 25 mol%, film shrinkage during simultaneous film transfer processing of the film may increase, making it difficult to perform the forming process. Alternatively, if the heat treatment temperature is raised in order to reduce the shrinkage rate, the film may be broken during film formation.

重合触媒としては、三酸化アンチモン、五酸化アンチモン等のアンチモン化合物やゲルマニウム化合物やチタン化合物があげられる。チタン化合物では、例えばテトラアルキルチタネート、テトラアリールチタネート、シュウ酸チタニル塩類、シュウ酸チタニル、チタンを含むキレート化合物、チタンのテトラカルボキシレート等であり、具体的にはテトラエチルチタネート、テトラプロピルチタネート、テトラフェニルチタネートまたはこれらの部分加水分解物、シュウ酸チタニルアンモニウム、シュウ酸チタニルカリウム、チタントリアセチルアセトネート等が挙げられる。   Examples of the polymerization catalyst include antimony compounds such as antimony trioxide and antimony pentoxide, germanium compounds, and titanium compounds. Titanium compounds include, for example, tetraalkyl titanates, tetraaryl titanates, titanyl oxalate salts, titanyl oxalate, chelate compounds containing titanium, titanium tetracarboxylates, and specifically tetraethyl titanate, tetrapropyl titanate, tetraphenyl Examples thereof include titanate or a partial hydrolyzate thereof, titanyl ammonium oxalate, potassium titanyl oxalate, titanium triacetylacetonate and the like.

また、本発明のポリエステル系フィルムは無機粒子、有機塩粒子や架橋高分子粒子を添加することが好ましい。   The polyester film of the present invention preferably contains inorganic particles, organic salt particles, and crosslinked polymer particles.

用いる無機粒子としては、炭酸カルシウム、カオリン、タルク、炭酸マグネシウム、炭酸バリウム、硫酸カルシウム、硫酸バリウム、リン酸リチウム、リン酸カルシウム、リン酸マグネシウム、酸化アルミニウム、酸化ケイ素、酸化チタン、酸化ジルコニウム、フッ化リチウム等が挙げられる。   Inorganic particles used include calcium carbonate, kaolin, talc, magnesium carbonate, barium carbonate, calcium sulfate, barium sulfate, lithium phosphate, calcium phosphate, magnesium phosphate, aluminum oxide, silicon oxide, titanium oxide, zirconium oxide, lithium fluoride. Etc.

用いる有機塩粒子としては、蓚酸カルシウムやカルシウム、バリウム、亜鉛、マンガン、マグネシウム等のテレフタル酸塩等が挙げられる。   Examples of the organic salt particles to be used include calcium oxalate, terephthalate such as calcium, barium, zinc, manganese and magnesium.

架橋高分子粒子としては、ジビニルベンゼン、スチレン、アクリル酸、メタクリル酸、アクリル酸またはメタクリル酸のビニル系モノマーの単独または共重合体が挙げられる。その他ポリテトラフルオロエチレン、ベンゾグアナミン樹脂、熱硬化エポキシ樹脂、不飽和ポリエステル樹脂、熱硬化性尿素樹脂、熱硬化性フェノール樹脂などの有機粒子を用いてもよい。   Examples of the crosslinked polymer particles include homopolymers or copolymers of vinyl monomers of divinylbenzene, styrene, acrylic acid, methacrylic acid, acrylic acid or methacrylic acid. In addition, organic particles such as polytetrafluoroethylene, benzoguanamine resin, thermosetting epoxy resin, unsaturated polyester resin, thermosetting urea resin, and thermosetting phenol resin may be used.

一方、使用する粒子の形状に関しても特に限定されるわけではなく、球状、塊状、棒状、扁平状等のいずれを用いてもよい。また、その硬度、比重、色等についても特に制限はない。これら一連の粒子は、必要に応じて2種類以上を併用してもよい。   On the other hand, the shape of the particles to be used is not particularly limited, and any of a spherical shape, a block shape, a rod shape, a flat shape, and the like may be used. Moreover, there is no restriction | limiting in particular also about the hardness, specific gravity, a color. These series of particles may be used in combination of two or more as required.

また、本発明において用いる粒子の平均粒径は、通常3〜8μmが好ましい。平均粒径が3μm未満の場合には、表面への突起形成能が不十分な場合があり本発明の目的には合致せず、一方、8μmを超える場合には、フィルムを延伸する際に破断等が多発し、安定的に製品を採取することができない。   The average particle size of the particles used in the present invention is usually preferably 3 to 8 μm. If the average particle size is less than 3 μm, the ability to form protrusions on the surface may be insufficient, which does not meet the object of the present invention. On the other hand, if the average particle size exceeds 8 μm, the film breaks when stretched. Etc. occur frequently and products cannot be collected stably.

さらに、ポリエステル中の粒子含有量は、通常0.1〜5重量%、好ましくは0.2〜3重量%の範囲である。粒子含有量が0.1重量%未満の場合には、フィルム上の突起数が十分でなくいため、低光沢のある成型品の外観のきめが粗くなる傾向があり、一方、5重量%を超えて添加する場合には、フィルムを延伸する際に破断等が起きやすくなる傾向があり、安定的に製品を採取することができない場合がある。また深絞り成型をする際に破れが発生してしまうおそれがある。   Furthermore, the particle content in the polyester is usually 0.1 to 5% by weight, preferably 0.2 to 3% by weight. When the particle content is less than 0.1% by weight, the number of protrusions on the film is not sufficient, and the appearance of the molded product with low gloss tends to be rough, whereas it exceeds 5% by weight. When the film is added, there is a tendency that breakage or the like tends to occur when the film is stretched, and the product may not be collected stably. In addition, there is a risk of tearing during deep drawing.

本発明のポリエステルフィルムの平均粗さRaは0.10〜0.50μmの範囲であることが必要である。Raが0.10μm未満では、成型品の低光沢感が不十分であり、低光沢感に優れたフィルムを得るという本発明の目的を達成することができない。また、Raを0.50μmより大きくするためには、粗大粒子を大量に配合する必要があり、フィルムを延伸する際に破断等が多発し、安定的に製品を採取することができない。   The average roughness Ra of the polyester film of the present invention needs to be in the range of 0.10 to 0.50 μm. If Ra is less than 0.10 μm, the low glossiness of the molded product is insufficient, and the object of the present invention to obtain a film excellent in low glossiness cannot be achieved. Moreover, in order to make Ra larger than 0.50 μm, it is necessary to mix a large amount of coarse particles. When the film is stretched, breakage and the like occur frequently, and the product cannot be collected stably.

ポリエステル中に粒子を添加する方法としては、特に限定されるものではなく、従来公知の方法を採用しうる。例えば、ポリエステルを製造する任意の段階において添加することができるが、好ましくはエステル化の段階、もしくはエステル交換反応終了後、重縮合反応を進めてもよい。また、ベント付き混練押出機を用い、エチレングリコールまたは水などに分散させた粒子のスラリーとポリエステル原料とをブレンドする方法、または、混練押出機を用い、乾燥させた粒子とポリエステル原料とをブレンドする方法などによって行われる。   The method for adding particles to the polyester is not particularly limited, and a conventionally known method can be adopted. For example, it can be added at any stage for producing the polyester, but the polycondensation reaction may proceed preferably after the esterification stage or after the transesterification reaction. Also, a method of blending a slurry of particles dispersed in ethylene glycol or water with a vented kneading extruder and a polyester raw material, or a blending of dried particles and a polyester raw material using a kneading extruder. It is done by methods.

なお、本発明におけるポリエステルフィルム中には、上述の粒子以外に必要に応じて従来公知の酸化防止剤、熱安定剤、潤滑剤、帯電防止剤、蛍光増白剤、染料、顔料等を添加することができる。また用途によっては、紫外線吸収剤特にベンゾオキサジノン系紫外線吸収剤等を含有させてもよい。   In addition to the above-mentioned particles, conventionally known antioxidants, heat stabilizers, lubricants, antistatic agents, fluorescent brighteners, dyes, pigments, and the like are added to the polyester film in the present invention as necessary. be able to. Depending on the application, an ultraviolet absorber, particularly a benzoxazinone-based ultraviolet absorber, may be contained.

本発明のポリエステルフィルムは表面オリゴマーを抑止する方法として、オリゴマー含有量の少ないポリエステル原料を用いることができる。このような原料は、通常の溶融重縮合反応で得たポリエステルのチップを減圧下あるいは不活性ガスの流通下で180℃から240℃にて 1時間から20時間程度保つという固相重合によって得ることができる。この原料のみまたはこの原料と通常の原料を混合して単層のポリエステルフィルムを製膜してもよく、また2層以上の多層構成とし、転写層と反対側の表面層にのみこの原料を用いてもよい。多層構成の場合、内層と外層の成分が大きく異なる場合は、成型時に両層の界面で剥離が発生してしまうことがあるため、注意が必要である。   The polyester film of this invention can use the polyester raw material with little oligomer content as a method of suppressing a surface oligomer. Such a raw material is obtained by solid-state polymerization in which a polyester chip obtained by a usual melt polycondensation reaction is kept at 180 ° C. to 240 ° C. for about 1 hour to 20 hours under reduced pressure or under the flow of an inert gas. Can do. A single-layer polyester film may be formed by mixing only this raw material or this raw material and a normal raw material, or a multilayer structure of two or more layers, and this raw material is used only for the surface layer opposite to the transfer layer. May be. In the case of a multilayer structure, if the components of the inner layer and the outer layer are significantly different, care must be taken because peeling may occur at the interface between the two layers during molding.

本発明の転写箔用ポリエステルフィルムの総厚みは、本発明の転写箔用ポリエステルフィルムが使用される用途に応じ適宜選択されるため特に限定されないが、機械的強度、ハンドリング性および生産性などの点から、好ましくは12〜100μmである。   The total thickness of the polyester film for transfer foil of the present invention is not particularly limited because it is appropriately selected depending on the use for which the polyester film for transfer foil of the present invention is used, but it has points such as mechanical strength, handling properties and productivity. Therefore, it is preferably 12 to 100 μm.

本発明において、耐熱性、成型加工性、寸法安定性の観点から、示差走査熱量計で測定される融解ピーク温度Tmが190〜230℃であることが好ましく、好ましくは200〜220℃である。Tmが190℃未満である場合は、耐熱性、寸法安定性に劣るため、印刷工程でシワが発生したり、成型加工後のフィルム表面が膨れ上がったりするため、絵柄模様の意匠性が損ねられる等の問題が発生することがある。一方、Tmが230℃を超える場合は、成型性、生産性が悪くなる傾向があり、深絞り用途では使用できないことがある。   In the present invention, from the viewpoint of heat resistance, molding processability, and dimensional stability, the melting peak temperature Tm measured with a differential scanning calorimeter is preferably 190 to 230 ° C, and preferably 200 to 220 ° C. When Tm is less than 190 ° C., heat resistance and dimensional stability are inferior, and thus wrinkles are generated in the printing process, and the film surface after molding is swollen, so that the design of the design pattern is impaired. Problems may occur. On the other hand, when Tm exceeds 230 ° C., moldability and productivity tend to be deteriorated and may not be used in deep drawing applications.

本発明のフィルムは、高温における成型性の観点から、100℃での引張試験における破断時伸び率のフィルム縦横の平均値が250%以上であることが必要である。伸び率が250%を下回る場合、金型の形状変化が大きい部分でフィルムが破れてしまう。なお、100℃における引張り試験を採用した根拠は、一般的な成型温度が100℃以上であることと、結晶化が進行せず安定して測定できる温度の双方を満たすことにある。   From the viewpoint of moldability at a high temperature, the film of the present invention needs to have an average value of 250% or more of the elongation and elongation at break in a tensile test at 100 ° C. When the elongation is less than 250%, the film is torn at a portion where the shape change of the mold is large. In addition, the grounds for adopting the tensile test at 100 ° C. are that the general molding temperature is 100 ° C. or higher and the temperature that can be measured stably without progressing crystallization.

一般に本発明のように表面粗さの大きなサンプルでは破断時伸び率が低下することが知られている。破断時伸び率を250%以上と高くするためには、破断の起因物となる粒子の周辺にできるボイドを低減することが有効である。ボイドは粒子を含む樹脂を延伸することによってできることが知られているが、融点に近い温度で熱処理をすることにより低減することができる。熱処理温度が高い部分で弛緩をすることもボイドの低減には有効である。また、積層フィルムの各層の成分が大きく異なる場合、その界面がきっかけで破断しやすくなることもある。   In general, it is known that the elongation at break is reduced in a sample having a large surface roughness as in the present invention. In order to increase the elongation at break to 250% or more, it is effective to reduce voids formed around the particles that cause breakage. It is known that voids can be formed by stretching a resin containing particles, but can be reduced by heat treatment at a temperature close to the melting point. Relaxing at a portion where the heat treatment temperature is high is also effective in reducing voids. Moreover, when the component of each layer of a laminated film differs greatly, the interface may become easy to fracture | rupture.

本発明においては、フィルム表面に、必要に応じて離型層、帯電防止層、易接着層等の塗布層が設けられたり、化学処理や放電処理が施されたりしても構わない。塗布層を設ける場合は、インラインコーティングにより設けられるのが好ましい。インラインコーティングは、ポリステルフイルム製造の工程内で塗布を行う方法であり、具体的には、ポリエステルを溶融押出ししてから二軸延伸後熱固定して巻き上げるまでの任意の段階で塗布を行う方法である。通常は、溶融・急冷して得られる実質的に非晶状態の未延伸シート、その後に長手方向(縦方向)に延伸された一軸延伸フィルム、熱固定前の二軸延伸フィルムの何れかに塗布する。これらの中では、一軸延伸フィルムに塗布した後に横方向に延伸する方法が優れている。かかる方法によれば、製膜と塗布乾燥を同時に行うことができるために製造コスト上のメリットがあり、塗布後に延伸を行うために薄膜塗布が容易であり、塗布後に施される熱処理が他の方法では達成されない高温であるために塗膜とポリエステルフィルムが強固に密着する。   In the present invention, a coating layer such as a release layer, an antistatic layer, and an easy adhesion layer may be provided on the film surface as necessary, or chemical treatment or discharge treatment may be performed. When providing a coating layer, it is preferable to provide by an in-line coating. In-line coating is a method of coating within the process of producing a polyester film. Specifically, it is a method of coating at any stage from melt-extrusion of polyester to biaxial stretching, heat setting and winding. is there. Usually applied to either a substantially amorphous unstretched sheet obtained by melting and quenching, a uniaxially stretched film stretched in the longitudinal direction (longitudinal direction), or a biaxially stretched film before heat setting. To do. In these, the method of extending | stretching to a horizontal direction after apply | coating to a uniaxially stretched film is excellent. According to such a method, since film formation and coating / drying can be performed at the same time, there is a merit in manufacturing cost, and it is easy to apply a thin film to perform stretching after coating. Since the high temperature is not achieved by the method, the coating film and the polyester film are firmly adhered.

以下、本発明を実施例によりさらに詳細に説明するが、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to a following example, unless the summary is exceeded.

(1)融解ピーク温度(Tm)
ティーエーイインスツルメント社製の示差走査熱良計「MDSC2920型」を使用し、ポリエステル樹脂約5mgを0℃から300℃まで20℃/分の速度で昇温させた際に得られる融解に伴う吸熱ピークの温度をTmとした。
(1) Melting peak temperature (Tm)
Accompanied by melting obtained when a temperature difference of about 5 mg of polyester resin is raised from 0 ° C. to 300 ° C. at a rate of 20 ° C./minute using a differential scanning calorimeter “MDSC 2920 type” manufactured by TA Instruments The temperature of the endothermic peak was Tm.

(2)100℃破断時伸び率
(株)島津製作所AG−Iを用いて、温度100℃に調節された槽内において、縦方向と横方向に採取したチャック間距離50mm、幅15mmの試料フィルムを200mm/分の速度で引張り、それぞれN=3回測定し平均値を試料の破断伸度とする。流れ方向が分かるサンプルについては流れ方向及びその直交方向の値の平均値を採用し、流れ方向が不明なサンプルについては任意の方向とその直交方向の平均値を採用することにする。
(2) Elongation at break at 100 ° C. Sample film having a distance between chucks of 50 mm and a width of 15 mm taken in the vertical and horizontal directions in a tank adjusted to a temperature of 100 ° C. using Shimadzu Corporation AG-I Is pulled at a speed of 200 mm / min, each N = 3 times, and the average value is taken as the elongation at break of the sample. For samples whose flow direction is known, the average value of the flow direction and its orthogonal direction is adopted, and for samples whose flow direction is unknown, an arbitrary direction and its average value of its orthogonal direction are adopted.

(3)表面粗さ(Ra)
中心線平均粗さRa(nm)をもって表面粗さとする。(株)小坂研究所社製表面粗さ測定機(SE−3F)を用いて次のようにして求めた。すなわち、フィルム断面曲線からその中心線の方向に基準長さL(2.5mm)の部分を抜き取り、この抜き取り部分の中心線をx軸、縦倍率の方向をy軸として粗さ曲線 y=f(x)で表したとき、次の式で与えられた値を〔nm〕で表す。中心線平均粗さは、試料フィルム表面から10本の断面曲線を求め、これらの断面曲線から求めた抜き取り部分の中心線平均粗さの平均値で表した。なお、触針の先端半径は2μm、荷重は30mgとし、カットオフ値は0.08mmとした。
Ra=(1/L)∫ |f(x)|dx
(3) Surface roughness (Ra)
The center line average roughness Ra (nm) is defined as the surface roughness. It calculated | required as follows using the Kosaka Laboratory Co., Ltd. surface roughness measuring machine (SE-3F). That is, a portion having a reference length L (2.5 mm) is extracted from the film cross-section curve in the direction of the center line, the center line of the extracted portion is the x axis, and the direction of the vertical magnification is the y axis. When represented by (x), the value given by the following equation is represented by [nm]. The centerline average roughness was expressed as an average value of the centerline average roughness of the extracted portion obtained from 10 cross-sectional curves obtained from the sample film surface. The tip radius of the stylus was 2 μm, the load was 30 mg, and the cutoff value was 0.08 mm.
Ra = (1 / L) ∫ 0 L | f (x) | dx

(4)耐熱性
ポリエステルフィルムに離型層、印刷層および接着層を形成し、縦35cm、横25cm、最大深さ3.0cmの金型を用い、IRヒーターで予備加熱後、金型内部に真空または圧空成型法により予備成型を実施した。予備加熱によるフィルムの融解状況より、下記基準で耐熱性の評価を行った。
○:加工温度に耐久でき、予備成型に対応できる
△:予備成型に対応できるが、稀にフィルム軟化による膨張が発生する
×:フィルム融解による穴開きあるいはフィルム軟化による膨張が頻繁に発生
(4) Heat resistance A release layer, a printing layer, and an adhesive layer are formed on a polyester film. A mold having a length of 35 cm, a width of 25 cm, and a maximum depth of 3.0 cm is used, preheated with an IR heater, and then inside the mold. Preliminary molding was performed by vacuum or pneumatic molding. The heat resistance was evaluated according to the following criteria based on the state of melting of the film by preheating.
○: Can withstand processing temperatures and can be used for preforming. △: Can be used for preforming, but rarely expands due to film softening. ×: Frequent expansion due to film melting or softening occurs.

(5)成型性
上記(4)の方法にて予備成型を実施した際、成型によるフィルムの破断の頻度により、下記基準で成型性の評価を行った。
○:フィルム破断、クラック発生等がなく、均一な厚さで成型される
△:フィルム破断はしないが、局所的にフィルムが極めて薄い部分が存在する
×:フィルムが頻発に破断する
(5) Formability When preforming was performed by the method of (4) above, the formability was evaluated according to the following criteria based on the frequency of film breakage caused by the molding.
○: There is no film breakage, crack generation, etc., and the film is molded with a uniform thickness. Δ: The film is not broken, but there is a local area where the film is extremely thin. X: The film breaks frequently.

(6)転写成型品の低光沢感
上記(4)にて得られたフィルムの底面部分において日本電色(株)社製 グロスメーター VG−107型を用いて、JIS Z−8741の方法に準じて光沢度を測定した。入射角,反射角60度における黒色標準板の反射率を基準に試料の反射率を求め光沢度とし、以下の基準にて判定した。
◎:0以上20未満
○:20以上50未満
△:50以上70未満
×:70以上
(6) Low gloss feeling of transfer molded product In accordance with the method of JIS Z-8741, using Nippon Denshoku Co., Ltd. Grosmeter VG-107 type at the bottom of the film obtained in (4) above. The glossiness was measured. The reflectance of the sample was obtained based on the reflectance of the black standard plate at an incident angle and a reflection angle of 60 degrees, and the gloss was determined.
◎: 0 or more and less than 20 ○: 20 or more and less than 50

(7)界面剥離
上記(2)の手法で引張試験をした後の破断片において以下の基準で判定した。
○:フィルムの表層と内層の間で剥離が起こっていない。
×:フィルムの表層と内層の間で剥離が起こっている。
(7) Interfacial delamination The fractured pieces after the tensile test by the method (2) were determined according to the following criteria.
○: No peeling occurred between the surface layer and the inner layer of the film.
X: Peeling occurs between the surface layer and the inner layer of the film.

次に実施例に使用するポリエステル原料について説明する。
<ポリエステル1>
ジカルボン酸成分としてテレフタル酸、多価アルコール成分としてエチレングリコールを使用し、定法の溶融重合法にて極限粘度が0.66dl/gとする滑剤粒径を含有しないポリエステルチップを製造した。
Next, the polyester raw material used for an Example is demonstrated.
<Polyester 1>
Using terephthalic acid as the dicarboxylic acid component and ethylene glycol as the polyhydric alcohol component, a polyester chip containing no lubricant particle size and having an intrinsic viscosity of 0.66 dl / g by a conventional melt polymerization method was produced.

<ポリエステル2>
ジカルボン酸成分としてテレフタル酸、多価アルコール成分としてエチレングリコールを使用し、定法の溶融重合法にて極限粘度が0.66dl/gとし平均粒径4.5μmのメタクリル酸アルキル−スチレン共重合体による有機粒子を10部含有させたポリエステルチップを製造した。
<Polyester 2>
By using terephthalic acid as the dicarboxylic acid component and ethylene glycol as the polyhydric alcohol component, and using an alkyl methacrylate-styrene copolymer having an intrinsic viscosity of 0.66 dl / g and an average particle size of 4.5 μm by a conventional melt polymerization method. A polyester chip containing 10 parts of organic particles was produced.

<ポリエステル3>
ジカルボン酸成分としてテレフタル酸、多価アルコール成分としてエチレングリコールを使用し、定法の溶融重合法にて極限粘度が0.66dl/gとし平均粒径2.5μmの非晶質シリカを0.60部含有してポリエステルチップを製造した。
<Polyester 3>
Using terephthalic acid as the dicarboxylic acid component and ethylene glycol as the polyhydric alcohol component, 0.60 part of amorphous silica having an intrinsic viscosity of 0.66 dl / g and an average particle diameter of 2.5 μm by a conventional melt polymerization method A polyester chip was produced.

<ポリエステル4>
ジカルボン酸成分としてイソフタル酸およびテレフタル酸、多価アルコール成分としてエチレングリコールをそれぞれ使用し、常法の溶融重縮合法で重合した原料チップを製造した。この原料のジカルボン酸成分中のイソフタル酸含量は22モル%であった。
<Polyester 4>
Using diphthalic acid components as isophthalic acid and terephthalic acid, and polyhydric alcohol components as ethylene glycol, raw material chips polymerized by a conventional melt polycondensation method were produced. The isophthalic acid content in the dicarboxylic acid component of this raw material was 22 mol%.

<ポリエステル5>
ポリエステル4を製造する過程において平均粒径4.5μmのメタクリル酸アルキル−スチレン共重合体による有機粒子を10部含有させたポリエステルチップを製造した。
<Polyester 5>
In the process of producing polyester 4, a polyester chip containing 10 parts of organic particles of an alkyl methacrylate-styrene copolymer having an average particle size of 4.5 μm was produced.

実施例1:
ポリエステル4とポリエステル2を84:16の重量比率で配合し、押出機にて溶融させて、単層ダイに供給しフィルム状に押出して、35℃の冷却ドラム上にキャストして急冷固化した未延伸フィルムを作製した。次いで80℃の加熱ロールで予熱した後、赤外線加熱ヒーターと加熱ロールを併用して95℃のロール間で縦方向に3.2倍延伸した後にフィルム端部をクリップで把持してテンター内に導き、110℃の温度で加熱しつつ横方向に4.2倍延伸し、195℃で10秒間の熱処理をおこなうと同時に幅方向に10%弛緩を施して厚み50μmのポリエステルフィルムを得た。得られたフィルムの特性は下記表1に示すとおりであった。この結果より、若干熱膨れ現象が観察されるものの、成型性、低光沢感に優れ界面剥離も発生しない結果が得られた。
Example 1:
Polyester 4 and polyester 2 were blended at a weight ratio of 84:16, melted in an extruder, supplied to a single-layer die, extruded into a film, cast on a cooling drum at 35 ° C. and rapidly cooled and solidified. A stretched film was prepared. Next, after preheating with a heating roll at 80 ° C., the film is stretched 3.2 times in the vertical direction between 95 ° C. rolls using an infrared heating heater and a heating roll, and then the film edge is held by a clip and guided into a tenter. While being heated at a temperature of 110 ° C., the film was stretched 4.2 times in the transverse direction, subjected to heat treatment at 195 ° C. for 10 seconds, and simultaneously relaxed by 10% in the width direction to obtain a polyester film having a thickness of 50 μm. The characteristics of the obtained film were as shown in Table 1 below. From this result, although a slight blistering phenomenon was observed, the result was excellent in moldability and low gloss, and no interfacial peeling occurred.

実施例2:
実施例1において、195℃で10秒間の熱処理をおこなった後に170℃で幅方向に10%弛緩を施した以外は実施例1と同様にして厚み50μmのポリエステルフィルムを得た。実施例1と比較して若干成型性に劣るものの使用上問題がない結果が得られた。
Example 2:
In Example 1, a polyester film having a thickness of 50 μm was obtained in the same manner as in Example 1 except that heat treatment was performed at 195 ° C. for 10 seconds and then 10% relaxation was performed at 170 ° C. in the width direction. Although the moldability was slightly inferior to that of Example 1, a result with no problem in use was obtained.

実施例3:
実施例1において、ポリエステル原料の比率をポリエステル4:ポリエステル2:ポリエステル5=60:20:20にした以外は実施例1と同様にして厚み50μmのポリエステルフィルムを得た。
Example 3:
A polyester film having a thickness of 50 μm was obtained in the same manner as in Example 1 except that the ratio of the polyester raw material in Example 1 was changed to Polyester 4: Polyester 2: Polyester 5 = 60: 20: 20.

実施例4:
実施例2において、ポリエステル原料の比率をポリエステル4:ポリエステル2=95:5にした以外は実施例2と同様にして厚み50μmのポリエステルフィルムを得た。
Example 4:
In Example 2, a polyester film having a thickness of 50 μm was obtained in the same manner as in Example 2 except that the ratio of the polyester raw material was changed to polyester 4: polyester 2 = 95: 5.

比較例1:
実施例2において、ポリエステル原料の比率をポリエステル4:ポリエステル2:ポリエステル5=60:20:20にした以外は実施例2と同様にして厚み50μmのポリエステルフィルムを得た。得られたフィルムは成型性に劣り、深絞り成型用フィルムとしての実用に耐えないものであった。
Comparative Example 1:
In Example 2, a polyester film having a thickness of 50 μm was obtained in the same manner as in Example 2 except that the ratio of the polyester raw material was polyester 4: polyester 2: polyester 5 = 60: 20: 20. The obtained film was inferior in moldability and could not withstand practical use as a deep drawing film.

比較例2:
実施例1において、ポリエステル原料の比率をポリエステル4:ポリエステル2:ポリエステル5=40:40:20にした以外は実施例1と同様にして厚み50μmのポリエステルフィルムを得た。得られたフィルムは成型性に劣り、深絞り成型用フィルムとしての実用に耐えないものであった。
Comparative Example 2:
A polyester film having a thickness of 50 μm was obtained in the same manner as in Example 1 except that the ratio of the polyester raw material in Example 1 was changed to Polyester 4: Polyester 2: Polyester 5 = 40: 40: 20. The obtained film was inferior in moldability and could not withstand practical use as a deep drawing film.

比較例3:
実施例2において、ポリエステル原料の比率をポリエステル4:ポリエステル3=90:10にした以外は実施例2と同様にして厚み50μmのポリエステルフィルムを得た。得られたフィルムは低光沢感に劣るものであった。
Comparative Example 3:
In Example 2, a polyester film having a thickness of 50 μm was obtained in the same manner as in Example 2 except that the ratio of the polyester raw material was changed to polyester 4: polyester 3 = 90: 10. The resulting film was inferior in low gloss.

比較例4:
ポリエステル4とポリエステル2を80:20の重合比率で配合し、押出機にて溶融させたものを多層ダイの表層(A層)、ポリエステル4とポリエステル1を80:20の重合比率で配合したものを多層ダイの内層(B)層とした多層ダイに供給し、フィルム状に押出して35℃の冷却ドラム上にキャストして急冷固化し未延伸フィルムを作製した。次いで80℃の加熱ロールで予熱した後、赤外線加熱ヒーターと加熱ロールを併用して85℃のロール間で縦方向に3.0倍延伸した後、フィルム端部をクリップで把持してテンター内に導き、100℃の温度で加熱しつつ横方向に3.5倍延伸し、195℃で10秒間の熱処理を施した後、170℃で幅方向に3%弛緩して厚み50μmの多層フィルムからなるポリエステルフィルムを得た。得られたフィルムの各層の厚みはA/B/A=5/40/5μmであった。得られたフィルムは成型性に劣り、また層間剥離も観察された。
Comparative Example 4:
Polyester 4 and polyester 2 blended at a polymerization ratio of 80:20 and melted with an extruder, surface layer of multilayer die (A layer), polyester 4 and polyester 1 blended at a polymerization ratio of 80:20 Was supplied to a multilayer die as an inner layer (B) layer of the multilayer die, extruded into a film, cast on a cooling drum at 35 ° C., and rapidly cooled and solidified to produce an unstretched film. Next, after preheating with an 80 ° C. heating roll, using an infrared heater and a heating roll in combination, the film is stretched 3.0 times in the vertical direction between 85 ° C. rolls, and then the film edge is held with a clip and placed in the tenter. The film is stretched 3.5 times in the transverse direction while being heated at a temperature of 100 ° C., subjected to heat treatment at 195 ° C. for 10 seconds, relaxed 3% in the width direction at 170 ° C., and formed of a multilayer film having a thickness of 50 μm. A polyester film was obtained. The thickness of each layer of the obtained film was A / B / A = 5/40/5 μm. The obtained film was inferior in moldability, and delamination was also observed.

Figure 2012140498
Figure 2012140498

Figure 2012140498
Figure 2012140498

本発明のフィルムは、例えば、電気製品や自動車部品などの曲面のある、やや形状が複雑な樹脂成型品の表面をマット調に装飾するために用いられる成型同時加飾シートの基材フィルムとして好適に利用することができる。   The film of the present invention is suitable, for example, as a base film for a molded simultaneous decorating sheet used for decorating the surface of a resin molded product having a curved surface, such as an electric product or an automobile part, with a slightly complicated shape. Can be used.

Claims (1)

イソフタル酸単位を含む共重合ポリエステルからなるフィルムであり、100℃での引張試験における破断時伸び率のフィルム縦横の平均値が250%以上であり、フィルム表面の平均粗さ(Ra)が0.10〜0.50μmの範囲であることを特徴とする深絞り成型同時転写用二軸延伸ポリエテルフィルム。 It is a film made of a copolyester containing an isophthalic acid unit, and the average value of the film longitudinal and horizontal elongation at break in a tensile test at 100 ° C. is 250% or more, and the average roughness (Ra) of the film surface is 0.00. A biaxially stretched polyether film for simultaneous deep drawing molding transfer, characterized in that it is in the range of 10 to 0.50 μm.
JP2010292489A 2010-12-28 2010-12-28 Biaxially oriented polyester film for concurrent deep drawing and transfer Pending JP2012140498A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010292489A JP2012140498A (en) 2010-12-28 2010-12-28 Biaxially oriented polyester film for concurrent deep drawing and transfer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010292489A JP2012140498A (en) 2010-12-28 2010-12-28 Biaxially oriented polyester film for concurrent deep drawing and transfer

Publications (1)

Publication Number Publication Date
JP2012140498A true JP2012140498A (en) 2012-07-26

Family

ID=46677117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010292489A Pending JP2012140498A (en) 2010-12-28 2010-12-28 Biaxially oriented polyester film for concurrent deep drawing and transfer

Country Status (1)

Country Link
JP (1) JP2012140498A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016006448A1 (en) * 2014-07-07 2016-01-14 東レ株式会社 Molding film and molding transfer foil using same
JP2016043594A (en) * 2014-08-25 2016-04-04 東レ株式会社 Biaxially oriented polyester film for mold release
JP2017179334A (en) * 2016-03-25 2017-10-05 ユニチカ株式会社 Polyester film

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006281732A (en) * 2005-04-05 2006-10-19 Teijin Dupont Films Japan Ltd Polyester film for in-mold molding
JP2008163275A (en) * 2007-01-04 2008-07-17 Mitsubishi Plastics Ind Ltd Polyester film for simultaneous forming and transfer printing
JP2008162220A (en) * 2006-12-31 2008-07-17 Mitsubishi Plastics Ind Ltd Polyester film for molding simultaneous transfer
JP2008279705A (en) * 2007-05-14 2008-11-20 Mitsubishi Plastics Ind Ltd Polyester film for deep drawing and simultaneously transferred foil
JP2009079170A (en) * 2007-09-27 2009-04-16 Toray Ind Inc Polyester film for in-mold transfer foil
JP2010150308A (en) * 2008-12-24 2010-07-08 Mitsubishi Plastics Inc Polyester film for in-mold transfer foil
JP2010194905A (en) * 2009-02-26 2010-09-09 Mitsubishi Plastics Inc Mold release film
JP2010201857A (en) * 2009-03-05 2010-09-16 Mitsubishi Plastics Inc Biaxially-oriented polyester film for molding simultaneous transfer
JP2010201858A (en) * 2009-03-05 2010-09-16 Mitsubishi Plastics Inc Biaxially-oriented polyester film for molding simultaneous transfer
JP2010253678A (en) * 2009-04-21 2010-11-11 Mitsubishi Plastics Inc Polyester film for in-mold transfer

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006281732A (en) * 2005-04-05 2006-10-19 Teijin Dupont Films Japan Ltd Polyester film for in-mold molding
JP2008162220A (en) * 2006-12-31 2008-07-17 Mitsubishi Plastics Ind Ltd Polyester film for molding simultaneous transfer
JP2008163275A (en) * 2007-01-04 2008-07-17 Mitsubishi Plastics Ind Ltd Polyester film for simultaneous forming and transfer printing
JP2008279705A (en) * 2007-05-14 2008-11-20 Mitsubishi Plastics Ind Ltd Polyester film for deep drawing and simultaneously transferred foil
JP2009079170A (en) * 2007-09-27 2009-04-16 Toray Ind Inc Polyester film for in-mold transfer foil
JP2010150308A (en) * 2008-12-24 2010-07-08 Mitsubishi Plastics Inc Polyester film for in-mold transfer foil
JP2010194905A (en) * 2009-02-26 2010-09-09 Mitsubishi Plastics Inc Mold release film
JP2010201857A (en) * 2009-03-05 2010-09-16 Mitsubishi Plastics Inc Biaxially-oriented polyester film for molding simultaneous transfer
JP2010201858A (en) * 2009-03-05 2010-09-16 Mitsubishi Plastics Inc Biaxially-oriented polyester film for molding simultaneous transfer
JP2010253678A (en) * 2009-04-21 2010-11-11 Mitsubishi Plastics Inc Polyester film for in-mold transfer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016006448A1 (en) * 2014-07-07 2016-01-14 東レ株式会社 Molding film and molding transfer foil using same
JPWO2016006448A1 (en) * 2014-07-07 2017-04-27 東レ株式会社 Molding film and molding transfer foil using the same
US10479133B2 (en) 2014-07-07 2019-11-19 Toray Industries, Inc. Molding film and molding transfer foil using same
JP2016043594A (en) * 2014-08-25 2016-04-04 東レ株式会社 Biaxially oriented polyester film for mold release
JP2017179334A (en) * 2016-03-25 2017-10-05 ユニチカ株式会社 Polyester film

Similar Documents

Publication Publication Date Title
JP4839012B2 (en) Polyester film for in-mold molding
JP5127296B2 (en) Polyester film for deep drawing molding simultaneous transfer foil
JP5674227B2 (en) Polyester film for in-mold transfer
JP5234690B2 (en) Polyester film for simultaneous transfer of molding
JP2006297853A (en) Film for use in molding
JP2010201857A (en) Biaxially-oriented polyester film for molding simultaneous transfer
JP2008162220A (en) Polyester film for molding simultaneous transfer
JP2010065065A (en) Polyester film for molding
JP4583699B2 (en) Polyester film, polyester film for molding, and molded member using the same
JP3038843B2 (en) Matte laminated polyester film for molding
JP5404521B2 (en) Biaxially stretched polyester film for deep drawing simultaneous transfer
JP2012140498A (en) Biaxially oriented polyester film for concurrent deep drawing and transfer
JP6154626B2 (en) Softening polyester film
JP2007039515A (en) Biaxially oriented polyester film
JP5127295B2 (en) Polyester film for molded simultaneous transfer foil
JP5147470B2 (en) Laminated biaxially stretched polyester film
JP2002347109A (en) Biaxially stretched polyester film for molding process and manufacturing method therefor
JP2010260275A (en) Laminated polyester film for in-mold transfer foil
JP5225828B2 (en) Polyester film for in-mold transfer foil
JP2008163275A (en) Polyester film for simultaneous forming and transfer printing
JP2010253678A (en) Polyester film for in-mold transfer
JP2007182509A (en) Biaxially stretched polyester film for molding transfer
JP5331272B2 (en) Polyester film for in-mold transfer foil
JP2001354843A (en) Biaxially stretched polyester film for molding
JP2012066586A (en) Polyester film for molding simultaneous transfer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140902

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150106