JP2012040962A - 車両用動力伝達装置の制御装置 - Google Patents

車両用動力伝達装置の制御装置 Download PDF

Info

Publication number
JP2012040962A
JP2012040962A JP2010184461A JP2010184461A JP2012040962A JP 2012040962 A JP2012040962 A JP 2012040962A JP 2010184461 A JP2010184461 A JP 2010184461A JP 2010184461 A JP2010184461 A JP 2010184461A JP 2012040962 A JP2012040962 A JP 2012040962A
Authority
JP
Japan
Prior art keywords
engine
vehicle
gear
power transmission
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010184461A
Other languages
English (en)
Inventor
Tatsuya Imamura
達也 今村
Toru Matsubara
亨 松原
Koichi Okuda
弘一 奥田
Kenta Kumazaki
健太 熊▲崎▼
Atsushi Tabata
淳 田端
Keita Imai
恵太 今井
Haruya Kato
春哉 加藤
Yasuhiro Hiasa
康博 日浅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2010184461A priority Critical patent/JP2012040962A/ja
Publication of JP2012040962A publication Critical patent/JP2012040962A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

【課題】悪路走行における走破性を十分に確保できる車両用動力伝達装置の制御装置を提供する。
【解決手段】悪路走行時制御手段98は、車両6が悪路走行を行うと悪路走行判断手段92によって判断された場合には、悪路走行判断手段92によって車両6が悪路走行を行うと判断されない場合よりも動力伝達装置10の動力伝達効率η1を低下させるように自動変速部20の変速段を選択する前記悪路走行時変速制御を実行する。従って、車両6の悪路走行時には、エンジントルクTの増大が蓄電装置56の充電制限により制限されるという状況が生じ難くなるので、十分な大きさのエンジントルクTが得られ、車両6の悪路走行における走破性を十分に確保できる。
【選択図】図6

Description

本発明は、車両の走行状況に応じた車両用動力伝達装置の制御に関するものである。
エンジンと駆動輪との間の動力伝達経路の一部を構成し第1電動機が制御されることにより差動状態が制御される差動機構と、前記駆動輪に動力伝達可能に連結された第2電動機とを備えた車両用動力伝達装置の制御装置が、従来からよく知られている。例えば、特許文献1に開示された車両用動力伝達装置の制御装置がそれである。この特許文献1の車両用動力伝達装置の制御装置は、ナビゲーションシステムからの情報を基に車両が登坂路に差し掛かり且つ例えば渋滞等により停車することが予測される場合には蓄電装置の充電残量の目標値を低下させ、それにより予め蓄電装置の充電残量を低下させておく。これにより、エンジントルクを一時的に大きくする必要が生じた場合に蓄電装置の充電制限によってそのエンジントルクの増大が制限されると事態が発生し難くなる。
特開2009−220788号公報 特開2007−186005号公報 特開2010−111135号公報
ところで、車両の走行状況としては前記登坂路や渋滞の他に、例えば、悪路走行すなわちオフロード走行なども想定される。その悪路走行においては車両が岩を乗り越えるときなど、一時的に大きな駆動トルクが必要になることが考えられる。そのような場合にはエンジントルクを一時的に増大することになるが、エンジントルクの増大に伴い蓄電装置への充電電力も増大するので、蓄電装置の充電残量によってはその蓄電装置の充電制限によりエンジントルクの増大が制限されることがある。そこで、前記特許文献1で提案されていることを参考にして、悪路走行時には、平坦地の走行時と比較して蓄電装置の充電残量を低下させるということが考えられる。しかしながら、上記特許文献1には、その充電残量を低下させる方法として、エンジンではなく第2電動機の出力でできるだけ走行して蓄電装置からの放電量を増やすこと等の記載はあるものの、上記充電残量を低下させる効率的な方法が具体的に開示されていなかった。なお、このような課題は未公知である。
本発明は、以上の事情を背景として為されたものであり、その目的とするところは、悪路走行における走破性を十分に確保できる車両用動力伝達装置の制御装置を提供することにある。
前記目的を達成するための本発明の要旨とするところは、(a)エンジンと駆動輪との間の動力伝達経路の一部を構成し第1電動機が制御されることにより差動状態が制御される差動機構と、前記動力伝達経路の一部を構成する自動変速部と、前記駆動輪に動力伝達可能に連結された第2電動機と、前記第1電動機およびその第2電動機のそれぞれと相互に電力授受可能な蓄電装置とを、備えた車両用動力伝達装置の制御装置であって、(b)車両が悪路走行を行うと判断した場合には、その車両が悪路走行を行うと判断しない場合よりもその車両用動力伝達装置の動力伝達効率を低下させるように前記自動変速部の変速比を選択(変更)する悪路走行時変速制御を実行することにある。
このようにすれば、車両の悪路走行時には、エンジントルクの増大が蓄電装置の充電制限により制限されるという状況が生じ難くなるので、十分な大きさのエンジントルクが得られ、車両の悪路走行における走破性を十分に確保できる。
ここで、好適には、前記悪路走行時変速制御では、前記自動変速部の変速比を変化させると共に、前記第1電動機及び前記第2電動機の何れか一方または両方の効率を低下させることで前記動力伝達効率を低下させる。このようにすれば、前記蓄電装置の充電残量低下を更に促すことになり、エンジントルクの増大が蓄電装置の充電制限により制限されるという状況が生じ難くなる。
また、好適には、前記蓄電装置の充電残量が予め設定された充電残量判定値を超えている場合に、前記悪路走行時変速制御を実行する。このようにすれば、前記蓄電装置の充電残量が比較的高い場合に上記悪路走行時変速制御が実行されることになるので、上記蓄電装置の充電残量に基づいて、エンジントルクの増大が蓄電装置の充電制限により制限され易いと考えられる状況において、上記悪路走行時変速制御の実行によって効果的に蓄電装置の充電残量低下を促すことが可能である。
本発明が適用される車両用動力伝達装置を説明するための実施例1の骨子図である。 図1の車両用動力伝達装置に備えられた自動変速部の変速作動とそれに用いられる油圧式摩擦係合装置の作動の組み合わせとの関係を説明するための作動図表である。 図1の車両用動力伝達装置における各ギヤ段の相対回転速度を説明するための共線図である。 図1の車両用動力伝達装置を制御するための電子制御装置の入出力信号を説明するための図である。 図1の車両用動力伝達装置における、シフトレバーを備えた複数種類のシフトポジションを選択するために操作されるシフト操作装置の一例である。 図4の電子制御装置に備えられた制御機能の要部を説明するための機能ブロック線図である。 図1の車両用動力伝達装置において、自動変速部の変速判断の基となる予め記憶された変速線図の一例と、エンジン走行とモータ走行とを切り換える為の予め記憶された駆動力源切換線図の一例とを示す図であって、それぞれの関係を示す図でもある。 図4の電子制御装置によって車両の悪路走行時に実行される充電残量目標値低下制御を説明するための図である。 図4の電子制御装置によって実行される電動機効率低下制御によって差動部の差動状態がどのように変化するかを例示した差動部の共線図である。 図1の車両用動力伝達装置の総合変速比と動力伝達効率との関係を自動変速部の各変速段ごとに示した図である。 図1の車両用動力伝達装置の被駆動状態おけるモータリング制御を説明するための差動部の共線図である。 図1の車両用動力伝達装置の駆動状態おけるモータリング制御を説明するための差動部の共線図である。 図4の電子制御装置の制御作動の要部、すなわち、悪路走行時に蓄電装置の充電残量を低下させる制御作動を説明するためのフローチャートである。 本発明が適用される車両用動力伝達装置を説明するための実施例2の骨子図であり、図1に相当する図である。 本発明が適用される車両用動力伝達装置を説明するための実施例3の骨子図であり、図1に相当する図である。
以下、本発明の実施例を図面を参照しつつ詳細に説明する。
図1は、本発明が適用される車両用動力伝達装置10(以下、「動力伝達装置10」と表す)を説明するための骨子図であり、この動力伝達装置10はハイブリッド車両に好適に用いられる。図1において、動力伝達装置10は車体に取り付けられる非回転部材としてのトランスミッションケース12(以下、「ケース12」と表す)内において共通の軸心上に配設された入力軸14と、この入力軸14に直接に或いは図示しない脈動吸収ダンパー(振動減衰装置)などを介して間接に連結された無段変速部としての差動部11と、その差動部11と駆動輪34F,34R(図6参照。以下、特に区別しない場合には単に「駆動輪34」という)との間の動力伝達経路で伝達部材18を介して直列に連結されている動力伝達部としての自動変速部20と、この自動変速部20に連結されている出力軸22とを直列に備えている。この動力伝達装置10は、本実施例の車両6(図6参照)は4輪駆動車両であるが例えば車両において縦置きされるFR(フロントエンジン・リヤドライブ)型車両にも好適に用いられるものであり、入力軸14に直接に或いは図示しない脈動吸収ダンパーを介して直接的に連結された走行用の動力源として例えばガソリンエンジンやディーゼルエンジン等の内燃機関であるエンジン8と駆動輪34との間に設けられて、エンジン8からの動力を動力伝達経路の一部を構成する差動歯車装置(終減速機)32F,32R(図6参照。以下、特に区別しない場合には単に「差動歯車装置32」という)及び車軸等を順次介して前後それぞれ一対の駆動輪34へ伝達する。なお、図6の符号34Fは前輪を示し、符号34Rは後輪を示す。また、符号32Fは前輪用の差動歯車装置であるフロント差動歯車装置を示し、符号32Rは後輪用の差動歯車装置であるリヤ差動歯車装置を示す。
このように、本実施例の動力伝達装置10においてはエンジン8と差動部11とは直結されている。この直結にはトルクコンバータやフルードカップリング等の流体式伝動装置を介することなく連結されているということであり、例えば上記脈動吸収ダンパーなどを介する連結はこの直結に含まれる。尚、動力伝達装置10はその軸心に対して対称的に構成されているため、図1の骨子図においてはその下側が省略されている。
また、本実施例の車両6は4WD型車両であり、自動変速部20の出力軸22と駆動輪34(後輪34Rおよび前輪34F)との間の動力伝達経路に前後輪動力分配装置であるトランスファ36を備えている。具体的に、トランスファ36は出力軸22と差動歯車装置32F,32Rとの間に介装されている。トランスファ36は、前輪34F及び後輪34Rに出力軸22からの動力を伝達する4輪駆動状態と、前輪34Fと出力軸22との間の動力伝達を遮断する一方で出力軸22からの動力を後輪34Rに伝達する2輪駆動状態との選択的に切り換えられる。また、トランスファ36は、上記2輪駆動状態では例えば大小(ロー・ハイ)2段の変速段を切換え可能であり、副変速部として機能する。上記4輪駆動状態ではロー側の変速段が選択される。トランスファ36における上記4輪駆動状態または2輪駆動状態の切換え、及び、トランスファ36のロー(Lo)又はハイ(HI)の変速段切換えは、電子制御装置80によって油圧制御回路70の電磁弁が切り換えられることにより行われる。
差動部11は、動力分配機構16と、動力分配機構16に動力伝達可能に連結されて動力分配機構16の差動状態を制御するための差動用電動機として機能する第1電動機M1と、伝達部材18と一体的に回転するように動力伝達可能に連結されている第2電動機M2とを備える電気式差動部である。なお、伝達部材18は差動部11の出力回転部材であるが自動変速部20の入力回転部材にも相当するものである。
第1電動機M1及び第2電動機M2(以下、電動機M1,M2を特に区別しないときは電動機Mと表す)は、電気エネルギから機械的な駆動力を発生させる発動機としての機能及び機械的な駆動力から電気エネルギを発生させる発電機としての機能を有する所謂モータジェネレータである。換言すれば、動力伝達装置10において、電動機Mは主動力源であるエンジン8の代替として、或いはそのエンジン8と共に走行用の駆動力を発生させる動力源(副動力源)として機能し得る。また、他の動力源により発生させられた駆動力から回生により電気エネルギを発生させ、インバータ54(図6参照)を介して他の電動機Mに供給したり、その電気エネルギを蓄電装置56(図6参照)に充電する等の作動を行う。
第1電動機M1は、反力を発生させるためのジェネレータ(発電)機能を少なくとも備える。また、第2電動機M2は、駆動輪34に動力伝達可能に連結されており、走行用の第2駆動力源として駆動力を出力する走行用電動機として機能するためモータ(電動機)機能を少なくとも備える。また、好適には、第1電動機M1及び第2電動機M2は、何れもその発電機としての発電量を連続的に変更可能に構成されたものである。また、第1電動機M1及び第2電動機M2は、動力伝達装置10の筐体であるケース12内に備えられ、動力伝達装置10の作動流体である自動変速部20の作動油により冷却される。
動力分配機構16は、エンジン8と自動変速部20との間に連結された差動機構であって、例えば「0.416」程度の所定のギヤ比ρ0を有するシングルピニオン型の差動部遊星歯車装置24を主体として構成されており、入力軸14に入力されたエンジン8の出力を機械的に分配する機械的機構である。この差動部遊星歯車装置24は、差動部サンギヤS0、差動部遊星歯車P0、その差動部遊星歯車P0を自転及び公転可能に支持する差動部キャリヤCA0、差動部遊星歯車P0を介して差動部サンギヤS0と噛み合う差動部リングギヤR0を回転要素(要素)として備えている。なお、差動部サンギヤS0の歯数をZS0、差動部リングギヤR0の歯数をZR0とすると、上記ギヤ比ρ0はZS0/ZR0である。
この動力分配機構16においては、差動部キャリヤCA0は入力軸14すなわちエンジン8に連結され、差動部サンギヤS0は第1電動機M1に連結され、差動部リングギヤR0は伝達部材18に連結されている。このように構成された動力分配機構16は、差動部遊星歯車装置24の3要素である差動部サンギヤS0、差動部キャリヤCA0、差動部リングギヤR0がそれぞれ相互に相対回転可能とされて差動作用が作動可能なすなわち差動作用が働く差動可能状態(差動状態)とされることから、エンジン8の出力が第1電動機M1と伝達部材18とに分配されると共に、分配されたエンジン8の出力の一部で第1電動機M1から発生させられた電気エネルギで蓄電されたり第2電動機M2が回転駆動されるので、差動部11(動力分配機構16)は電気的な差動装置として機能させられて例えば差動部11は所謂無段変速状態(電気的CVT状態)とされて、エンジン8の所定回転に拘わらず伝達部材18の回転が連続的に変化させられる。すなわち、動力分配機構16が差動状態とされると差動部11も差動状態とされ、差動部11はその変速比γ0(入力軸14の回転速度NIN/伝達部材18の回転速度N18)が最小値γ0minから最大値γ0maxまで連続的に変化させられる電気的な無段変速機として機能する無段変速状態とされる。このように動力分配機構16が差動状態とされると、動力分配機構16(差動部11)に動力伝達可能に連結された第1電動機M1及び第2電動機M2の一方又は両方の運転状態(動作点)が制御されることにより、動力分配機構16の差動状態、すなわち入力軸14の回転速度と伝達部材18の回転速度の差動状態が制御される。なお、本実施例では、図1から判るように、入力軸14の回転速度NIN(以下、「入力軸回転速度NIN」という)は、エンジン回転速度Nと同一回転速度である。
自動変速部20は、シングルピニオン型の第1遊星歯車装置26及びシングルピニオン型の第2遊星歯車装置28を備えており、エンジン8と駆動輪34との間の動力伝達経路の一部を構成し、機械的に複数の変速比γATが段階的に設定される有段の自動変速機として機能する遊星歯車式の多段変速機である。換言すれば、自動変速部20は、相互に異なる変速比γATを有して予め機械的に設定された複数の変速段(1st〜4th)の中で一の変速段が他の変速段に切り換えられることにより変速される。また、図1に示すように第2電動機M2は伝達部材18に連結されているので、自動変速部20は、第2電動機M2と駆動輪34との間の動力伝達経路の一部を構成する自動変速機であると言える。第1遊星歯車装置26は、第1サンギヤS1、第1遊星歯車P1、その第1遊星歯車P1を自転及び公転可能に支持する第1キャリヤCA1、第1遊星歯車P1を介して第1サンギヤS1と噛み合う第1リングギヤR1を備えており、例えば「0.488」程度の所定のギヤ比ρ1を有している。第2遊星歯車装置28は、第2サンギヤS2、第2遊星歯車P2、その第2遊星歯車P2を自転及び公転可能に支持する第2キャリヤCA2、第2遊星歯車P2を介して第2サンギヤS2と噛み合う第2リングギヤR2を備えており、例えば「0.455」程度の所定のギヤ比ρ2を有している。第1サンギヤS1の歯数をZS1、第1リングギヤR1の歯数をZR1、第2サンギヤS2の歯数をZS2、第2リングギヤR2の歯数をZR2とすると、上記ギヤ比ρ1はZS1/ZR1、上記ギヤ比ρ2はZS2/ZR2である。
自動変速部20では、第1サンギヤS1は第3クラッチC3を介して伝達部材18に連結されると共に第1ブレーキB1を介してケース12に選択的に連結され、第1キャリヤCA1と第2リングギヤR2とが一体的に連結されて第2クラッチC2を介して伝達部材18に連結されると共に第2ブレーキB2を介してケース12に選択的に連結され、第1リングギヤR1と第2キャリヤCA2とが一体的に連結されて出力軸22に連結され、第2サンギヤS2が第1クラッチC1を介して伝達部材18に選択的に連結されている。更に第1キャリヤCA1と第2リングギヤR2とは一方向クラッチF1を介して非回転部材であるケース12に連結されてエンジン8と同方向の回転が許容され逆方向の回転が禁止されている。これにより、第1キャリヤCA1及び第2リングギヤR2は、逆回転不能な回転部材として機能する。
以上のように構成された自動変速部20は、解放側係合装置(解放側係合要素)が解放されると共に係合側係合装置(係合側係合要素)が係合されることにより変速される。つまり、自動変速部20では、係合要素の掴み替えによるクラッチツゥクラッチ変速が実行されて複数のギヤ段(変速段)が選択的に成立させられることにより、略等比的に変化する変速比γAT(=伝達部材18の回転速度N18/出力軸22の回転速度NOUT)が各ギヤ段毎に得られる。その変速比γATは略等比的に変化する設定であるので、見方を変えれば、自動変速部20の相互に隣合う変速段間での変速比γATの差(ギヤ比ステップ)は、その変速段が低車速側であるほど大きくなるように設定されていると言える。例えば、図2の係合作動表に示されるように、第1クラッチC1の係合及び一方向クラッチF1により変速比が「3.20」程度となる第1速ギヤ段が成立させられ、第1クラッチC1及び第1ブレーキB1の係合により変速比が「1.72」程度となる第2速ギヤ速段が成立させられ、第1クラッチC1及び第2クラッチC2の係合により変速比が「1.00」程度となる第3速ギヤ段が成立させられ、第2クラッチC2及び第1ブレーキB1の係合により変速比が「0.67」程度となる第4速ギヤ段が成立させられ、第3クラッチC3及び第2ブレーキB2の係合により変速比が「2.04」程度となる後進ギヤ段が成立させられる。また、第1クラッチC1、第2クラッチC2、第3クラッチC3、第1ブレーキB1、及び第2ブレーキB2の解放によりニュートラル「N」状態とされる。また、第1速ギヤ段のエンジンブレーキの際には、第2ブレーキB2が係合させられる。
このように、自動変速部20内の動力伝達経路は、第1クラッチC1、第2クラッチC2、第3クラッチC3、第1ブレーキB1、及び第2ブレーキB2の係合と解放との作動の組合せにより、その動力伝達経路の動力伝達を可能とする動力伝達可能状態と、動力伝達を遮断する動力伝達遮断状態との間で切り換えられる。つまり、第1速ギヤ段乃至第4速ギヤ段及び後進ギヤ段の何れかが成立させられることで上記動力伝達経路が動力伝達可能状態とされ、何れのギヤ段も成立させられないことで例えばニュートラル「N」状態が成立させられることで上記動力伝達経路が動力伝達遮断状態とされる。
自動変速部20に設けられた前記第1クラッチC1、第2クラッチC2、第3クラッチC3、第1ブレーキB1、及び第2ブレーキB2(以下、特に区別しない場合はクラッチC、ブレーキBと表す)は、従来の車両用自動変速機においてよく用いられている係合要素としての油圧式摩擦係合装置であって、互いに重ねられた複数枚の摩擦板が油圧アクチュエータにより押圧される湿式多板型や、回転するドラムの外周面に巻き付けられた1本又は2本のバンドの一端が油圧アクチュエータによって引き締められるバンドブレーキなどにより構成され、それが介挿されている両側の部材を選択的に連結するためのものである。
以上のように構成された動力伝達装置10において、無段変速機として機能する差動部11と自動変速部20とで全体として無段変速機が構成される。また、差動部11の変速比を一定となるように制御することにより、差動部11と自動変速部20とで有段変速機と同等の状態を構成することが可能とされる。
具体的には、差動部11が無段変速機として機能し、且つ差動部11に直列の自動変速部20が有段変速機として機能することにより、自動変速部20の少なくとも1つの変速段Mに対して自動変速部20に入力される回転速度NATIN(以下、「AT入力回転速度NATIN」という)すなわち伝達部材18の回転速度(以下、「伝達部材回転速度N18」という)が無段的に変化させられてその変速段Mにおいて無段的な変速比幅が得られる。したがって、動力伝達装置10の総合変速比γT(=入力軸回転速度NIN/出力軸22の回転速度NOUT)が無段階に得られ、動力伝達装置10において無段変速機が構成される。この動力伝達装置10の総合変速比γTは、差動部11の変速比γ0と自動変速部20の変速比γATとに基づいて形成される動力伝達装置10全体としてのトータル変速比γTである。例えば、図2の係合作動表に示される自動変速部20の第1速ギヤ段乃至第4速ギヤ段や後進ギヤ段の各ギヤ段に対し伝達部材回転速度N18が無段的に変化させられて各ギヤ段は無段的な変速比幅が得られる。したがって、その各ギヤ段の間が無段的に連続変化可能な変速比となって、動力伝達装置10全体としてのトータル変速比γTが無段階に得られる。
また、差動部11の変速比が一定となるように制御され、且つクラッチC及びブレーキBが選択的に係合作動させられて第1速ギヤ段乃至第4速ギヤ段のいずれか或いは後進ギヤ段(後進変速段)が選択的に成立させられることにより、略等比的に変化する動力伝達装置10のトータル変速比γTが各ギヤ段毎に得られる。したがって、動力伝達装置10において有段変速機と同等の状態が構成される。
図3は、無段変速部或いは第1変速部として機能する差動部11と有段変速部或いは第2変速部として機能する自動変速部20とから構成される動力伝達装置10において、ギヤ段毎に連結状態が異なる各回転要素の回転速度の相対関係を直線上で表すことができる共線図を示している。この図3の共線図は、各遊星歯車装置24、26、28のギヤ比ρの関係を示す横軸と、相対的回転速度を示す縦軸とから成る二次元座標であり、3本の横線のうちの下側の横線X1が回転速度零を示し、上側の横線X2が回転速度「1.0」すなわち入力軸14に連結されたエンジン8の回転速度N(以下、「エンジン回転速度N」という)を示し、横線XG(X3)が伝達部材18の回転速度N18すなわち差動部11から自動変速部20に入力される後述する第3回転要素RE3の回転速度を示している。
また、差動部11を構成する動力分配機構16の3つの要素に対応する3本の縦線Y1、Y2、Y3は、左側から順に第2回転要素(第2要素)RE2に対応する差動部サンギヤS0、第1回転要素(第1要素)RE1に対応する差動部キャリヤCA0、第3回転要素(第3要素)RE3に対応する差動部リングギヤR0の相対回転速度を示すものであり、それらの間隔は差動部遊星歯車装置24のギヤ比ρ0に応じて定められている。更に、自動変速部20の4本の縦線Y4、Y5、Y6、Y7は、左から順に、第4回転要素(第4要素)RE4に対応する第2サンギヤS2を、第5回転要素RE5(第5要素)に対応する相互に連結された第1リングギヤR1及び第2キャリヤCA2を、第6回転要素(第6要素)RE6に対応する相互に連結された第1キャリヤCA1及び第2リングギヤR2を、第7回転要素(第7要素)RE7に対応する第1サンギヤS1をそれぞれ表し、それらの間隔は第1、第2遊星歯車装置26、28のギヤ比ρ1、ρ2に応じてそれぞれ定められている。共線図の縦軸間の関係においてサンギヤとキャリヤとの間が「1」に対応する間隔とされるとキャリヤとリングギヤとの間が遊星歯車装置のギヤ比ρに対応する間隔とされる。すなわち、差動部11では縦線Y1とY2との縦線間が「1」に対応する間隔に設定され、縦線Y2とY3との間隔はギヤ比ρ0に対応する間隔に設定される。また、自動変速部20では各第1、第2遊星歯車装置26、28毎にそのサンギヤとキャリヤとの間が「1」に対応する間隔に設定され、キャリヤとリングギヤとの間がρに対応する間隔に設定される。
上記図3の共線図を用いて表現すれば、本実施例の動力伝達装置10は、動力分配機構16(差動部11)において、差動部遊星歯車装置24の第1回転要素RE1(差動部キャリヤCA0)が入力軸14すなわちエンジン8に連結され、第2回転要素RE2が第1電動機M1に連結され、第3回転要素(差動部リングギヤR0)RE3が伝達部材18及び第2電動機M2に連結されて、入力軸14の回転を伝達部材18を介して自動変速部20へ伝達する(入力させる)ように構成されている。このとき、Y2とX2の交点を通る斜めの直線L0により差動部サンギヤS0の回転速度と差動部リングギヤR0の回転速度との関係が示される。
例えば、差動部11においては、第1回転要素RE1乃至第3回転要素RE3が相互に相対回転可能とされる差動状態とされており、直線L0と縦線Y3との交点で示される差動部リングギヤR0の回転速度が車速Vに拘束されて略一定である場合には、第1電動機M1の回転速度を制御することによって直線L0と縦線Y1との交点で示される差動部サンギヤS0の回転が上昇或いは下降させられると、直線L0と縦線Y2との交点で示される差動部キャリヤCA0の回転速度すなわちエンジン回転速度Nが上昇或いは下降させられる。また、差動部11の変速比γ0が「1」に固定されるように第1電動機M1の回転速度を制御することによって差動部サンギヤS0の回転がエンジン回転速度Nと同じ回転とされると、直線L0は横線X2と一致させられ、エンジン回転速度Nと同じ回転で差動部リングギヤR0の回転速度すなわち伝達部材18が回転させられる。或いは、差動部11の変速比γ0が「1」より小さい値例えば0.7程度に固定されるように第1電動機M1の回転速度を制御することによって差動部サンギヤS0の回転が零とされると、直線L0は図3に示す状態とされ、エンジン回転速度Nよりも増速されて伝達部材18が回転させられる。
また、自動変速部20において第4回転要素RE4は第1クラッチC1を介して伝達部材18に選択的に連結され、第5回転要素RE5は出力軸22に連結され、第6回転要素RE6は第2クラッチC2を介して伝達部材18に選択的に連結されると共に第2ブレーキB2を介してケース12に選択的に連結され、第7回転要素RE7は第3クラッチC3を介して伝達部材18に選択的に連結されると共に第1ブレーキB1を介してケース12に選択的に連結されている。
自動変速部20では、図3に示すように、第1クラッチC1と第2ブレーキB2とが係合させられることにより、第4回転要素RE4の回転速度を示す縦線Y4と横線X3との交点と第6回転要素RE6の回転速度を示す縦線Y6と横線X1との交点とを通る斜めの直線L1と、出力軸22と連結された第5回転要素RE5の回転速度を示す縦線Y5との交点で第1速(1st)の出力軸22の回転速度が示される。同様に、第1クラッチC1と第1ブレーキB1とが係合させられることにより決まる斜めの直線L2と出力軸22と連結された第5回転要素RE5の回転速度を示す縦線Y5との交点で第2速(2nd)の出力軸22の回転速度が示され、第1クラッチC1と第2クラッチC2とが係合させられることにより決まる水平な直線L3と出力軸22と連結された第5回転要素RE5の回転速度を示す縦線Y5との交点で第3速(3rd)の出力軸22の回転速度が示され、第2クラッチC2と第1ブレーキB1とが係合させられることにより決まる斜めの直線L4と出力軸22と連結された第5回転要素RE5の回転速度を示す縦線Y5との交点で第4速(4th)の出力軸22の回転速度が示される。
図4は、動力伝達装置10の制御装置である電子制御装置80に入力される信号及びその電子制御装置80から出力される信号を例示している。この電子制御装置80は、CPU、ROM、RAM、及び入出力インターフェースなどから成る所謂マイクロコンピュータを含んで構成されており、RAMの一時記憶機能を利用しつつROMに予め記憶されたプログラムに従って信号処理を行うことによりエンジン8や各電動機Mに関するハイブリッド駆動制御、自動変速部20の変速制御等の各種制御を実行するものである。
電子制御装置80には、図4に示すような各センサやスイッチなどから、エンジン8の冷却流体の温度であるエンジン水温TEMPを表す信号、第1ブレーキB1にかかる油圧を表す信号、第2ブレーキB2にかかる油圧を表す信号、第1クラッチC1にかかる油圧を表す信号、第2クラッチC2にかかる油圧を表す信号、第3クラッチC3にかかる油圧を表す信号、レゾルバ等からなるM1回転速度センサ74により検出された第1電動機M1の回転速度NM1(以下、「第1電動機回転速度NM1」と表す)及びその回転方向を表す信号、レゾルバ等からなるM2回転速度センサ76により検出された第2電動機M2の回転速度NM2(以下、「第2電動機回転速度NM2」と表す)及びその回転方向を表す信号、エンジン回転速度Nを表す信号、車両6を用いて重量物を牽引する場合に選択されるトーイング走行モードを指令する信号、Mモード(手動変速走行モード)を指令する信号、エアコンの作動状態を表す信号、出力軸回転速度センサ72により検出された出力軸22の回転速度NOUT(以下、「出力軸回転速度NOUT」と表す)を表す信号、車速センサにより検出された車速V及び車両6の進行方向を表す信号、自動変速部20の作動油温TOILを表す信号、サイドブレーキ操作を表す信号、車輪(駆動輪)34F,34Rにブレーキトルク(制動力)を付与する制動装置としての良く知られたフットブレーキ装置(ホイールブレーキ装置)の作動中(すなわちフットブレーキ操作中)を示すブレーキペダルの操作(オン)BONを表すブレーキ操作信号、車両6のオフロード走行(悪路走行)を行う場合に運転者によりオン状態に切り換えられるオフロードスイッチ77からの信号、アクセル開度センサ78により検出されたアクセルペダルの操作量であるアクセル開度Accを表すアクセル開度信号、運転者がモータ走行を選択するため操作されるEVスイッチからの信号、トランスファ切換レバー53(図5参照)がL2位置へ操作されたことを表す信号、トランスファ切換レバー53がL4位置へ操作されたことを表す信号、トランスファ切換レバー53がH2位置へ操作されたことを表す信号、車両6の加速性を向上させる場合に運転者によって選択されるパワー走行モードを指令する信号、運転者が操作するシフトレバー52のシフトポジションPSHや手動変速走行ポジションである「M」ポジションにおける操作回数等を表す信号、各電動機M1,M2との間でインバータ54を介して充放電を行う蓄電装置56(図6参照)の充電残量(充電状態)SOCを表す信号などが、それぞれ供給される。
また、上記電子制御装置80からは、エンジン8の出力P(単位は例えば「kW」。以下、「エンジン出力P」と表す。)を制御するエンジン出力制御装置58(図6参照)への制御信号例えばエンジン8の吸気管60に備えられた電子スロットル弁62のスロットル弁開度θTHを操作するスロットルアクチュエータ64への駆動信号や燃料噴射装置66による吸気管60或いはエンジン8の筒内への燃料供給量を制御する燃料供給量信号や点火装置68によるエンジン8の点火時期を指令する点火信号、過給圧を調整するための過給圧調整信号、電動エアコンを作動させるための電動エアコン駆動信号、電動機M1、M2の作動を指令する指令信号、トランスファ36を2輪駆動状態または4輪駆動状態に切り換えるための油圧制御信号、トランスファ36の2輪駆動状態においてトランスファ36の変速段をLoまたはHIに切り換えるための油圧制御信号、スノーモードであることを表示させるためのスノーモード表示信号、差動部11や自動変速部20の油圧式摩擦係合装置の油圧アクチュエータを制御するために油圧制御回路70(図6参照)に含まれる電磁弁(ソレノイドバルブ)等を作動させるバルブ指令信号、この油圧制御回路70に設けられたレギュレータバルブ(調圧弁)によりライン油圧を調圧するための信号、そのライン油圧が調圧されるための元圧の油圧源である電動油圧ポンプを作動させるための駆動指令信号、自動変速部20の潤滑圧を調節するために電磁弁を作動させるバルブ指令信号、シフトインジケータを作動させるためのシフトポジション(操作位置)表示信号、Mモードが選択されていることを表示させるMモード表示信号、ギヤ比を表示させるためのギヤ比表示信号、アンチロックブレーキシステムを構成するホイールブレーキ装置を作動させるためのホイールブレーキ作動信号、電動ヒータを駆動するための信号、クルーズコントロール制御用コンピュータへの信号等が、それぞれ出力される。
図5は、複数種類のシフトポジションPSHを人為的操作により切り換える切換装置としてのシフト操作装置50の一例を示す図である。このシフト操作装置50は、例えば運転席の横に配設され、複数種類のシフトポジションPSHを選択するために操作されるシフトレバー52を備えている。
そのシフトレバー52は、動力伝達装置10内つまり自動変速部20内の動力伝達経路が遮断されたニュートラル状態すなわち中立状態とし且つ自動変速部20の出力軸22をロックするための駐車ポジション「P(パーキング)」、後進走行のための後進走行ポジション「R(リバース)」、動力伝達装置10内の動力伝達経路が遮断された中立状態とするための中立ポジション「N(ニュートラル)」、動力伝達装置10の変速可能なトータル変速比γTの変化範囲内で自動変速制御を実行させる前進自動変速走行ポジション「D(ドライブ)」、又は手動変速走行モード(手動モード)を成立させて上記自動変速制御における高速側の変速段を制限する所謂変速レンジを設定するための前進手動変速走行ポジション「M(マニュアル)」へ手動操作されるように設けられている。
上記シフトレバー52の各シフトポジションPSHへの手動操作に連動して図2の係合作動表に示す後進ギヤ段「R」、ニュートラル「N」、前進ギヤ段「D」における各変速段等が成立するように、例えば油圧制御回路70が電気的に切り換えられる。
上記「P」乃至「M」ポジション(レンジ)に示す各シフトポジションPSHにおいて、「P」ポジション及び「N」ポジションは、車両を走行させないときに選択される非走行ポジション(レンジ)であって、自動変速部20内の動力伝達経路が遮断された車両を駆動不能とする動力伝達経路の動力伝達遮断状態への切換えを選択するための非駆動ポジションである。また、「R」ポジション、「D」ポジション及び「M」ポジションは、車両を走行させるときに選択される走行ポジション(レンジ)であって、自動変速部20内の動力伝達経路が連結された車両を駆動可能とする動力伝達経路の動力伝達可能状態への切換えを選択するための駆動ポジションでもある。
具体的には、シフトレバー52が「P」ポジションへ手動操作されることでクラッチCおよびブレーキBのいずれもが解放されて自動変速部20内の動力伝達経路が動力伝達遮断状態とされると共に自動変速部20の出力軸22がロックされ、「N」ポジションへ手動操作されることでクラッチCおよびブレーキBの何れもが解放されて自動変速部20内の動力伝達経路が動力伝達遮断状態とされ、「R」、「D」、及び「M」ポジションのいずれかへ手動操作されることで各ポジションに対応した何れかのギヤ段が成立させられて自動変速部20内の動力伝達経路が動力伝達可能状態とされる。
また、図5に示すように、シフト操作装置50は、車両6の駆動モードを択一的に切り換えるためのトランスファ切換レバー53を備えている。上記車両6の駆動モードには、トランスファ36が2輪駆動状態とされ且つトランスファ36の変速段がHIに切り換えられる高速2輪駆動モードと、トランスファ36が2輪駆動状態とされ且つトランスファ36の変速段がLoに切り換えられる低速2輪駆動モードと、トランスファ36が4輪駆動状態とされ且つトランスファ36の変速段がLoに切り換えられる低速4輪駆動モードとがある。上記トランスファ切換レバー53がH2位置へ操作されると車両6の駆動モードは高速2輪駆動モードに切り換えられ、トランスファ切換レバー53がL2位置へ操作されると車両6の駆動モードは低速2輪駆動モードに切り換えられ、トランスファ切換レバー53がL4位置へ操作されると車両6の駆動モードは低速4輪駆動モードに切り換えられる。
前記シフト操作装置50の近傍にはオフロードスイッチ77が設けられており、そのオフロードスイッチ77は、例えば図5のように回動させられることによりオン状態またはオフ状態に切り換えられるスイッチである。図5に示すオフロードスイッチ77の状態はノーマルを指し示しているのでオフ状態であり、このオフロードスイッチ77はオフロードを指し示す位置にまで回動させられとオン状態に切り換えられる。
図6は、電子制御装置80に備えられた制御機能の要部を説明するための機能ブロック線図である。図6において、電子制御装置80は、有段変速制御部としての有段変速制御手段82と、記憶部としての記憶手段84と、ハイブリッド制御部としてのハイブリッド制御手段86と、悪路走行判断部としての悪路走行判断手段92と、充電目標値変更部としての充電目標値変更手段94と、低車速判断部としての低車速判断手段96とを備えている。また、図6に示すようにハイブリッド制御手段86は、エンジン始動停止制御部としてのエンジン始動停止制御手段88と、悪路走行時制御部としての悪路走行時制御手段98とを備えている。
有段変速制御手段82は、自動変速部20の変速を行う変速制御手段として機能するものである。有段変速制御手段82は、図7に示すような車速Vと自動変速部20の出力トルクTOUT(或いはアクセル開度Acc等)とを変数(軸パラメータ)として記憶手段84に予め記憶されたアップシフト線(実線)及びダウンシフト線(一点鎖線)を有する関係(変速線図、変速マップ)から実際の車速V及びアクセル開度Acc等に対応する自動変速部20の要求出力トルクTOUTで示される車両状態に基づいて、自動変速部20の変速を実行すべきか否かを判断し、すなわち自動変速部20の変速すべき変速段を判断し、その判断した変速段が得られるように自動変速部20の自動変速制御を実行する。前記図7について詳述すると、図7の実線はアップシフトが判断されるための変速線(アップシフト線)であり、一点鎖線はダウンシフトが判断されるための変速線(ダウンシフト線)であり、例えば、そのアップシフト線及びダウンシフト線は車両6の燃費及びドライバビリティを向上させるように実験的に設定されたものである。この図7の変速線図における変速線は、例えば自動変速部20の要求出力トルクTOUT(アクセル開度Acc)を示す横線上において実際の車速Vが線を横切ったか否か、また例えば車速Vを示す縦線上において上記要求出力トルクTOUTが線を横切ったか否か、すなわち変速線上の変速を実行すべき値(変速点)を横切ったか否かを判断するためのものであり、この変速点の連なりとして予め記憶されている。なお、図7は、例えば前記高速2輪駆動モード選択時の変速線図を示しているが、前記低速2輪駆動モード選択時の変速線図も前記低速4輪駆動モード選択時の変速線図も、横軸(車速V)の値が異なる以外は図7と同様である。
有段変速制御手段82は、上記自動変速部20の自動変速制御を実行する場合、例えば,図2に示す係合表に従って変速段が達成されるように、自動変速部20の変速に関与する油圧式摩擦係合装置を係合及び/又は解放させる指令(変速出力指令、油圧指令)を、すなわち自動変速部20の変速に関与する解放側係合装置を解放すると共に係合側係合装置を係合することによりクラッチツゥクラッチ変速を実行させる指令を油圧制御回路70へ出力する。油圧制御回路70は、その指令に従って、例えば解放側係合装置を解放すると共に係合側係合装置を係合して自動変速部20の変速が実行されるように、油圧制御回路70内のリニアソレノイドバルブを作動させてその変速に関与する油圧式摩擦係合装置の油圧アクチュエータを作動させる。
ハイブリッド制御手段86は、エンジン出力制御装置58を介してエンジン8の駆動を制御するエンジン駆動制御手段としての機能と、インバータ54を介して第1電動機M1及び第2電動機M2による駆動力源又は発電機としての作動を制御する電動機作動制御手段としての機能を含んでおり、それら制御機能によりエンジン8、第1電動機M1、及び第2電動機M2によるハイブリッド駆動制御等を実行する。
また、ハイブリッド制御手段86は、エンジン8を効率のよい作動域で作動させる一方で、エンジン8と第2電動機M2との駆動力の配分や第1電動機M1の発電による反力を最適になるように変化させて差動部11の電気的な無段変速機としての変速比γ0を制御する。例えば、そのときの走行車速Vにおいて、運転者の要求駆動力としてのアクセル開度Accや車速Vから車両6の目標(要求)出力を算出し、その車両6の目標出力と充電要求値から必要なトータル目標出力を算出し、そのトータル目標出力が得られるように伝達損失、補機負荷、第2電動機M2のアシストトルク等を考慮して目標エンジン出力(要求エンジン出力)PERを算出し、その目標エンジン出力PERが得られるエンジン回転速度Nとエンジン8の出力トルク(エンジントルク)Tとなるようにエンジン8を制御すると共に各電動機Mの出力乃至発電を制御する。
以上のように、動力伝達装置10全体としての変速比である総合変速比γTは、有段変速制御手段82によって制御される自動変速部20の変速比γATと、ハイブリッド制御手段86によって制御される差動部11の変速比γ0とによって決定される。すなわち、ハイブリッド制御手段86及び有段変速制御手段82は、シフトポジションPSHに対応するシフトレンジの範囲内において、油圧制御回路70、エンジン出力制御装置58、第1電動機M1、及び第2電動機M2等を介して動力伝達装置10全体としての変速比である総合変速比γTを制御する変速制御手段として機能する。
例えば、ハイブリッド制御手段86は、動力性能や燃費向上などのために自動変速部20の変速段を考慮してエンジン8及び各電動機Mの制御を実行する。このようなハイブリッド制御では、エンジン8を効率のよい作動域で作動させるために定まるエンジン回転速度Nと車速V及び自動変速部20の変速段で定まる伝達部材18の回転速度とを整合させるために、差動部11が電気的な無段変速機として機能させられる。すなわち、エンジン回転速度NとエンジントルクTとで構成される二次元座標内において無段変速走行の時に運転性と燃費性とを両立するように予め実験的に求められたエンジン8の動作曲線の一種である例えば最適燃費率曲線(燃費マップ、関係)が、記憶手段84に予め記憶されており、ハイブリッド制御手段86は、上記最適燃費率曲線にエンジン8の動作点(以下、「エンジン動作点」と表す)を沿わせつつエンジン8を作動させるように、例えば目標出力(トータル目標出力、要求駆動力)を充足するために必要なエンジン出力Pを発生するためのエンジントルクTとエンジン回転速度Nとなるように、動力伝達装置10のトータル変速比γTの目標値を定め、その目標値が得られるように第1電動機M1の出力トルクTM1(以下、「第1電動機トルクTM1」と表す)をフィードバック制御により変化させて差動部11の変速比γ0を制御し、トータル変速比γTをその変速可能な変化範囲内で制御する。ここで、上記エンジン動作点とは、エンジン回転速度N及びエンジントルクTなどで例示されるエンジン8の動作状態を示す状態量を座標軸とした二次元座標においてエンジン8の動作状態を示す動作点である。なお、本実施例で例えば、燃費とは単位燃料消費量当たりの走行距離等であり、燃費の向上とはその単位燃料消費量当たりの走行距離が長くなることであり、或いは、車両全体としての燃料消費率(=燃料消費量/駆動輪出力)が小さくなることである。逆に、燃費の低下(悪化)とはその単位燃料消費量当たりの走行距離が短くなることであり、或いは、車両全体としての燃料消費率が大きくなることである。
このとき、ハイブリッド制御手段86は、例えば第1電動機M1により発電された電気エネルギをインバータ54を通して蓄電装置56や第2電動機M2へ供給するので、エンジン8の動力(エンジン出力P)の主要部は機械的に伝達部材18へ伝達されるが、エンジン8の動力の一部は電動機Mの発電のために消費されてそこで電気エネルギに変換され、インバータ54を通してその電気エネルギが他の電動機Mへ供給され、電気エネルギによりその電動機Mから出力される駆動力が伝達部材18へ伝達される。この発電に係る電動機Mによる電気エネルギの発生から駆動に係る電動機Mで消費されるまでに関連する機器により、エンジン8の動力の一部が電気エネルギに変換され、その電気エネルギが機械的エネルギに変換されるまでの電気パスが構成される。要するに、差動部11において、エンジン出力Pは、入力軸14から機械的に伝達部材18へ伝達される機械パスと前記電気パスとの2系統の動力伝達経路を介して、伝達部材18に伝達される。なお、前記蓄電装置56は、インバータ54を介して第1電動機M1および第2電動機M2に電力を供給し且つそれらの電動機M1,M2から電力の供給を受けることが可能な電気エネルギ源であり、要するに、第1電動機M1及び第2電動機M2のそれぞれとの間で電力授受可能な電気エネルギ源である。換言すれば、蓄電装置56は、エンジン8で回転駆動される発電機として機能する第1電動機M1及び第2電動機M2の何れか一方または両方により充電される電気エネルギ源であり、例えば、鉛蓄電池などのバッテリ、又は、キャパシタなどである。また、第1電動機M1及び第2電動機M2はインバータ54を介して相互に電力授受可能となっている。
また、ハイブリッド制御手段86は、車両6の停止中又は走行中に拘わらず、差動部11の電気的CVT機能によって第1電動機回転速度NM1及び/又は第2電動機回転速度NM2を制御してエンジン回転速度Nを略一定に維持したり任意の回転速度に回転制御する。言い換えれば、ハイブリッド制御手段86は、エンジン回転速度Nを略一定に維持したり任意の回転速度に制御しつつ第1電動機回転速度NM1及び/又は第2電動機回転速度NM2を任意の回転速度に回転制御することができる。
例えば、図3の共線図からもわかるようにハイブリッド制御手段86は車両走行中にエンジン回転速度Nを引き上げる場合には、車速V(駆動輪34)に拘束される第2電動機回転速度NM2を略一定に維持しつつ第1電動機回転速度NM1の引き上げを実行する。また、ハイブリッド制御手段86は自動変速部20の変速中にエンジン回転速度Nを略一定に維持する場合には、エンジン回転速度Nを略一定に維持しつつ自動変速部20の変速に伴う第2電動機回転速度NM2の変化とは反対方向に第1電動機回転速度NM1を変化させる。
また、ハイブリッド制御手段86は、スロットル制御のためにスロットルアクチュエータ64により電子スロットル弁62を開閉制御させる他、燃料噴射制御のために燃料噴射装置66による燃料噴射量や噴射時期を制御させ、点火時期制御のためにイグナイタ等の点火装置68による点火時期を制御させる指令を単独で或いは組み合わせてエンジン出力制御装置58に出力して、必要なエンジン出力Pを発生するようにエンジン8の出力制御を実行する。すなわち、エンジン8の駆動を制御するエンジン駆動制御手段として機能する。
例えば、ハイブリッド制御手段86は、基本的には図示しない予め記憶された関係からアクセル開度Accに基づいてスロットルアクチュエータ64を駆動し、アクセル開度Accが増加するほどスロットル弁開度θTHを増加させるようにスロットル制御を実行する。また、エンジン出力制御装置58は、ハイブリッド制御手段86による指令に従って、スロットル制御のためにスロットルアクチュエータ64により電子スロットル弁62を開閉制御する他、燃料噴射制御のために燃料噴射装置66による燃料噴射を制御し、点火時期制御のためにイグナイタ等の点火装置68による点火時期を制御するなどしてエンジントルク制御を実行する。
また、ハイブリッド制御手段86は、エンジン8の停止又はアイドル状態に拘わらず、差動部11の電気的CVT機能(差動作用)によって、例えばエンジン8を用いず第2電動機M2を走行用の駆動力源とするモータ走行(EVモード走行)をさせることができる。例えば、前記図7の実線Aは、車両の発進/走行用(以下、走行用という)の駆動力源をエンジン8と電動機例えば第2電動機M2とで切り換えるための、言い換えればエンジン8を走行用の駆動力源として車両を発進/走行(以下、走行という)させる所謂エンジン走行と第2電動機M2を走行用の駆動力源として車両を走行させる所謂モータ走行とを切り換えるための、エンジン走行領域とモータ走行領域との境界線である。この図7に示すエンジン走行とモータ走行とを切り換えるための境界線(実線A)を有する予め記憶された関係は、車速Vと自動変速部20の出力トルクTOUTとを変数とする二次元座標で構成された駆動力源切換線図(駆動力源マップ)の一例である。この駆動力源切換線図は、例えば同じ図7中の実線及び一点鎖線に示す変速線図(変速マップ)と共に記憶手段84に予め記憶されている。
そして、ハイブリッド制御手段86は、例えば図7の駆動力源切換線図から実際の車速V及び自動変速部20の要求出力トルクTOUTで示される車両状態に基づいて、モータ走行領域とエンジン走行領域との何れであるかを判断してモータ走行或いはエンジン走行を実行する。このように、ハイブリッド制御手段86によるモータ走行は、図7から明らかなように一般的にエンジン効率が高トルク域に比較して悪いとされる比較的低出力トルクTOUT(比較的低アクセル開度Acc)域すなわち低エンジントルクT域、或いは車速Vの比較的低車速時すなわち低負荷域で実行される。
また、ハイブリッド制御手段86は、このモータ走行時には、停止しているエンジン8の引き摺りを抑制して燃費を向上させるために、第1電動機回転速度NM1を負の回転速度で制御して例えば第1電動機M1を無負荷状態とすることにより空転させて、差動部11の電気的CVT機能(差動作用)により必要に応じてエンジン回転速度Nを零乃至略零に維持する。
また、ハイブリッド制御手段86は、エンジン8を走行用の駆動力源とするエンジン走行を行うエンジン走行領域であっても、前述した電気パスによる第1電動機M1からの電気エネルギ及び/又は蓄電装置56からの電気エネルギを第2電動機M2へ供給し、その第2電動機M2を駆動して駆動輪34にトルクを付与することにより、エンジン8の動力を補助するための所謂トルクアシストが可能である。よって、本実施例のエンジン走行にはエンジン8を走行用の駆動力源とする場合と、エンジン8及び第2電動機M2の両方を走行用の駆動力源とする場合とがある。そして、本実施例のモータ走行とはエンジン8を停止して第2電動機M2を走行用の駆動力源とする走行である。
ハイブリッド制御手段86は、エンジン走行とモータ走行とを切り換えるために、エンジン8の作動状態を運転状態と停止状態との間で切り換える、すなわちエンジン8の始動および停止を行うエンジン始動停止制御手段88を備えている。このエンジン始動停止制御手段88は、ハイブリッド制御手段86により例えば図7の駆動力源マップから車両状態に基づいてモータ走行とエンジン走行と切換えが判断された場合に、エンジン8の始動または停止を実行する。
例えば、エンジン始動停止制御手段88は、図7の実線Bの点a→点bに示すようにアクセルペダルが踏込操作されて要求出力トルクTOUTが大きくなり、ハイブリッド制御手段86により車両状態がモータ走行領域からエンジン走行領域へ変化したと判断されてモータ走行からエンジン走行への切り換えが判断された場合にはすなわちハイブリッド制御手段86によりエンジン始動が判断された場合には、第1電動機M1に通電して第1電動機回転速度NM1を引き上げることで、すなわち第1電動機M1をスタータとして機能させることで、エンジン回転速度Nを完爆可能な所定回転速度N’例えばアイドル回転速度以上の自律回転可能な所定の自律回転速度NEIDL以上に引き上げるエンジン回転駆動制御を行うと共に、所定回転速度N’以上にて燃料噴射装置66により燃料を供給(噴射)し点火装置68により点火してエンジントルクTを発生させるエンジントルク発生制御を行うことによってエンジン8を始動し、モーター走行からエンジン走行へ切り換える。また、エンジン始動停止制御手段88は、図7の実線Bの点b→点aに示すように、アクセルペダルが戻されて要求出力トルクTOUTが小さくなり車両状態がエンジン走行領域からモータ走行領域へ変化した場合には、燃料噴射装置66により燃料供給を停止させるように、すなわちフューエルカットによりエンジン8の停止を行って、ハイブリッド制御手段86によるエンジン走行からモータ走行へ切り換える。
また、ハイブリッド制御手段86は、第1電動機M1を無負荷状態として自由回転すなわち空転させることにより、差動部11がトルクの伝達を不能な状態すなわち差動部11内の動力伝達経路が遮断された状態と同等の状態であって、且つ差動部11からの出力が発生されない状態とすることが可能である。すなわち、ハイブリッド制御手段86は、第1電動機M1を無負荷状態とすることにより差動部11をその動力伝達経路が電気的に遮断される中立状態(ニュートラル状態)とすることが可能である。
また、ハイブリッド制御手段86は、アクセルオフの惰性走行時(コースト走行時)やブレーキペダルの操作によるホイールブレーキ作動時などには、燃費を向上(燃料消費率を低減)させるためにエンジン8を非駆動状態にして、駆動輪34から伝達される車両6の運動エネルギを差動部11で電気エネルギに変換する回生制御を実行する。具体的には、駆動輪34からエンジン8側へ伝達される逆駆動力により第2電動機M2を回転駆動させて発電機として作動させ、その電気エネルギすなわち第2電動機発電電流をインバータ54を介して蓄電装置56へ充電する回生制御を実行する。すなわち、ハイブリッド制御手段86は上記回生制御を実行する回生制御手段として機能する。
ところで、車両6の悪路走行においては車両6が岩を乗り越える場合など、一時的に大きな駆動トルクが必要になることが考えられる。そのような場合にはエンジントルクTを一時的に増大することになるが、エンジントルクTの増大に伴い蓄電装置56への充電電力も増大する。一方で、蓄電装置56の充電残量SOCが満充電に近いほど、蓄電装置56の保護等のために上記充電電力に対する許容値(上限値)が低く設定される。従って、上記悪路走行においてエンジントルクTの増大が、上記充電電力に対する許容値による充電制限によって制限される場合が生じ、そうなれば必要とされる駆動力が得られず、車両6の走破性が上記充電制限によって低下するということになる。そこで、本実施例では、上記充電制限によって車両6の走破性が低下しないように蓄電装置56の充電残量SOCを調節する制御が行われる。その制御機能の要部について以下に説明する。
悪路走行判断手段92は、車両6が悪路走行を行うか否か、すなわち、車両6が悪路走行をこれから行う或いは車両6が悪路走行中であるか否かを判断する。具体的に、悪路走行判断手段92は、(i)オフロードスイッチ77がオン状態である場合、(ii)トランスファ切換レバー53の操作により車両6の駆動モードが低速4輪駆動モード(L4モード)または低速2輪駆動モード(L2モード)に切り換えられている場合の何れかの場合に、車両6が悪路走行を行うと判断する。なお、車両6の悪路走行すなわちオフロード走行では車速Vは非常に低く、駆動トルクは岩を乗り越える場合など一時的に大きくされることはあるが基本的に低トルクである。
充電目標値変更手段94は、車両6が悪路走行を行うと悪路走行判断手段92によって判断された場合には、悪路走行判断手段92によりそう判断されない場合すなわち車両6が平坦地(通常路)を走行する場合と比較して、蓄電装置56の充電残量SOCの目標値TGSOC(以下、「充電残量目標値TGSOC」という)を低下させる充電残量目標値低下制御を実行する。これについて図8を用いて説明する。
図8は、車両6の悪路走行時に実行される前記充電残量目標値低下制御を説明するための図である。図8は、蓄電装置56の温度であるバッテリ温度と充電残量目標値TGSOCとの関係を示しており、図8の実線L01は悪路走行判断手段92により車両6が悪路走行を行うと判断されない場合における充電残量目標値TGSOCを示し、破線L02は悪路走行判断手段92により車両6が悪路走行を行うと判断された場合における充電残量目標値TGSOCを示している。この図8に示すように、充電目標値変更手段94は、車両6が悪路走行を行うと悪路走行判断手段92によって判断された場合には、バッテリ温度の全範囲において充電残量目標値TGSOCを低下させる。更に、悪路走行時の充電残量目標値TGSOCはバッテリ温度に拘わらず一定値であっても差し支えないが、本実施例において充電目標値変更手段94は、図8の破線L02で示すように、バッテリ温度の所定の低温域では、バッテリ温度が低いほど充電残量目標値TGSOCを低く設定する。一方で、バッテリ温度の所定の高温域では、バッテリ温度が高いほど充電残量目標値TGSOCを低く設定する。
このように充電目標値変更手段94が充電残量目標値TGSOCを低下させると、ハイブリッド制御手段86は、蓄電装置56の充電残量SOCをその充電残量目標値TGSOCに近付けるように、エンジン8、第1電動機M1、及び第2電動機M2を制御するので、蓄電装置56の充電残量SOCは、充電残量目標値TGSOCの低下に従って低下する。なお、充電残量目標値TGSOCは、それが小さすぎれば蓄電装置56の充電不足が生じ易くなる一方でそれが大きすぎれば蓄電装置56の充電制限すなわち電動機M1,M2の回生制限が生じ易くなるので、それら充電不足および回生制限の発生機会をできるだけ減らすように実験的に設定されるものである。充電残量目標値TGSOCは、燃費を重視した平坦地の通常走行では、蓄電装置56の満充電に対する比率が50%程度になるよう設定されており、その一方で、悪路走行では車両6の燃費よりも走破性を重視して充電残量目標値TGSOCが上記通常走行時よりも低く設定される。
低車速判断手段96は、車速Vが予め定められた低車速判定値V1よりも低いか否かを判断する。その低車速判定値V1は、車両6の停車に近い極低車速での走行を判断するために予め実験的に定められた判定値である。
ハイブリッド制御手段86に含まれる悪路走行時制御手段98は、車両6が悪路走行を行うと悪路走行判断手段92によって判断された場合には、悪路走行判断手段92によりそう判断されない場合と比較して、第1電動機M1の効率ηM1(以下、第1電動機効率ηM1という)と第2電動機M2の効率ηM2(以下、第2電動機効率ηM2という)との何れか一方または両方を低下させる電動機効率低下制御を実行する。電動機効率ηM1,ηM2とは、電動機M1,M2が電気エネルギと機械的エネルギとを互いに変換するときのエネルギ変換効率である。上記電動機効率低下制御について具体的に説明すれば、悪路走行時制御手段98は、第1電動機M1及び第2電動機M2の各々について電動機M1,M2の出力トルク及び回転速度を表す電動機動作点と電動機効率ηM1,ηM2との関係を予め電動機効率マップ等として記憶しており、上記電動機効率低下制御では、第1電動機M1の電動機動作点と第2電動機M2の電動機動作点との何れか一方または両方を電動機効率ηM1,ηM2が低下するようにずらす。例えば、その電動機効率低下制御における差動部11の差動状態の変化を例示すれば、図9の差動部11の共線図に示すようになる。図9では、上記電動機効率低下制御の実行前における差動部11の差動状態は実線L03で示されており、上記電動機効率低下制御の実行後における差動部11の差動状態は破線L04で示されている。そして、第2電動機回転速度NM2は車速Vに拘束されるので実線L03,破線L04の何れにおいても同じであり、悪路走行時制御手段98は、前記電動機効率低下制御において、第1電動機効率ηM1を低下させるように第1電動機回転速度NM1を低下させている。なお、図9では第1電動機回転速度NM1が低下させられる場合が例示されているが、悪路走行時制御手段98は、前記電動機効率低下制御において、第1電動機効率ηM1を低下させるように第1電動機回転速度NM1を上昇させることもある。また、好適には、悪路走行時制御手段98は、上記電動機効率低下制御において、伝達部材18への出力を一定に保つように差動部11の差動状態を変化させる。
また、悪路走行時制御手段98は、車両6が悪路走行を行うと悪路走行判断手段92によって判断された場合には、悪路走行判断手段92によってそう判断されない場合よりも動力伝達装置10の動力伝達効率η1(=動力伝達装置10の出力/動力伝達装置10へ入力されたエンジン出力)を低下させるように自動変速部20の変速段(変速比γAT)を選択する悪路走行時変速制御を実行する。この悪路走行時変速制御による自動変速部20の変速は、図7の変速線図に従った変速よりも優先して行われる。悪路走行時制御手段98は、車両6が悪路走行を行うと悪路走行判断手段92によって判断された場合に、前記電動機効率低下制御と上記悪路走行時変速制御との何れか一方だけを実行してもよいが、本実施例ではその制御の両方を実行する。上記悪路走行時変速制御について図10を用いて説明する。
図10は、動力伝達装置10の総合変速比γTと動力伝達効率η1との関係を自動変速部20の各変速段ごとに示した図である。図10は、動力伝達装置10に入力されるエンジン出力が電気エネルギに変化されず機械的エネルギのまま出力軸22に伝達される場合の動力伝達効率η1を100%と仮定し、且つ、第1電動機M1と第2電動機M2との間での動力伝達効率すなわち電動機M1,M2を除いたインバータ54等の電気部品の効率を90%と仮定して図示されたものであるが、実際の動力伝達効率η1も図10と同様の傾向である。すなわち、自動変速部20の1つの変速段(ギヤ段)に着目すれば、動力伝達効率η1が最高値となる動力伝達装置10の総合変速比γTからその総合変速比γTがLo側(γTが大きくなる側)に変化するほど、或いは、その総合変速比γTがHI側(γTが小さくなる側)に変化するほど、動力伝達効率η1は低下する。そして、自動変速部20の変速段の各々で動力伝達効率η1が最高値となる動力伝達装置10の総合変速比γTは、自動変速部20の変速段が高車速側であるほどHI側にずれる。
例えば、図10において、動力伝達装置10の総合変速比γTがγT1よりも大きい範囲すなわち斜線部A01で示した総合変速比γTの範囲では、自動変速部20の第2速ギヤ段の方が第1速ギヤ段よりも動力伝達効率η1が低い。従って、上記総合変速比γTがγT1よりも大きい範囲では、車両6の燃費向上等のため、自動変速部20は基本的には第1速ギヤ段に変速されるが、悪路走行時制御手段98は、前記悪路走行時変速制御においては有段変速制御手段82に指令して、自動変速部20を第2速ギヤ段に変速させる。このように自動変速部20を変速させ動力伝達効率η1を低下させることにより、蓄電装置56からの電力消費を促進する。なお、車両6の悪路走行中は、岩を乗り越えるなど一時的に駆動トルクが大きくされる場合を除き基本的には低アウトプットトルクであるので、自動変速部20のギヤ段を高車速側に変速することに差し障りはない。また、前記悪路走行時変速制御での自動変速部20の変速も通常時の変速と同様に、駆動輪出力を変速前後で変化させない等パワー変速である。
前述したように、本実施例では前記電動機効率低下制御と前記悪路走行時変速制御との両方が実行される。悪路走行時制御手段98がそれら両方の制御を実行するということは、換言すれば、悪路走行時制御手段98は、前記悪路走行時変速制御では、自動変速部20のギヤ段に対応する変速比γATを変化させると共に、前記第1電動機効率ηM1と第2電動機効率ηM2と何れか一方または両方を低下させることで動力伝達装置10の動力伝達効率η1を低下させるということである。これについて例えば図10を用いて上述した例で説明すれば、悪路走行時制御手段98は、図10の斜線部A01で示した総合変速比γTの範囲では、自動変速部20を第1速ギヤ段から第2速ギヤ段に変速させると共に、前記電動機効率マップ等を用いて第1電動機効率ηM1と第2電動機効率ηM2との何れか一方または両方が低下するようにエンジン回転速度Nと第1電動機回転速度NM1とを制御して差動部11の差動状態を変化させる。これにより、動力伝達装置10の動力伝達効率η1を低下させる。
また、悪路走行時制御手段98は、車両6が悪路走行を行うと悪路走行判断手段92によって判断された場合には、悪路走行判断手段92によってそう判断されない場合と比較して、駆動輪34から伝達される車両6の運動エネルギを差動部11で電気エネルギに変換する前記回生制御での回生量を減少させてもよい。例えば、その回生制御はブレーキペダルの操作によるホイールブレーキ作動時などに実行されるので、その回生制御により第2電動機M2に発生させる車両制動力を減少させる一方で、ホイールブレーキにより発生させる機械的な車両制動力を増加させる。
また、悪路走行時制御手段98は、車両6が悪路走行を行うと悪路走行判断手段92によって判断された場合には、第1電動機M1でエンジン回転速度Nを引き上げてエンジン8を回転駆動するモータリング制御を実行してもよい。そのモータリング制御について図11,図12を用いて説明する。
図11は、コースト走行時のような被駆動状態おける前記モータリング制御を説明するための差動部11の共線図である。図12は、アクセルペダルが踏み込まれたときのような駆動状態おける前記モータリング制御を説明するための差動部11の共線図である。図11に示すような被駆動状態おける前記モータリング制御では、エンジン8は第1電動機M1によって回転させられているのでエンジントルクT(図11の矢印AR01)はエンジン回転速度Nを引き下げる方向に発生すると共に、そのエンジントルクTに基づくエンジン直達トルクTED(図11の矢印AR02)は第2電動機回転速度NM2を引き下げる方向に発生する。更に、図11の例では、駆動輪34からエンジン8側へ伝達される前記逆駆動力による伝達部材18まわりの逆駆動トルクの方がその逆駆動トルクに対抗する上記エンジン直達トルクTEDよりも大きいので、その逆駆動トルクのエンジン直達トルクTEDに対する超過分によって第2電動機M2が回生作動し、第2電動機トルクTM2(図11の矢印AR03)が第2電動機回転速度NM2を引き下げる方向に発生する。そして、第1電動機M1はエンジン回転速度Nを引き上げるように駆動されるので、第1電動機トルクTM1(図11の矢印AR04)が第1電動機回転速度NM1を引き上げる方向に発生し、第1電動機M1は電力を消費する。すなわち、図11の例では、第2電動機M2から第1電動機M1へ電気エネルギが伝達される電力パス(電気パス)が形成されており、第2電動機M2が回生する電力よりも第1電動機M1が消費する電力の方が大きいので、このモータリング制御によって蓄電装置56の充電残量SOCが減ることになる。なお、上記エンジン直達トルクTEDとは、伝達部材18の軸心まわりに伝達部材18を回転させる伝達部材18に伝達されたエンジントルクTのことである。
また、図12に示すような駆動状態おける前記モータリング制御では、エンジントルクT(図12の矢印AR05)はエンジン回転速度Nを引き下げる方向に発生すると共に、そのエンジントルクTに基づくエンジン直達トルクTED(図12の矢印AR06)は第2電動機回転速度NM2を引き下げる方向に発生する。また、第1電動機トルクTM1(図12の矢印AR07)が第1電動機回転速度NM1を引き上げる方向に発生し、第1電動機M1は電力を消費する。このエンジントルクT、エンジン直達トルクTED、及び第1電動機トルクTM1については前記被駆動状態(図11参照)と同様である。しかし、図12に示す駆動状態の例では、駆動輪34に駆動力を出力する必要があるので、エンジン直達トルクTEDよりも大きな第2電動機トルクTM2(図12の矢印AR08)が第2電動機回転速度NM2を引き上げる方向に発生し、第2電動機M2は電力を消費する。すなわち、図12の例では第2電動機トルクTM2のエンジン直達トルクTEDに対する超過分が駆動力となる。そして、第1電動機M1と第2電動機M2との両方が電力を消費する。
また、悪路走行時制御手段98は、車両6が悪路走行を行うと悪路走行判断手段92によって判断された場合には、悪路走行判断手段92によってそう判断されない場合と比較して、自動変速部20に入力される自動変速部入力トルクに占めるエンジン直達トルクTEDの割合を低くする一方で第2電動機M2の出力トルクTM2(以下、「第2電動機トルクTM2」と表す)の割合を高めるモータトルク優先使用制御を実行する。例えば、そのモータトルク優先使用制御では、出力軸22から出力される出力軸パワー(単位は例えばkW)に対するエンジン出力Pの余剰分が蓄電装置56に充電されることになるので、そのエンジン出力Pの余剰分を小さくするようにエンジン出力Pを制御する。更に、アクセル開度Accに応じた上記出力軸パワーの目標値(目標出力)に対してエンジン出力Pを不足させ、その出力不足分を第2電動機M2に補わせて第2電動機M2の電力消費を増加させてもよい。
但し、悪路走行時制御手段98は、低車速判断手段96によって車速Vが低車速判定値V1よりも低いと判断された場合には、悪路走行判断手段92によってそう判断されない場合と比較して、前記自動変速部入力トルクに占めるエンジン直達トルクTEDの割合を高くする一方で第2電動機トルクTM2の割合を低くするエンジン直達トルク使用制御を実行する。すなわち、前記モータトルク優先使用制御に替えて上記エンジン直達トルク使用制御を実行する。このように車速Vが低車速判定値V1よりも低い極低車速走行時に上記エンジン直達トルク使用制御を実行するのは、第2電動機M2で同一相に電流が流し続けられるとインバータ54または第2電動機M2の発熱量が大きくなるので、これを回避するためである。
図13は、電子制御装置80の制御作動の要部、すなわち、悪路走行時に蓄電装置56の充電残量SOCを低下させる制御作動を説明するためのフローチャートであり、例えば数msec乃至数十msec程度の極めて短いサイクルタイムで繰り返し実行される。なお、この図13のフローチャートは、蓄電装置56の充電残量SOCが予め設定された充電残量判定値を超えている場合に実行されるようにしても差し支えない。その充電残量判定値は、例えば、上記充電残量SOCがそれを超えれば蓄電装置56の充電制限が生じ易くなると判断できるように予め実験的に設定されている。
先ず、ステップ(以下、「ステップ」を省略する)SA1においては、オフロードスイッチ77がオン状態であるか否かが判断される。このSA1の判断が肯定された場合、すなわち、オフロードスイッチ77がオン状態である場合には、SA3に移る。一方、このSA1の判断が否定された場合には、SA2に移る。
SA2においては、車両6の駆動モードとして低速4輪駆動モード(L4モード)または低速2輪駆動モード(L2モード)が選択されているか否かが判断される。このSA2の判断が肯定された場合、すなわち、低速4輪駆動モードまたは低速2輪駆動モードが選択されている場合には、SA3に移る。一方、このSA1の判断が否定された場合には、SA7に移る。なお、SA1およびSA2は悪路走行判断手段92に対応する。
充電目標値変更手段94および悪路走行時制御手段98に対応するSA3においては、前記充電残量目標値低下制御が実行される。また、前記電動機効率低下制御および前記悪路走行時変速制御が実行される。更に、SA3では、前記回生制御での回生量を減少させてもよく、前記モータリング制御を実行しても差し支えない。
低車速判断手段96に対応するSA4においては、車速Vが前記低車速判定値V1よりも低いか否かが判断される。このSA4の判断が肯定された場合、すなわち、車速Vが低車速判定値V1よりも低い場合には、SA5に移る。一方、このSA4の判断が否定された場合には、SA6に移る。
SA5においては前記エンジン直達トルク使用制御が実行される。一方で、SA6においては前記モータトルク優先使用制御が実行される。なお、SA5およびSA6は悪路走行時制御手段98に対応する。
SA7においては、通常の蓄電装置56の充電残量SOCの制御が行われる。例えば、上記通常の蓄電装置56の充電残量SOCの制御では、充電残量目標値TGSOCは図8の実線L01に従って設定され、車両6の燃費が向上するようにエンジン8、第1電動機M1、及び第2電動機M2が制御される。
本実施例によれば、悪路走行時制御手段98は、車両6が悪路走行を行うと悪路走行判断手段92によって判断された場合には、悪路走行判断手段92によって車両6が悪路走行を行うと判断されない場合よりも動力伝達装置10の動力伝達効率η1を低下させるように自動変速部20の変速段を選択する前記悪路走行時変速制御を実行する。従って、車両6の悪路走行時には、エンジントルクTの増大が蓄電装置56の充電制限により制限されるという状況が生じ難くなるので、十分な大きさのエンジントルクTが得られ、車両6の悪路走行における走破性を十分に確保できる。
また、本実施例によれば、悪路走行時制御手段98は、車両6が悪路走行を行うと悪路走行判断手段92によって判断された場合には、悪路走行判断手段92によりそう判断されない場合と比較して、第1電動機効率ηM1と第2電動機効率ηM2との何れか一方または両方を低下させる前記電動機効率低下制御を実行する。従って、車両6の悪路走行時には蓄電装置56の充電残量SOCが低下して、それによりエンジントルクTの増大が蓄電装置56の充電制限により制限されるという状況が生じ難くなる。なお、悪路走行中は低車速であることが多く、第2電動機M2は高速走行時と比較して電力を消費しないので充電残量SOCは増加し易く、このことからも、前記電動機効率低下制御の実行により積極的に蓄電装置56への充電を抑制することは、上記充電制限の機会を減らす上でメリットがある。
また、本実施例によれば、悪路走行時制御手段98は、車両6が悪路走行を行うと悪路走行判断手段92によって判断された場合には、悪路走行判断手段92によってそう判断されない場合と比較して、前記自動変速部入力トルクに占めるエンジン直達トルクTEDの割合を低くする一方で第2電動機トルクTM2の割合を高める前記モータトルク優先使用制御を実行する。このモータトルク優先使用制御の実行により電動機M1,M2の電力消費が増して蓄電装置56の充電残量SOCが低下し、蓄電装置56の充電制限が発生する機会が減少する。
また、本実施例によれば、充電目標値変更手段94は、車両6が悪路走行を行うと悪路走行判断手段92によって判断された場合には、悪路走行判断手段92によりそう判断されない場合すなわち車両6が平坦地(通常路)を走行する場合と比較して、充電残量目標値TGSOCを低下させる前記充電残量目標値低下制御を実行する。従って、充電残量目標値TGSOCの低下により蓄電装置56の充電残量SOCが低下し、蓄電装置56の充電制限が発生する機会が減少するので、十分な大きさのエンジントルクTが得られ、車両6の悪路走行における走破性を十分に確保できる。また、車両6が岩を乗り越える際などに第2電動機トルクTM2を一時的に増大させることが想定されるが、前記充電残量目標値低下制御によって蓄電装置56の充電残量SOCを低下させても、第2電動機トルクTM2の増大が一時的なものであれば充電不足が生じることはないと考えられる。
また、本実施例によれば、悪路走行時制御手段98は、前記悪路走行時変速制御では、自動変速部20の変速比γATを変化させると共に、前記第1電動機効率ηM1と第2電動機効率ηM2と何れか一方または両方を低下させることで動力伝達装置10の動力伝達効率η1を低下させる。従って、蓄電装置56の充電残量低下を促すことになり、エンジントルクTの増大が蓄電装置56の充電制限により制限されるという状況が生じ難くなる。
また、本実施例によれば、図13のフローチャートは、蓄電装置56の充電残量SOCが予め設定された充電残量判定値を超えている場合に実行されるようにしても差し支えない。すなわち、前記悪路走行時変速制御は蓄電装置56の充電残量SOCが上記充電残量判定値を超えている場合に実行されるとしても差し支えないということである。そのようにすれば、蓄電装置56の充電残量が比較的高い場合に上記悪路走行時変速制御が実行されることになるので、蓄電装置56の充電残量に基づいて、エンジントルクTの増大が蓄電装置56の充電制限により制限され易いと考えられる状況において、上記悪路走行時変速制御の実行によって効果的に蓄電装置56の充電残量低下を促すことが可能である。
続いて、本発明の他の実施例を説明する。なお、以下の説明において実施例相互に共通する部分には同一の符号を付して説明を省略する。
本実施例は、前述の実施例1に対して図1に示す動力伝達装置10を図14に示す車両用動力伝達装置210(以下、「動力伝達装置210」という)に置き換えたものである。図14の動力伝達装置210には自動変速部20に相当する変速機が設けられていないので、本実施例の制御機能には図6の有段変速制御手段86がない。また、自動変速部20に相当する変速機が設けられていないので前記悪路走行時変速制御は実行されない。また、本実施例の制御作動を示すフローチャートは基本的には図13と同じであるが、本実施例の車両206は2輪駆動であるのでトランスファ36が無く、図13においてSA2が無くSA1の判断が否定された場合にはSA7に移る。図14に示す動力伝達装置210の構成について説明する。
図14は、本実施例における動力伝達装置210を説明するための骨子図である。図14において、動力伝達装置210は、エンジン8と駆動輪240との間に介装されており、そのエンジン8からの駆動力を駆動輪240に伝達するトランスアクスルである。そして、動力伝達装置210は、車体に取り付けられる非回転部材としてのトランスアクスル(T/A)ケース212(以下、「ケース212」という)内において、軸心RC1上でエンジン8側から順番に、そのエンジン8の出力軸(例えばクランク軸)213に作動的に連結されてエンジン8からのトルク変動等による脈動を吸収するダンパー216、そのダンパー216を介してエンジン8によって回転駆動させられる入力軸218、第1電動機M1、動力分割機構(動力分配機構)として機能する第1遊星歯車装置220、減速装置として機能する第2遊星歯車装置222、および、駆動輪240に動力伝達可能に連結された第2電動機M2を備えている。第1電動機M1と第2電動機M2と蓄電装置56(図6参照)とは互いに電力授受可能に接続されている。
この動力伝達装置210は、例えば前輪駆動すなわちFF(フロントエンジン・フロントドライブ)型の車両206の前方に横置きされ、駆動輪(前輪)240を駆動するために好適に用いられるものである。動力伝達装置210では、エンジン8の動力がカウンタギヤ対232の一方を構成する動力伝達装置210の出力回転部材としての出力歯車224からカウンタギヤ対232、ファイナルギヤ対234、差動歯車装置(終減速機)236および一対の車軸238等を順次介して一対の駆動輪240へ伝達される。このように、本実施例では、入力軸218とエンジン8とはダンパー216を介して作動的に連結されており、エンジン8の出力軸(クランクシャフト)213がエンジン8の出力回転部材であることはもちろんであるが、この入力軸218もエンジン8の出力回転部材に相当する。なお、図14には、エンジン8の回転変動を抑制するフライホイール214が、クランクシャフト213とダンパー216との間に介装されていることが示されている。
入力軸218は、両端がケース212に対し回転可能に支持されており、エンジン8側の端部がダンパー216の内周部に設けられたクラッチハブ217とスプライン嵌合し、それにより入力軸218はダンパー216と相対回転不能に連結されている。すなわち、入力軸218は、ダンパー216を介してエンジン8に連結されることでエンジン8により回転駆動させられる。また、入力軸218にはオイルポンプが連結されており、入力軸218が回転駆動されることにより上記オイルポンプが回転駆動させられて、動力伝達装置210の各部例えば第1遊星歯車装置220、及び第2遊星歯車装置222等に潤滑油が供給される。
第1遊星歯車装置220は、エンジン8と駆動輪240との間の動力伝達経路の一部を構成する差動機構である。すなわち、第1遊星歯車装置220は本発明の差動機構に対応する。具体的に、第1遊星歯車装置220は、シングルピニオン型の遊星歯車装置であり、第1サンギヤS01、第1ピニオンギヤP01、その第1ピニオンギヤP01を自転および公転可能に支持する第1キャリヤCA01、および、第1ピニオンギヤP01を介して第1サンギヤS01と噛み合う第1リングギヤR01を回転要素(要素)として備えている。
そして、第1遊星歯車装置220は、入力軸218に伝達されたエンジン8の出力を機械的に分配する機械的な動力分配機構であって、エンジン8の出力を第1電動機M1および出力歯車224に分配する。つまり、この第1遊星歯車装置220においては、第1回転要素としての第1キャリヤCA01は入力軸218すなわちエンジン8に連結され、第2回転要素としての第1サンギヤS01は第1電動機M1に連結され、第3回転要素としての第1リングギヤR01は出力歯車224すなわちその出力歯車224に作動的に連結された駆動輪240に連結されている。これより、第1サンギヤS01、第1キャリヤCA01、第1リングギヤR01は、それぞれ相互に相対回転可能となることから、エンジン8の出力が第1電動機M1および出力歯車224に分配されると共に、第1電動機M1に分配されたエンジン8の出力で第1電動機M1が発電され、その発電された電気エネルギが蓄電装置56に蓄電されたりその電気エネルギで第2電動機M2が回転駆動されるので、動力伝達装置210は、例えば無段変速状態(電気的CVT状態)とされて、第1遊星歯車装置220の差動状態が第1電動機M1により制御されることにより、エンジン8の所定回転に拘わらず出力歯車224の回転が連続的に変化させられる電気的な無段変速機として機能する。
第2遊星歯車装置222は、シングルピニオン型の遊星歯車装置である。第2遊星歯車装置222は、第2サンギヤS02、第2ピニオンギヤP02、その第2ピニオンギヤP02を自転および公転可能に支持する第2キャリヤCA02、および、第2ピニオンギヤP02を介して第2サンギヤS02と噛み合う第2リングギヤR02を回転要素として備えている。なお、第1遊星歯車装置220の第1リングギヤR01および第2遊星歯車装置222の第2リングギヤR02は一体化された複合歯車となっており、その外周部に出力歯車224が設けられている。
この第2遊星歯車装置222においては、第2キャリヤCA02は非回転部材であるケース212に連結されることで回転が阻止され、第2サンギヤS02は第2電動機M2に連結され、第2リングギヤR02は出力歯車224に連結されている。すなわち、第2電動機M2は出力歯車224と第1遊星歯車装置220のリングギヤR01とに第2遊星歯車装置222を介して連結されている。これにより、例えば発進時などは第2電動機M2が回転駆動することにより、第2サンギヤS02が回転させられ、第2遊星歯車装置222によって減速させられて出力歯車224に回転が伝達される。
図14の符号244,246,248,250,252,254は何れも外輪がケース212に取り付けられた軸受であり、内周側の部材をケース212に対し回転可能に支持する。また、図14の符号226aは第1電動機M1のステータであり符号226bは第1電動機M1のロータであり、ステータ226aはケース212に固定されている一方で、ロータ226bはそのステータ226aに対し回転可能とされている。また、図14の符号228aは第2電動機M2のステータであり符号228bは第2電動機M2のロータであり、ステータ228aはケース212に固定されている一方で、ロータ228bはそのステータ228aに対し回転可能とされている。
本実施例でも、前述の実施例1と同様の制御が実行されるので(図6,13参照)、実施例1と同様の効果を有する。
本実施例は、前述の実施例1に対して図1に示す動力伝達装置10を図15に示す車両用動力伝達装置310(以下、「動力伝達装置310」という)に置き換えたものである。また、本実施例の制御作動を示すフローチャートは基本的には図13と同じであるが、本実施例の車両306は2輪駆動であるのでトランスファ36が無く、図13においてSA2が無くSA1の判断が否定された場合にはSA7に移る。図15に示す動力伝達装置310の構成について説明する。
図15は、本発明が適用されたハイブリッド車両用動力伝達装置310(以下、動力伝達装置310と記載)を説明する概略構成図である。この動力伝達装置310は、例えば後輪駆動すなわちFR(フロントエンジン・リヤドライブ)型の車両306の前方に縦置きされ、駆動輪(後輪)318を駆動するために好適に用いられるものである。図15において、この動力伝達装置310では、車両306において、主駆動源である第1駆動源312のトルクが出力部材として機能する車輪側出力軸314(以下、出力軸314という)に伝達され、その出力軸314から差動歯車装置316と左右一対の車軸317とを介して左右一対の駆動輪(後輪)318にトルクが伝達されるようになっている。また、この動力伝達装置310は、車両走行のための駆動力を出力する力行制御およびエネルギを回収するための回生制御を選択的に実行可能な第2電動機M2と、エンジン8と駆動輪318との間の動力伝達経路に連結された自動変速機322とを含んでおり、その第2電動機M2は自動変速機322を介して動力伝達可能に出力軸314に連結されている。したがって、第2電動機M2から出力軸314へ伝達される出力トルクがその自動変速機322で設定される変速比γs(=第2電動機M2の回転速度NM2/出力軸314の回転速度No)に応じて増減されるようになっている。
第2電動機M2と出力軸314(駆動輪318)との間の動力伝達経路に介装されている自動変速機322は、変速比γsが「1」より大きい複数段を成立させることができるように構成されており、第2電動機M2からトルクを出力する力行時にはそのトルクを増大させて出力軸314へ伝達することができるので、第2電動機M2が一層低容量もしくは小型に構成される。これにより、例えば高車速に伴って出力軸314の回転速度Noが増大した場合には、第2電動機M2の運転効率を良好な状態に維持するために、変速比γsを小さくして第2電動機回転速度NM2を低下させたり、また出力軸314の回転速度Noが低下した場合には、変速比γsを大きくして第2電動機回転速度NM2を増大させる。
上記第1駆動源312は、主動力源としてのエンジン8と、第1電動機M1と、これらエンジン8と第1電動機M1との間でトルクを合成もしくは分配するための動力分配機構(差動機構)としての遊星歯車装置326とを主体として構成されている。エンジン8は、マイクロコンピュータを主体とするエンジン制御用の電子制御装置(E−ECU)328aによって、スロットル弁開度や吸入空気量、燃料供給量、点火時期などの運転状態が電気的に制御されるように構成されている。エンジン8のクランク軸336の端部にはフラーホイール334が配設されており、そのフラーホイール334はダンパー338を介して入力軸339に連結されている。
上記第1電動機M1(差動用電動機)は、例えば同期電動機であって、駆動トルクを発生させる電動機としての機能と発電機としての機能とを選択的に生じるように構成され、インバータ54を介してバッテリー、コンデンサなどの蓄電装置56に接続されている。そして、マイクロコンピュータを主体とするモータジェネレータ制御用の電子制御装置(MG−ECU)328bによってそのインバータ54が制御されることにより、第1電動機M1の出力トルクあるいは回生トルクが調節或いは設定されるようになっている。
前記遊星歯車装置326(本発明の差動機構に相当)は、サンギヤSn0と、そのサンギヤSn0に対して同心円上に配置されたリングギヤRg0と、これらサンギヤSn0およびリングギヤRg0に噛み合うピニオンギヤPn0を自転かつ公転自在に支持するキャリヤCar0とを三つの回転要素として備えて公知の差動作用を生じるシングルピニオン型の遊星歯車機構である。遊星歯車装置326はエンジン8および自動変速機322と同心に設けられている。
本実施例では、エンジン8のクランク軸336はフラーホイール334、ダンパー338、及び入力軸339を順次介して遊星歯車装置326のキャリヤCar0に連結されている。これに対してサンギヤSn0には第1電動機M1が連結され、リングギヤRg0には出力軸314が連結されている。このキャリヤCar0は入力要素として機能し、サンギヤSn0は反力要素として機能し、リングギヤRg0は出力要素として機能している。
上記遊星歯車装置326において、キャリヤCar0に入力されるエンジン8の出力トルクに対して、第1電動機M1による反力トルクがサンギヤSn0に入力されると、出力要素となっているリングギヤRg0には、直達トルクが現れるので、第1電動機M1は発電機として機能する。また、リングギヤRg0の回転速度すなわち出力軸314の回転速度(出力軸回転速度)Noが一定であるとき、第1電動機M1の回転速度NM1を上下に変化させることにより、エンジン8の回転速度(エンジン回転速度)Nを連続的に(無段階に)変化させることができる。すなわち、遊星歯車装置326の差動状態が第1電動機M1によって電気的に制御される。
自動変速機322は、一組のラビニョ型遊星歯車機構によって構成されている。すなわち自動変速機322では、第1サンギヤSn1と第2サンギヤSn2とが設けられており、その第1サンギヤSn1にステップドピニオンPn1の大径部が噛合するとともに、そのステップドピニオンPn1がピニオンPn2に噛合し、そのピニオンPn2が前記各サンギヤSn1、Sn2と同心に配置されたリングギヤRg1(Rg2)に噛合している。上記各ピニオンPn1、Pn2は、共通のキャリヤCar1(Car2)によって自転かつ公転自在にそれぞれ保持されている。また、第2サンギヤSn2がピニオンPn2に噛合している。
前記第2電動機M2は、前記モータジェネレータ制御用の電子制御装置(MG−ECU)328bによりインバータ54を介して制御されることにより、電動機または発電機として機能させられ、アシスト用出力トルクあるいは回生トルクが調節或いは設定される。第2サンギヤSn2にはその第2電動機M2が連結され、上記キャリヤCar1が出力軸314に連結されている。第1サンギヤSn1とリングギヤRg1とは、各ピニオンPn1、Pn2と共にダブルピニオン型遊星歯車装置に相当する機構を構成し、また第2サンギヤSn2とリングギヤRg1とは、ピニオンPn2と共にシングルピニオン型遊星歯車装置に相当する機構を構成している。
そして、自動変速機322には、第1サンギヤSn1を選択的に固定するためにその第1サンギヤSn1と非回転部材であるハウジング342との間に設けられた第1ブレーキB01と、リングギヤRg1を選択的に固定するためにそのリングギヤRg1とハウジング342との間に設けられた第2ブレーキB02とが設けられている。これらのブレーキB01、B02は摩擦力によって制動力を生じるいわゆる摩擦係合装置であり、多板形式の係合装置あるいはバンド形式の係合装置を採用することができる。そして、これらのブレーキB01、B02は、それぞれ油圧シリンダ等のブレーキB01用油圧アクチュエータ、ブレーキB02用油圧アクチュエータにより発生させられる係合圧に応じてそのトルク容量が連続的に変化するように構成されている。
以上のように構成された自動変速機322は、第2サンギヤSn2が入力要素として機能し、またキャリヤCar1が出力要素として機能し、第1ブレーキB01が係合させられると「1」より大きい変速比γshの高速段Hiが成立させられ、第1ブレーキB01に替えて第2ブレーキB02が係合させられるとその高速段Hiの変速比γshより大きい変速比γslの低速段Loが成立させられるように構成されている。すなわち、自動変速機322は2段変速機で、これらの変速段HおよびLの間での変速は、車速Vや要求駆動力(もしくはアクセル操作量)などの走行状態に基づいて実行される。より具体的には、変速段領域を予めマップ(変速線図)として定めておき、検出された運転状態に応じていずれかの変速段を設定するように制御される。その制御を行うためのマイクロコンピュータを主体とした変速制御用の電子制御装置(T−ECU)328cが設けられている。なお、E−ECU328a、MG−ECU328b、及びT−ECU328cを併せたものが前述の実施例1における電子制御装置80に相当する電子制御装置328を構成し、それらE−ECU328a、MG−ECU328b、及びT−ECU328cは本実施例では各々別体で構成されているが、一体で構成されても構わない。
本実施例の機能ブロック線図は図6であり実施例1と同じであるが、本実施例の有段変速制御手段82は、自動変速部20ではなく2段変速の自動変速機322の自動変速制御を実行するので、その自動変速制御に用いられる変速線図が図7のような変速線図から自動変速機322用の変速線図に置き換わる。
また、悪路走行時制御手段98は、実施例1と同様にして前記悪路走行時変速制御を実行するが、その実行の際には、動力伝達装置310の動力伝達効率を低下させるように自動変速機322の変速段を選択する。
本実施例でも、前述の実施例1と同様の制御が実行されるので(図6,13参照)、実施例1と同様の効果を有する。
以上、本発明の実施例を図面に基づいて詳細に説明したが、これはあくまでも一実施形態であり、本発明は当業者の知識に基づいて種々の変更、改良を加えた態様で実施することができる。
例えば、前述の本実施例1の図13において、SA3にて前記充電残量目標値低下制御、前記電動機効率低下制御、および前記悪路走行時変速制御が実行されるが、SA3は、それらの制御のうち何れか1つだけが実行されるものであっても差し支えない。
また、前述の本実施例1において、自動変速部20はクラッチツゥクラッチ変速が行われる自動変速機であるが、自動変速部20としては別の構造のものも考え得る。例えば、常時噛み合っているギヤ比の異なる複数のギヤ対が相互に平行に配設された回転軸にそれぞれ支持されておりその複数のギヤ対の何れかが択一的に動力伝達可能とされることにより変速される手動変速機としてよく用いられる変速機を、アクチュエータにより自動的に変速する自動変速機などである。また、自動変速部20は有段変速機であるが、連続的に変速比を変化させることが可能な無段変速機(CVT)であってもよい。
また、前述の実施例1では、第2電動機M2は、伝達部材18に直接連結されているが、第2電動機M2の連結位置はそれに限定されず、エンジン8又は伝達部材18から駆動輪34までの間の動力伝達経路に直接的或いは変速機、遊星歯車装置、係合装置等を介して間接的に連結されていてもよい。
また、前述の実施例1では、第1電動機M1の運転状態が制御されることにより、差動部11はその変速比γ0が最小値γ0minから最大値γ0maxまで連続的に変化させられる電気的な無段変速機として機能するものであったが、たとえば差動部11の変速比γ0を連続的ではなく差動作用を利用して敢えて段階的に変化させるものであってよい。
また、前述の実施例1の動力分配機構16では、差動部キャリヤCA0がエンジン8に連結され、差動部サンギヤS0が第1電動機M1に連結され、差動部リングギヤR0が伝達部材18に連結されていたが、それらの連結関係は、必ずしもそれに限定されるものではなく、エンジン8、第1電動機M1、伝達部材18は、差動部遊星歯車装置24の3要素CA0、S0、R0のうちのいずれと連結されていても差し支えない。
また、前述の実施例1では、エンジン8は入力軸14と直結されていたが、たとえばギヤ、ベルト等を介して作動的に連結されておればよく、共通の軸心上に配置される必要もない。
また、前述の実施例1では、第1電動機M1および第2電動機M2は、入力軸14に同心に配置されて第1電動機M1は差動部サンギヤS0に連結され第2電動機M2は伝達部材18に連結されていたが、必ずしもそのように配置される必要はなく、たとえばギヤ、ベルト、減速機等を介して作動的に第1電動機M1は差動部サンギヤS0に連結され、第2電動機M2は伝達部材18に連結されていてもよい。
また、前述の実施例1では、第1クラッチC1や第2クラッチC2などの油圧式摩擦係合装置は、パウダー(磁紛)クラッチ、電磁クラッチ、噛合型のドグクラッチなどの磁紛式、電磁式、機械式係合装置から構成されていてもよい。たとえば電磁クラッチであるような場合には、油圧制御回路70は油路を切り換える弁装置ではなく電磁クラッチへの電気的な指令信号回路を切り換えるスイッチング装置や電磁切換装置等により構成される。
また、前述の実施例1ではエンジン8と差動部11とが直接連結されているが、必ずしも直接連結される必要はなく、エンジン8と差動部11との間にクラッチを介して連結されていてもよい。
また、前述の実施例1では、差動部11と自動変速部20とが直列接続されたような構成となっているが、特にこのような構成に限定されず、例えば、動力伝達装置10全体として電気式差動を行う機能と、動力伝達装置10全体として電気式差動による変速とは異なる原理で変速を行う機能とを備えた構成であって、差動部11と自動変速部20とが機械的に独立していない構成であっても差し支えない。また、これらの配設位置や配設順序も特に限定されない。要するに、自動変速部20は、エンジン8から駆動輪34への動力伝達経路の一部を構成するように設けられておればよい。
また、前述の実施例1の動力分配機構16は、1組の遊星歯車装置(差動部遊星歯車装置24)から構成されていたが2以上の遊星歯車装置から構成されて、非差動状態(定変速状態)では3段以上の変速機として機能するものであってもよい。また、差動部遊星歯車装置24はシングルピニオン型に限られたものではなくダブルピニオン型の遊星歯車装置であってもよい。また、このような2以上の遊星歯車装置から構成された場合においても、これらの遊星歯車装置の各回転要素にエンジン8、第1および第2電動機M1、M2、伝達部材18、構成によっては出力軸22が動力伝達可能に連結され、さらに遊星歯車装置の各回転要素に接続されたクラッチCおよびブレーキBの制御により有段変速と無段変速とが切り換えられるような構成であっも構わない。
また、前述の実施例1の動力伝達装置10において、第1電動機M1と第2回転要素RE2とは直結されており、第2電動機M2と第3回転要素RE3とは直結されているが、第1電動機M1が第2回転要素RE2にクラッチ等の係合要素を介して連結され、第2電動機M2が第3回転要素RE3にクラッチ等の係合要素を介して連結されていてもよい。
また、前述の実施例1において、第2電動機M2はエンジン8から駆動輪34までの動力伝達経路の一部を構成する伝達部材18に連結されているが、第2電動機M2がその動力伝達経路に連結されていることに加え、クラッチ等の係合要素を介して動力分配機構16にも連結可能とされており、第1電動機M1の代わりに第2電動機M2によって動力分配機構16の差動状態を制御可能とする動力伝達装置10の構成であってもよい。
また、前述の実施例1において、差動部11が、第1電動機M1及び第2電動機M2を備えているが、第1電動機M1及び第2電動機M2は差動部11とは別個に動力伝達装置10に備えられていてもよい。
その他、一々例示はしないが、本発明はその趣旨を逸脱しない範囲内において種々の変更が加えられて実施されるものである。
6,206,306:車両
8:エンジン
10,210,310:動力伝達装置(車両用動力伝達装置)
16:動力分配機構(差動機構)
20:自動変速部
34,240,318:駆動輪
56:蓄電装置
80,328:電子制御装置(制御装置)
220:第1遊星歯車装置(差動機構)
326:遊星歯車装置(差動機構)
M1:第1電動機
M2:第2電動機

Claims (3)

  1. エンジンと駆動輪との間の動力伝達経路の一部を構成し第1電動機が制御されることにより差動状態が制御される差動機構と、前記動力伝達経路の一部を構成する自動変速部と、前記駆動輪に動力伝達可能に連結された第2電動機と、前記第1電動機および該第2電動機のそれぞれと相互に電力授受可能な蓄電装置とを、備えた車両用動力伝達装置の制御装置であって、
    車両が悪路走行を行うと判断した場合には、該車両が悪路走行を行うと判断しない場合よりも該車両用動力伝達装置の動力伝達効率を低下させるように前記自動変速部の変速比を選択する悪路走行時変速制御を実行する
    ことを特徴とする車両用動力伝達装置の制御装置。
  2. 前記悪路走行時変速制御では、前記自動変速部の変速比を変化させると共に、前記第1電動機及び前記第2電動機の何れか一方または両方の効率を低下させることで前記動力伝達効率を低下させる
    ことを特徴とする請求項1に記載の車両用動力伝達装置の制御装置。
  3. 前記蓄電装置の充電残量が予め設定された充電残量判定値を超えている場合に、前記悪路走行時変速制御を実行する
    ことを特徴とする請求項1又は2に記載の車両用動力伝達装置の制御装置。
JP2010184461A 2010-08-19 2010-08-19 車両用動力伝達装置の制御装置 Pending JP2012040962A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010184461A JP2012040962A (ja) 2010-08-19 2010-08-19 車両用動力伝達装置の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010184461A JP2012040962A (ja) 2010-08-19 2010-08-19 車両用動力伝達装置の制御装置

Publications (1)

Publication Number Publication Date
JP2012040962A true JP2012040962A (ja) 2012-03-01

Family

ID=45897754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010184461A Pending JP2012040962A (ja) 2010-08-19 2010-08-19 車両用動力伝達装置の制御装置

Country Status (1)

Country Link
JP (1) JP2012040962A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105584358A (zh) * 2016-01-19 2016-05-18 无锡商业职业技术学院 一种无级变速电动汽车的传动系统
JP7437255B2 (ja) 2020-07-21 2024-02-22 株式会社Subaru 電動車両

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105584358A (zh) * 2016-01-19 2016-05-18 无锡商业职业技术学院 一种无级变速电动汽车的传动系统
JP7437255B2 (ja) 2020-07-21 2024-02-22 株式会社Subaru 電動車両

Similar Documents

Publication Publication Date Title
JP4244966B2 (ja) 車両用駆動装置の制御装置
JP5240361B2 (ja) 車両用動力伝達装置の変速制御装置
JP5267656B2 (ja) 車両用動力伝達装置の制御装置
JP5071438B2 (ja) 車両用動力伝達装置の制御装置
JP4888602B2 (ja) 車両用動力伝達装置の制御装置
JP4683137B2 (ja) 動力伝達装置の制御装置
JP2008207690A (ja) 車両用駆動装置の制御装置
JP2009023614A (ja) 車両用動力伝達装置の制御装置
JP2009113508A (ja) 車両用動力伝達装置の制御装置
JP2010173493A (ja) 車両用動力伝達装置の制御装置
JP2009280176A (ja) 車両用動力伝達装置の制御装置
JP2010125936A (ja) 車両用動力伝達装置の制御装置
JP2010116121A (ja) 車両用動力伝達装置の制御装置
JP2010083361A (ja) 車両用動力伝達装置の制御装置
JP5195376B2 (ja) 車両用駆動装置の制御装置
JP2009280177A (ja) 車両用動力伝達装置の制御装置
JP2009154723A (ja) 車両用動力伝達装置の制御装置
JP2011183990A (ja) 車両用動力伝達装置の制御装置
JP2010074886A (ja) 車両用動力伝達装置の制御装置
JP2010083199A (ja) 車両用駆動装置の制御装置
JP2010036705A (ja) 車両用動力伝達装置の制御装置
JP5293653B2 (ja) 車両の駆動制御装置
JP2012040962A (ja) 車両用動力伝達装置の制御装置
JP2010070041A (ja) 車両用動力伝達装置の制御装置
JP5092953B2 (ja) 車両用動力伝達装置の制御装置