JP2005161529A - Manufacturing method of embossed sheet - Google Patents

Manufacturing method of embossed sheet Download PDF

Info

Publication number
JP2005161529A
JP2005161529A JP2003399476A JP2003399476A JP2005161529A JP 2005161529 A JP2005161529 A JP 2005161529A JP 2003399476 A JP2003399476 A JP 2003399476A JP 2003399476 A JP2003399476 A JP 2003399476A JP 2005161529 A JP2005161529 A JP 2005161529A
Authority
JP
Japan
Prior art keywords
concavo
resin layer
sheet
convex
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003399476A
Other languages
Japanese (ja)
Inventor
Aya Kuwata
彩 桑田
Shotaro Ogawa
正太郎 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP2003399476A priority Critical patent/JP2005161529A/en
Publication of JP2005161529A publication Critical patent/JP2005161529A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Surface Treatment Of Optical Elements (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of an embossed sheet capable of increasing an aspect ratio of the unevenness and pitch of a fine embossed pattern and suitable for manufacturing the embossed sheet free from a flaw and having antireflection effect or the like. <P>SOLUTION: In the manufacturing method of the embossed sheet for forming the regular embosses of an embossing mold to the almost whole surface of a sheetlike material by transfer, a resin layer comprising a photopolymerizable resin is formed on the surface of the sheetlike material to be closely brought into contact with the embossing mold so as to be allowed to follow the embossed shape of the embossing mold and this resin layer is subsequently irradiated with light to produce the adhesive force between the resin layer and the embossing mold. In a state that the resin layer and the embossing mold are partially bonded, the sheetlike material and the embossing mold are allowed to be spaced apart from each other by a predetermined distance and the height of the embossed shape formed to the resin layer is made larger than that of the embossed shape of the embossing mold. Thereafter, the resin layer is irradiated with light and polymerized. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、凹凸状シートの製造方法に係り、特に、表面に規則的な微細凹凸パターンが形成された反射防止効果等を有する光学シート等のシート状物を製造するのに好適な凹凸状シートの製造方法に関する。   The present invention relates to a method for producing a concavo-convex sheet, and more particularly, a concavo-convex sheet suitable for producing a sheet-like material such as an optical sheet having an antireflection effect and the like having a regular fine concavo-convex pattern formed on the surface. It relates to the manufacturing method.

近年、液晶等の電子ディスプレイの用途に、反射防止効果を有する光学シートが採用されている。また、レンチキュラーレンズやフライアイレンズ等の平板状レンズ、光拡散シート、輝度向上シート、光導波路シート等の光学シートが使用されている。このような光学シートとしては、従来より、多層膜からなるものと、表面に規則的な微細凹凸パターンが形成されたものとが公知である。   In recent years, an optical sheet having an antireflection effect has been adopted for use in electronic displays such as liquid crystals. In addition, a flat lens such as a lenticular lens or a fly-eye lens, an optical sheet such as a light diffusion sheet, a brightness enhancement sheet, or an optical waveguide sheet is used. As such an optical sheet, conventionally, an optical sheet made of a multilayer film and an optical sheet having a regular fine concavo-convex pattern formed on the surface are known.

前者の例としては、フィルムの表面に高屈折率から段階的に低屈折率となる層を積層した多層膜とするのが一般的である(特許文献1等参照)。しかし、この構成は、膜厚を制御した多層膜とする必要があり、製品の品質を安定させるのが困難であったり、また、工程数が多く、コストアップとなりやすかったり、種々の問題点を有している。   As an example of the former, it is common to use a multilayer film in which a layer having a low refractive index in steps from a high refractive index is laminated on the surface of the film (see Patent Document 1, etc.). However, this configuration requires a multilayer film with a controlled film thickness, and it is difficult to stabilize the quality of the product. Have.

一方、後者の例として、フィルムの表面に規則的な微細凹凸パターンを形成し、これにより反射防止効果を得る構成が挙げられる。たとえば、フィルムの表面に円錐、角錐等の錐体状の規則的な微細凹凸パターンを形成し、この錐体の配列ピッチを可視光線の波長より十分に小さくすることにより、反射防止効果が得られる。   On the other hand, as the latter example, there is a configuration in which a regular fine uneven pattern is formed on the surface of the film, thereby obtaining an antireflection effect. For example, an antireflection effect can be obtained by forming a regular fine concavo-convex pattern such as a cone or a pyramid on the surface of the film and making the arrangement pitch of the cones sufficiently smaller than the wavelength of visible light. .

このような規則的な微細凹凸パターンを形成する手法としては、フィルムの表面にフォトレジストを塗布形成し、露光後にエッチングを行う方法が採用できるが、工数が多く、また、生産性が低いという問題点ある。   As a method for forming such a regular fine concavo-convex pattern, a method of applying a photoresist on the surface of a film and performing etching after exposure can be adopted, but there are many man-hours and productivity is low. There is a point.

このような問題点を解決すべく、予め表面に規則的な微細凹凸パターンを形成してあるスタンパー(原型)を準備しておき、このスタンパーを、表面に光硬化樹脂層を形成したフィルムに押し当て、光硬化樹脂層を微細凹凸パターンに倣わせた後に光重合させ(硬化させ)、その後、離型させて光学シートを得る、いわゆるフォト・ポリマリゼーション法の提案がなされている(特許文献2等参照)。
特開2001−127852号公報 特開2003−149405号公報
In order to solve such problems, a stamper (original) having a regular fine uneven pattern formed on the surface is prepared in advance, and this stamper is pushed onto a film having a photo-curing resin layer formed on the surface. A so-called photopolymerization method has been proposed in which a photocuring resin layer is photopolymerized (cured) after following a fine concavo-convex pattern, and then released to obtain an optical sheet (Patent Literature). (See 2nd grade).
JP 2001-127852 A JP 2003-149405 A

しかしながら、上記のような従来の技術(特許文献2等)においても、解決しきれていない問題点があった。すなわち、光学シートとしての良好な特性を得るには、微細凹凸パターンの凹凸とピッチとのアスペクト比を大きくしなければならないが、このような形状を形成するためのスタンパー(原型)の製造が困難である。また、スタンパーの製造が可能であったとしても、非常に高コストのものとなる。更に、このような形状のスタンパーを使用して、光硬化樹脂層をスタンパーの微細凹凸パターンに倣わせる場合に、樹脂が微細凹凸パターンの中まで倣わず、良好な転写形状が得られない。また、スタンパーと樹脂との接触面積が大きくなることにより、離型の際に樹脂が凝集破壊しやすいという問題点もある。   However, even the conventional techniques as described above (Patent Document 2 and the like) have problems that cannot be solved. That is, in order to obtain good characteristics as an optical sheet, the aspect ratio between the unevenness and pitch of the fine unevenness pattern must be increased, but it is difficult to produce a stamper (original) for forming such a shape. It is. Moreover, even if the stamper can be manufactured, the cost becomes very high. Furthermore, when using a stamper having such a shape to copy the photo-curing resin layer to the fine concavo-convex pattern of the stamper, the resin does not follow the fine concavo-convex pattern, and a good transfer shape cannot be obtained. . In addition, since the contact area between the stamper and the resin becomes large, there is a problem that the resin is likely to cohesively break at the time of mold release.

本発明は、このような事情に鑑みてなされたもので、表面に規則的な微細凹凸パターンが形成された凹凸状シートの製造方法であって、微細凹凸パターンの凹凸とピッチとのアスペクト比を大きくでき、欠陥のない、反射防止効果等を有する光学シート等を製造するのに好適な凹凸状シートの製造方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and is a method for producing a concavo-convex sheet in which a regular fine concavo-convex pattern is formed on the surface, and the aspect ratio between the concavo-convex of the fine concavo-convex pattern and the pitch is determined. It is an object of the present invention to provide a method for producing a concavo-convex sheet suitable for producing an optical sheet or the like that can be enlarged, has no defects, and has an antireflection effect.

本発明は、前記目的を達成するために、シート状体の表面の略全面に、凹凸型の凹凸を転写形成する凹凸状シートの製造方法において、前記シート状体の表面に光重合性樹脂の樹脂層を形成する工程と、前記シート状体の樹脂層を前記凹凸型に密着させて、該樹脂層を前記凹凸型の凹凸形状に倣わせる工程と、前記樹脂層に光照射を施し、該樹脂層と前記凹凸型との間に接着力を生じさせる工程と、前記樹脂層と前記凹凸型とが部分的に接着した状態で、前記シート状体と前記凹凸型とを所定距離離間させ、前記樹脂層に形成された凹凸形状の高さを前記凹凸型の凹凸形状の高さより増大させる工程と、前記樹脂層に光照射を施し、該樹脂層を重合させる工程と、を含むことを特徴とする凹凸状シートの製造方法を提供する。   In order to achieve the above object, the present invention provides a method for producing a concavo-convex sheet in which a concavo-convex concavo-convex shape is transferred and formed on substantially the entire surface of a sheet-like body. A step of forming a resin layer, a step of closely adhering the resin layer of the sheet-like body to the concavo-convex shape, imitating the resin layer to the concavo-convex shape of the concavo-convex shape, and irradiating the resin layer with light, With the step of generating an adhesive force between the resin layer and the concavo-convex mold and the resin layer and the concavo-convex mold being partially bonded, the sheet-like body and the concavo-convex mold are separated by a predetermined distance. The step of increasing the height of the concavo-convex shape formed in the resin layer from the height of the concavo-convex shape of the concavo-convex type, and the step of polymerizing the resin layer by irradiating the resin layer with light. Provided is a method for producing a featured uneven sheet.

本発明によれば、シート状体の光重合性樹脂の樹脂層を凹凸型に密着させて、この樹脂層を凹凸型の凹凸形状に倣わせ、次いで、樹脂層に光照射を施し、この樹脂層と凹凸型との間に接着力を生じさせ、樹脂層と凹凸型とが部分的に接着した状態で、シート状体と凹凸型とを所定距離離間させる。これにより、樹脂層に形成された凹凸形状の高さを凹凸型の凹凸形状の高さより増大させることができる。すなわち、微細凹凸パターンの凹凸とピッチとのアスペクト比が要求水準に満たない凹凸型を使用しても、微細凹凸パターンの凹凸とピッチとのアスペクト比が要求水準を満たす凹凸状シートを製造できる。   According to the present invention, the resin layer of the photopolymerizable resin of the sheet-like body is brought into close contact with the concavo-convex shape, the resin layer is made to follow the concavo-convex shape of the concavo-convex shape, and then the resin layer is irradiated with light. An adhesive force is generated between the layer and the concavo-convex mold, and the sheet-like body and the concavo-convex mold are separated by a predetermined distance in a state where the resin layer and the concavo-convex mold are partially adhered. Thereby, the height of the concavo-convex shape formed in the resin layer can be increased from the height of the concavo-convex shape of the concavo-convex shape. That is, even if a concavo-convex mold in which the aspect ratio between the concavo-convex pattern and the pitch of the fine concavo-convex pattern is less than the required level is used, the concavo-convex sheet that satisfies the required level of the aspect ratio between the concavo-convex pattern and the pitch of the fine concavo-convex pattern can be manufactured.

ここで、アスペクト比とは、微細凹凸パターンの凹凸高さ(凹凸の底から頂部までの高低差)と凹凸パターンのピッチとの比を指すものである。   Here, the aspect ratio refers to the ratio between the uneven height of the fine uneven pattern (the difference in height from the bottom to the top of the uneven structure) and the pitch of the uneven pattern.

なお、樹脂層に形成された凹凸形状の高さを増大させた後には、この樹脂層に光照射を施して重合させ、シート状体を凹凸型から離型することにより、所期の凹凸状シートが得られる。   In addition, after increasing the height of the concavo-convex shape formed on the resin layer, the resin layer is irradiated with light and polymerized, and the sheet-like body is released from the concavo-convex shape, thereby obtaining the desired concavo-convex shape. A sheet is obtained.

また、本発明は、シート状体の表面の略全面に、凹凸型の凹凸を転写形成する凹凸状シートの製造方法において、前記シート状体の表面に光重合性樹脂の樹脂層を形成する工程と、前記シート状体の樹脂層を前記凹凸型に密着させて、該樹脂層を前記凹凸型の凹凸形状に倣わせる工程と、前記樹脂層に光照射を施し、該樹脂層を重合させるとともに、該樹脂層と前記凹凸型との間に接着力を生じさせる工程と、前記樹脂層に、該樹脂のガラス転移温度Tg以上になるように加熱を施す工程と、前記樹脂層と前記凹凸型とが部分的に接着した状態で、前記シート状体と前記凹凸型とを所定距離離間させ、前記樹脂層に形成された凹凸形状の高さを前記凹凸型の凹凸形状の高さより増大させる工程と、前記樹脂層に、該樹脂のガラス転移温度Tg以下になるように冷却を施す工程と、を含むことを特徴とする凹凸状シートの製造方法を提供する。   Further, the present invention provides a method for producing a concavo-convex sheet in which concavo-convex concavo-convex is transferred and formed on substantially the entire surface of the sheet-like body, and a step of forming a resin layer of a photopolymerizable resin on the surface of the sheet-like body. A step of bringing the resin layer of the sheet-like body into close contact with the concavo-convex mold, and imitating the resin layer to the concavo-convex shape of the concavo-convex mold, and irradiating the resin layer with light to polymerize the resin layer And a step of generating an adhesive force between the resin layer and the concavo-convex mold, a step of heating the resin layer so as to be equal to or higher than the glass transition temperature Tg of the resin, the resin layer and the concavo-convex In a state where the mold is partially bonded, the sheet-like body and the concavo-convex mold are separated from each other by a predetermined distance, and the height of the concavo-convex shape formed on the resin layer is increased from the height of the concavo-convex shape of the concavo-convex mold. And the glass transition temperature Tg of the resin to the resin layer To provide a method of manufacturing indented sheet which comprises the steps of applying a cooling so below, the.

本発明によれば、シート状体の光重合性樹脂の樹脂層を凹凸型に密着させて、この樹脂層を凹凸型の凹凸形状に倣わせ、次いで、樹脂層に光照射を施し、この樹脂層を重合させるとともに、樹脂層と凹凸型との間に接着力を生じさせ、更に樹脂層に加熱を施した後に、樹脂層と凹凸型とが部分的に接着した状態で、シート状体と凹凸型とを所定距離離間させる。これにより、樹脂層に形成された凹凸形状の高さを凹凸型の凹凸形状の高さより増大させることができる。すなわち、微細凹凸パターンの凹凸とピッチとのアスペクト比が要求水準に満たない凹凸型を使用しても、微細凹凸パターンの凹凸とピッチとのアスペクト比が要求水準を満たす凹凸状シートを製造できる。   According to the present invention, the resin layer of the photopolymerizable resin of the sheet-like body is brought into close contact with the concavo-convex shape, the resin layer is made to follow the concavo-convex shape of the concavo-convex shape, and then the resin layer is irradiated with light. In the state where the resin layer and the concavo-convex mold are partially adhered, after the layer is polymerized, an adhesive force is generated between the resin layer and the concavo-convex mold, and the resin layer is further heated. The concavo-convex mold is separated by a predetermined distance. Thereby, the height of the concavo-convex shape formed in the resin layer can be increased from the height of the concavo-convex shape of the concavo-convex shape. That is, even if a concavo-convex mold in which the aspect ratio between the concavo-convex pattern and the pitch of the fine concavo-convex pattern is less than the required level is used, the concavo-convex sheet that satisfies the required level of the aspect ratio between the concavo-convex pattern and the pitch of the fine concavo-convex pattern can be manufactured.

なお、樹脂層に形成された凹凸形状の高さを増大させた後には、この樹脂層に、樹脂のガラス転移温度Tg以下になるように冷却を施し硬化させ、シート状体を凹凸型から離型することにより、所期の凹凸状シートが得られる。この冷却は、エアブロー等のような積極的な冷却のみならず、自然放冷のような消極的な冷却をも含む。   After increasing the height of the concavo-convex shape formed in the resin layer, the resin layer is cooled and cured so as to be equal to or lower than the glass transition temperature Tg of the resin, and the sheet-like body is separated from the concavo-convex mold. By molding, the desired uneven sheet can be obtained. This cooling includes not only active cooling such as air blow, but also passive cooling such as natural cooling.

ここで、「ガラス転移温度Tg」とは、有機高分子物質が、低温のガラス状態から、高温の過冷却液体又はゴム状へ移る温度をいう。   Here, the “glass transition temperature Tg” refers to a temperature at which the organic polymer substance moves from a low temperature glass state to a high temperature supercooled liquid or rubber.

また、本発明は、シート状体の表面の略全面に、凹凸型の凹凸を転写形成する凹凸状シートの製造方法において、前記シート状体の表面に熱可塑性樹脂の樹脂層を形成する工程と、前記シート状体の樹脂層を前記凹凸型に密着させて、該樹脂層を前記凹凸型の凹凸形状に倣わせるとともに、該樹脂層と前記凹凸型との間に接着力を生じさせる工程と、前記樹脂層を、該樹脂のガラス転移温度Tg近傍の状態に維持するとともに、前記樹脂層と前記凹凸型とが部分的に接着した状態で、前記シート状体と前記凹凸型とを所定距離離間させ、前記樹脂層に形成された凹凸形状の高さを前記凹凸型の凹凸形状の高さより増大させる工程と、前記樹脂層に、該樹脂のガラス転移温度Tg以下になるように冷却を施す工程と、を含むことを特徴とする凹凸状シートの製造方法を提供する。   Further, the present invention provides a method for producing a concavo-convex sheet by transferring concavo-convex irregularities on substantially the entire surface of a sheet-like body, and a step of forming a resin layer of a thermoplastic resin on the surface of the sheet-like body; And a step of causing the resin layer of the sheet-like body to adhere to the concavo-convex mold to cause the resin layer to follow the concavo-convex shape of the concavo-convex mold and to generate an adhesive force between the resin layer and the concavo-convex mold And maintaining the resin layer in the vicinity of the glass transition temperature Tg of the resin, and in a state where the resin layer and the concavo-convex mold are partially adhered, the sheet-like body and the concavo-convex mold are predetermined. Separating the distance and increasing the height of the concavo-convex shape formed on the resin layer from the height of the concavo-convex shape of the concavo-convex mold, and cooling the resin layer so as to be equal to or lower than the glass transition temperature Tg of the resin. And a step of applying To provide a method of manufacturing Jo sheet.

本発明によれば、シート状体の熱可塑性樹脂の樹脂層を凹凸型に密着させて、この樹脂層を凹凸型の凹凸形状に倣わせるとともに、樹脂層と凹凸型との間に接着力を生じさせ、樹脂層を、樹脂のガラス転移温度Tg近傍の状態に維持するとともに、樹脂層と凹凸型とが部分的に接着した状態で、シート状体と凹凸型とを所定距離離間させる。これにより、樹脂層に形成された凹凸形状の高さを凹凸型の凹凸形状の高さより増大させることができる。すなわち、微細凹凸パターンの凹凸とピッチとのアスペクト比が要求水準に満たない凹凸型を使用しても、微細凹凸パターンの凹凸とピッチとのアスペクト比が要求水準を満たす凹凸状シートを製造できる。   According to the present invention, the resin layer of the thermoplastic resin of the sheet-like body is brought into close contact with the concavo-convex shape so that the resin layer is imitated with the concavo-convex shape of the concavo-convex shape, and the adhesive force is between the resin layer and the concavo-convex shape. The resin layer is maintained in the vicinity of the glass transition temperature Tg of the resin, and the sheet body and the concavo-convex mold are separated by a predetermined distance in a state where the resin layer and the concavo-convex mold are partially bonded. Thereby, the height of the concavo-convex shape formed in the resin layer can be increased from the height of the concavo-convex shape of the concavo-convex shape. That is, even if a concavo-convex mold in which the aspect ratio between the concavo-convex pattern and the pitch of the fine concavo-convex pattern is less than the required level is used, the concavo-convex sheet that satisfies the required level of the aspect ratio between the concavo-convex pattern and the pitch of the fine concavo-convex pattern can be manufactured.

なお、樹脂層に形成された凹凸形状の高さを増大させた後には、この樹脂層に、樹脂のガラス転移温度Tg以下になるように冷却を施し硬化させ、シート状体を凹凸型から離型することにより、所期の凹凸状シートが得られる。この冷却は、エアブロー等のような積極的な冷却のみならず、自然放冷のような消極的な冷却をも含む。   After increasing the height of the concavo-convex shape formed in the resin layer, the resin layer is cooled and cured so as to be equal to or lower than the glass transition temperature Tg of the resin, and the sheet-like body is separated from the concavo-convex mold. By molding, the desired uneven sheet can be obtained. This cooling includes not only active cooling such as air blow, but also passive cooling such as natural cooling.

本発明において、シート状体の表面の凹凸としては、各種の形状が採用できる。たとえば、レンチキュラーレンズやフライアイレンズ等の平板状レンズ形状とすれば、好ましい光学特性が得られる。特に、シート状体の表面の凹凸が錐体形状であることが好ましい。このような錐体形状の凹凸であれば、反射防止効果等を有する凹凸状シートとして好ましい特性が得られる。   In the present invention, various shapes can be adopted as the irregularities on the surface of the sheet-like body. For example, if a flat lens shape such as a lenticular lens or a fly-eye lens is used, preferable optical characteristics can be obtained. In particular, it is preferable that the irregularities on the surface of the sheet-like body have a cone shape. If it is such a cone-shaped unevenness | corrugation, a preferable characteristic will be acquired as an uneven | corrugated shaped sheet | seat which has an antireflection effect etc.

ここで、「錐体」とは、平面上の閉じた曲線(又は折線)の周上を一周する点と、この平面外の一定点とを結ぶ直線によってつくられる曲面(又は幾つかの平面の一部)で囲まれた空間の一部分を言い、円錐、角錐が代表的なものである。その他、本発明においては、断面が放物線形状、双曲線形状の錐体をも採用できる。   Here, the “cone” is a curved surface (or several planes) formed by a straight line connecting a point that goes around the circumference of a closed curve (or a broken line) on a plane and a fixed point outside the plane. A part of the space surrounded by (part), and a cone and a pyramid are typical. In addition, in the present invention, a cone having a parabolic shape and a hyperbolic shape can be adopted.

また、本発明において、樹脂層を形成する前の前記シート状体の表面に、接着層を設ける、シランカップリング剤処理を施す、オゾン処理を施す、コロナ放電処理を施す、プラズマ処理を施す、及び、紫外線照射処理を施す処理のうち1以上を行うことが好ましい。このような処理を施すことにより、樹脂層とシート状体との接着力が向上し、凹凸状シートとして好ましい。   Further, in the present invention, an adhesive layer is provided on the surface of the sheet-like body before forming the resin layer, silane coupling agent treatment, ozone treatment, corona discharge treatment, plasma treatment are performed. And it is preferable to perform 1 or more of the processes which perform an ultraviolet irradiation process. By performing such a treatment, the adhesive force between the resin layer and the sheet-like body is improved, which is preferable as an uneven sheet.

また、本発明において、前記凹凸型の表面に離型処理を施すことが好ましい。このように、凹凸型の表面に離型処理を施すことにより、微細凹凸パターンの形状が良好に維持できる。   Moreover, in this invention, it is preferable to perform a mold release process to the surface of the said uneven | corrugated type | mold. Thus, the shape of the fine concavo-convex pattern can be satisfactorily maintained by performing the mold release treatment on the surface of the concavo-convex mold.

以上説明したように、本発明によれば、シート状体の表面の略全面に、凹凸型の凹凸を転写形成する凹凸状シートの製造方法において、樹脂層に形成された凹凸形状の高さを凹凸型の凹凸形状の高さより増大させることができ、微細凹凸パターンの凹凸とピッチとのアスペクト比が要求水準に満たない凹凸型を使用しても、微細凹凸パターンの凹凸とピッチとのアスペクト比が要求水準を満たす凹凸状シートを製造できる。   As described above, according to the present invention, in the method for producing a concavo-convex sheet in which concavo-convex concavo-convex is transferred and formed on substantially the entire surface of the sheet-like body, the height of the concavo-convex shape formed in the resin layer is increased. It can be increased from the height of the concavo-convex shape of the concavo-convex type, and even if a concavo-convex mold having a concavo-convex aspect ratio of the fine concavo-convex pattern less than the required level is used, the aspect ratio of the concavo-convex pattern of the fine concavo-convex pattern to the pitch Can produce an uneven sheet satisfying the required level.

以下、添付図面に基づいて、本発明の実施態様の例(第1の実施態様)について説明する。図1は、本発明に適用される凹凸状シートの製造方法の各工程を示す概略断面図である。図2は、本発明に係る凹凸状シートの製造方法に特有な工程を示す概略断面図である。   Hereinafter, an example of an embodiment of the present invention (first embodiment) will be described with reference to the accompanying drawings. FIG. 1 is a schematic cross-sectional view showing each step of a method for producing an uneven sheet applied to the present invention. FIG. 2 is a schematic cross-sectional view showing steps unique to the method for producing a concavo-convex sheet according to the present invention.

図1の(A)は、本発明に使用される凹凸型であるエンボス型10と、シート状体12の概略断面図である。このシート状体12の表面には、光重合性樹脂14の樹脂層が形成されている。   FIG. 1A is a schematic cross-sectional view of an embossing mold 10 that is a concavo-convex mold used in the present invention and a sheet-like body 12. A resin layer of the photopolymerizable resin 14 is formed on the surface of the sheet-like body 12.

製品となる凹凸状シートの表面の規則的な凹凸が、XY方向に4角錐を密に配列した形状である場合には、エンボス型10の表面の規則的な凹凸は、これの反転形状とする。エンボス型10の表面の凹凸のXY方向のピッチは、可視光線の波長である380〜780nm以下であることが好ましい。凹凸パターンの凹凸とピッチとのアスペクト比は、大きい方が好ましいが、大きいアスペクト比の製造が困難な場合には、本発明による、樹脂層に形成された凹凸形状の高さをエンボス型10の凹凸形状の高さより増大させる工程が適用できる範囲で、適宜のアスペクト比とすることができる。   When the regular irregularities on the surface of the concave-convex sheet to be a product have a shape in which quadrangular pyramids are densely arranged in the XY direction, the regular irregularities on the surface of the embossing mold 10 are inverted shapes thereof. . The pitch in the XY direction of the irregularities on the surface of the embossing mold 10 is preferably 380 to 780 nm or less, which is the wavelength of visible light. The aspect ratio between the concavo-convex pattern and the pitch is preferably large. However, when it is difficult to produce a large aspect ratio, the height of the concavo-convex shape formed on the resin layer according to the present invention is set to An appropriate aspect ratio can be obtained as long as the step of increasing the height of the uneven shape can be applied.

エンボス型10の表面の規則的な凹凸を形成する方法としては、素材となる板状体の表面にフォトエッチング、電子線描画、レーザー加工等で直接凹凸を形成する方法が採用でき、また、素材となる板状体より加工しやすい素材の表面にフォトエッチング、電子線描画、レーザー加工、光造形法等で直接凹凸を形成し、この形状の反転型を電鋳等により形成する方法も採用できる。特に反転型を電鋳等により形成する場合には、1つの原盤(マザー)より複数の同一形状のエンボス型(スタンパー)が得られる。   As a method of forming regular irregularities on the surface of the embossing mold 10, a method of directly forming irregularities on the surface of a plate-like body that is a material by photo etching, electron beam drawing, laser processing, etc. can be adopted. It is also possible to adopt a method in which irregularities are directly formed on the surface of a material that is easier to process than the plate-like body by photo etching, electron beam drawing, laser processing, stereolithography, etc., and an inverted mold of this shape is formed by electroforming, etc. . In particular, when the reversal mold is formed by electroforming or the like, a plurality of emboss molds (stampers) having the same shape can be obtained from one master (mother).

エンボス型10の表面には、離型処理を施すことが好ましい。このように、エンボス型10の表面に離型処理を施すことにより、微細凹凸パターンの形状が良好に維持できる。離型処理としては、公知の各種方法、たとえば、フッ素樹脂によるコーティング処理が採用できる。   It is preferable to perform a mold release process on the surface of the embossing mold 10. Thus, the shape of the fine concavo-convex pattern can be satisfactorily maintained by performing the mold release process on the surface of the embossing mold 10. As the mold release treatment, various known methods such as coating treatment with a fluororesin can be employed.

シート状体12としては、樹脂フィルム、紙(レジンコーティッド紙、合成紙、等)、金属箔(アルミニウムウェブ等)等を使用できる。樹脂フィルムの材質としては、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリ酢酸ビニル、ポリスチレン、ポリカーボネート、ポリアミド、PET(ポリエチレンテレフタレート)、二軸延伸を行ったポリエチレンテレフタレート、ポリエチレンナフタレート、ポリアミドイミド、ポリイミド、芳香族ポリアミド、セルローストリアセテート、セルロースアセテートプロピオネート、セルロースダイアセテート等の公知のものが使用できる。   As the sheet-like body 12, a resin film, paper (resin coated paper, synthetic paper, etc.), metal foil (aluminum web, etc.), etc. can be used. Resin film materials include polyethylene, polypropylene, polyvinyl chloride, polyvinylidene chloride, polyvinyl acetate, polystyrene, polycarbonate, polyamide, PET (polyethylene terephthalate), biaxially stretched polyethylene terephthalate, polyethylene naphthalate, and polyamideimide. Known materials such as polyimide, aromatic polyamide, cellulose triacetate, cellulose acetate propionate, and cellulose diacetate can be used.

シート状体12の特性としては、シート状体12をエンボス型10から離型させる際に延伸がないような、張力による伸びの少ないもの、熱による伸びの少ないものが好ましい。また、樹脂層に光照射を施す工程が採用される本実施態様の場合には、光線の透過率の高い透明、半透明のものが好ましい。   As the characteristics of the sheet-like body 12, those having little elongation due to tension and those having little elongation due to heat, such that there is no stretching when the sheet-like body 12 is released from the embossing mold 10 are preferable. In the case of this embodiment in which the step of irradiating the resin layer with light is employed, a transparent or translucent material having a high light transmittance is preferable.

なお、本実施態様のように、板状のエンボス型10を使用せず、ロールの表面に規則的な凹凸が形成されたロール型により連続加工を行う場合には、シート状体12の幅としては、0. 1〜3mが、シート状体12の長さとしては、1000〜100000mが、シート状体12の厚さとしては、0. 5〜200μmのものがそれぞれ一般的に採用される。但し、これ以外のサイズの適用も妨げられるものではない。   In the case where continuous processing is performed with a roll mold in which regular unevenness is formed on the surface of the roll without using the plate-like emboss mold 10 as in this embodiment, the width of the sheet-like body 12 is as follows. In general, 0.1 to 3 m is generally used as the length of the sheet-like body 12, and 1000 to 100,000 m is generally employed, and the thickness of the sheet-like body 12 is generally employed from 0.5 to 200 μm. However, application of other sizes is not impeded.

これらのシート状体12は、あらかじめコロナ放電、プラズマ処理、易接着処理、熱処理、除塵処理などを行っておいてもよい。シート状体12の表面粗さRaはカットオフ値0.25mmにおいて3〜10nmが好ましい。   These sheet-like bodies 12 may be previously subjected to corona discharge, plasma treatment, easy adhesion treatment, heat treatment, dust removal treatment and the like. The surface roughness Ra of the sheet-like body 12 is preferably 3 to 10 nm at a cutoff value of 0.25 mm.

また、シート状体12には、あらかじめ接着層等の下地層を設け乾燥硬化させたもの、裏面に他の機能層があらかじめ形成されたもの、等を用いてもよい。   In addition, the sheet-like body 12 may be one in which a base layer such as an adhesive layer is provided in advance and dried and cured, or one in which another functional layer is formed in advance on the back surface.

光重合性樹脂14は、光重合性のモノマーと重合開始剤よりなる。この光重合性樹脂14には、紫外線や電子線等の活性化エネルギー線で重合する公知の樹脂が採用できる。光重合性のモノマーは、ラジカル重合性不飽和基、エポキシ基等の重合性官能基を有する化合物からなる。光重合性樹脂14の粘度は、未硬化状態で1〜2000mPa・sのものが使用でき、未硬化状態で20〜100mPa・sのものが好ましく使用できる。また、70〜80%程度の重合度で塑性変形しやすく、完全な重合状態では変形しにくいものが好ましい。また、硬化時の収縮が少ないものが好ましい。   The photopolymerizable resin 14 includes a photopolymerizable monomer and a polymerization initiator. As the photopolymerizable resin 14, a known resin that is polymerized with an activation energy beam such as an ultraviolet ray or an electron beam can be used. The photopolymerizable monomer is composed of a compound having a polymerizable functional group such as a radical polymerizable unsaturated group or an epoxy group. The viscosity of the photopolymerizable resin 14 can be 1 to 2000 mPa · s in an uncured state, and preferably 20 to 100 mPa · s in an uncured state. Further, those which are easily plastically deformed at a degree of polymerization of about 70 to 80% and are difficult to deform in a complete polymerization state are preferred. Moreover, a thing with little shrinkage | contraction at the time of hardening is preferable.

シート状体12の表面に光重合性樹脂14の樹脂層を形成する方法としては、公知の各種方法が採用できる。このような方法としては、ローラコート法、グラビアコート法、ローラコートプラスドクター法、エクストルージョン型塗布法、スライドコート法、スピンコート法、印刷法(スクリーン印刷法等)、ディップコート法等が挙げられる。   Various known methods can be adopted as a method for forming the resin layer of the photopolymerizable resin 14 on the surface of the sheet-like body 12. Examples of such methods include a roller coating method, a gravure coating method, a roller coating plus doctor method, an extrusion type coating method, a slide coating method, a spin coating method, a printing method (screen printing method, etc.), a dip coating method, and the like. It is done.

光重合性樹脂14の樹脂層の塗布厚さとしては、製品となる凹凸状シートの表面の規則的な凹凸形状、光重合性樹脂14の材質、光重合性樹脂14の粘度、光重合性樹脂14の樹脂層の形成方法等に応じて適宜の値が選択できるが、0.1〜100μmの値が、好ましくは1〜40μmの値が、更に好ましくは0.1〜20μmの値が採用できる。   As the coating thickness of the resin layer of the photopolymerizable resin 14, the regular uneven shape of the surface of the uneven sheet as a product, the material of the photopolymerizable resin 14, the viscosity of the photopolymerizable resin 14, the photopolymerizable resin Although an appropriate value can be selected according to the method of forming the 14 resin layers, a value of 0.1 to 100 μm, preferably a value of 1 to 40 μm, more preferably a value of 0.1 to 20 μm can be adopted. .

次に、シート状体12の樹脂層をエンボス型10に密着させて、この樹脂層をエンボス型10の凹凸形状に倣わせる工程、及び、樹脂層に光照射を施し、この樹脂層とエンボス型10との間に接着力を生じさせる工程について、図1の(B)によって説明する。同図は、図1の(A)に示されるエンボス型10を上下反転させ、シート状体12に密着させた状態を示す。また、同図の矢印は照射光16を示す。   Next, the resin layer of the sheet-like body 12 is brought into close contact with the embossing mold 10, and the resin layer is imitated with the concavo-convex shape of the embossing mold 10, and the resin layer is irradiated with light. A process for generating an adhesive force with the mold 10 will be described with reference to FIG. The figure shows a state in which the embossing mold 10 shown in FIG. 1A is turned upside down and brought into close contact with the sheet-like body 12. Moreover, the arrow of the figure shows the irradiation light 16.

樹脂層をエンボス型10の凹凸形状に倣わせる工程において、樹脂層とエンボス型10との間に気泡を生じさせないよう、工夫を施すことが好ましい。たとえば、減圧雰囲気の下で樹脂層とエンボス型10とを密着させる方法、シート状体12の一端から徐々にエンボス型10とを密着させていく方法等、適宜の方法が採用できる。   In the step of making the resin layer follow the uneven shape of the embossing mold 10, it is preferable to devise so as not to generate bubbles between the resin layer and the embossing mold 10. For example, an appropriate method such as a method in which the resin layer and the embossing die 10 are brought into close contact under a reduced pressure atmosphere or a method in which the embossing die 10 is gradually brought into close contact from one end of the sheet-like body 12 can be adopted.

照射光16としては、紫外線や電子線等の活性エネルギー線が採用できる。図1の(B)に示される照射光16は、シート状体12を透過して光重合性樹脂14の樹脂層に照射されている。但し、シート状体12が、光線の透過率の高い透明、半透明のものでない場合に、エンボス型10を透明、半透明のもので形成し、エンボス型10を透過して光重合性樹脂14の樹脂層に照射光16を照射させることもできる。   As the irradiation light 16, active energy rays such as ultraviolet rays and electron beams can be adopted. The irradiation light 16 shown in FIG. 1B passes through the sheet-like body 12 and is applied to the resin layer of the photopolymerizable resin 14. However, when the sheet-like body 12 is not transparent or semi-transparent with high light transmittance, the embossing mold 10 is formed of a transparent or semi-transparent material and passes through the embossing mold 10 to transmit the photopolymerizable resin 14. It is also possible to irradiate the resin layer with irradiation light 16.

照射光16の照射により、光重合性樹脂14の樹脂層の重合は進行し、この樹脂層とエンボス型10との間に接着力を生じていく。但し、光重合性樹脂14の樹脂層を完全に重合させてしまうと、以降でこの樹脂層の凹凸形状を変形させることが不可能となるので、光重合性樹脂14を半重合状態、たとえば完全重合状態の70〜80%程度の重合度に留めておくことが必要である。   By the irradiation of the irradiation light 16, the polymerization of the resin layer of the photopolymerizable resin 14 proceeds, and an adhesive force is generated between the resin layer and the embossing mold 10. However, if the resin layer of the photopolymerizable resin 14 is completely polymerized, the uneven shape of the resin layer cannot be deformed thereafter, so that the photopolymerizable resin 14 is in a semi-polymerized state, for example, completely It is necessary to keep the degree of polymerization at about 70 to 80% of the polymerization state.

次に、樹脂層とエンボス型10とが部分的に接着した状態で、シート状体12とエンボス型10とを所定距離離間させ、樹脂層に形成された凹凸形状の高さをエンボス型10の凹凸形状の高さより増大させる工程について、図2を使用して説明する。   Next, in a state where the resin layer and the embossing mold 10 are partially bonded, the sheet-like body 12 and the embossing mold 10 are separated by a predetermined distance, and the height of the uneven shape formed on the resin layer is set to the height of the embossing mold 10. The process of increasing the height of the uneven shape will be described with reference to FIG.

図2の(B1)は、照射光16の照射により、光重合性樹脂14の樹脂層が半重合状態にあり、この樹脂層とエンボス型10との間に接着力を生じている状態を示す。図2の(B2)は、この状態で、シート状体12とエンボス型10とを所定距離離間させ、樹脂層に形成された凹凸形状の高さをエンボス型10の凹凸形状の高さより増大させている状態を示す。図中の矢印は、凹凸形状の高さが増大していく向きを示している。   (B1) in FIG. 2 shows a state in which the resin layer of the photopolymerizable resin 14 is in a semi-polymerized state by the irradiation of the irradiation light 16, and an adhesive force is generated between the resin layer and the embossing mold 10. . (B2) in FIG. 2 shows that in this state, the sheet-like body 12 and the embossing mold 10 are separated by a predetermined distance, and the height of the concavo-convex shape formed on the resin layer is made larger than the height of the concavo-convex shape of the embossing mold 10. It shows the state. The arrows in the figure indicate the direction in which the height of the concavo-convex shape increases.

図2の(B3)及び図1の(C)は、シート状体12とエンボス型10とを更に離間させ、完全に剥離させた状態を示す。これにより、樹脂層に形成された凹凸形状の高さをエンボス型10の凹凸形状の高さより増大させることができる。すなわち、微細凹凸パターンの凹凸とピッチとのアスペクト比が要求水準に満たないエンボス型10を使用しても、微細凹凸パターンの凹凸とピッチとのアスペクト比が要求水準を満たす凹凸状シートを製造できる。   (B3) in FIG. 2 and (C) in FIG. 1 show a state in which the sheet-like body 12 and the embossing mold 10 are further separated and completely separated. Thereby, the height of the concavo-convex shape formed in the resin layer can be increased from the height of the concavo-convex shape of the embossing mold 10. That is, even when the embossing mold 10 in which the aspect ratio between the unevenness of the fine unevenness pattern and the pitch is less than the required level is used, an uneven sheet that satisfies the required level of the aspect ratio between the unevenness of the fine unevenness pattern and the pitch can be manufactured. .

また、微細凹凸パターンの凹凸とピッチとのアスペクト比が要求水準に満たないエンボス型10を使用して、本発明の方法を実施した場合、次のような効果も得られる。微細凹凸パターンの凹凸とピッチとのアスペクト比が小さい場合には、エンボス型10の微細凹凸パターンの底部まで光重合性樹脂14が入り込み易い。したがって、形状の転写性が良好となる。また、アスペクト比が大きい場合と比べて、エンボス型10の微細凹凸パターンと光重合性樹脂14との接触面積も小さくなる。したがって、エンボス型10の微細凹凸パターンと光重合性樹脂14との密着力も小さくなり、剥離時に光重合性樹脂14の内部で凝集破壊が起こりにくい。その結果、シート状体12の表面の微細凹凸パターンの形状安定性が良好となる。   Further, when the method of the present invention is carried out using the embossing mold 10 in which the aspect ratio between the unevenness of the fine unevenness pattern and the pitch does not satisfy the required level, the following effects are also obtained. When the aspect ratio between the unevenness and the pitch of the fine uneven pattern is small, the photopolymerizable resin 14 easily enters the bottom of the fine uneven pattern of the emboss mold 10. Therefore, the shape transferability is improved. In addition, the contact area between the fine concavo-convex pattern of the embossing mold 10 and the photopolymerizable resin 14 is smaller than when the aspect ratio is large. Therefore, the adhesion between the fine uneven pattern of the embossing mold 10 and the photopolymerizable resin 14 is also reduced, and cohesive failure does not easily occur inside the photopolymerizable resin 14 at the time of peeling. As a result, the shape stability of the fine concavo-convex pattern on the surface of the sheet-like body 12 is improved.

次に、樹脂層に光照射を施し、この樹脂層を重合させる工程について、図1の(D)を使用して説明する。シート状体12の表面に所望の微細凹凸パターンが形成された状態で、更に光照射を施し、この樹脂層を完全に重合・硬化させる。なお、この工程において、図示のようにシート状体12の表面から光照射を施さずに、シート状体12の裏面から光照射を施す方法も採用できる。以上で凹凸状シートが完成する。   Next, the process of applying light irradiation to the resin layer and polymerizing the resin layer will be described with reference to FIG. In a state where a desired fine uneven pattern is formed on the surface of the sheet-like body 12, light irradiation is further performed, and this resin layer is completely polymerized and cured. In this step, a method of irradiating light from the back surface of the sheet-like body 12 without irradiating light from the surface of the sheet-like body 12 as shown in the drawing can also be adopted. The concavo-convex sheet is thus completed.

なお、図2の(B2)から(B3)に移行する際に、条件によっては、シート状体12の面内において、エンボス型10と光重合性樹脂14との密着力にばらつきを生じ、剥離後のシート状体12表面の凹凸パターンの高さにばらつきを生じることもあり得る。その場合には、図2の(B2)の状態において、樹脂層に光照射を施し、この樹脂層の重合を進行させ、これにより剥離後のシート状体12表面の凹凸パターンの高さにばらつきを生じることを防ぐことができる。   When shifting from (B2) to (B3) in FIG. 2, depending on the conditions, the adhesion between the embossing mold 10 and the photopolymerizable resin 14 varies within the surface of the sheet-like body 12, and peeling occurs. The height of the uneven pattern on the surface of the subsequent sheet-like body 12 may vary. In that case, in the state of (B2) in FIG. 2, the resin layer is irradiated with light, and the polymerization of the resin layer is allowed to proceed, thereby varying the height of the uneven pattern on the surface of the sheet-like body 12 after peeling. Can be prevented.

次に、本発明の他の実施態様の例(第2の実施態様)について説明する。なお、第1の実施態様における同一、類似の部材については、同様の符号を附し、その説明を省略する。この実施態様においても、第1の実施態様と同様に樹脂層に光重合性樹脂を使用する。また、図1の(A)及び(B)に示される、シート状体12の表面に光重合性樹脂14の樹脂層を形成する工程と、シート状体12の樹脂層をエンボス型10に密着させて、この樹脂層をエンボス型10の凹凸形状に倣わせる工程までは第1の実施態様と同一である。   Next, an example (second embodiment) of another embodiment of the present invention will be described. In addition, the same code | symbol is attached | subjected about the same and similar member in a 1st embodiment, and the description is abbreviate | omitted. Also in this embodiment, a photopolymerizable resin is used for the resin layer as in the first embodiment. 1A and 1B, the step of forming a resin layer of the photopolymerizable resin 14 on the surface of the sheet-like body 12, and the resin layer of the sheet-like body 12 are in close contact with the embossing mold 10 Thus, the process up to the step of making the resin layer follow the uneven shape of the embossing mold 10 is the same as that of the first embodiment.

次に、樹脂層に光照射を施し、この樹脂層を重合させるとともに、この樹脂層とエンボス型10との間に接着力を生じさせる。この工程においては、第1の実施態様と異なり、光照射により、この樹脂層を完全に重合させる。したがって、樹脂層とエンボス型10との間に接着力を生じていても、この状態で、シート状体12とエンボス型10とを所定距離離間させ、樹脂層に形成された凹凸形状の高さをエンボス型10の凹凸形状の高さより増大させることはできない。   Next, the resin layer is irradiated with light to polymerize the resin layer, and an adhesive force is generated between the resin layer and the embossing mold 10. In this step, unlike the first embodiment, the resin layer is completely polymerized by light irradiation. Therefore, even if an adhesive force is generated between the resin layer and the embossing mold 10, the height of the concavo-convex shape formed on the resin layer by separating the sheet-like body 12 and the embossing mold 10 by a predetermined distance in this state. Cannot be increased beyond the height of the concavo-convex shape of the embossing die 10.

そのため、次の工程において、樹脂層に、この樹脂のガラス転移温度Tg以上になるように加熱を施す。これにより、樹脂層の塑性変形が可能となる。そして、次の工程において、シート状体12とエンボス型10とを所定距離離間させ、樹脂層に形成された凹凸形状の高さをエンボス型10の凹凸形状の高さより増大させる。以上の工程は、既述の図2の(B1)及び(B2)に示される状態と同様である。   Therefore, in the next step, the resin layer is heated so as to be equal to or higher than the glass transition temperature Tg of the resin. Thereby, plastic deformation of the resin layer becomes possible. In the next step, the sheet-like body 12 and the embossing mold 10 are separated by a predetermined distance, and the height of the concavo-convex shape formed on the resin layer is increased from the height of the concavo-convex shape of the embossing mold 10. The above process is the same as the state shown in (B1) and (B2) of FIG.

次の工程において、樹脂層に、この樹脂のガラス転移温度Tg以下になるように冷却を施す。この工程は、図2の(B2)に示される状態で行ってもよいし、図2の(B3)に示される、剥離後の状態で行ってもよい。以上で凹凸状シートが完成する。本実施態様によっても、既述の第1の実施態様と同様の効果が得られる。   In the next step, the resin layer is cooled so as to be equal to or lower than the glass transition temperature Tg of the resin. This step may be performed in a state shown in (B2) of FIG. 2 or may be performed in a state after peeling as shown in (B3) of FIG. The concavo-convex sheet is thus completed. According to this embodiment, the same effect as that of the first embodiment described above can be obtained.

次に、本発明の更に他の実施態様の例(第3の実施態様)について説明する。なお、第1の実施態様における同一、類似の部材については、同様の符号を附し、その説明を省略する。この実施態様においては、第1、第2の実施態様と異なり、樹脂層に熱可塑性樹脂を使用する。また、図1の(A)及び(B)に示される、シート状体12の表面に熱可塑性樹脂の樹脂層を形成する工程と、シート状体12の樹脂層をエンボス型10に密着させて、この樹脂層をエンボス型10の凹凸形状に倣わせる工程までは、第1の実施態様と見かけ上同一であるが、条件はかなり相違する。   Next, another example (third embodiment) of the present invention will be described. In addition, the same code | symbol is attached | subjected about the same and similar member in a 1st embodiment, and the description is abbreviate | omitted. In this embodiment, unlike the first and second embodiments, a thermoplastic resin is used for the resin layer. 1A and 1B, a step of forming a resin layer of a thermoplastic resin on the surface of the sheet-like body 12, and a resin layer of the sheet-like body 12 are brought into close contact with the embossing mold 10. The process of making this resin layer follow the uneven shape of the embossing mold 10 is apparently the same as that of the first embodiment, but the conditions are quite different.

熱可塑性樹脂としては、公知の各種プラスチック、たとえば、炭化水素系プラスチックとして、ポリエチレン、ポリプロピレン、ポリスチレン等が、極性ビニル系プラスチックとして、ポリ塩化ビニル、ポリ酢酸ビニル、ポリメチルメタクリレート、ABS樹脂等が、線状構造プラスチックとして、ポリアセタール、ポリアミド、ポリカーボネート等が、セルロース系プラスチックとして、酢酸セルロース、セルロイドセロファン等が挙げられる。   Examples of the thermoplastic resin include various known plastics such as polyethylene, polypropylene, and polystyrene as hydrocarbon plastics, and polyvinyl chloride, polyvinyl acetate, polymethyl methacrylate, and ABS resins as polar vinyl plastics. Examples of the linear structural plastic include polyacetal, polyamide, and polycarbonate, and examples of the cellulose-based plastic include cellulose acetate and celluloid cellophane.

但し、本発明においては、熱可塑性樹脂のガラス転移温度Tgがシート状体12のガラス転移温度Tgよりも低いことが求められる。さもないと、熱可塑性樹脂を加熱する際に、シート状体12が変形してしまい、良好な製品が得られないからである。   However, in the present invention, the glass transition temperature Tg of the thermoplastic resin is required to be lower than the glass transition temperature Tg of the sheet-like body 12. Otherwise, when the thermoplastic resin is heated, the sheet-like body 12 is deformed and a good product cannot be obtained.

シート状体12の表面に熱可塑性樹脂の樹脂層を形成する工程においては、熱可塑性樹脂に加熱を施し、樹脂層を所定の均一な膜厚に形成することが好ましい。また、シート状体12の樹脂層をエンボス型10に密着させて、この樹脂層をエンボス型10の凹凸形状に倣わせるとともに、この樹脂層とエンボス型10との間に接着力を生じさせる工程においては、熱可塑性樹脂に加熱を施し、樹脂層がエンボス型10の微細な凹凸形状に倣うようにすることが好ましい。この際、シート状体12の樹脂層とエンボス型10とを密着させるべく、所定の加圧を施すことが好ましい。   In the step of forming the resin layer of the thermoplastic resin on the surface of the sheet-like body 12, it is preferable to heat the thermoplastic resin to form the resin layer with a predetermined uniform film thickness. In addition, the resin layer of the sheet-like body 12 is brought into close contact with the embossing mold 10, and the resin layer is made to follow the uneven shape of the embossing mold 10, and an adhesive force is generated between the resin layer and the embossing mold 10. In the step, it is preferable to heat the thermoplastic resin so that the resin layer follows the fine uneven shape of the embossing mold 10. At this time, it is preferable to apply a predetermined pressure to bring the resin layer of the sheet-like body 12 and the embossing mold 10 into close contact.

次に、樹脂層を、この樹脂のガラス転移温度Tg近傍の状態に維持するとともに、この樹脂層とエンボス型10とが部分的に接着した状態で、シート状体12とエンボス型10とを所定距離離間させ、樹脂層に形成された凹凸形状の高さをエンボス型10の凹凸形状の高さより増大させる。すなわち、樹脂層を、この樹脂のガラス転移温度Tg近傍の状態に維持することにより、樹脂層の塑性変形が可能となる。以上の工程は、既述の図2の(B1)及び(B2)に示される状態と同様である。   Next, while maintaining the resin layer in a state near the glass transition temperature Tg of the resin, the sheet-like body 12 and the embossing die 10 are bonded to each other in a state where the resin layer and the embossing die 10 are partially bonded. The height of the concavo-convex shape formed on the resin layer is increased by a distance from the height of the concavo-convex shape of the embossing mold 10. That is, by maintaining the resin layer in the vicinity of the glass transition temperature Tg of the resin, the resin layer can be plastically deformed. The above process is the same as the state shown in (B1) and (B2) of FIG.

次の工程において、樹脂層に、この樹脂のガラス転移温度Tg以下になるように冷却を施す。この工程は、図2の(B2)に示される状態で行ってもよいし、図2の(B3)に示される、剥離後の状態行ってもよい。以上で凹凸状シートが完成する。本実施態様によっても、既述の第1、第2の実施態様と同様の効果が得られる。   In the next step, the resin layer is cooled so as to be equal to or lower than the glass transition temperature Tg of the resin. This step may be performed in the state shown in (B2) of FIG. 2, or may be performed in the state after peeling as shown in (B3) of FIG. The concavo-convex sheet is thus completed. Also according to this embodiment, the same effects as those of the first and second embodiments described above can be obtained.

以上、本発明に係る凹凸状シートの製造方法の実施形態の例について説明したが、本発明は上記実施形態の例に限定されるものではなく、各種の態様が採り得る。   As mentioned above, although the example of embodiment of the manufacturing method of the uneven | corrugated sheet | seat which concerns on this invention was demonstrated, this invention is not limited to the example of the said embodiment, Various aspects can be taken.

たとえば、本実施形態の例では、凹凸型として板状のエンボス型10を使用する態様を採用したが、ロールの表面に規則的な凹凸が形成されたロール型、又はベルトの表面に規則的な凹凸が形成されたエンドレスベルト型による、連続加工又は間欠送りの半連続加工を行う態様が採り得る。   For example, in the example of the present embodiment, an embodiment in which the plate-like embossing mold 10 is used as the concavo-convex mold is employed. However, the roll mold in which regular irregularities are formed on the roll surface, or the belt surface is regular. A mode of performing semi-continuous processing of continuous processing or intermittent feeding by an endless belt type in which irregularities are formed may be employed.

次に、本発明の実施例を、比較例と対比して説明する。本発明の実施例として、既述の第1の実施態様を採用した。評価する凹凸状シートの表面の規則的な凹凸が、XY方向に円錐を密に配列した形状であり、エンボス型10の表面の規則的な凹凸は、これの反転形状とした。エンボス型10の表面の凹凸のXY方向のピッチは、いずれも200nmとし、凹凸パターンの凹凸とピッチとのアスペクト比を約1.0とした。すなわち、円錐の底円の径は200nmであり、円錐の高さは約200nmである。エンボス型10の材質は、ニッケルの電鋳であり、エンボス型10の全体サイズは、50mm角である。   Next, examples of the present invention will be described in comparison with comparative examples. The first embodiment described above was adopted as an example of the present invention. The regular unevenness on the surface of the uneven sheet to be evaluated has a shape in which cones are densely arranged in the XY direction, and the regular unevenness on the surface of the embossing mold 10 is an inverted shape of this. The pitch of the unevenness on the surface of the embossing mold 10 in the XY direction was 200 nm, and the aspect ratio between the unevenness and the pitch of the uneven pattern was about 1.0. That is, the diameter of the bottom circle of the cone is 200 nm, and the height of the cone is about 200 nm. The material of the embossing die 10 is nickel electroforming, and the overall size of the embossing die 10 is 50 mm square.

シート状体12として、厚さ180μmのPETフィルムを使用した。サイズは、つかみ代等を考慮して50mm角より若干大きめとした。このシート状体12の表面に接着処理を施した後、バーコータを使用して、光重合性樹脂14としての紫外線硬化性樹脂を厚さ40μmに塗布した。   As the sheet-like body 12, a PET film having a thickness of 180 μm was used. The size was slightly larger than the 50 mm square in consideration of the gripping cost and the like. After the surface of the sheet-like body 12 was subjected to adhesion treatment, an ultraviolet curable resin as the photopolymerizable resin 14 was applied to a thickness of 40 μm using a bar coater.

上記のエンボス型10とシート状体12とを対向する状態でテンシロン(万能材料試験機)のステージに固定し、一方のステージを移動させて、エンボス型10とシート状体12とを密着させた。この状態でシート状体12の裏面より紫外線を照射した。紫外線の照射は、水銀灯(オーク製作所製、品名:ハンディUV−300、出力:300W)にて2分間行った。照射強度は、300W/cm2 である。 The embossing mold 10 and the sheet-like body 12 are fixed to a stage of Tensilon (universal material testing machine) while facing each other, and one stage is moved to bring the embossing mold 10 and the sheet-like body 12 into close contact with each other. . In this state, ultraviolet rays were irradiated from the back surface of the sheet-like body 12. Irradiation with ultraviolet rays was performed for 2 minutes with a mercury lamp (manufactured by Oak Seisakusho, product name: Handy UV-300, output: 300 W). The irradiation intensity is 300 W / cm 2 .

その後、一方のステージを移動させて、エンボス型10とシート状体12とを離間させた。この際のステージの移動速度を0.5m/分とした。   Then, one stage was moved and the embossing type | mold 10 and the sheet-like body 12 were spaced apart. The moving speed of the stage at this time was 0.5 m / min.

エンボス型10からシート状体12が完全に剥離した後、シート状体12の裏面より紫外線を照射した。紫外線の照射は、同一の水銀灯にて1分間行った。   After the sheet-like body 12 was completely peeled from the embossing mold 10, ultraviolet rays were irradiated from the back surface of the sheet-like body 12. The ultraviolet irradiation was performed for 1 minute with the same mercury lamp.

凹凸パターンが形成されたシート状体12を切断し、凹凸パターンの複数箇所における断面形状をSEM(走査型電子顕微鏡)により測定し、凹凸パターンの凹凸とピッチとのアスペクト比を算出した。その結果、アスペクト比は1.5〜2.0の範囲であった。   The sheet-like body 12 on which the concavo-convex pattern was formed was cut, and cross-sectional shapes at a plurality of locations of the concavo-convex pattern were measured with an SEM (scanning electron microscope), and the aspect ratio between the concavo-convex pattern and the pitch was calculated. As a result, the aspect ratio was in the range of 1.5 to 2.0.

比較例としても同一の材料(エンボス型10、シート状体12、紫外線硬化性樹脂)及び同一の装置(テンシロン、水銀灯)を使用した。そして、紫外線硬化性樹脂をシート状体12に塗布するまでの工程を実施例と同様に実施した。   As a comparative example, the same material (embossing mold 10, sheet-like body 12, ultraviolet curable resin) and the same apparatus (Tensilon, mercury lamp) were used. And the process until it apply | coats an ultraviolet curable resin to the sheet-like body 12 was implemented similarly to the Example.

エンボス型10とシート状体12とを対向する状態でテンシロン(万能材料試験機)のステージに固定し、一方のステージを移動させて、エンボス型10とシート状体12とを密着させた。この状態でシート状体12の裏面より紫外線を照射した。紫外線の照射は、実施例と同一の水銀灯にて3分間行った。照射強度は、300W/cm2 である。 The embossing mold 10 and the sheet-like body 12 were fixed to a stage of Tensilon (universal material testing machine) while facing each other, and one of the stages was moved to bring the embossing mold 10 and the sheet-like body 12 into close contact. In this state, ultraviolet rays were irradiated from the back surface of the sheet-like body 12. The ultraviolet irradiation was performed for 3 minutes using the same mercury lamp as in the example. The irradiation intensity is 300 W / cm 2 .

その後、一方のステージを移動させて、エンボス型10とシート状体12とを完全に剥離するまで離間させた。   Thereafter, one of the stages was moved and separated until the embossing mold 10 and the sheet-like body 12 were completely peeled off.

凹凸パターンが形成されたシート状体12を切断し、凹凸パターンの複数箇所における断面形状をSEM(走査型電子顕微鏡)により測定し、凹凸パターンの凹凸とピッチとのアスペクト比を算出した。その結果、アスペクト比は約1.0であった。   The sheet-like body 12 on which the concavo-convex pattern was formed was cut, and cross-sectional shapes at a plurality of locations of the concavo-convex pattern were measured with an SEM (scanning electron microscope), and the aspect ratio between the concavo-convex pattern and the pitch was calculated. As a result, the aspect ratio was about 1.0.

以上の結果より、本発明の効果が確認できた。   From the above results, the effect of the present invention was confirmed.

本発明に適用される凹凸状シートの製造方法の各工程を示す概略断面図The schematic sectional drawing which shows each process of the manufacturing method of the uneven | corrugated sheet | seat applied to this invention 本発明に係る凹凸状シートの製造方法に特有な工程を示す概略断面図The schematic sectional drawing which shows the process peculiar to the manufacturing method of the uneven | corrugated sheet | seat based on this invention.

符号の説明Explanation of symbols

10…エンボス型、12…シート状体、14…光重合性樹脂、16…照射光   DESCRIPTION OF SYMBOLS 10 ... Embossing type | mold, 12 ... Sheet-like body, 14 ... Photopolymerizable resin, 16 ... Irradiation light

Claims (6)

シート状体の表面の略全面に、凹凸型の凹凸を転写形成する凹凸状シートの製造方法において、
前記シート状体の表面に光重合性樹脂の樹脂層を形成する工程と、
前記シート状体の樹脂層を前記凹凸型に密着させて、該樹脂層を前記凹凸型の凹凸形状に倣わせる工程と、
前記樹脂層に光照射を施し、該樹脂層と前記凹凸型との間に接着力を生じさせる工程と、
前記樹脂層と前記凹凸型とが部分的に接着した状態で、前記シート状体と前記凹凸型とを所定距離離間させ、前記樹脂層に形成された凹凸形状の高さを前記凹凸型の凹凸形状の高さより増大させる工程と、
前記樹脂層に光照射を施し、該樹脂層を重合させる工程と、
を含むことを特徴とする凹凸状シートの製造方法。
In the method for producing a concavo-convex sheet that transfers and forms concavo-convex irregularities on substantially the entire surface of the sheet-like body,
Forming a resin layer of a photopolymerizable resin on the surface of the sheet-like body;
A step of closely adhering the resin layer of the sheet-like body to the concavo-convex mold, and imitating the concavo-convex shape of the concavo-convex mold;
Subjecting the resin layer to light irradiation and generating an adhesive force between the resin layer and the concave-convex mold;
In a state where the resin layer and the concavo-convex mold are partially adhered, the sheet-like body and the concavo-convex mold are separated from each other by a predetermined distance, and the height of the concavo-convex shape formed on the resin layer is determined. Increasing the height of the shape,
Subjecting the resin layer to light irradiation and polymerizing the resin layer;
The manufacturing method of the uneven | corrugated shaped sheet | seat characterized by including this.
シート状体の表面の略全面に、凹凸型の凹凸を転写形成する凹凸状シートの製造方法において、
前記シート状体の表面に光重合性樹脂の樹脂層を形成する工程と、
前記シート状体の樹脂層を前記凹凸型に密着させて、該樹脂層を前記凹凸型の凹凸形状に倣わせる工程と、
前記樹脂層に光照射を施し、該樹脂層を重合させるとともに、該樹脂層と前記凹凸型との間に接着力を生じさせる工程と、
前記樹脂層に、該樹脂のガラス転移温度Tg以上になるように加熱を施す工程と、
前記樹脂層と前記凹凸型とが部分的に接着した状態で、前記シート状体と前記凹凸型とを所定距離離間させ、前記樹脂層に形成された凹凸形状の高さを前記凹凸型の凹凸形状の高さより増大させる工程と、
前記樹脂層に、該樹脂のガラス転移温度Tg以下になるように冷却を施す工程と、
を含むことを特徴とする凹凸状シートの製造方法。
In the method for producing a concavo-convex sheet that transfers and forms concavo-convex irregularities on substantially the entire surface of the sheet-like body,
Forming a resin layer of a photopolymerizable resin on the surface of the sheet-like body;
A step of closely adhering the resin layer of the sheet-like body to the concavo-convex mold, and imitating the concavo-convex shape of the concavo-convex mold;
Irradiating the resin layer with light, polymerizing the resin layer, and generating an adhesive force between the resin layer and the concave-convex mold;
Heating the resin layer so that the glass transition temperature Tg of the resin is equal to or higher;
In a state where the resin layer and the concavo-convex mold are partially adhered, the sheet-like body and the concavo-convex mold are separated from each other by a predetermined distance, and the height of the concavo-convex shape formed on the resin layer is determined. Increasing the height of the shape,
A step of cooling the resin layer so as to be equal to or lower than the glass transition temperature Tg of the resin;
The manufacturing method of the uneven | corrugated shaped sheet | seat characterized by including this.
シート状体の表面の略全面に、凹凸型の凹凸を転写形成する凹凸状シートの製造方法において、
前記シート状体の表面に熱可塑性樹脂の樹脂層を形成する工程と、
前記シート状体の樹脂層を前記凹凸型に密着させて、該樹脂層を前記凹凸型の凹凸形状に倣わせるとともに、該樹脂層と前記凹凸型との間に接着力を生じさせる工程と、
前記樹脂層を、該樹脂のガラス転移温度Tg近傍の状態に維持するとともに、前記樹脂層と前記凹凸型とが部分的に接着した状態で、前記シート状体と前記凹凸型とを所定距離離間させ、前記樹脂層に形成された凹凸形状の高さを前記凹凸型の凹凸形状の高さより増大させる工程と、
前記樹脂層に、該樹脂のガラス転移温度Tg以下になるように冷却を施す工程と、
を含むことを特徴とする凹凸状シートの製造方法。
In the method for producing a concavo-convex sheet that transfers and forms concavo-convex irregularities on substantially the entire surface of the sheet-like body,
Forming a thermoplastic resin layer on the surface of the sheet-like body;
A step of bringing the resin layer of the sheet-like body into close contact with the concavo-convex mold, causing the resin layer to follow the concavo-convex shape of the concavo-convex mold, and generating an adhesive force between the resin layer and the concavo-convex mold; ,
While maintaining the resin layer in a state near the glass transition temperature Tg of the resin, the sheet-like body and the concavo-convex mold are separated by a predetermined distance in a state where the resin layer and the concavo-convex mold are partially bonded. And increasing the height of the concavo-convex shape formed in the resin layer from the height of the concavo-convex shape of the concavo-convex type,
A step of cooling the resin layer so as to be equal to or lower than the glass transition temperature Tg of the resin;
The manufacturing method of the uneven | corrugated shaped sheet | seat characterized by including this.
前記シート状体の表面の凹凸が錐体形状である請求項1〜3のいずれか1項に記載の凹凸状シートの製造方法。   The method for producing a concavo-convex sheet according to any one of claims 1 to 3, wherein the irregularities on the surface of the sheet-like body are conical. 樹脂層を形成する前の前記シート状体の表面に、接着層を設ける、シランカップリング剤処理を施す、オゾン処理を施す、コロナ放電処理を施す、プラズマ処理を施す、及び、紫外線照射処理を施す処理のうち1以上を行う請求項1〜4のいずれか1項に記載の凹凸状シートの製造方法。   An adhesive layer is provided on the surface of the sheet-like body before forming the resin layer, a silane coupling agent treatment, an ozone treatment, a corona discharge treatment, a plasma treatment, and an ultraviolet irradiation treatment are performed. The manufacturing method of the uneven | corrugated sheet | seat of any one of Claims 1-4 which performs 1 or more among the processes to apply. 前記凹凸型の表面に離型処理を施す請求項1〜5のいずれか1項に記載の凹凸状シートの製造方法。   The manufacturing method of the uneven | corrugated sheet | seat of any one of Claims 1-5 which performs a mold release process on the surface of the said uneven | corrugated type | mold.
JP2003399476A 2003-11-28 2003-11-28 Manufacturing method of embossed sheet Pending JP2005161529A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003399476A JP2005161529A (en) 2003-11-28 2003-11-28 Manufacturing method of embossed sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003399476A JP2005161529A (en) 2003-11-28 2003-11-28 Manufacturing method of embossed sheet

Publications (1)

Publication Number Publication Date
JP2005161529A true JP2005161529A (en) 2005-06-23

Family

ID=34724018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003399476A Pending JP2005161529A (en) 2003-11-28 2003-11-28 Manufacturing method of embossed sheet

Country Status (1)

Country Link
JP (1) JP2005161529A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007062372A (en) * 2005-08-29 2007-03-15 Seoul National Univ Industry Foundation Method of forming high aspect ratio nano structure and method of forming micro pattern
JP2007256340A (en) * 2006-03-20 2007-10-04 Nissan Motor Co Ltd Reflection prevention fine structure and reflection prevention structure
JP2011128396A (en) * 2009-12-18 2011-06-30 Dainippon Printing Co Ltd Forming stamper, method of manufacturing antireflection film and antireflection film
US8040474B2 (en) 2006-02-08 2011-10-18 Samsung Electronics Co., Ltd. Mold and method of manufacturing display device
KR101468046B1 (en) * 2008-01-16 2014-12-03 삼성디스플레이 주식회사 Optical plate, display device having the same, and method of manufacturing the optical plate
CN105452919A (en) * 2013-09-27 2016-03-30 松下知识产权经营株式会社 Optical waveguide dry film, and optical waveguide manufacturing method and optical waveguide using optical waveguide dry film

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007062372A (en) * 2005-08-29 2007-03-15 Seoul National Univ Industry Foundation Method of forming high aspect ratio nano structure and method of forming micro pattern
US8040474B2 (en) 2006-02-08 2011-10-18 Samsung Electronics Co., Ltd. Mold and method of manufacturing display device
JP2007256340A (en) * 2006-03-20 2007-10-04 Nissan Motor Co Ltd Reflection prevention fine structure and reflection prevention structure
KR101468046B1 (en) * 2008-01-16 2014-12-03 삼성디스플레이 주식회사 Optical plate, display device having the same, and method of manufacturing the optical plate
JP2011128396A (en) * 2009-12-18 2011-06-30 Dainippon Printing Co Ltd Forming stamper, method of manufacturing antireflection film and antireflection film
CN105452919A (en) * 2013-09-27 2016-03-30 松下知识产权经营株式会社 Optical waveguide dry film, and optical waveguide manufacturing method and optical waveguide using optical waveguide dry film
CN105452919B (en) * 2013-09-27 2020-09-18 松下知识产权经营株式会社 Dry film for optical waveguide, method for producing optical waveguide using the dry film for optical waveguide, and optical waveguide

Similar Documents

Publication Publication Date Title
JP6173354B2 (en) Light transmission type imprint mold, large area mold manufacturing method
JP2008302591A (en) Irregularly patterned sheet, method of manufacturing irregularly pattered sheet, optical diffuser, original sheet plate for manufacture of optical diffuser and method of manufacturing optical diffuser
US20120070623A1 (en) Manufacturing method of laminated body, stamper, transfer device, laminated body, molding element, and optical element
JP6921353B2 (en) Replica master
JP2008304701A (en) Uneven pattern formed sheet, its manufacturing method, process sheet original plate for manufacturing light diffusion body, and method for manufacturing light diffusion body
CN111438859A (en) Patterned nano array template and preparation method and application thereof
JP2008194977A (en) Manufacturing method and manufacturing device of molding
JP2005161529A (en) Manufacturing method of embossed sheet
JP5211538B2 (en) Manufacturing method of film having uneven shape, film having uneven shape, manufacturing method of support having uneven shape, support having uneven shape
CN111427233A (en) Manufacturing method of imprinting mold
JP2012061832A (en) Method of manufacturing laminated body, stamper, and transfer device
JPH11156869A (en) Production of surface embossed part
JP2012086515A (en) Laminate, molding element, and optical element
JP2002187135A (en) Method for manufacturing mold for resin molding and resin molding using the same
JP5682841B2 (en) Process sheet master for manufacturing light diffuser and method for manufacturing light diffuser
JP2005138296A (en) Method and apparatus for manufacturing embossed sheet
JP2001062853A (en) Manufacture of part with irregular surface
JP5371286B2 (en) LAMINATE FOR RESIN MOLD PRODUCING AND METHOD FOR PRODUCING RESIN MOLD
JP7098864B2 (en) A method for manufacturing an article with a moth-eye pattern, and a method for manufacturing an inverted type with a moth-eye pattern.
JP4416913B2 (en) Manufacturing method of surface uneven parts
WO2017119398A1 (en) Method for manufacturing three-dimensional molding with microstructure
JP5510157B2 (en) Method for producing a seamless resin tubular body having a linear uneven pattern on the surface
TWI774497B (en) original copy
JPH11277864A (en) Stencil printing method
KR101298410B1 (en) high speed roll-to-roll hot embossing apparatus and process using the same