JP2012030410A - Method for manufacturing joint-free resin cylindrical body having linear uneven pattern on the surface thereof - Google Patents

Method for manufacturing joint-free resin cylindrical body having linear uneven pattern on the surface thereof Download PDF

Info

Publication number
JP2012030410A
JP2012030410A JP2010169993A JP2010169993A JP2012030410A JP 2012030410 A JP2012030410 A JP 2012030410A JP 2010169993 A JP2010169993 A JP 2010169993A JP 2010169993 A JP2010169993 A JP 2010169993A JP 2012030410 A JP2012030410 A JP 2012030410A
Authority
JP
Japan
Prior art keywords
cylindrical body
resin
seamless
heat
tubular body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010169993A
Other languages
Japanese (ja)
Other versions
JP5510157B2 (en
Inventor
Toshio Nagasawa
敏雄 長沢
Toshiki Okayasu
俊樹 岡安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Oji Paper Co Ltd
Original Assignee
Oji Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oji Paper Co Ltd filed Critical Oji Paper Co Ltd
Priority to JP2010169993A priority Critical patent/JP5510157B2/en
Publication of JP2012030410A publication Critical patent/JP2012030410A/en
Application granted granted Critical
Publication of JP5510157B2 publication Critical patent/JP5510157B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a joint-free cylindrical body, which has an uneven pattern on the surface thereof, adapted as a master model of a casting mold capable of inexpensively and simply manufacturing a casting roll having the linear uneven pattern on the surface thereof.SOLUTION: A method for manufacturing the joint-free cylindrical body having a linear uneven pattern on the surface thereof includes: the lamination process for manufacturing the joint-free cylindrical body made of laminated resin by integrally laminating a non-heat shrinkable and easily deformable hard thin film layer to all over the surface of a joint-free resin cylindrical body having heat shrinkability only in a uniaxial direction of either one of a longitudinal direction and a peripheral direction; and the heat shrinkage treatment process for forming linear protruded and recessed parts crossing a heat shrinkage direction at a right angle by thermally shrinking the joint-free laminated resin cylindrical body in a unidirectional direction to deform the hard thin film layer forming surface in a wrinkled state.

Description

本発明は、表面に凹凸パターンを有する継ぎ目のない(シームレスの)樹脂製筒状体の製造方法に関する。より詳細には、本発明は、光透過性樹脂シートよりなる光拡散体や反射防止体のように、表面に凹凸パターンが形成されている樹脂シートの製造に使用される金属製ロールやセラミック製ロールを鋳造する鋳型の原版として有用である、表面凹凸パターンを有する継ぎ目のない樹脂製筒状体の製造方法に関する。   The present invention relates to a method for producing a seamless (seamless) resin tubular body having an uneven pattern on the surface. More specifically, the present invention relates to a metal roll or ceramic used for manufacturing a resin sheet having a concavo-convex pattern formed on its surface, such as a light diffuser or an antireflective body made of a light transmissive resin sheet. The present invention relates to a method for producing a seamless resin tubular body having a surface irregularity pattern, which is useful as a master plate for casting a roll.

波状の凹凸パターンが光透過性基材シート表面に形成されている凹凸模様形成シートは、従来から光拡散体や反射防止体などとして利用されている。
例えば、特許文献1には、凹凸模様が形成された光拡散体として、光透過性基材シートの少なくとも片面に、突起体の高さが2〜20μm、突起体の頂点の間隔が1〜10μm、突起体のアスペクト比が1以上の突起体が形成されているものが記載されており、該突起体を形成する方法として、光透過性基材シートの表面をKrFエキシマレーザー等のエネルギービームの照射により加工する方法が開示されている。
BACKGROUND ART Conventionally, a concavo-convex pattern forming sheet in which a wavy concavo-convex pattern is formed on the surface of a light transmissive substrate sheet has been used as a light diffuser, an antireflective body, or the like.
For example, in Patent Document 1, as a light diffuser having a concavo-convex pattern, at least one surface of a light-transmitting substrate sheet has a protrusion height of 2 to 20 μm and a protrusion vertex distance of 1 to 10 μm. And a projection having an aspect ratio of 1 or more is described. As a method for forming the projection, the surface of the light-transmitting substrate sheet is irradiated with an energy beam such as a KrF excimer laser. A method of processing by irradiation is disclosed.

特許文献2には、波状の凹凸からなる異方性拡散パターンを片面に形成した光拡散体が記載されており、異方性拡散パターンの形成方法として、感光性樹脂フィルムにレーザー光を照射して露光し、現像して、片面に凹凸パターンを有するマスターホログラムを形成し、そのマスターホログラムを金型に転写し、その金型を用いて樹脂を成形する方法が開示されている。   Patent Document 2 describes a light diffuser in which an anisotropic diffusion pattern composed of wavy irregularities is formed on one side. As a method for forming an anisotropic diffusion pattern, a photosensitive resin film is irradiated with laser light. A method of forming a master hologram having a concavo-convex pattern on one side, transferring the master hologram to a mold, and molding a resin using the mold is disclosed.

特許文献3〜5には、熱収縮性フィルムの表面に非熱収縮性薄膜を積層し、熱収縮性フィルム層を熱収縮させることにより、非熱収縮性薄膜表面に畝状(波状)の凹凸を形成する技術が開示されている。   In Patent Documents 3 to 5, a non-heat-shrinkable thin film is laminated on the surface of the heat-shrinkable film, and the heat-shrinkable film layer is heat-shrinked so that the surface of the non-heat-shrinkable thin film is wrinkled (waved). Techniques for forming the are disclosed.

ところで、光拡散体等として使用する凹凸模様を有する樹脂シートを製造する際に、凹凸模様を有する金型面から樹脂シート面に凹凸模様を転写する方法が一般的であるが、例えば、特許文献9に示されているように、表面に凹凸模様が形成されているロールにより連続的にナノオーダーの凹凸模様を転写することができる技術が望まれている。表面にナノオーダーの凹凸模様を有するロールは、凹凸模様を有する平板シートをロールに巻きつけて製造することもできるが、この場合には、均一で連続したナノオーダーの凹凸模様の形成を妨げる継ぎ目がロール面に生じることが避けられない。   By the way, when manufacturing a resin sheet having a concavo-convex pattern to be used as a light diffuser or the like, a method of transferring the concavo-convex pattern from a mold surface having a concavo-convex pattern to the resin sheet surface is common. As shown in FIG. 9, a technique capable of continuously transferring a nano-order uneven pattern with a roll having an uneven pattern formed on the surface is desired. A roll having a nano-order concavo-convex pattern on the surface can be manufactured by winding a flat sheet having a concavo-convex pattern around the roll, but in this case, a seam that prevents the formation of a uniform and continuous nano-order concavo-convex pattern Inevitably occurs on the roll surface.

特許文献6には、上記のような継ぎ目のない、シームレスロールを製造することができる方法として、ガラスチューブの外面に感光性樹脂を塗布し、レーザー光線などによって、筒の長さ(高さ)方向及び円周方向に一定寸法の幾何学的模様を露光形成し、現像する方法が記載されている。   In Patent Document 6, as a method for producing a seamless roll as described above, a photosensitive resin is applied to the outer surface of a glass tube, and the length (height) direction of the cylinder is applied by a laser beam or the like. And a method of exposing and developing a geometric pattern having a certain size in the circumferential direction and developing the pattern.

特開平10−123307号公報JP-A-10-123307 特開2006−261064号公報Japanese Patent Application Laid-Open No. 2006-261064 WO2007/097454号公報WO 2007/097454 特開2008−299072号公報JP 2008-299072 A 特開2008−302591号公報JP 2008-302591 A 特許第4206443号公報Japanese Patent No. 4206443 特開2006−187886号公報JP 2006-187886 A 特開平06−197679号公報Japanese Patent Laid-Open No. 06-197679 特開2008−290330号公報JP 2008-290330 A

前記特許文献6の方法によれば、シームレスの幾何学模様が刻印されたロールを製造することが可能である。しかし、凹凸部の微細化の程度はレーザー光線の波長に依存するため、ナノオーダーの微細凹凸部の形成は困難である。
また、レーザー光線で大きな径あるいは大きな幅のロールに微細な凹凸模様を正確に彫刻することは、精度の点で大変に困難であり、機械制御系は膨大なものとなる。
According to the method of Patent Document 6, it is possible to manufacture a roll engraved with a seamless geometric pattern. However, since the degree of miniaturization of the uneven portions depends on the wavelength of the laser beam, it is difficult to form nano-order fine uneven portions.
In addition, it is very difficult to accurately engrave a fine concavo-convex pattern on a roll having a large diameter or a large width with a laser beam, and the machine control system becomes enormous.

本発明は、表面に凹凸模様を有する金属製又はセラミック製の鋳造ロールを、工業的な規模で安価に簡便に製造することを可能とする鋳型の原版として有用な、表面に凹凸模様を有する継ぎ目のない筒状体を製造する方法を提供することを課題とする。   INDUSTRIAL APPLICABILITY The present invention provides a seam having a concavo-convex pattern on the surface, which is useful as an original plate of a mold that enables a metal or ceramic casting roll having a concavo-convex pattern on a surface to be easily and inexpensively manufactured on an industrial scale. It is an object of the present invention to provide a method for producing a cylindrical body without any problem.

上記課題を解決するための本発明は、以下の(1)〜(11)に示すように、実質的に筒の高さ方向又は周方向の一軸方向にのみ熱収縮性を有する筒状基材シートの片面に非熱収縮性で、易変形性の硬質薄膜層が形成されている継ぎ目のない筒状積層シートの熱収縮性筒状樹脂シート部分を一軸方向に熱収縮させることにより、硬質薄膜層形成面を皺状に変形させて線状の凹凸部を形成することを特徴とする、表面に線状凹凸パターンを有する継ぎ目のない筒状体の製造方法を基本発明とし、以下に記載するように、継ぎ目のない筒状体を原版として鋳型を製造する方法の発明と、該鋳型を使用して表面に凹凸模様を有する金属製又はセラミック製の鋳造ロールを製造する方法の発明、及び、該鋳造ロールを使用して、光拡散体や反射防止体等として有用な表面に凹凸パターンを有する光透過性樹脂シートを連続的に製造する方法の発明に関するものである。   As shown in the following (1) to (11), the present invention for solving the above-mentioned problems is a cylindrical base material having heat shrinkability substantially only in the height direction of the cylinder or in the uniaxial direction of the circumferential direction. A hard thin film is obtained by thermally shrinking a heat-shrinkable cylindrical resin sheet portion of a seamless cylindrical laminated sheet in which a non-heat-shrinkable and easily deformable hard thin film layer is formed on one side of the sheet in a uniaxial direction. A method for producing a seamless cylindrical body having a linear concavo-convex pattern on the surface, which is characterized by forming a linear concavo-convex portion by deforming the layer forming surface into a bowl shape, and is described below. As described above, an invention of a method for producing a mold using a seamless tubular body as an original plate, an invention of a method for producing a metal or ceramic casting roll having a concavo-convex pattern on the surface using the mold, and Using the casting roll, a light diffuser or an antireflection body As it relates to the invention of a method of continuously producing a light-transmitting resin sheet having a patterned Useful surface.

(1)長手方向又は周方向のいずれか一軸方向にのみ熱収縮性を有する継ぎ目のない樹脂製筒状体の一面に非熱収縮性かつ易変形性の硬質薄膜層を積層一体化して継ぎ目のない積層筒状体を製造する積層工程、及び該継ぎ目のない積層筒状体を一軸方向に熱収縮させて前記硬質薄膜層形成面を皺状に変形させ、熱収縮方向に直交する線状の凸部と凹部を形成する熱収縮処理工程を有することを特徴とする、表面に線状の凹凸パターンを有する継ぎ目のない筒状体の製造方法。 (1) A non-heat-shrinkable and easily deformable hard thin film layer is laminated and integrated on one surface of a seamless resin-made cylindrical body having heat shrinkability only in one of the longitudinal direction and the circumferential direction. A laminating step for producing a non-laminated cylindrical body, and a heat-shrinking of the seamless laminating cylindrical body in a uniaxial direction to deform the hard thin film layer forming surface into a bowl shape, and a linear shape perpendicular to the heat shrinking direction A method for producing a seamless tubular body having a linear concavo-convex pattern on a surface, comprising a heat shrinking treatment step for forming convex portions and concave portions.

(2)前記積層工程における前記一軸方向にのみ熱収縮性を有する継ぎ目のない樹脂製筒状体が、インフレーション法により製造されている二軸延伸の筒状樹脂シートを一軸方向の熱収縮率のみが略零となるように処理して形成されている樹脂製筒状体よりなることを特徴とする、(1)項記載の表面に線状の凹凸パターンを有する継ぎ目のない筒状体の製造方法。 (2) The seamless resin tubular body having heat shrinkability only in the uniaxial direction in the laminating step is a biaxially stretched tubular resin sheet produced by the inflation method, and only the heat shrinkage rate in the uniaxial direction. The production of a seamless tubular body having a linear concavo-convex pattern on the surface as described in the item (1), characterized in that it is made of a resin tubular body formed by processing so that is substantially zero Method.

(3)前記積層工程が、熱収縮性を有する継ぎ目のない樹脂製筒状体の一面に硬質樹脂塗工層及び/又は金属蒸着層からなる硬質薄膜層を形成する積層工程であることを特徴とする、(1)項又は(2)項に記載の表面に線状の凹凸パターンを有する継ぎ目のない筒状体の製造方法。 (3) The laminating step is a laminating step of forming a hard thin film layer composed of a hard resin coating layer and / or a metal vapor deposition layer on one surface of a seamless resin tubular body having heat shrinkability. The manufacturing method of the seamless cylindrical body which has a linear uneven | corrugated pattern on the surface as described in (1) term or (2) term.

(4)前記熱収縮処理工程が、前記積層筒状体全体を支持体により緊張状態に保持して一軸方向に熱収縮処理する工程であることを特徴とする、(1)項〜(3)項のいずれか1項に記載の表面に線状の凹凸パターンを有する継ぎ目のない筒状体の製造方法。 (4) Item (1) to (3), wherein the heat shrinkage treatment step is a step of heat shrinkage treatment in a uniaxial direction while holding the entire laminated cylindrical body in a tensioned state by a support. The manufacturing method of the seamless cylindrical body which has a linear uneven | corrugated pattern on the surface of any one of claim | items.

(5)前記熱収縮処理工程が、前記積層筒状体内に挿入されている円柱状又は円筒状の支持体により筒状体を内部より支持して積層筒状体全体を緊張状態に保持し、積層筒状体を長手方向(高さ方向)に熱収縮処理する工程であることを特徴とする、(1)項〜(4)項のいずれか1項に記載の表面に線状の凹凸パターンを有する継ぎ目のない筒状体の製造方法。 (5) The heat shrinking process step supports the tubular body from the inside by a columnar or cylindrical support inserted into the laminated tubular body, and holds the entire laminated tubular body in a tension state. A linear uneven pattern on the surface according to any one of items (1) to (4), characterized in that it is a step of heat-shrinking the laminated cylindrical body in the longitudinal direction (height direction). A method for producing a seamless tubular body having

(6)前記熱収縮処理工程が、前記積層筒状体の両開口端縁部を全周にわたって環状支持体に固定し、両環状支持体間で積層筒状体の全体を緊張状態に保持し、積層筒状体の長手方向に熱収縮させる工程であることを特徴とする、(1)項〜(4)項のいずれか1項に記載の表面に線状の凹凸パターンを有する継ぎ目のない筒状体の製造方法。 (6) The heat shrinking treatment step fixes both opening edge portions of the laminated cylindrical body to the annular support body over the entire circumference, and holds the entire laminated cylindrical body in a tensioned state between the annular support bodies. The process according to any one of Items (1) to (4), wherein the surface has a linear concavo-convex pattern, characterized by being a step of heat shrinking in the longitudinal direction of the laminated cylindrical body A method for manufacturing a cylindrical body.

(7)前記熱収縮処理工程が、前記積層筒状体内に平行に挿入した2本の棒状支持体により積層筒状体を内部より扁平状に支持して全体を緊張状態に保持し、積層筒状体の周(外周)方向に熱収縮させる工程であることを特徴とする、(1)項〜(4)項のいずれか1項に記載の表面に線状の凹凸パターンを有する継ぎ目のない筒状体の製造方法。 (7) In the heat shrinking process, the laminated cylindrical body is supported in a flat shape from the inside by the two rod-like supports inserted in parallel into the laminated cylindrical body, and the whole is held in a tension state. The process according to any one of (1) to (4), wherein the surface has a linear concavo-convex pattern. A method for manufacturing a cylindrical body.

(8)前記(1)項〜(7)項のいずれか1項に記載の方法で製造されている表面に線状の凹凸パターンを有する継ぎ目のない筒状体を、円柱状又は円筒状の支持体により筒状体内部から円筒状に支持することにより前記線状の凹凸パターンを有する継ぎ目のない筒状体の表面を緊張状態に保持して鋳型原版として使用することを特徴とする、内面に線状の凹凸パターンが転写されている円筒状鋳型の製造方法。 (8) A seamless cylindrical body having a linear concavo-convex pattern on the surface produced by the method according to any one of (1) to (7) is formed into a columnar or cylindrical shape. An inner surface characterized in that the surface of the seamless tubular body having the linear concavo-convex pattern is held in tension by being supported in a cylindrical shape from the inside of the tubular body by a support, and used as a template original plate. A method for producing a cylindrical mold having a linear concavo-convex pattern transferred thereon.

(9)前記鋳型原版を、該原版の外径より大きい内径を有する枠体内中心部に載置し、枠体内壁と原版外壁間に流動性の硬化物前駆物質を流し込み充填し、硬化させて硬化物層を形成し、次いで、前記原版内から支持体を抜き去り、次いで、前記原版を硬化物層から剥離除去することを特徴とする、(8)項記載の内面に線状の凹凸パターンが転写されている円筒状鋳型の製造方法。 (9) The mold original plate is placed on the center of the frame body having an inner diameter larger than the outer diameter of the original plate, and a fluid hardened precursor is poured and filled between the inner wall of the frame and the outer wall of the original plate, and cured. A cured product layer is formed, and then the support is pulled out from the original plate, and then the original plate is peeled and removed from the cured product layer. A method for producing a cylindrical mold on which is transferred.

(10)前記(9)項記載の方法で製造された円筒状内面を有する鋳型を使用した鋳造法により金属製ロール又はセラミック製ロールを鋳造することを特徴とする、表面凹凸パターンを有する鋳造ロールの製造方法。 (10) A casting roll having a surface irregularity pattern, wherein a metal roll or a ceramic roll is cast by a casting method using a mold having a cylindrical inner surface produced by the method described in (9) above. Manufacturing method.

(11)前記(10)項に記載の方法で製造された鋳造ロールを使用して、光透過性樹脂シート表面に線状の凹凸パターンを形成することを特徴とする、光拡散性乃至光反射性の樹脂シートを製造する方法。 (11) A light-diffusing or light-reflective pattern characterized by forming a linear concavo-convex pattern on the surface of a light-transmitting resin sheet using the casting roll manufactured by the method described in (10) above. Of manufacturing a functional resin sheet.

本発明により、成型用鋳造ロール面に形成される凹凸部のサイズをナノメーターオーダーからマイクロメーターオーダーの範囲で自由に設計することができる鋳型原版となる、表面に線状の凹凸パターンを有する継ぎ目のない筒状体とその製造方法が提供される。また、微細な線状の凹凸部が表面に形成されている成型用鋳造ロールを安価にかつ簡単な工程により製造することができるので、光反射防止シートや光拡散板を連続的に大量生産することが可能となる。   According to the present invention, a seam having a linear concavo-convex pattern on the surface, which becomes a mold original plate capable of freely designing the size of the concavo-convex part formed on the casting roll surface for molding in the range of nanometer order to micrometer order There are provided a cylindrical body having no gap and a manufacturing method thereof. In addition, since a molding casting roll having fine line-shaped irregularities formed on the surface can be manufactured at a low cost by a simple process, the light reflection preventing sheet and the light diffusion plate are continuously mass-produced. It becomes possible.

熱収縮処理のために、積層筒状体Aを支持部材Bにより保持した図。The figure which hold | maintained the laminated cylindrical body A with the supporting member B for the heat shrink process. 熱収縮処理のために、積層筒状体Aの両開口端縁部を環状支持部材Cにより全周にわたって把持し、両環状支持部材間で積層筒状体を緊張状態に保持した図。The figure which hold | maintained both opening edge parts of the lamination | stacking cylindrical body A over the perimeter by the cyclic | annular support member C, and hold | maintained the lamination | stacking cylindrical body in tension state between both cyclic | annular support members for the heat shrink process. 図1に示す状態に保持した積層筒状体Aを長手方向(高さ方向)に熱収縮処理して得られる、表面に線状の凹凸パターンを有する継ぎ目のない筒状体の斜視図。The perspective view of the seamless cylindrical body which has a linear uneven | corrugated pattern on the surface obtained by heat-shrink-processing the laminated cylindrical body A hold | maintained in the state shown in FIG. 1 to a longitudinal direction (height direction). 図3の筒状体の長手方向(X−X)断面におけるX’部分の拡大図。The enlarged view of the X 'part in the longitudinal direction (XX) cross section of the cylindrical body of FIG. 熱収縮処理のために、積層筒状体A内に平行に挿入した2本の棒状体により積層筒状体を扁平状に支持して緊張状態に保持した図。The figure which hold | maintained the laminated | stacked cylindrical body flatly with the two rod-shaped bodies inserted in parallel in the laminated | stacked cylindrical body A, and was kept in tension | tensile_strength for heat shrink process. 図5に示す状態の積層筒状体Aを周方向に熱収縮して得られる、表面に線状の凹凸パターンを有する継ぎ目のない筒状体の斜視図。The perspective view of the seamless cylindrical body which has the linear uneven | corrugated pattern on the surface obtained by heat-shrinking the lamination | stacking cylindrical body A of the state shown in FIG. 5 to the circumferential direction. 図6の表面に線状の凹凸パターンを有する継ぎ目のない筒状体を鋳型原版Eとして枠F内中心部に載置した状態を示す図。The figure which shows the state which mounted the seamless cylindrical body which has a linear uneven | corrugated pattern on the surface of FIG. 原版E外壁と枠体F内壁間に硬化体前駆物質Hを注入して鋳型を作成する工程を示す図。The figure which shows the process of inject | pouring the hardening body precursor H between the original E outer wall and the frame F inner wall, and producing a casting_mold | template. 図8の工程で製造される鋳型を長手方向に切断した断面面。FIG. 9 is a cross-sectional view of the mold manufactured in the process of FIG. 8 cut in the longitudinal direction.

本発明は、表面に線状の凹凸パターンを有する継ぎ目のない筒状体を製造し、該表面に線状の凹凸パターンを有する継ぎ目のない筒状体を原版として鋳型を製造し、該鋳型から表面に線状の凹凸パターンを有する金属製又はセラミック製の成型用ロールを製造し、該成型用ロールによって、光透過性樹脂シート表面に線状の凹凸パターンを形成した光拡散性乃至光反射防止性の樹脂シートを製造する、以下の方法を包含する。   The present invention produces a seamless cylindrical body having a linear uneven pattern on the surface, and a mold using the seamless cylindrical body having a linear uneven pattern on the surface as an original plate. A metal or ceramic molding roll having a linear concavo-convex pattern on the surface is manufactured, and a linear concavo-convex pattern is formed on the surface of the light-transmitting resin sheet by the molding roll. The following method for producing a resin sheet is included.

(1)表面に線状の凹凸パターンを有する継ぎ目のない筒状体の製造方法。
(2)前記筒状体表面の凹凸パターンが転写されている内面を有する鋳型の製造方法。
(3)上記鋳型により、ロール表面に凹凸模様が形成されている金属製又はセラミック製の鋳造ロールの製造方法。
(4)上記鋳造ロールにより、光透過性樹脂シート表面に線状の凹凸パターンを形成した光拡散性乃至光反射性の樹脂シートを製造する方法。
(1) A method for producing a seamless tubular body having a linear uneven pattern on the surface.
(2) A method for producing a mold having an inner surface onto which the concavo-convex pattern on the surface of the cylindrical body is transferred.
(3) A method for producing a casting roll made of metal or ceramic in which a concavo-convex pattern is formed on the roll surface by the mold.
(4) A method for producing a light diffusive or light reflective resin sheet in which a linear concavo-convex pattern is formed on the surface of the light transmissive resin sheet by the casting roll.

以下、上記(1)〜(4)の各発明についてさらに詳細に述べる。
(1)表面に線状の凹凸パターンを有する継ぎ目のない筒状体の製造方法。
本発明の「表面に線状の凹凸パターンを有する継ぎ目のない筒状体の製造方法」は、長手方向又は周方向のいずれか一軸方向にのみ熱収縮性を有する継ぎ目のない熱収縮性の樹脂製筒状体の一面に非熱収縮性かつ易変形性の硬質薄膜層を積層一体化して継ぎ目のない積層筒状体を製造する積層工程と、該継ぎ目のない積層筒状体を熱収縮処理して前記硬質薄膜層形成面を一軸方向に皺状に変形させて線状の凸部と凹部を形成する熱収縮処理工程よりなる。
Hereinafter, the inventions (1) to (4) will be described in more detail.
(1) A method for producing a seamless tubular body having a linear uneven pattern on the surface.
The "method for producing a seamless tubular body having a linear uneven pattern on the surface" of the present invention is a seamless heat-shrinkable resin having heat-shrinkability only in one of the longitudinal direction and the circumferential direction. A lamination process for producing a seamless laminated tubular body by laminating and integrating a non-heat-shrinkable and easily deformable hard thin film layer on one surface of the tubular body, and heat-shrinking the seamless laminated tubular body Then, the hard thin film layer forming surface is deformed into a hook shape in a uniaxial direction to form a linear convex portion and a concave portion.

<熱収縮性の樹脂製筒状体>
一軸方向に熱収縮性を有する樹脂製筒状体としては、ポリエチレン系樹脂、ポリプロピレン系樹脂、ポリエステル系樹脂、ポアミド系樹脂などの汎用樹脂を用いて、環状ダイスより筒状原反を押し出し、冷却した後、筒状内部にエアーを吹き込んだ状態で原反の進行方向及び直交方向(筒の直径方向)に延伸する、所謂インフレーション法により製造される二軸延伸の筒状フィルムを、さらにそのいずれか一方向の熱収縮性を解消したフィルム乃至シートが挙げられる。
<Heat-shrinkable resin tubular body>
As a resin-made cylindrical body having heat shrinkability in a uniaxial direction, a general-purpose resin such as a polyethylene resin, a polypropylene resin, a polyester resin, a poamide resin, etc. is used to extrude a cylindrical raw fabric from a circular die and cool it. After that, a biaxially stretched tubular film produced by a so-called inflation method, which is stretched in the direction of travel of the original fabric and in the orthogonal direction (diameter direction of the tube) in a state where air is blown into the tubular shape, Examples thereof include a film or sheet in which heat shrinkage in one direction is eliminated.

二軸延伸フィルム乃至シートの一軸方向の熱収縮性を解消する方法としては、二軸延伸フィルム乃至シートを、さらにいずれか一方の方向に引っ張って他方向の収縮率を低下乃至解消させる方法が挙げられる。この際、他方向の熱収縮率はゼロとされていても良いが、後述するように、樹脂製筒状体内に装着される円柱状乃至円筒状の支持体に該筒状体を軽度に収縮させて密着させることにより、円筒体全体を緊張状態に保持するために、たとえば、中心部から外周方向の収縮率が1〜3%程度残るように収縮率を低下させる処理を行っても良い。   Examples of a method for eliminating the uniaxial heat shrinkability of the biaxially stretched film or sheet include a method of further reducing or eliminating the shrinkage rate in the other direction by pulling the biaxially stretched film or sheet in any one direction. It is done. At this time, the thermal contraction rate in the other direction may be zero, but as described later, the cylindrical body is slightly contracted to a columnar or cylindrical support mounted in the resin cylindrical body. In order to keep the entire cylindrical body in a tensioned state by being brought into close contact with each other, for example, a process for reducing the contraction rate so that the contraction rate in the outer peripheral direction from the center part is about 1 to 3% may be performed.

代表的な熱収縮性樹脂フィルム乃至シートとしては、98.5〜90質量%のプロピレンと1.5〜10質量%のエチレンとによるランダムプロピレン系共重合体樹脂を成膜してなる熱収縮性ポリプロピレン系樹脂フィルム乃至シートが挙げられる。ポリプロピレン系樹脂のメルトインデックスは1〜10の間が好ましく、より好ましくは2〜5である。たとえば、180〜230℃に溶融した樹脂を管状ダイスから押し出し成形し、冷却して筒状の原反フィルムとし、この原反フィルムを100〜150℃で、縦4〜6倍、横1.5〜2倍程度に延伸して、筒状の二軸延伸フィルムとする。その後、適宜長さに切断し、高温槽内で、筒状体の高さ方向(長手方向)に引っ張りながら、外周方向に熱収縮させる。更に必要に応じて、外周面にコロナ放電処理を施しても良い。   As a typical heat-shrinkable resin film or sheet, a heat-shrinkable property obtained by forming a random propylene copolymer resin film of 98.5 to 90% by mass of propylene and 1.5 to 10% by mass of ethylene. Examples include polypropylene resin films and sheets. The melt index of the polypropylene resin is preferably between 1 and 10, more preferably 2-5. For example, a resin melted at 180 to 230 ° C. is extruded from a tubular die and cooled to form a cylindrical raw film. This raw film is 100 to 150 ° C., 4 to 6 times in length, 1.5 in width. The film is stretched approximately 2 times to obtain a cylindrical biaxially stretched film. Then, it cut | disconnects to length suitably and heat-shrinks in an outer peripheral direction, pulling in the height direction (longitudinal direction) of a cylindrical body within a high temperature tank. Furthermore, you may perform a corona discharge process to an outer peripheral surface as needed.

ポリプロピレン系樹脂以外の樹脂から製造されている熱収縮性の樹脂製筒状体の製造も、上記ポリプロピレン系樹脂の場合と同様に行うことができる。たとえば、ポリエステル樹脂の場合は、特許文献7、ポリアミド樹脂の場合は特許文献8などに例示されているインフレーション法を採用することができる。   The production of a heat-shrinkable resin tubular body manufactured from a resin other than the polypropylene resin can be performed in the same manner as in the case of the polypropylene resin. For example, in the case of a polyester resin, the inflation method exemplified in Patent Document 7 and in the case of a polyamide resin can be employed.

<積層工程>
上記のように製造された熱収縮性の樹脂製筒状体は、その片面に、非収縮性でかつ易変形性の硬質薄膜層が積層される。該硬質薄膜層が積層された筒状体は、熱収縮性の樹脂製筒状体部分が一軸方向に熱収縮した際に、表層が皺状に変形して筒状体表面に線状の凹凸パターンが形成される。
硬質薄膜層を形成する材料としては、熱可塑性樹脂、熱硬化性樹脂、放射線硬化性樹脂、金属、金属酸化物などが挙げられる。
<Lamination process>
The heat-shrinkable resin cylindrical body manufactured as described above has a non-shrinkable and easily deformable hard thin film layer laminated on one surface thereof. The cylindrical body on which the hard thin film layer is laminated has a linear irregularity on the surface of the cylindrical body by deforming the surface layer into a bowl shape when the heat-shrinkable resin cylindrical body portion is thermally contracted in a uniaxial direction. A pattern is formed.
Examples of the material for forming the hard thin film layer include thermoplastic resins, thermosetting resins, radiation curable resins, metals, and metal oxides.

熱収縮性の樹脂製筒状体の表面に硬質薄膜層を積層する方法としては、該樹脂製筒状体表面に、硬質薄膜層形成用の樹脂の溶剤溶液又はエマルションを樹脂製筒状体表面に塗布する方法を採用することができる。この際、樹脂製筒状体内に円筒状又は円柱状の支持部材を装着して樹脂製筒状体全体を緊張状態に支持し、支持部材を軸として筒状体を回転させながら樹脂の溶剤溶液又はエマルションを樹脂製筒状体表面に塗布厚さを均一にしつつ塗布し、乾燥して膜状にラミネート層を形成することが好ましい。   As a method of laminating a hard thin film layer on the surface of a heat-shrinkable resin cylindrical body, a resin solvent solution or emulsion for forming a hard thin film layer is applied to the surface of the resin cylindrical body. It is possible to employ a method of applying to the surface. At this time, a cylindrical or columnar support member is mounted in the resin cylindrical body to support the entire resin cylindrical body in a tension state, and the resin solvent solution while rotating the cylindrical body around the support member Or it is preferable to apply | coat emulsion, making application | coating thickness uniform on the resin-made cylindrical body surface, and to dry and form a laminate layer in a film form.

硬質薄膜層形成樹脂としては、筒状体を形成している樹脂よりガラス転移温度が10℃以上高いものが好ましく、特に好ましい樹脂は、ガラス転移温度が筒状体を形成している樹脂より30℃以上高いで樹脂である。具体例としては、ポリビニルアルコール、ポリスチレン、アクリル樹脂、スチレン−アクリル共重合体、スチレン−アクリロニトリル共重合体、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリカーボネート、ポリエーテルスルホン、フッ素樹脂などが挙げられる。   The hard thin film layer forming resin preferably has a glass transition temperature higher by 10 ° C. or more than the resin forming the cylindrical body, and the particularly preferable resin has a glass transition temperature of 30 higher than that of the resin forming the cylindrical body. It is a resin that is higher than ℃. Specific examples include polyvinyl alcohol, polystyrene, acrylic resin, styrene-acrylic copolymer, styrene-acrylonitrile copolymer, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polycarbonate, polyethersulfone, fluororesin and the like. .

光拡散シートの製造に使用することを前提とする場合、硬質薄膜層の厚さは、0.05μmを超え5.0μm以下、好ましくは0.1〜1.0μmである。硬質薄膜層の厚さを前記範囲にすることにより、凹凸パターンの最頻ピッチを、1〜20μmに制御することが可能となる。
一方、反射防止シートの製造に使用することを前提とする場合は、硬質薄膜層の厚さは5〜50nm程度が好ましい。この範囲にすることにより、凹凸パターンの最頻ピッチを、100〜400nmに制御することができる。このような極薄の硬質薄膜層は、金属や金属酸化物の蒸着により形成することが好ましい。
When it is assumed to be used for manufacturing a light diffusion sheet, the thickness of the hard thin film layer is more than 0.05 μm and not more than 5.0 μm, preferably 0.1 to 1.0 μm. By setting the thickness of the hard thin film layer within the above range, the most frequent pitch of the concavo-convex pattern can be controlled to 1 to 20 μm.
On the other hand, when it is assumed to be used for manufacturing an antireflection sheet, the thickness of the hard thin film layer is preferably about 5 to 50 nm. By setting this range, the most frequent pitch of the concave-convex pattern can be controlled to 100 to 400 nm. Such an extremely thin hard thin film layer is preferably formed by vapor deposition of metal or metal oxide.

<熱収縮工程>
積層筒状体を熱収縮処理するに先立って、積層筒状体は支持体に固定支持される。積層筒状体の支持体への支持は、たとえば、図1に示すように、積層樹脂製筒状体(A)内に円柱状又は円管状の支持体(支持ロール)(B)を装着して積層樹脂製筒状体全体を緩みのない緊張状態に支持する方法を採用することができる。
支持ロールの材質には特に制限はなく、木製、プラスチック製、セラミック製、金属製などのロールを適宜採択することできるが、中空のアルミニウム製又は真鍮製のロールが経済的であり、取り扱いも容易であるので好ましい。
<Heat shrinkage process>
Prior to heat-shrinking the laminated cylindrical body, the laminated cylindrical body is fixedly supported by the support. For example, as shown in FIG. 1, a cylindrical or circular cylindrical support (support roll) (B) is mounted in a multilayer resin cylindrical body (A). Thus, it is possible to employ a method of supporting the entire laminated resin tubular body in a tension state without loosening.
The material of the support roll is not particularly limited, and a roll made of wood, plastic, ceramic, metal, etc. can be selected as appropriate, but a hollow aluminum or brass roll is economical and easy to handle. Therefore, it is preferable.

支持ロールの外径は積層樹脂製筒状体の内径と略同一とされる。支持ロールの外径が積層樹脂製筒状体の内径より大きいと、装着時に積層樹脂製筒状体に張力がかかった状態となり、熱収縮性にムラが生じる場合がある。そのような問題のない装着方法としては、支持ロールの直径が積層樹脂製筒状体の内径より僅かに小さい状態で支持ロールを積層樹脂製筒状体内に挿入し、その後、積層樹脂製筒状体を僅か(軽度)に熱収縮させて支持ロールを密着させ、全体を緩みのない緊張状態に支持する方法を挙げることができる。   The outer diameter of the support roll is substantially the same as the inner diameter of the laminated resin cylindrical body. When the outer diameter of the support roll is larger than the inner diameter of the laminated resin tubular body, the laminated resin tubular body is in a tensioned state during mounting, and the heat shrinkability may be uneven. As a mounting method without such a problem, the support roll is inserted into the laminated resin cylindrical body in a state where the diameter of the support roll is slightly smaller than the inner diameter of the laminated resin cylindrical body, and then the laminated resin cylindrical shape There can be mentioned a method in which the body is slightly (lightly) heat-shrinked so that the support roll is brought into close contact and the whole is supported in a tension state without loosening.

また、図2に示すように、積層樹脂製筒状体の支持体としては、積層樹脂製筒状体(A)の両端開口縁部を輪環状の支持体(C)に固定し、一方の輪環状支持体(C)の吊り手により全体を吊り下げ保持し、他方の輪環状支持体(C)の吊り手の先端に錘(W)を吊り下げて積層樹脂製筒状体(A)全体を長手方向に緊張状態に支持する方法を採用することも可能である。
他に、図5に示すように、積層樹脂製筒状体(A)内に2本の棒状支持体(D)を挿入し、積層筒状体全体を緩みのない扁平状に支持してする方法を採用することもできる。
Further, as shown in FIG. 2, as the support of the laminated resin cylindrical body, both end opening edges of the laminated resin cylindrical body (A) are fixed to the annular support body (C), The entire ring-shaped support (C) is suspended and held, and the weight (W) is suspended from the tip of the other ring-shaped support (C). It is also possible to adopt a method of supporting the whole in a tension state in the longitudinal direction.
In addition, as shown in FIG. 5, two rod-like supports (D) are inserted into the laminated resin cylindrical body (A), and the whole laminated cylindrical body is supported in a flat shape without looseness. The method can also be adopted.

上記のように支持体により緩みのない緊張状態に支持された積層樹脂製筒状体は、次いで、熱収縮処理される。
熱収縮方向が、積層樹脂製筒状体の高さ方向(長手方向)である場合(図1)は、図3、図4(図3のX−X方向断面図)に示されるように、積層樹脂製筒状体(A)の胴部を周回する方向に尾根が伸びている環状の凸部(a)と環状の凹部(b)が皺状(畝状)に交互配置されている「線状の凹凸パターンを有する継ぎ目のない筒状体(E)が形成される。形成される線状の凹凸パターンの凸部と凸部の平均間隔をピッチとし、凸部頂部から凹部底部までの距離の平均値が深さとされる。
The laminated resin cylindrical body supported in a tension state without loosening by the support as described above is then subjected to heat shrinkage treatment.
When the heat shrinkage direction is the height direction (longitudinal direction) of the laminated resin tubular body (FIG. 1), as shown in FIG. 3 and FIG. 4 (XX sectional view in FIG. 3), The annular convex part (a) and the annular concave part (b) whose ridges extend in the direction of circling the trunk part of the laminated resin tubular body (A) are alternately arranged in a bowl shape (a bowl shape). A seamless cylindrical body (E) having a linear concavo-convex pattern is formed, and the average interval between the convex and convex portions of the formed linear concavo-convex pattern is defined as a pitch, from the top of the convex to the bottom of the concave. The average value of the distance is the depth.

また、図5に示す2本の棒状支持体Dによる支持状態として収縮方向を積層樹脂製筒状体の高さ方向に対して直交する方向とした場合は、図6に示すように、積層樹脂製筒状体の長手方向に平行に延びる凸部と凹部が畝状乃至皺状に形成されて表面に線状の凹凸パターンを有する継ぎ目のない円筒体(E)が形成される。 In addition, when the shrinking direction is a direction orthogonal to the height direction of the laminated resin tubular body as a support state by the two rod-like supports D shown in FIG. 5, as shown in FIG. Convex and concave portions extending in parallel with the longitudinal direction of the cylindrical body are formed in a bowl shape or a bowl shape, and a seamless cylindrical body (E) having a linear uneven pattern on the surface is formed.

熱収縮処理の場合の加熱方法としては、熱風、蒸気又は熱水中に通す方法等が挙げられ、中でも、均一に収縮させることができることから、熱水中に通す方法が好ましい。熱収縮させる際の加熱温度は、筒状樹脂シートに使用する樹脂の種類及び目的とする凹凸パターンのピッチ並びに深さに応じて適宜選択することが好ましい。   Examples of the heating method in the case of heat shrink treatment include a method of passing through hot air, steam or hot water, and the like. Among them, a method of passing through hot water is preferable because it can be uniformly shrunk. The heating temperature at the time of heat shrinking is preferably selected as appropriate according to the type of resin used for the cylindrical resin sheet and the pitch and depth of the target concavo-convex pattern.

(2)前記線状の凹凸パターンを有する継ぎ目のない筒状体(E)の表面の凹凸パターンが転写されている内面を有する鋳型の製造方法。
前記(1)で製造された表面に凹凸パターンを有する継ぎ目のない筒状体(E)は、以下のように鋳型原版として使用される。
前記(1)で製造された筒状体(E)が、図1に示すように、支持体(支持ロール)(B)に装着されている筒状体(A)を収縮させて製造されているものである場合は、図7に示すように、支持体(B)が装着されている状態である筒状体(E)をその外径より大きい枠体F(例えば、その外形よりやや大きい内径を有する中空で有底の筒体)中に載置し、図8に示すように、真空槽(P)に収容し、硬化物層前駆物質(G)を筒状体(E)と枠体(F)の間の空隙を埋めるように充填し、該硬化物層前駆物質を硬化させて硬化物層が形成される。
(2) The manufacturing method of the casting_mold | template which has the inner surface to which the uneven | corrugated pattern of the surface of the seamless cylindrical body (E) which has the said linear uneven | corrugated pattern is transcribe | transferred.
The seamless cylindrical body (E) having a concavo-convex pattern on the surface produced in the above (1) is used as a mold original plate as follows.
As shown in FIG. 1, the cylindrical body (E) manufactured in (1) is manufactured by contracting the cylindrical body (A) mounted on the support (support roll) (B). 7, as shown in FIG. 7, the cylindrical body (E) in a state in which the support (B) is mounted is made a frame F larger than the outer diameter (for example, slightly larger than the outer shape). 8 is placed in a vacuum chamber (P), and the cured product layer precursor (G) is placed in the cylindrical body (E) and the frame. It fills so that the space | gap between bodies (F) may be filled, and this hardened | cured material layer precursor is hardened, and a hardened | cured material layer is formed.

前記工程(1)の表面に凹凸パターンを有する継ぎ目のない筒状体(E)を形成する工程が、積層樹脂製筒状体の両端開口部を輪環状の支持体(C)に固定し、両積層樹脂製筒状体の長手方向に緊張状態に保持して収縮処理する方法である場合は、製造された表面に凹凸パターン有する継ぎ目のない筒状体(E)内に、支持体(B)を装着して図3と同様の状態に筒状体(E)を支持し、図7に示すように枠体に載置し、図8に示すように硬化物層前駆物質(G)を注入し、硬化させる。   The step of forming a seamless tubular body (E) having a concavo-convex pattern on the surface of the step (1) fixes both end openings of the laminated resin tubular body to the annular support (C), In the case of a method in which the two laminated resin tubular bodies are contracted while being held in a tension state in the longitudinal direction, the support body (B) is formed in the seamless tubular body (E) having a concavo-convex pattern on the manufactured surface. ) To support the cylindrical body (E) in the same state as in FIG. 3, and is placed on the frame as shown in FIG. 7, and the cured product layer precursor (G) is added as shown in FIG. Inject and cure.

硬化物が硬化性樹脂組成物の硬化物である場合、硬化物層前駆物質は熱硬化性樹脂と硬化剤の混合物、あるいは活性エネルギー線硬化性樹脂と光増感剤の混合物などからなる。この際に、熱硬化性樹脂組成物にセラミック粉体を含有せしめることも寸法安定性、耐熱性などの点で好ましい。
なお、枠体(F)として、ここでは中空の有底円筒体を用いる場合について述べたが、目的は鋳型を作ることであるので、枠体の材質も特に限定されることはなく、例えば矩形の木枠のような枠体であっても良いし、枠体は紙製の箱や缶であっても良い。枠体の内壁に突起部を設けて、硬化物層前駆物質が硬化する前に直立状態で配置されている筒状体が動くことを防止することが好ましい。
When the cured product is a cured product of the curable resin composition, the cured product layer precursor is composed of a mixture of a thermosetting resin and a curing agent, or a mixture of an active energy ray curable resin and a photosensitizer. At this time, it is also preferable from the viewpoint of dimensional stability, heat resistance, and the like to include ceramic powder in the thermosetting resin composition.
In addition, although the case where a hollow bottomed cylindrical body is used as the frame (F) has been described here, the object is to make a mold, and the material of the frame is not particularly limited. A frame such as a wooden frame may be used, and the frame may be a paper box or a can. It is preferable to provide a protrusion on the inner wall of the frame to prevent the cylindrical body arranged in an upright state from moving before the cured product layer precursor is cured.

硬化物層前駆物質を硬化した後、筒状体(E)内に装着されている支持体(支持ロール)(B)は引き抜かれる。
この時に、支持体(B)を引き抜き易いように、支持ロール(B)の表面に予め剥離剤を塗布しておいて本工程を行うことが好ましい。支持体(B)としては、分解しながら外せる構造のものや、太さを縮小できる構造のものを使用しても良い。
さらに、支持体(B)を取り除いた後に、筒状体(E)部分を硬化物層から剥がして取り除いて硬化物鋳型(H)を得る。この硬化物層を剥がし易くするために、筒状体(E)の表面に予め剥離剤を塗布しておくこともできる。
After curing the cured product layer precursor, the support (support roll) (B) mounted in the cylindrical body (E) is pulled out.
At this time, it is preferable to perform this step by previously applying a release agent on the surface of the support roll (B) so that the support (B) can be easily pulled out. As the support (B), a structure that can be removed while being disassembled or a structure that can reduce the thickness may be used.
Furthermore, after removing a support body (B), a cylindrical body (E) part is peeled off and removed from a hardened | cured material layer, and hardened | cured material casting_mold | template (H) is obtained. In order to make it easy to peel off the cured product layer, a release agent may be applied in advance to the surface of the cylindrical body (E).

図9は、図7及び図8に示されている手順で、硬化物層前駆物質(G)を筒状体(E)と枠体(F)の間の空隙を埋めるように充填し、該硬化物層前駆物質を硬化させて硬化物層が形成された状態で、全体を縦方向に切断した断面図である。縦方向中央線を挟んで左側が支持体(B)がまだ引き抜かれていない状態を示し、右側は支持体(B)が引き抜かれた後、さらに筒状体(E)が剥離除去された鋳型内面の状態を示している。   FIG. 9 is a procedure shown in FIGS. 7 and 8 in which the cured product layer precursor (G) is filled so as to fill the gap between the cylindrical body (E) and the frame body (F). It is sectional drawing which cut | disconnected the whole in the vertical direction in the state in which the hardened | cured material layer precursor was hardened and the hardened | cured material layer was formed. The left side shows a state in which the support (B) has not been pulled out across the center line in the vertical direction, and the right side shows a mold in which the cylindrical body (E) is peeled and removed after the support (B) is pulled out. The state of the inner surface is shown.

(3)<ロール表面に凹凸パターンが形成されている金属製又はセラミック製の鋳造ロールの製造>
上記(2)により製造される、内面に転写された凹凸パターンを有する鋳型は、次いで、外側面に凹凸パターンが転写された成型用ロールの鋳造に使用される。
製造された鋳型が硬化性樹脂組成物の硬化物である場合、鋳型に溶融金属を流し込むことはできないので、セラミック前駆体のゾルを流し込み、乾燥させて、樹脂鋳型が変形しない程度の温度でセラミック前躯体を硬化させ、その後、樹脂製の鋳型を溶剤を利用して剥がすことによって、表面に凹凸パターンが転写されたセラミックロールを製造することができる。
(3) <Manufacture of a metal or ceramic casting roll having an uneven pattern formed on the roll surface>
The mold having the concavo-convex pattern transferred to the inner surface, produced according to the above (2), is then used for casting a molding roll having the concavo-convex pattern transferred to the outer surface.
When the manufactured mold is a cured product of the curable resin composition, the molten metal cannot be poured into the mold, so the ceramic precursor sol is poured and dried, and the ceramic is heated at a temperature at which the resin mold does not deform. By curing the precursor and then peeling off the resin mold using a solvent, a ceramic roll having a concavo-convex pattern transferred to the surface can be produced.

本発明で用いるセラミック前駆体に使用されるセラミック粒子は、通常用いられるものであれば特に制限されないが、例えば酸化アルミニウム、酸化ケイ素、酸化チタン、酸化ジルコニウムなどであり、平均粒子径が0.1μm〜0.5μm以下のような微細なものを用いることが好ましい。これらセラミック粒子にバインダーと溶媒を混合して前駆体が形成される。バインダーは、例えばエチレン系共重合体、スチレン系共重合体、アクリル樹脂系及び酢酸ビニル系共重合体などで、セラミック100質量部に対してバインダー3〜20質量部の配合が好ましい。溶媒としては、水、メタノール、エタノール、プロパノール、トルエン、酢酸エチルなど通常工業的に使用されるもので良い。セラミック前駆体は乾燥、予備焼成、焼成の順で硬化される。   The ceramic particles used in the ceramic precursor used in the present invention are not particularly limited as long as they are usually used. For example, aluminum oxide, silicon oxide, titanium oxide, zirconium oxide and the like have an average particle diameter of 0.1 μm. It is preferable to use a fine one of ˜0.5 μm or less. These ceramic particles are mixed with a binder and a solvent to form a precursor. The binder is, for example, an ethylene-based copolymer, a styrene-based copolymer, an acrylic resin-based copolymer, a vinyl acetate-based copolymer, or the like, and preferably 3 to 20 parts by mass of the binder with respect to 100 parts by mass of the ceramic. As the solvent, water, methanol, ethanol, propanol, toluene, ethyl acetate and the like which are usually used industrially may be used. The ceramic precursor is cured in the order of drying, pre-firing, and firing.

他の方法として、前記樹脂製の鋳型の内面に導電加工を行い、電気メッキ(例えばニッケルメッキ)により内面の導電加工層上に厚膜のニッケル電鋳層を形成した後、樹脂製の鋳型を溶剤を利用して剥がすことによって、表面に凹凸パターンが転写された円筒状のニッケル電鋳層を得、このニッケル電鋳層内に支持ロールを装着固定して回転軸とした金属ロールを製造することができる。   As another method, after conducting conductive processing on the inner surface of the resin mold, and forming a thick nickel electroformed layer on the inner conductive processing layer by electroplating (for example, nickel plating), the resin mold is By removing using a solvent, a cylindrical nickel electroformed layer having a concavo-convex pattern transferred onto the surface is obtained, and a metal roll having a rotating shaft is manufactured by mounting and fixing a support roll in the nickel electroformed layer. be able to.

ここまでの説明では、まず、継ぎ目のない(シームレス)熱収縮性の樹脂製筒状体の外面に非熱収縮性でかつ易変形性の硬質薄膜層を有する積層樹脂製筒状体を製造し、該積層樹脂製筒状体を熱収縮処理して表面に凹凸パターンを形成した筒状体を製造し、該筒状体を鋳型原版として内面に凹凸パターンが形成されている鋳型を製造し、該鋳型により、表面に凹凸模様が形成されている鋳造ロールを製造する工程について説明した。   In the description so far, first, a laminated resin tubular body having a non-heat-shrinkable and easily deformable hard thin film layer on the outer surface of a seamless (seamless) heat-shrinkable resin tubular body is manufactured. Manufacturing a cylindrical body having a concavo-convex pattern formed on the surface thereof by heat shrinking the laminated resin cylindrical body, and manufacturing a mold having an concavo-convex pattern formed on the inner surface using the cylindrical body as a mold original plate, The process of manufacturing a casting roll having a concavo-convex pattern formed on the surface using the mold has been described.

しかし、本発明の表面に凹凸パターンを形成した筒状体によれば、以下に説明するように、まず、熱収縮性の樹脂製筒状体の内側面に硬質薄膜層を有する積層樹脂製筒状体を製造し、熱収縮処理により内側面に凹凸パターンを有する筒状体を製造し、該筒状体をそのまま鋳型として使用し、該筒状体内にセラミック前駆体のゾルを流し込み、乾燥させて、鋳型が変形しない程度の温度でセラミック前躯体を硬化させ、その後、鋳型を円柱状に形成されたセラミック硬化体から剥離除去することによって、表面に凹凸パターンが転写された鋳造セラミックロールを製造することもできる。   However, according to the cylindrical body having a concavo-convex pattern on the surface of the present invention, as will be described below, first, a laminated resin cylinder having a hard thin film layer on the inner surface of a heat-shrinkable resin cylindrical body A cylindrical body having a concavo-convex pattern on the inner surface is manufactured by heat shrink treatment, the cylindrical body is used as a mold as it is, a ceramic precursor sol is poured into the cylindrical body and dried. Then, the ceramic precursor is cured at a temperature at which the mold does not deform, and then the mold is peeled off from the cylindrical ceramic body to produce a cast ceramic roll having a concavo-convex pattern transferred to the surface. You can also

(4)<光透過性樹脂シート表面に線状の凹凸パターンを形成した光拡散性乃至光反射防止性の樹脂シート>
上記(3)により製造された、表面に凹凸模様が形成された本発明の鋳造ロールをインプリントロールとし、ナノインプリント法と称される方法、例えば特許文献9などに記載の方法により、表面に線状の凹凸パターンを形成した光拡散性乃至光反射防止性の樹脂シートが製造できる。
即ち、本発明の鋳造ロールをインプリントロールとし、該インプリントロールと、樹脂シートがインプリントロールに密着し始める部分を加熱するための加熱機と、インプリントロールの外周面に密着した樹脂シートを剥離させる剥離ロールとを具備したナノインプリントシートの製造装置を用いて、インプリントロールの外周面に密着した樹脂シートに、外側から冷風または冷水を吹き付けて冷却することにより、樹脂シートを剥離して、表面に線状の凹凸パターンを形成した光拡散性乃至光反射防止性の樹脂シートが製造できる。
(4) <Light diffusive or light antireflective resin sheet in which a linear uneven pattern is formed on the surface of the light transmissive resin sheet>
The casting roll of the present invention produced by the above (3) and having a concavo-convex pattern formed on the surface is used as an imprint roll, and the surface is lined by a method referred to as a nanoimprint method, for example, a method described in Patent Document 9 and the like. A light diffusive or light antireflective resin sheet having a concavo-convex pattern can be produced.
That is, the casting roll of the present invention is an imprint roll, the imprint roll, a heater for heating a portion where the resin sheet begins to adhere to the imprint roll, and a resin sheet closely adhered to the outer peripheral surface of the imprint roll Using a nanoimprint sheet manufacturing apparatus equipped with a peeling roll that peels off the resin sheet, the resin sheet adhered to the outer peripheral surface of the imprint roll is cooled by blowing cold air or cold water from the outside to peel off the resin sheet. In addition, a light diffusive or anti-reflective resin sheet having a linear concavo-convex pattern formed on the surface can be produced.

以下に実施例を挙げて本発明をより具体的に説明するが、本発明は勿論これらに限定されるものではない。なお、以下の実施例において、%は全て質量%である。   Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples. In the following examples, all% are% by mass.

(実施例1)
〔継ぎ目のない熱収縮性の樹脂製筒状体の製造〕
95質量%のプロピレンと5質量%のエチレンとによるプロピレン系ランダム共重合体樹脂(230℃のメルトインデックス:2.5g/10分)95質量部に、接着性改善剤として「アドマー」(三井化学社登録商標)5質量部を配合し、更に、ブロッキング防止剤としてのシリカ0.4質量%、炭酸カルシウム0.1質量%、及びタルク0.1質量%を配合してなる成膜原料を、180〜230℃に溶融して管状ダイスから押し出し成形し、直径17cm、厚さ250μmのチューブ状の原反フィルムを得た。
この原反フィルムを100〜150℃にて、縦5倍、横1.5倍に延伸して、厚さ33μmの筒状の熱収縮性ポリプロピレン系樹脂フィルムを得た。この筒状フィルムの外側面全体にコロナ放電処理を行って、表面張力を44ダインとした。筒の高さ約50cmとなるように切断し、110℃の高温槽中で筒の両端全幅を固定し、かつ、筒の高さ方向に張力をかけた状態で熱処理を行った。この結果、中央部の直径が20.2cmとなり、円周方向(胴周り方向)の熱収縮性が殆どない筒状体となった。
この筒状体から、中央部の高さ(長さ)25cm分を切断し、以下の実施例において「熱収縮性の樹脂製筒状体」として使用した。
Example 1
[Production of seamless heat-shrinkable resin tubular bodies]
95 parts by mass of propylene-based random copolymer resin (melt index at 230 ° C .: 2.5 g / 10 min) with 95% by mass of propylene and 5% by mass of ethylene, “Admer” (Mitsui Chemicals) Co., Ltd.) 5 parts by mass, and further, a film forming raw material comprising 0.4% by mass of silica as an antiblocking agent, 0.1% by mass of calcium carbonate, and 0.1% by mass of talc, The resultant was melted at 180 to 230 ° C. and extruded from a tubular die to obtain a tubular raw film having a diameter of 17 cm and a thickness of 250 μm.
This raw film was stretched at 100 to 150 ° C. 5 times in length and 1.5 times in width to obtain a cylindrical heat-shrinkable polypropylene resin film having a thickness of 33 μm. The entire outer surface of the tubular film was subjected to corona discharge treatment to a surface tension of 44 dynes. It cut | disconnected so that it might become the height of a cylinder about 50 cm, heat-processed in the state which applied the tension | tensile_strength in the height direction of the cylinder, fixing the both ends full width in a 110 degreeC high temperature tank. As a result, the diameter of the central portion was 20.2 cm, and a cylindrical body having almost no heat shrinkability in the circumferential direction (trunk direction) was obtained.
From this cylindrical body, 25 cm height (length) of the central portion was cut and used as a “heat-shrinkable resin cylindrical body” in the following examples.

〔硬質薄膜層を有する積層筒状体の製造〕
肉厚5mmで外径20cm、高さ30cmのアクリル製中空筒を用意し、紙を巻きつけて外径を20.1cmとし、これを前記樹脂製筒状体内に挿入し、筒状体の両端部を輪ゴムで締め付けてアクリル製中空筒外面に固定した。なお、アクリル製中空筒の両端には溝切り加工して回転軸とした。
[Production of laminated cylindrical body having hard thin film layer]
An acrylic hollow cylinder having a wall thickness of 5 mm, an outer diameter of 20 cm, and a height of 30 cm is prepared, wrapped with paper to an outer diameter of 20.1 cm, and inserted into the resin cylindrical body. The part was fastened with a rubber band and fixed to the outer surface of the acrylic hollow cylinder. In addition, it cut into the both ends of the acrylic hollow cylinder, and was used as the rotating shaft.

トルエンに希釈したポリメチルメタクリレート(ポリマーソース株式会社製「P4831−MMA」、ガラス転移温度100℃)を乾燥後の厚さが150nmになるようにバーコーターにより筒状体外面に塗工し、硬質層を形成して積層筒状体を得た。
塗工及び乾燥は、アクリル製中空筒軸を継続して回転させながら行い、塗工硬質層の厚さムラが生じないようにした。
Polymethylmethacrylate diluted in toluene (“P4831-MMA” manufactured by Polymer Source Co., Ltd., glass transition temperature 100 ° C.) is applied to the outer surface of the cylindrical body with a bar coater so that the thickness after drying is 150 nm. A layer was formed to obtain a laminated cylindrical body.
The coating and drying were performed while continuously rotating the acrylic hollow cylinder shaft so that the coating hard layer had no uneven thickness.

積層筒状体とアクリル製中空筒の間の紙を引っ張ることで、積層筒状体をアクリル製中空筒から外した。次いで、同じアクリル製中空筒を「支持部材」として再度用いるために、支持部材表面に流動パラフィンを塗布し、積層筒状体内に支持部材として再度挿入して、積層筒状体が筒内の支持部材によって全体が緩みなく保持されている状態とした。   The laminated cylindrical body was removed from the acrylic hollow cylinder by pulling the paper between the laminated cylindrical body and the acrylic hollow cylinder. Next, in order to use the same acrylic hollow cylinder as a “support member” again, liquid paraffin is applied to the surface of the support member and inserted again into the laminated cylindrical body as a supporting member so that the laminated cylindrical body is supported in the cylinder. The whole was held without looseness by the members.

〔表面に凹凸パターンが形成されている継ぎ目のない筒状体の製造〕
次に、支持部材によって全体が緩みのない緊張状態に保持されている積層筒状体を、110℃の高温槽中に入れ、積層筒状体を筒状体の長手方向(高さ方向)に熱収縮させた。長手方向(高さ方向)の収縮率は30%であり、周方向の収縮率は1%であった。積層筒状体の表面を顕微鏡観察すると、筒状体の円周方向に連続した尾根が連なっている畝状の凸部が略一定間隔で形成されており、筒状体の高さ方向に配列している凸部頂部間のピッチは平均で約1.5μmであった。かくして、表面に凹凸パターンが形成されている継ぎ目のない筒状体が製造された。
[Manufacture of seamless tubular body with uneven pattern on the surface]
Next, the laminated cylindrical body that is held in a tensioned state without looseness by the support member is placed in a high-temperature bath at 110 ° C., and the laminated cylindrical body is placed in the longitudinal direction (height direction) of the cylindrical body. Heat-shrinked. The shrinkage rate in the longitudinal direction (height direction) was 30%, and the shrinkage rate in the circumferential direction was 1%. When the surface of the laminated cylindrical body is observed with a microscope, ridge-like convex parts with continuous ridges extending in the circumferential direction of the cylindrical body are formed at substantially constant intervals and arranged in the height direction of the cylindrical body. The average pitch between the convex tops was about 1.5 μm. Thus, a seamless tubular body having a concavo-convex pattern formed on the surface was produced.

(実施例2)
実施例1の方法において、〔硬質薄膜層を有する積層筒状体の製造〕の工程におけるポリメチルメタクリレート(ポリマーソース株式会社製「P4831−MMA」、ガラス転移温度100℃)による硬質層を形成することに代えて、熱収縮性の樹脂製筒状体表面に二酸化ケイ素蒸着層(厚さ0.2μm)を形成した以外は、実施例1と同様の方法により、表面に凹凸パターンが形成されている継ぎ目のない筒状体が製造された。
(Example 2)
In the method of Example 1, a hard layer is formed by polymethyl methacrylate (“P4831-MMA” manufactured by Polymer Source Co., Ltd., glass transition temperature 100 ° C.) in the step of [Production of laminated cylindrical body having hard thin film layer]. Instead, an uneven pattern was formed on the surface by the same method as in Example 1 except that a silicon dioxide vapor deposition layer (thickness 0.2 μm) was formed on the surface of the heat-shrinkable resin cylindrical body. A seamless tubular body was produced.

(実施例3)
〔鋳型の製造例〕
実施例1の方法で得られた表面に凹凸パターンが形成されている継ぎ目のない筒状体を鋳型原版とするために、その表面にフッ素系離型剤(ハーベス社製、「デュラサーフHD−1100」)をスプレー塗布し、支持部材を軸にして回転させながらエアーで余剰離型剤を十分吹き飛ばして乾燥し、その後、60℃で1時間加熱した。
枠体として、内径が22cmのファイバードラム缶を用意し、筒状体内部に挿入されている支持部材によって支持されている表面に凹凸を有するシームレス筒状体をビニール袋内に立てて入れ、ビニール袋ごと、ファイバードラム缶内に直立状態で載置した。この状態のファイバードラム缶を、図8に示すように、真空槽(P)内におき、真空に引いて、上からエポキシ樹脂を注射器で、ビニール袋とファイバードラム缶の間の隙間を常温硬化型エポキシ樹脂(商品名「セメダインEP331」)で埋めた後、真空槽から取り出し、常温で放置して硬化させた。
硬化後に、筒状体内の支持部材を取り外し、続いて、筒状体とビニール袋を硬化エポキシ樹脂層からゆっくり剥がして除去した。かくして、内部に凹凸パターンが形成されている円筒型空間を有するエポキシ樹脂硬化物よりなる硬化物鋳型が製造された。
(Example 3)
[Example of mold production]
In order to use a seamless cylindrical body having a concavo-convex pattern formed on the surface obtained by the method of Example 1 as a template original plate, a fluorine-based mold release agent (manufactured by Harves, “Durasurf HD- 1100 ") was spray-coated, and the excess release agent was sufficiently blown off with air while rotating around the support member as an axis, followed by drying, followed by heating at 60 ° C for 1 hour.
As a frame, a fiber drum can having an inner diameter of 22 cm is prepared, and a seamless cylindrical body having irregularities on the surface supported by a support member inserted inside the cylindrical body is placed in a plastic bag, and a plastic bag is placed. Each was placed upright in a fiber drum. As shown in FIG. 8, the fiber drum can in this state is placed in a vacuum chamber (P), evacuated, and epoxy resin is injected from above with a syringe, and the gap between the plastic bag and the fiber drum can is set to room temperature curing type epoxy. After being filled with resin (trade name “Cemedine EP331”), it was taken out from the vacuum chamber and allowed to stand at room temperature to be cured.
After curing, the support member in the cylindrical body was removed, and then the cylindrical body and the plastic bag were slowly peeled off and removed from the cured epoxy resin layer. Thus, a cured product mold made of a cured epoxy resin having a cylindrical space in which an uneven pattern was formed was manufactured.

〔鋳造ロールの製造例〕
(実施例4)
実施例3で製造された、内部に凹凸パターンが形成されている円筒型空間を有するエポキシ樹脂硬化物を鋳型とし、鋳型空間の中央に、同一高さの外径21cmのセラミック円筒を置き、該円筒と鋳型の隙間にセラミック前躯体のゾル(平均粒径0.4μmの酸化ジルコニウム88質量部、平均粒径0.3μmのシリカ2質量部、アクリルバインダー10質量部、トルエン/イソプロパノールの1:1混合溶媒を加え、粘度2Pa・sに調整したもの)を流し込み、100℃の温度でセラミック前駆体を48時間乾燥させ、150℃で60時間予備焼成し、その後、エポキシ樹脂硬化物鋳型を剥がし、1000℃で5時間焼成することによって、表面に凹凸パターンが転写されたセラミックロールを製造した。
せラミックロールの表面を顕微鏡観察すると、セラミックロールの周方向に連続して尾根が連なっている畝状の凸部が略一定間隔で形成されており、凸部頂部間のピッチは平均で約1.5μmであった。
かくして、表面に凹凸パターンが形成されている継ぎ目のない筒状体の凹凸パターンが正確に転写されている表面を有するセラミックロールが得られた。
[Examples of casting roll production]
Example 4
Using the epoxy resin cured product having a cylindrical space in which an uneven pattern is formed, produced in Example 3, as a mold, a ceramic cylinder having an outer diameter of 21 cm of the same height is placed at the center of the mold space, A ceramic precursor sol (88 parts by mass of zirconium oxide having an average particle diameter of 0.4 μm, 2 parts by mass of silica having an average particle diameter of 0.3 μm, 10 parts by mass of an acrylic binder, and 1: 1 of toluene / isopropanol is placed between the cylinder and the mold. A mixed solvent is added and the viscosity is adjusted to 2 Pa · s), the ceramic precursor is dried at a temperature of 100 ° C. for 48 hours, pre-fired at 150 ° C. for 60 hours, and then the epoxy resin cured mold is peeled off, By firing at 1000 ° C. for 5 hours, a ceramic roll having a concavo-convex pattern transferred to the surface was produced.
When the surface of the ceramic roll is observed with a microscope, ridge-like convex portions having continuous ridges in the circumferential direction of the ceramic roll are formed at substantially constant intervals, and the pitch between the convex top portions is about 1 on average. It was 5 μm.
Thus, a ceramic roll having a surface on which the concave / convex pattern of the seamless cylindrical body having the concave / convex pattern formed on the surface was accurately transferred was obtained.

〔ナノインプリントシートの製造〕
上記セラミックロールをインプリントロールとし、加熱機により加熱した膜厚100μmの一軸延伸ポリカーボネートフィルム(ガラス転移温度145℃、融点225℃)を硬質ポリアミド製バックアップロールとの間に、ニップ圧400kg/cmで、加圧時のポリカーボネートフィルムの温度が150℃となるように加熱機による加熱温度を調節して、移送速度1m/分で通し、ロール間を出たフィルムに冷却機から冷風を吹き付けて冷却し、冷却されたフィルムをインプリントロールから剥ぎ取り、巻き取りロールに巻き取ってナノインプリントシートを製造した。製造されたナノインプリントシートの全表面に、継ぎ目のないロール表面の均一な凹凸パターンが転写されているナノインプリントシートの巻取りを製造することができた。
[Manufacture of nanoimprint sheets]
The ceramic roll is an imprint roll, and a uniaxially stretched polycarbonate film (glass transition temperature 145 ° C., melting point 225 ° C.) having a film thickness of 100 μm heated by a heater is sandwiched between a hard polyamide backup roll at a nip pressure of 400 kg / cm. Adjust the heating temperature with a heater so that the temperature of the polycarbonate film during pressurization is 150 ° C., pass it at a transfer rate of 1 m / min, and cool the film that has passed between the rolls by blowing cold air from the cooler. The cooled film was peeled off from the imprint roll, and wound on a take-up roll to produce a nanoimprint sheet. It was possible to manufacture a roll of nanoimprint sheet in which a uniform uneven pattern on the surface of the seamless roll was transferred to the entire surface of the manufactured nanoimprint sheet.

本発明の方法で製造される「表面に線状の凹凸パターンを有する継ぎ目のない筒状体」は、表面に凹凸模様を有する金属製又はセラミック製の鋳造ロールを製造する鋳型の原版として有用であり、光拡散体や反射防止体等として有用な表面に均一な凹凸パターンを有する大版の光透過性樹脂シートの連続生産を可能とするものである。   The “seamless cylindrical body having a linear concavo-convex pattern on the surface” produced by the method of the present invention is useful as an original plate of a mold for producing a metal or ceramic casting roll having a concavo-convex pattern on the surface. In addition, it is possible to continuously produce a large-sized light-transmitting resin sheet having a uniform concavo-convex pattern on a surface useful as a light diffuser or an antireflection body.

A:積層樹脂製筒状体
B:支持体
C:輪環状支持体
D:棒状支持体
E:表面に線状の凹凸パターンを有する継ぎ目のない筒状体
F:枠体
G:セラミック前躯体のゾル
H:鋳型
W:錘
a:凸部
b:凹部
A: Cylindrical body made of laminated resin B: Support body C: Ring-shaped support body D: Rod-shaped support body E: Seamless tubular body F having a linear uneven pattern on the surface F: Frame body G: Ceramic precursor body Sol H: Mold W: Weight a: Convex part b: Concave part

Claims (9)

長手方向又は周方向のいずれか一軸方向にのみ熱収縮性を有する継ぎ目のない樹脂製筒状体の一面に非熱収縮性かつ易変形性の硬質薄膜層を積層一体化して継ぎ目のない積層樹脂製筒状体を製造する積層工程、及び該継ぎ目のない積層樹脂製筒状体を一軸方向に熱収縮させて前記硬質薄膜層形成面を皺状に変形させ、熱収縮方向に直交する線状の凸部と凹部を形成する熱収縮処理工程を有することを特徴とする、表面に線状の凹凸パターンを有する継ぎ目のない筒状体の製造方法。   Laminated resin with no joints by laminating and integrating a non-heat-shrinkable and easily deformable hard thin film layer on one surface of a seamless resin-made cylindrical body having heat shrinkability only in one of the longitudinal direction and the circumferential direction. Laminating step for producing a cylindrical body, and the seamless laminated resin cylindrical body is thermally contracted in a uniaxial direction to deform the hard thin film layer forming surface into a bowl shape, and a linear shape perpendicular to the thermal contraction direction A method for producing a seamless tubular body having a linear concavo-convex pattern on the surface, comprising a heat shrinkage treatment step for forming a convex portion and a concave portion. 前記積層工程における前記一軸方向にのみ熱収縮性を有する継ぎ目のない樹脂製筒状体が、インフレーション法により製造されている二軸延伸の筒状樹脂シートを一軸方向の熱収縮率のみが略零となるように処理して形成されている樹脂製筒状体よりなることを特徴とする、請求項1記載の表面に線状の凹凸パターンを有する継ぎ目のない筒状体の製造方法。   The seamless resin tubular body having heat shrinkability only in the uniaxial direction in the laminating step is a biaxially stretched tubular resin sheet produced by the inflation method, and only the heat shrinkage rate in the uniaxial direction is substantially zero. The method for producing a seamless tubular body having a linear concavo-convex pattern on the surface according to claim 1, wherein the tubular body is made of a resin that is formed so as to be 前記積層工程が、熱収縮性を有する継ぎ目のない樹脂製筒状体の一面に硬質樹脂塗工層及び/又は金属蒸着層からなる硬質薄膜層を形成する積層工程であることを特徴とする、請求項1又は2に記載の表面に線状の凹凸パターンを有する継ぎ目のない筒状体の製造方法。   The laminating step is a laminating step of forming a hard thin film layer composed of a hard resin coating layer and / or a metal vapor deposition layer on one surface of a seamless resin tubular body having heat shrinkability, The manufacturing method of the seamless cylindrical body which has a linear uneven | corrugated pattern on the surface of Claim 1 or 2. 前記熱収縮処理工程が、前記積層樹脂製筒状体全体を支持体により緊張状態に保持して一軸方向に熱収縮処理する工程であることを特徴とする、請求項1〜3のいずれか1項に記載の表面に線状の凹凸パターンを有する継ぎ目のない筒状体の製造方法。   The heat shrinking treatment step is a step of holding the entire laminated resin tubular body in a tensioned state by a support and performing a heat shrinking treatment in a uniaxial direction. A method for producing a seamless tubular body having a linear concavo-convex pattern on the surface thereof. 前記熱収縮処理工程が、前記積層樹脂製筒状体内に挿入されている円柱状又は円筒状の支持体により筒状体を内部より支持して積層樹脂製筒状体全体を緊張状態に保持し、積層樹脂製筒状体を長手方向に熱収縮させる工程であることを特徴とする、請求項1〜4のいずれか1項に記載の表面に線状の凹凸パターンを有する継ぎ目のない筒状体の製造方法。   The heat shrinking treatment step supports the tubular body from the inside by a columnar or cylindrical support inserted into the laminated resin tubular body, and holds the entire laminated resin tubular body in a tension state. 5. A seamless tubular shape having a linear uneven pattern on the surface according to any one of claims 1 to 4, wherein the laminated resin tubular body is a step of heat shrinking in a longitudinal direction. Body manufacturing method. 前記熱収縮処理工程が、前記積層樹脂製筒状体の両開口端縁部を全周にわたって環状支持体に固定し、両環状支持体間で積層樹脂製筒状体の全体を緊張状態に保持し、積層樹脂製筒状体の長手方向に熱収縮させる工程であることを特徴とする、請求項1〜4のいずれか1項に記載の表面に線状の凹凸パターンを有する継ぎ目のない筒状体の製造方法。   The heat shrink treatment process fixes both opening edges of the laminated resin tubular body to the annular support over the entire circumference, and holds the entire laminated resin tubular body in a tensioned state between the annular supports. A seamless cylinder having a linear concavo-convex pattern on the surface according to any one of claims 1 to 4, which is a step of heat shrinking in the longitudinal direction of the laminated resin cylindrical body. A method of manufacturing a body. 前記熱収縮処理工程が、前記積層樹脂製筒状体内に平行に挿入した2本の棒状支持体により積層樹脂製筒状体を内部より扁平状に支持して全体を緊張状態に保持し、積層樹脂製筒状体の周方向に熱収縮させる工程であることを特徴とする、請求項1〜4のいずれか1項に記載の表面に線状の凹凸パターンを有する継ぎ目のない筒状体の製造方法。   In the heat shrinking process, the laminated resin cylindrical body is supported flatly from the inside by the two rod-like support bodies inserted in parallel into the laminated resin cylindrical body, and the whole is held in a tension state. It is the process of carrying out the heat shrink in the circumferential direction of a resin-made cylindrical body, The seamless cylindrical body which has a linear uneven | corrugated pattern on the surface of any one of Claims 1-4 characterized by the above-mentioned. Production method. 請求項1〜7のいずれか1項に記載の方法で製造されている表面に線状の凹凸パターンを有する継ぎ目のない筒状体を、円柱状又は円筒状の支持体により筒状体内部から円筒状に支持することにより前記線状の凹凸パターンを有する継ぎ目のない筒状体の表面を緊張状態に保持して鋳型原版として使用することを特徴とする、内面に線状の凹凸パターンが転写されている円筒状鋳型の製造方法。   A seamless tubular body having a linear concavo-convex pattern on the surface produced by the method according to any one of claims 1 to 7, and a cylindrical or cylindrical support from the inside of the tubular body. The linear concave / convex pattern is transferred to the inner surface, which is used as a template original by holding the surface of the seamless cylindrical body having the linear concave / convex pattern in a tension state by supporting it in a cylindrical shape. A method for producing a cylindrical mold. 前記鋳型原版を、該原版の外径より大きい内径を有する枠体内中心部に載置し、枠体内壁と原版外壁間に流動性の硬化物前駆物質を流し込み充填し、硬化させて硬化物層を形成し、次いで、前記原版内から支持体を抜き去り、次いで、前記原版を硬化物層から剥離除去することを特徴とする、請求項8記載の内面に線状の凹凸パターンが転写されている円筒状鋳型の製造方法。
The mold original plate is placed in the center of the frame body having an inner diameter larger than the outer diameter of the original plate, and a fluid hardened precursor is poured and filled between the inner wall of the frame and the outer wall of the original plate, and cured to be a hardened material layer. The linear uneven pattern is transferred to the inner surface according to claim 8, wherein the support is removed from the original plate, and then the original plate is peeled and removed from the cured product layer. A method for producing a cylindrical mold.
JP2010169993A 2010-07-29 2010-07-29 Method for producing a seamless resin tubular body having a linear uneven pattern on the surface Expired - Fee Related JP5510157B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010169993A JP5510157B2 (en) 2010-07-29 2010-07-29 Method for producing a seamless resin tubular body having a linear uneven pattern on the surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010169993A JP5510157B2 (en) 2010-07-29 2010-07-29 Method for producing a seamless resin tubular body having a linear uneven pattern on the surface

Publications (2)

Publication Number Publication Date
JP2012030410A true JP2012030410A (en) 2012-02-16
JP5510157B2 JP5510157B2 (en) 2014-06-04

Family

ID=45844447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010169993A Expired - Fee Related JP5510157B2 (en) 2010-07-29 2010-07-29 Method for producing a seamless resin tubular body having a linear uneven pattern on the surface

Country Status (1)

Country Link
JP (1) JP5510157B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170029639A (en) * 2014-09-02 2017-03-15 후지필름 가부시키가이샤 Roll mold manufacturing method and roll mold

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009096081A (en) * 2007-10-17 2009-05-07 National Institute Of Advanced Industrial & Technology Periodic fine irregularity structure material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009096081A (en) * 2007-10-17 2009-05-07 National Institute Of Advanced Industrial & Technology Periodic fine irregularity structure material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170029639A (en) * 2014-09-02 2017-03-15 후지필름 가부시키가이샤 Roll mold manufacturing method and roll mold
KR101867248B1 (en) * 2014-09-02 2018-06-12 후지필름 가부시키가이샤 Roll mold manufacturing method

Also Published As

Publication number Publication date
JP5510157B2 (en) 2014-06-04

Similar Documents

Publication Publication Date Title
EP2627605B1 (en) Process for producing highly ordered nanopillar or nanohole structures on large areas
JP5211506B2 (en) Convex and concave pattern forming sheet and manufacturing method thereof, antireflection body, retardation plate and optical element manufacturing process sheet.
JP5182658B2 (en) Method for producing uneven pattern forming sheet and method for producing optical element
JP4683011B2 (en) Uneven pattern forming sheet and method for producing the same, light diffuser, process sheet original plate for producing light diffuser, and method for producing light diffuser
US9728802B2 (en) Micromold methods for fabricating perforated substrates and for preparing solid polymer electrolyte composite membranes
TWI621910B (en) Cylindrical polymer mask and method of fabrication, method of lithography, substrate, rotatable mask and method of fabrication, master mold and method for forming master mold, and cylindrical master mold assembly and method for forming cylindrical mask w
TW201007305A (en) Light-redirecting article
JP4147247B2 (en) Method for reducing pitch of fine concavo-convex lattice and fine concavo-convex lattice member obtained thereby
KR101241963B1 (en) Pattern Film and Method of Fabricating the Same
JP2008304701A (en) Uneven pattern formed sheet, its manufacturing method, process sheet original plate for manufacturing light diffusion body, and method for manufacturing light diffusion body
JP5510157B2 (en) Method for producing a seamless resin tubular body having a linear uneven pattern on the surface
JP2005035119A (en) Manufacturing method of embossing roll and manufacturing method of transfer sheet using the embossing roll
JPWO2014002850A1 (en) Light diffusing sheet
JP5682841B2 (en) Process sheet master for manufacturing light diffuser and method for manufacturing light diffuser
JP6591161B2 (en) Film-like microstructure transfer device and method for producing film-like microstructure
JP2005161529A (en) Manufacturing method of embossed sheet
KR101867248B1 (en) Roll mold manufacturing method
KR102096608B1 (en) A Roll to Roll Imprint Flexible Mold with Enhanced Demolding and Method of Manufacturing Pptical Waveguide Using the Same
JP5636907B2 (en) Convex / concave pattern forming sheet and method for producing the same, concave / convex pattern forming sheet duplicating process sheet master, optical element, secondary process molding, duplicating sheet
JP2010117581A (en) Method of manufacturing shrink film with hologram
JP2013180508A (en) Mold for imprinting and forming method of microstructure
JP2013148921A (en) Optical sheet, and original plate of process sheet thereof
JP2010266479A (en) Method for producing fine rugged sheet
JP2012045813A (en) Method for manufacturing roll having seamless rugged pattern
Sharma et al. Modified polymer nanopillars array for enhanced light trapping on large area

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140310

R150 Certificate of patent or registration of utility model

Ref document number: 5510157

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees