JP2009096081A - Periodic fine irregularity structure material - Google Patents

Periodic fine irregularity structure material Download PDF

Info

Publication number
JP2009096081A
JP2009096081A JP2007270049A JP2007270049A JP2009096081A JP 2009096081 A JP2009096081 A JP 2009096081A JP 2007270049 A JP2007270049 A JP 2007270049A JP 2007270049 A JP2007270049 A JP 2007270049A JP 2009096081 A JP2009096081 A JP 2009096081A
Authority
JP
Japan
Prior art keywords
substrate
stretching
surface layer
aspect ratio
convex structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007270049A
Other languages
Japanese (ja)
Other versions
JP5007976B2 (en
Inventor
Takuya Osono
拓哉 大園
Hiroshi Shimizu
洋 清水
Mitsufumi Nodono
光史 野殿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Mitsubishi Rayon Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2007270049A priority Critical patent/JP5007976B2/en
Publication of JP2009096081A publication Critical patent/JP2009096081A/en
Application granted granted Critical
Publication of JP5007976B2 publication Critical patent/JP5007976B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To form a fine irregularity structure material of a high aspect ratio which has the periodicity of a submicron size to a micron size by an extremely simple method and in a broad range. <P>SOLUTION: The fine irregularity structure material has a convex/concave structure which is formed based on compressive strain generated when a surface layer (E) is formed on a substrate (D) in a state that at least a part or the whole of the substrate (D) is stretched (F) in at least one axial direction, and the stretching state of the substrate (D) is canceled, wherein the aspect ratio of the convex/concave structure is in a range of 0.2-1.0. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、サブミクロンからミクロンサイズの周期的微細凹凸構造を有する材料に関する。   The present invention relates to a material having a periodic fine concavo-convex structure of submicron to micron size.

従来、周期的微細凹凸構造は、高分子弾性体上に相対的に硬い薄膜を形成し、そこに側方応力を加え座屈不安定性の臨界応力を超えることで、調製されていた。その凹凸構造の周期は硬い薄膜と柔らかい基板のヤング率(硬さ)の比と薄膜の厚みによって制御が可能であることが公知である。弾性体基材としてはシリコーンゴム(ポリジメチルシロキサン)が主に報告されている(非特許文献1〜6)。また、表面薄膜としては、蒸着金属膜、高分子薄膜、有機無機複合薄膜など幅広い材料による報告例がある(非特許文献1〜6)。この技術は光リソグラフィーなどを用いずに非常に簡便に且つ大面積でサブミクロンの周期構造が達成できるために、広範囲に渡る応用が期待できる。   Conventionally, a periodic fine concavo-convex structure has been prepared by forming a relatively hard thin film on a polymer elastic body and applying a lateral stress thereto to exceed the critical stress of buckling instability. It is known that the period of the concavo-convex structure can be controlled by the ratio of Young's modulus (hardness) between the hard thin film and the soft substrate and the thickness of the thin film. Silicone rubber (polydimethylsiloxane) has been mainly reported as an elastic substrate (Non-Patent Documents 1 to 6). In addition, as surface thin films, there are reported examples using a wide range of materials such as vapor-deposited metal films, polymer thin films, and organic-inorganic composite thin films (Non-Patent Documents 1 to 6). Since this technique can achieve a submicron periodic structure with a large area in a very simple manner without using optical lithography or the like, it can be expected to be applied in a wide range.

しかしながら、これまでにこの微細凹凸構造の凹凸の高さについては明確な制御は行われていなかった。この高さのパラメーターはこの部材を応用する場合に極めて重要である。特に、高いアスペクト比(周期に対する凹凸の高さの比)を持つ構造は、従来のナノインプリント技術により得られる構造に匹敵し、且つナノインプリント技術よりも簡単な工程により達成できるために非常に有用性が高い。しかしながら、これまでに0.4程度に達する高アスペクト比を有する構造を作製した例はない。
特開2003−266570 Bowden, N.; Brittain, S.; Evans, A. G.; Hutchinson, J. W.; Whitesides, G. M. Nature 1998, 393, 146. Bowden, N.; Huck, W. T. S.; Paul, K. E.; Whitesides, G. M. Appl. Phys. Lett. 1999, 75, 2557. Huck, W. T. S.; Bowden, N.; Onck, P.; Pardoen, T.; Hutchinson, J. W.; Whitesides, G. M. Langmuir 2000, 16, 3497. Ohzono, T.; Shimomura, M. Phys. Rev. B. 2004, 69, 132202. Yoo, P. J.; Lee, H. H. Phys. Rev. Lett. 2003, 91, 154502. Stafford, C. M.; Harrison, C.; Beers, K. L.; Karim, A.; Amis, E. J.; Vanlandingham, M. R.; Kim, H.; Volksen, W.; Miller, R. D.; Simonyi, E. E. Nat. Mat. 2004, 3, 545.
However, until now, no clear control has been performed on the height of the unevenness of the fine uneven structure. This height parameter is very important when applying this component. In particular, a structure having a high aspect ratio (ratio of unevenness to period) is very useful because it is comparable to the structure obtained by conventional nanoimprint technology and can be achieved by a simpler process than nanoimprint technology. high. However, there has been no example of producing a structure having a high aspect ratio reaching about 0.4 so far.
JP 2003-266570 A Bowden, N .; Brittain, S .; Evans, AG; Hutchinson, JW; Whitesides, GM Nature 1998, 393, 146. Bowden, N .; Huck, WTS; Paul, KE; Whitesides, GM Appl. Phys. Lett. 1999, 75, 2557. Huck, WTS; Bowden, N .; Onck, P .; Pardoen, T .; Hutchinson, JW; Whitesides, GM Langmuir 2000, 16, 3497. Ohzono, T .; Shimomura, M. Phys. Rev. B. 2004, 69, 132202. Yoo, PJ; Lee, HH Phys. Rev. Lett. 2003, 91, 154502. Stafford, CM; Harrison, C .; Beers, KL; Karim, A .; Amis, EJ; Vanlandingham, MR; Kim, H .; Volksen, W .; Miller, RD; Simonyi, EE Nat. Mat. 2004, 3 , 545.

基板表面の凹凸は、光学的描画法や鋳型を用いる方法などにより作製可能であるが、これらの方法で得られる基板は非常に高価であり、広範囲にわたる周期構造を形成するのが困難であった。   The irregularities on the surface of the substrate can be produced by an optical drawing method or a method using a mold, but the substrate obtained by these methods is very expensive and it is difficult to form a periodic structure over a wide range. .

これまで側方からの応力による座屈を利用した方法は公知であるが、本発明では、サブミクロンサイズからミクロンサイズの周期性を有し、特にアスペクト比の制御が再現性よく行われた高アスペクト比の微細凹凸構造材料を、非常に単純な方法でかつ広範囲に形成可能な技術を提供することを目的とする。   A method using buckling due to stress from the side has been known so far, but in the present invention, it has a periodicity from submicron size to micron size, and the aspect ratio is particularly controlled with good reproducibility. An object of the present invention is to provide a technique capable of forming a fine concavo-convex structure material having an aspect ratio in a wide range by a very simple method.

本発明者は上記課題に鑑み検討を重ねた結果、延伸状態の基板(D)上に硬い(基板の弾性率よりも大きい弾性率を有する)表層(E)を形成し、次いで基板(D)の延伸状態を解除することで、表層(E)に周期的な凹凸を形成させることができ、しかも高アスペクト比の凹凸でありながら基板(D)と表層(E)が良好な密着性を有し、基板(D)に対する表層(E)の剥離のない微細凹凸構造材料が得られることを見出した。本発明によれば、基板(D)と表層(E)の材料、厚み、延伸の程度を制御することで、再現性良く所定のアスペクト比と周期を有する微細凹凸構造材料を有利に得ることができる。   As a result of repeated investigations in view of the above problems, the present inventor formed a hard surface layer (E) (having an elastic modulus larger than that of the substrate) on the stretched substrate (D), and then the substrate (D). By releasing the stretched state, periodic irregularities can be formed on the surface layer (E), and the substrate (D) and the surface layer (E) have good adhesion while having irregularities with a high aspect ratio. And it discovered that the fine uneven | corrugated structure material without peeling of the surface layer (E) with respect to a board | substrate (D) was obtained. According to the present invention, it is possible to advantageously obtain a fine concavo-convex structure material having a predetermined aspect ratio and period with good reproducibility by controlling the material, thickness, and degree of stretching of the substrate (D) and the surface layer (E). it can.

本発明は、以下の微細凹凸構造材料に関する。
項1. 基板(D)の少なくとも一部又は全体を少なくとも一軸方向に延伸(F)された状態の基板(D)上に表層(E)を形成し、基板(D)の延伸状態を解除したときに発生する圧縮歪みに基づき形成された凹凸構造を有し、前記凹凸構造のアスペクト比が0.2〜1.0の範囲にある、微細凹凸構造材料。
項2. 基板(D)の弾性率(Ea)と表層(E)の弾性率(Eb)が、Ea≦Ebの関係を有する、項1に記載の材料。
項3. 前記構造が、50nm以上500μm以下の周期を有する、項1〜2のいずれかに記載の材料。
項4. 基板(D)の材料の延伸率(延伸時の延伸方向の長さ/非延伸時の延伸方向の長さ)が1.2〜10である、項1〜3のいずれかに記載の材料。
項5. 以下の工程1〜工程3:
工程1:基板(D)の少なくとも一部又は全体を少なくとも一軸方向に延伸(F)する工程、
工程2:延伸された状態の基板(D)上に表層(E)を形成する工程、
工程3:基板(D)の延伸状態を解除して、凹凸構造を形成する工程、
を含むことを特徴とする、アスペクト比が0.2〜1.0の範囲にある微細凹凸構造を有する項1〜4のいずれかに記載の材料の製造方法。
項6. 工程1における基板(D)の材料の延伸率(延伸時の延伸方向の長さ/非延伸時の延伸方向の長さ)が1.2〜10である、項5に記載の方法。
The present invention relates to the following fine uneven structure material.
Item 1. Occurs when the surface layer (E) is formed on the substrate (D) in a state where at least a part or the whole of the substrate (D) is stretched (F) in at least a uniaxial direction, and the stretched state of the substrate (D) is released. A fine concavo-convex structure material having a concavo-convex structure formed on the basis of compressive strain, wherein the concavo-convex structure has an aspect ratio in the range of 0.2 to 1.0.
Item 2. Item 2. The material according to Item 1, wherein the elastic modulus (Ea) of the substrate (D) and the elastic modulus (Eb) of the surface layer (E) have a relationship of Ea ≦ Eb.
Item 3. Item 3. The material according to any one of Items 1 to 2, wherein the structure has a period of 50 nm to 500 μm.
Item 4. Item 4. The material according to any one of Items 1 to 3, wherein a stretching ratio of the material of the substrate (D) (length in the stretching direction during stretching / length in the stretching direction during non-stretching) is 1.2 to 10.
Item 5. The following steps 1 to 3:
Step 1: Stretching (F) at least part or all of the substrate (D) in at least uniaxial direction;
Step 2: forming a surface layer (E) on the stretched substrate (D),
Process 3: The process of canceling | stretching the extending | stretching state of a board | substrate (D) and forming an uneven structure,
Item 5. The method for producing a material according to any one of Items 1 to 4, which has a fine concavo-convex structure having an aspect ratio in the range of 0.2 to 1.0.
Item 6. Item 6. The method according to Item 5, wherein the stretching ratio of the material of the substrate (D) in Step 1 (length in the stretching direction during stretching / length in the stretching direction during non-stretching) is 1.2 to 10.

本発明で得られた材料は、高アスペクト比であるため、一般的な光学部材、回折格子、防眩表面、異方散乱、などの凹凸表面を、金型を使用することなく効率的かつ経済的に得ることができる。また、本発明の好ましい材料は非常に薄く、光透過性を有している。   Since the material obtained in the present invention has a high aspect ratio, a rough surface such as a general optical member, a diffraction grating, an antiglare surface, and anisotropic scattering can be efficiently and economically used without using a mold. Can be obtained. Moreover, the preferable material of this invention is very thin, and has a light transmittance.

本発明において、基板(D)の材料は、延伸率(延伸時の延伸方向の長さ/非延伸時の延伸方向の長さ)が1.01〜10程度(好ましくは1.2〜10程度)の延伸状態が可能な材料である。このような材料としては、ポリジメチルシロキサン(PDMS)、ジフェニルシロキサンなどのポリシロキサン系ポリマー、シリコーン樹脂/シリコーンゴム、天然ゴムないし合成ゴム、ポリエチレンテレフタレート(PET)、ポリメチルメタクリレート(PMMA)、ポリカーボネート、ポリエチレン、ポリプロピレンなどのポリオレフィン、ポリウレタン、ポリスチレン、フッ素化ポリマー(PTFE、PVdFなど)、ポリ塩化ビニル、ポリメチルハイドロゲンシロキサン、ジメチルシロキサンとメチルハイドロジェンシロキサン単位のコポリマーなどのホモポリマー或いはコポリマー、さらにはこれらのブレンドが挙げられるが、延伸可能な材料であれば特に限定されるものではない。   In the present invention, the material of the substrate (D) has a stretching ratio (length in the stretching direction during stretching / length in the stretching direction during non-stretching) of about 1.01 to 10 (preferably about 1.2 to 10). ) Is a material that can be stretched. Examples of such materials include polydimethylsiloxane (PDMS), polysiloxane polymers such as diphenylsiloxane, silicone resin / silicone rubber, natural rubber or synthetic rubber, polyethylene terephthalate (PET), polymethyl methacrylate (PMMA), polycarbonate, Polyolefins such as polyethylene and polypropylene, polyurethane, polystyrene, fluorinated polymers (PTFE, PVdF, etc.), polyvinyl chloride, polymethylhydrogensiloxane, homopolymers or copolymers such as copolymers of dimethylsiloxane and methylhydrogensiloxane units, and more However, it is not particularly limited as long as it is a stretchable material.

基板(D)と表層(E)の透過率は特に限定されないが、光学部材に使用する場合は、
基板(D)と表層(E)を合わせた部材は透明又は半透明の材料であるのが好ましく、可視・赤外光の透過率は30%以上、好ましくは70%以上、より好ましくは90%以上である。
The transmittance of the substrate (D) and the surface layer (E) is not particularly limited, but when used for an optical member,
The member in which the substrate (D) and the surface layer (E) are combined is preferably a transparent or translucent material, and the visible / infrared light transmittance is 30% or more, preferably 70% or more, more preferably 90%. That's it.

基板(D)の材料の弾性率は、0.5〜10MPa程度である。   The elastic modulus of the material of the substrate (D) is about 0.5 to 10 MPa.

表層(E)の材料の弾性率は、0.5〜100GPa程度である。   The elastic modulus of the material of the surface layer (E) is about 0.5 to 100 GPa.

基板(D)の材料の弾性率(Ea)と表層(E)の弾性率の比(Ea/Eb)は、10-5〜10-1程度、好ましくは10-4〜10-2程度である。 The ratio (Ea / Eb) of the elastic modulus (Ea) of the material of the substrate (D) and the elastic modulus of the surface layer (E) is about 10 −5 to 10 −1 , preferably about 10 −4 to 10 −2. .

弾性率は、JIS K7171、ASTM D790に準拠した方法により測定できる。   The elastic modulus can be measured by a method based on JIS K7171 and ASTM D790.

表層(E)の材料としては、基板(D)よりも大きな弾性率を有し、基板(D)の収縮とともに周期的な凹凸構造を形成できる材料であれば特に限定されず、例えば金属、セラミック、カーボン、或いは、シリコーン樹脂、メラミン樹脂、エポキシ樹脂などの熱硬化性樹脂、ポリアミド、ポリアミドイミド、ポリイミド、ポリエチレンテレフタレート(PET)、ポリカーボネート(PC)、アクリル樹脂などのポリマーが挙げられる。   The material of the surface layer (E) is not particularly limited as long as it is a material that has a larger elastic modulus than the substrate (D) and can form a periodic concavo-convex structure as the substrate (D) contracts. , Carbon, or thermosetting resins such as silicone resin, melamine resin, and epoxy resin, polymers such as polyamide, polyamideimide, polyimide, polyethylene terephthalate (PET), polycarbonate (PC), and acrylic resin.

表層(E)は、単層であるのが好ましいが、2層以上の表層(E)を積層させてもよい。このようにすることで、表層(E)の特性や基板(D)との密着性を向上させることができる、
表層(E)の厚みとしては、1〜50000nm程度が挙げられる。
The surface layer (E) is preferably a single layer, but two or more surface layers (E) may be laminated. By doing in this way, the characteristic of surface layer (E) and adhesiveness with a board | substrate (D) can be improved.
The thickness of the surface layer (E) is about 1 to 50000 nm.

基板(D)の厚みとしては、0.3〜20mm程度が挙げられる。   The thickness of the substrate (D) is about 0.3 to 20 mm.

表層(E)の凹凸構造のアスペクト比は、0.2〜1.0、例えば0.2〜0.5、好ましくは0.25〜0.45である。   The aspect ratio of the concavo-convex structure of the surface layer (E) is 0.2 to 1.0, for example 0.2 to 0.5, preferably 0.25 to 0.45.

図3に示されるように、本発明の材料は、一軸延伸により形成することができ、一方向に周期性を有する凹凸を備えている。凹凸の周期としては、50nm〜500μm程度、凸部の高さとしては、20nm〜200μm程度である。   As shown in FIG. 3, the material of the present invention can be formed by uniaxial stretching and has irregularities having periodicity in one direction. The period of the irregularities is about 50 nm to 500 μm, and the height of the convex part is about 20 nm to 200 μm.

基板(D)上への表層(E)の形成は、上記のような十分に薄い表層(E)を形成できるものであれば特に限定されないが、金属であればスパッタ、樹脂であれば塗布(スピンコート、キャストなど)、セラミックであれば有機セラミック原料のプラズマ酸化処理(表面部分のみが酸化されてセラミックになる)が例示される。また電子線や紫外線、イオン線照射によっても表面の変性を促し表層(E)を形成可能である。   The formation of the surface layer (E) on the substrate (D) is not particularly limited as long as it can form a sufficiently thin surface layer (E) as described above. In the case of ceramic such as spin coating and casting, plasma oxidation treatment of organic ceramic raw materials (only the surface portion is oxidized to become ceramic) is exemplified. The surface layer (E) can be formed by promoting surface modification by irradiation with electron beam, ultraviolet ray or ion beam.

基板(D)用の材料は、一軸延伸、二軸延伸、曲率を利用した延伸、温度差を利用した延伸などの1種又は2種以上の延伸方法を組み合わせて延伸状態にすることができる。このような方法により延伸して基板(D)を延伸状態とし、その表面上に表層(E)を形成し、基板(D)の延伸状態を解除して周期的凹凸構造を形成するので、延伸率は重要な因子である。好ましい基板(D)の延伸率は1.01〜10程度、より好ましくは1.2〜1.8程度、さらに好ましくは1.3〜1.7程度である。延伸率が大きいとアスペクト比が大きくなるが、延伸率が大きくなりすぎると基板(D)と表層(E)が剥離することがある。また、アスペクト比が小さすぎると、光学部材特性などの改善効果が低下する。   The material for the substrate (D) can be made into a stretched state by combining one or two or more stretching methods such as uniaxial stretching, biaxial stretching, stretching using a curvature, and stretching using a temperature difference. Stretching by such a method makes the substrate (D) in a stretched state, forms a surface layer (E) on the surface, releases the stretched state of the substrate (D), and forms a periodic concavo-convex structure. Rate is an important factor. The stretching ratio of the substrate (D) is preferably about 1.01 to 10, more preferably about 1.2 to 1.8, and still more preferably about 1.3 to 1.7. If the stretch ratio is large, the aspect ratio becomes large, but if the stretch ratio is too large, the substrate (D) and the surface layer (E) may be separated. On the other hand, if the aspect ratio is too small, the improvement effect such as optical member characteristics is lowered.

以下、本発明を実施例を用いてより詳細に説明するが、本発明がこれら実施例に限定されないことはいうまでもない。
実施例1
(1)0.4程度の高アスペクト比かつサブミクロンの規則性の高い凹凸構造を得る方法
厚さ1mm程度の20×40mm程度のPDMSゴムを成形し、それを両側で固定し延伸機で150%程度延伸した状態で、スパッタ蒸着により金(白金でも可)を約1nm蒸着し、その後、延伸状態を解放し、100%の状態に戻すことで目的の凹凸構造(図1)を得る。ここで表層と基板の有効弾性率はそれぞれ、約200GPa、20MPaである。
EXAMPLES Hereinafter, although this invention is demonstrated in detail using an Example, it cannot be overemphasized that this invention is not limited to these Examples.
Example 1
(1) A method to obtain a concavo-convex structure with a high aspect ratio of about 0.4 and a high regularity of submicron A PDMS rubber of about 20 x 40 mm with a thickness of about 1 mm is molded, fixed on both sides, and about 150% with a stretching machine In the stretched state, gold (or platinum) is deposited by about 1 nm by sputter deposition, and then the stretched state is released and returned to the 100% state to obtain the desired uneven structure (FIG. 1). Here, the effective elastic moduli of the surface layer and the substrate are about 200 GPa and 20 MPa, respectively.

比較例として、上記において延伸率を105%倍で得られるものはアスペクト比が0.17程度となり、0.2を超えず、低アスペクト比となる。
(2)アスペクト比を再現性よく制御する方法
前項同様に、厚さ1mm程度の20×40mm程度のPDMSゴムを成形し、それを両側で固定し延伸機でX倍に延伸した状態で、スパッタ蒸着により金(白金でも可)を数nm蒸着し、その後、延伸状態を解放し、100%の状態に戻すことで目的の凹凸構造を得るが、そのアスペクト比と延伸率Xとの関係(図2)を得た。データは空間波長200nm-1000nmでの結果を含む。
As a comparative example, the one obtained at a stretch ratio of 105% in the above has an aspect ratio of about 0.17, does not exceed 0.2, and has a low aspect ratio.
(2) Method for controlling the aspect ratio with good reproducibility As in the previous section, a 20 mm x 40 mm PDMS rubber with a thickness of about 1 mm is molded, fixed on both sides, and stretched X times with a stretching machine. Gold (or platinum) is vapor deposited by vapor deposition, and then the stretched state is released and returned to 100% to obtain the desired concavo-convex structure. The relationship between the aspect ratio and the stretch ratio X (Fig. 2) was obtained. Data include results at spatial wavelengths of 200nm-1000nm.

高アスペクト比、微小周期構造体の原子間力顕微鏡像(上)とそのプロファイル(下)、周期(約220nm)、高さ(90nm)、アスペクト比(0.4)。High aspect ratio, atomic force microscope image of micro periodic structure (top) and its profile (bottom), period (about 220nm), height (90nm), aspect ratio (0.4). 延伸率とアスペクト比の関係を示す。The relationship between a draw ratio and an aspect ratio is shown. 本発明による微小周期構造体の製造方法を示す模式図である。It is a schematic diagram which shows the manufacturing method of the micro periodic structure by this invention.

Claims (6)

基板(D)の少なくとも一部又は全体を少なくとも一軸方向に延伸(F)された状態の基板(D)上に表層(E)を形成し、基板(D)の延伸状態を解除したときに発生する圧縮歪みに基づき形成された凹凸構造を有し、前記凹凸構造のアスペクト比が0.2〜1.0の範囲にある、微細凹凸構造材料。 Occurs when the surface layer (E) is formed on the substrate (D) in a state in which at least a part or the whole of the substrate (D) is stretched (F) at least in a uniaxial direction, and the stretched state of the substrate (D) is released. A fine concavo-convex structure material having a concavo-convex structure formed on the basis of compressive strain, wherein the concavo-convex structure has an aspect ratio in the range of 0.2 to 1.0. 基板(D)の弾性率(Ea)と表層(E)の弾性率(Eb)が、Ea≦Ebの関係を有する、請求項1に記載の材料。 The material according to claim 1, wherein the elastic modulus (Ea) of the substrate (D) and the elastic modulus (Eb) of the surface layer (E) have a relationship of Ea ≦ Eb. 前記構造が、50nm以上500μm以下の周期を有する、請求項1〜2のいずれかに記載の材料。 The material according to claim 1, wherein the structure has a period of 50 nm or more and 500 μm or less. 基板(D)の材料の延伸率(延伸時の延伸方向の長さ/非延伸時の延伸方向の長さ)が1.2〜10である、請求項1〜3のいずれかに記載の材料。 The material according to any one of claims 1 to 3, wherein a stretching ratio of the material of the substrate (D) (length in the stretching direction during stretching / length in the stretching direction during non-stretching) is 1.2 to 10. . 以下の工程1〜工程3:
工程1:基板(D)の少なくとも一部又は全体を少なくとも一軸方向に延伸(F)する工程、
工程2:延伸された状態の基板(D)上に表層(E)を形成する工程、
工程3:基板(D)の延伸状態を解除して、凹凸構造を形成する工程、
を含むことを特徴とする、アスペクト比が0.2〜1.0の範囲にある微細凹凸構造を有する請求項1〜4のいずれかに記載の材料の製造方法。
The following steps 1 to 3:
Step 1: Stretching (F) at least part or all of the substrate (D) in at least a uniaxial direction;
Step 2: forming a surface layer (E) on the stretched substrate (D),
Process 3: The process of canceling | stretching the extending | stretching state of a board | substrate (D) and forming an uneven structure,
The method for producing a material according to claim 1, wherein the material has a fine concavo-convex structure having an aspect ratio in the range of 0.2 to 1.0.
工程1における基板(D)の材料の延伸率(延伸時の延伸方向の長さ/非延伸時の延伸方向の長さ)が1.2〜10である、請求項5に記載の方法。 The method according to claim 5, wherein the stretching ratio of the material of the substrate (D) in step 1 (length in the stretching direction during stretching / length in the stretching direction during non-stretching) is 1.2 to 10.
JP2007270049A 2007-10-17 2007-10-17 Periodic fine relief structure material Expired - Fee Related JP5007976B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007270049A JP5007976B2 (en) 2007-10-17 2007-10-17 Periodic fine relief structure material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007270049A JP5007976B2 (en) 2007-10-17 2007-10-17 Periodic fine relief structure material

Publications (2)

Publication Number Publication Date
JP2009096081A true JP2009096081A (en) 2009-05-07
JP5007976B2 JP5007976B2 (en) 2012-08-22

Family

ID=40699543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007270049A Expired - Fee Related JP5007976B2 (en) 2007-10-17 2007-10-17 Periodic fine relief structure material

Country Status (1)

Country Link
JP (1) JP5007976B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009283264A (en) * 2008-05-22 2009-12-03 National Institute Of Advanced Industrial & Technology Micro topography switch array
JP2012030410A (en) * 2010-07-29 2012-02-16 Oji Paper Co Ltd Method for manufacturing joint-free resin cylindrical body having linear uneven pattern on the surface thereof
JP2013035197A (en) * 2011-08-08 2013-02-21 Tokyo Univ Of Science Method for producing geometrically minute uneven structure and sensor
JP2014104657A (en) * 2012-11-27 2014-06-09 Daio Kakoshi Kogyo Kk Diffuse reflection sheet and method for producing the same
JP2014139017A (en) * 2014-03-05 2014-07-31 Oji Holdings Corp Method for manufacturing fine rugged sheet

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005276983A (en) * 2004-03-24 2005-10-06 Matsushita Electric Ind Co Ltd Electronic component, and manufacturing method and printing method thereof
WO2007097454A1 (en) * 2006-02-27 2007-08-30 Zeon Corporation Film having fine uneven shape and method for manufacturing same
JP2007245318A (en) * 2006-03-17 2007-09-27 Canon Inc Forming method for pattern and manufacturing method for mold
JP2007276441A (en) * 2005-09-06 2007-10-25 Canon Inc Method and apparatus for manufacturing structure having pattern, and method for manufacturing mold
JP2008522226A (en) * 2004-11-30 2008-06-26 アグーラ テクノロジーズ インコーポレイテッド Application and fabrication technology of large-scale wire grid polarizer
JP2008299072A (en) * 2007-05-31 2008-12-11 Nippon Zeon Co Ltd Light diffusion film

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005276983A (en) * 2004-03-24 2005-10-06 Matsushita Electric Ind Co Ltd Electronic component, and manufacturing method and printing method thereof
JP2008522226A (en) * 2004-11-30 2008-06-26 アグーラ テクノロジーズ インコーポレイテッド Application and fabrication technology of large-scale wire grid polarizer
JP2007276441A (en) * 2005-09-06 2007-10-25 Canon Inc Method and apparatus for manufacturing structure having pattern, and method for manufacturing mold
WO2007097454A1 (en) * 2006-02-27 2007-08-30 Zeon Corporation Film having fine uneven shape and method for manufacturing same
JP2007245318A (en) * 2006-03-17 2007-09-27 Canon Inc Forming method for pattern and manufacturing method for mold
JP2008299072A (en) * 2007-05-31 2008-12-11 Nippon Zeon Co Ltd Light diffusion film

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009283264A (en) * 2008-05-22 2009-12-03 National Institute Of Advanced Industrial & Technology Micro topography switch array
JP2012030410A (en) * 2010-07-29 2012-02-16 Oji Paper Co Ltd Method for manufacturing joint-free resin cylindrical body having linear uneven pattern on the surface thereof
JP2013035197A (en) * 2011-08-08 2013-02-21 Tokyo Univ Of Science Method for producing geometrically minute uneven structure and sensor
JP2014104657A (en) * 2012-11-27 2014-06-09 Daio Kakoshi Kogyo Kk Diffuse reflection sheet and method for producing the same
JP2014139017A (en) * 2014-03-05 2014-07-31 Oji Holdings Corp Method for manufacturing fine rugged sheet

Also Published As

Publication number Publication date
JP5007976B2 (en) 2012-08-22

Similar Documents

Publication Publication Date Title
JP5007976B2 (en) Periodic fine relief structure material
JP6339727B2 (en) Method for producing resist laminate
Ma et al. Tunable hierarchical wrinkling: From models to applications
KR100831046B1 (en) Mold for nano-imprinting and method of manufacturing the mold
JP5211506B2 (en) Convex and concave pattern forming sheet and manufacturing method thereof, antireflection body, retardation plate and optical element manufacturing process sheet.
US20130170044A1 (en) Method and structure of optical thin film using crystallized nano-porous material
JP2008279597A (en) Concavo-convex pattern forming sheet and its manufacturing method, reflection preventing body, phase difference plate, process sheet original plate, and method for manufacturing optical element
Xuan et al. Crack-free controlled wrinkling of a bilayer film with a gradient interface
US10103357B2 (en) Fabrication of multilayer nanograting structures
WO2014011222A1 (en) Thin films with micro-topologies prepared by sequential wrinkling
JPWO2013002048A1 (en) Mold for transfer of fine relief structure
JP5182871B2 (en) Miniature switch array
ITMI20101529A1 (en) PLASTIC OPTICAL ELEMENTS WITH ANTI-FOLDING CHARACTERISTICS AND METHOD FOR THEIR REALIZATION
JP6099524B2 (en) Barrier laminate, gas barrier film, and application thereof
US20120276333A1 (en) Method of nanoimprinting a piezoelectric polymeric material for forming high aspect ratio nanopillars
CN109666917B (en) Diamond surface structure and preparation method thereof
Yin et al. Stability improved stretchable metallic gratings with tunable grating period in submicron scale
KR20120020012A (en) Organic-inorganic hybrid material and stamp for nanoimprint manufactured from the same
KR20190141689A (en) MOS eye transfer type, manufacturing method of MOS eye transfer type and transfer method of MOS eye structure
Liu et al. Inclined nanoimprinting lithography-based 3D nanofabrication
Steinberg et al. Low reflection Fresnel lenses via double imprint combined with vacuum-UV surface hardening
KR101589348B1 (en) Method for producing nano patterned structure, and method and apparatus for producing anti-reflective film
Yeo et al. Durability improvement of functional polymer film by heat treatment and micro/nano hierarchical structure for display applications
Kim et al. A simple and fast fabrication of a both self-cleanable and deep-UV antireflective quartz nanostructured surface
JP5822192B2 (en) Fabrication method of geometric fine relief structure

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20101006

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101007

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20101006

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120521

R150 Certificate of patent or registration of utility model

Ref document number: 5007976

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150608

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees