JP2012025620A - Low-water ratio cement formed body, and method for forming low-water ratio cement - Google Patents

Low-water ratio cement formed body, and method for forming low-water ratio cement Download PDF

Info

Publication number
JP2012025620A
JP2012025620A JP2010165713A JP2010165713A JP2012025620A JP 2012025620 A JP2012025620 A JP 2012025620A JP 2010165713 A JP2010165713 A JP 2010165713A JP 2010165713 A JP2010165713 A JP 2010165713A JP 2012025620 A JP2012025620 A JP 2012025620A
Authority
JP
Japan
Prior art keywords
cement
water
fine powder
compression
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010165713A
Other languages
Japanese (ja)
Other versions
JP5662722B2 (en
Inventor
Keiichi Notomi
啓一 納冨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2010165713A priority Critical patent/JP5662722B2/en
Publication of JP2012025620A publication Critical patent/JP2012025620A/en
Application granted granted Critical
Publication of JP5662722B2 publication Critical patent/JP5662722B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Abstract

PROBLEM TO BE SOLVED: To manufacture a cement formed body having a good compression resistive strength by a small amount of water.SOLUTION: The cement formed body is manufactured by kneading a cement, a microparticle having a particle diameter of ≤1 mm and water of 5 to 20% to the cement, and thereafter compression forming the kneaded material. Particularly, the microparticle is utilized which is prepared by water granulating municipal waste melt slag and sieving and sorting the granulated slag. Thus, a cement and a microparticle are compression formed, so that a cement formed body is well manufactured; water is added in a ratio of the water content necessary and enough to the cement of 5 to 20%, so that the use amount of water becomes smaller than in conventional cement forming and the curing time can e largely reduced and occurrence of slippage in compression is prevented to well carry out the forming; further, as the microparticles becoming aggregates, microparticles having a particle diameter of ≤1 mm are sieved and sorted and used, so that the compression-resistive strength can be increased.

Description

本発明は、低水セメント成形体及び低水セメント成形方法に関するものである。   The present invention relates to a low water cement molded body and a low water cement molding method.

従来より、セメントを結合剤として用いたセメント成形体は、土木・建設資材として広く利用されている(たとえば、特許文献1参照。)。   Conventionally, cement molded bodies using cement as a binder have been widely used as civil engineering / construction materials (see, for example, Patent Document 1).

この従来のセメント成形体は、所望の耐圧縮強度を得るために砕石や砂などの骨材を多量に含有し、これにセメントと多量の水とを加えた後に混練し、その後、所定形状にするために型枠内に流し込み、長時間放置して固化させてから脱型し、脱型後も長期間養生して製造している。   This conventional cement molded body contains a large amount of aggregates such as crushed stone and sand in order to obtain a desired compressive strength, kneaded after adding cement and a large amount of water to this, and then into a predetermined shape. In order to do this, it is poured into a mold, left to solidify for a long time, and then demolded.

特開2007−291783号公報JP 2007-291788 A

ところが、従来のセメント成形体においては、骨材によって所望の耐圧縮強度が得られるようにしているために、骨材自体に硬度や強度等が要求されており、骨材の材質やサイズ等に制限があった。   However, in the conventional cement molded body, since the desired compressive strength is obtained by the aggregate, the aggregate itself is required to have hardness, strength, etc., and the aggregate material quality, size, etc. There were restrictions.

その一方で、土木や建設の分野においては、砕石や砂などの資源が枯渇状態となっており、また、砕石時のスラッジや生コンクリートの洗浄時のノロなどのように微粉体が多量に発生しているにもかかわらず、これらの微粉体は、表面積が大きくて固化に必要となるセメントの量が増大し、しかも、強度的に弱いなどの理由から、骨材としては利用されていなかった。   On the other hand, in the field of civil engineering and construction, resources such as crushed stone and sand are depleted, and a large amount of fine powder is generated, such as sludge during crushed stone and noro during cleaning of ready-mixed concrete. Nevertheless, these fine powders have not been used as aggregates because they have a large surface area, increase the amount of cement required for solidification, and are weak in strength. .

そこで、本発明者は、従来利用されていなかった微粉体を骨材として用い、耐圧縮強度の良好なセメント成形体を製造する技術を開発した。   Therefore, the present inventor has developed a technique for producing a cement molded body having a good compressive strength by using a fine powder that has not been conventionally used as an aggregate.

請求項1に係る本発明では、低水セメント成形方法において、セメントと粒径1mm未満の微粉体と対セメント比5〜20%の水とを混練した後に圧縮成型することでセメント成形体を製造することにした。   In the present invention according to claim 1, in the low water cement molding method, a cement molded body is manufactured by kneading cement, fine powder having a particle diameter of less than 1 mm, and water having a cement ratio of 5 to 20% and then compression molding. Decided to do.

また、請求項2に係る本発明では、前記請求項1に係る本発明において、前記微粉体として都市ごみ溶融スラグを水砕した後に篩選別したものを利用することにした。   Further, in the present invention according to claim 2, in the present invention according to claim 1, the fine powder obtained by pulverizing municipal waste molten slag and then screening it is used.

また、請求項3に係る本発明では、前記請求項1又は請求項2に係る本発明において、脱型後にアルカリ水中又は通常水中で養生することにした。   Moreover, in this invention which concerns on Claim 3, in this invention which concerns on the said Claim 1 or Claim 2, it decided to cure in alkaline water or normal water after mold removal.

また、請求項4に係る本発明では、前記請求項3に係る本発明において、脱型後に、アルカリ水中又は通常水中での養生と、その後の乾燥とを繰返し行うことにした。   Moreover, in this invention which concerns on Claim 4, in this invention which concerns on the said Claim 3, the aging in alkaline water or normal water, and subsequent drying were repeatedly performed after demolding.

また、請求項5に係る本発明では、前記請求項1〜4のいずれかに係る本発明において、繊維体を混練することにした。   Moreover, in this invention which concerns on Claim 5, in this invention which concerns on any one of the said Claims 1-4, it decided to knead | mix a fiber body.

また、請求項6に係る本発明では、低水セメント成形体において、セメントと粒径1mm未満の微粉体と対セメント比5〜20%の水とを混練した後に圧縮成型することで製造することにした。   Further, in the present invention according to claim 6, the low water cement molded body is manufactured by kneading a cement, a fine powder having a particle size of less than 1 mm, and water having a cement ratio of 5 to 20% and then compression molding. I made it.

また、請求項7に係る本発明では、前記請求項6に係る本発明において、前記微粉体として都市ごみ溶融スラグを水砕した後に篩選別したものを利用することにした。   Moreover, in this invention which concerns on Claim 7, in this invention which concerns on the said Claim 6, it decided to utilize what screened the municipal waste molten slag after granulating as the said fine powder.

また、請求項8に係る本発明では、前記請求項6又は請求項7に係る本発明において、繊維体を混練することにした。   Moreover, in this invention which concerns on Claim 8, in this invention which concerns on the said Claim 6 or Claim 7, it decided to knead | mix a fiber body.

本発明では、セメントと粒径1mm未満の微粉体と対セメント比5〜20%の水とを混練した後に圧縮成型することで、耐圧縮強度の良好な微粉体を用いたセメント成形体を製造することができる。   In the present invention, a cement molded body using fine powder having good compression strength is manufactured by kneading cement, fine powder having a particle diameter of less than 1 mm, and water having a cement ratio of 5 to 20%, followed by compression molding. can do.

特に、微粉体として都市ごみ溶融スラグを用いた場合には、廃棄物としての都市ごみ溶融スラグの有効利用を図ることもできる。   In particular, when municipal waste molten slag is used as a fine powder, the municipal waste molten slag as waste can be effectively used.

また、繊維体を混入させた場合には、低水セメント成形体の曲げ強度を増大させることができる。   Moreover, when a fiber body is mixed, the bending strength of a low water cement molded object can be increased.

さらに、脱型後に水中養生させた場合には、固化に必要な充分な反応水を得ることができる。   Furthermore, when it is cured in water after demolding, sufficient reaction water necessary for solidification can be obtained.

従来のセメント成形体は、通常30N/mm2の耐圧縮強度を得るために、たとえば、
セメント:344Kg
水 :165Kg
骨材 :733Kg
を混練し、型枠に流し込み、所定時間経過後に脱型し、脱型後も所定期間養生することで製造していた。
In order to obtain a conventional compressive strength of 30 N / mm 2 ,
Cement: 344Kg
Water: 165Kg
Aggregate: 733Kg
The mixture was kneaded, poured into a mold, demolded after a predetermined time, and cured after a demolding for a predetermined period.

これに対して本発明では、骨材資源の枯渇や大量発生する微粉体の処理を考慮して、骨材として微粉体を利用することに着目した。   On the other hand, in the present invention, attention was paid to the use of fine powder as an aggregate in consideration of exhaustion of aggregate resources and processing of a large amount of fine powder.

しかしながら、単に骨材として微粉体を用いた場合には、微粉体の表面積が大きいために、固化に必要となるセメント量が増大し、それに伴って、使用する水の量も増大してしまうことや、骨材を微粉体とすることで耐圧縮強度が低減してしまうことが懸念された。   However, when fine powder is simply used as an aggregate, the amount of cement required for solidification increases due to the large surface area of the fine powder, and the amount of water used increases accordingly. In addition, there is a concern that the compressive strength is reduced by making the aggregate into fine powder.

そのため、骨材として微粉体を用いつつ、セメント成形体としての耐圧縮強度を低減させない技術の開発が必要となった。   Therefore, it is necessary to develop a technique that does not reduce the compressive strength as a cement molded body while using fine powder as an aggregate.

そこで、まず、耐圧縮強度を良好に保持するために、ただ単に型枠内で養生してセメント成形体を製造するのではなく、セメントと微粉体を型枠の内部で圧縮して成型することにした。   Therefore, in order to maintain good compressive strength, first, cement and fine powder are compressed and molded inside the mold, not simply cured in the mold to produce a cement molded body. I made it.

セメントと微粉体とを型枠の内部で圧縮して成型してみると、加圧力の増大に伴って密度の高いセメント成形体が製造できるものの、密度には自ずと限界があり、その限界付近(約200Kgf/cm2〜1000Kgf/cm2程度)では、セメントや微粉体の微粒子相互の摩擦抵抗に起因してすべりが生じ、加圧力と密度とが比例せずに段階的に密度が増大することがわかった。 When cement and fine powder are compressed and molded inside the mold, high-density cement moldings can be produced as the pressing force increases, but the density is naturally limited. in about 200Kgf / cm 2 ~1000Kgf / cm 2 or so), slippage occurs due to the frictional resistance of the fine mutual cement and fine powder, stepwise the density increases to not proportional and the pressure and density I understood.

このセメントと微粉体との圧縮成型をすべりを発生させずに円滑に行うために、微粉体の摩擦抵抗を低減させるようにある程度の水を添加することを考えた。   In order to perform the compression molding of the cement and the fine powder smoothly without causing any slip, it was considered to add a certain amount of water so as to reduce the frictional resistance of the fine powder.

従来のセメント成形体においては、セメントと水との水和反応を利用してセメントを固化させているために、骨材自体の吸水も考慮して多用の水を加えていたが、本発明では、セメントと微粉体とを基本的には圧縮成型することで固化させているために、必要最小限の水の添加で十分である。そこで、水分量を調整してセメント成形体を製造したところ、対セメント比で5%未満の水分量ではセメントと微粉体とを円滑に圧縮成型できずに耐圧縮強度が得られず、一方、対セメント比で20%以上の水分量では余剰の水分によって耐圧縮強度が得られず、しかも、成形後に長時間の養生が必要となることがわかった。   In the conventional cement molded body, since the cement is solidified by utilizing the hydration reaction between the cement and water, a lot of water is added in consideration of the water absorption of the aggregate itself. Since the cement and the fine powder are basically solidified by compression molding, it is sufficient to add a minimum amount of water. Therefore, when a cement molded body was produced by adjusting the amount of water, a moisture content of less than 5% in terms of the cement ratio could not obtain a compression resistance strength because the cement and fine powder could not be smoothly compression molded, It has been found that when the water content is 20% or more in terms of the cement ratio, the compression strength cannot be obtained due to excess water, and a long-term curing is required after molding.

以上の検討結果を踏まえて、本発明では、骨材として微粉体を用いることとし、それにセメントと対セメント比5%以上20%未満の水を加え、これらを混練した後に型枠の内部に流し込み、型枠の内部で所定の加圧力(約320Kgf/cm2〜600Kgf/cm2程度)をかけて圧縮成型することにした。 Based on the above examination results, in the present invention, fine powder is used as an aggregate, and water having a cement-to-cement ratio of 5% or more and less than 20% is added thereto, and these are kneaded and then poured into the mold. Then, a predetermined pressure (about 320 kgf / cm 2 to about 600 kgf / cm 2 ) was applied inside the mold to perform compression molding.

さらに、微粉体の粒径に注目し、微粉体の粒径がセメント成形体の耐圧縮強度に与える影響について検討してみた。   Furthermore, paying attention to the particle size of the fine powder, the influence of the particle size of the fine powder on the compressive strength of the cement molded body was examined.

すなわち、
セメント:100Kg
微粉体 :330Kg
水 : 15Kg
とし、微粉体を篩選別して微粉体の粒径が異なるセメント成形体を製造し、その耐圧縮強度を測定した。
That is,
Cement: 100Kg
Fine powder: 330Kg
Water: 15Kg
Then, the fine powder was sieved to produce a cement molded body having a different particle size of the fine powder, and its compressive strength was measured.

すると、微粉体の粒径が1.0mm以上(3.0mm未満)の場合には、17.46N/mm2と通常のコンクリートよりも耐圧縮強度が低減してしまうことがわかった。 Then, it was found that when the particle size of the fine powder is 1.0 mm or more (less than 3.0 mm), the compressive strength is reduced to 17.46 N / mm 2 compared to normal concrete.

その一方で、微粉体の粒径が1.0mm未満の場合には、31.43N/mm2と通常のコンクリートよりも耐圧縮強度が増大していることがわかった。 On the other hand, when the particle size of the fine powder was less than 1.0 mm, it was found that the compressive strength was increased to 31.43 N / mm 2 compared to ordinary concrete.

さらに、微粉体の粒径が0.5mm未満の場合には、32.97N/mm2となり、微粉体の粒径が0.25mm未満の場合には、36.20N/mm2となり、通常のコンクリートよりも耐圧縮強度が増大していることがわかった。 Furthermore, when the particle size of the fine powder is less than 0.5 mm, it becomes 32.97 N / mm 2 , and when the particle size of the fine powder is less than 0.25 mm, it becomes 36.20 N / mm 2 , which is more resistant than ordinary concrete. It was found that the compressive strength was increased.

そのため、以上の検討結果を踏まえて、本発明では、骨材として1.0mm未満、好ましくは0.5mm未満、特に耐圧縮強度を必要とする場合には0.25mm未満の微粉体を篩選別して用い、それにセメントと対セメント比5%以上20%未満の水を加え、これらを混練した後に型枠の内部に流し込み、型枠の内部で所定の加圧力(約320Kgf/cm2〜600Kgf/cm2程度)をかけて圧縮成型することにした。 Therefore, based on the above examination results, in the present invention, fine powder of less than 1.0 mm, preferably less than 0.5 mm, particularly less than 0.25 mm is used as aggregate, and in particular, when compressive strength is required, it is screened and used. cement and cement ratio more than 5% less than 20% of water is added, these poured inside the mold after the kneading, a predetermined pressure in the interior of the mold (about 320Kgf / cm 2 ~600Kgf / cm 2 or so) And decided to compress.

ここで、微粉体としては、都市ごみ溶融スラグに限らずに、砕石時のスラッジ、生コンクリートの洗浄時のノロ、鋳物砂や金属粉や金属酸化粉や砥石粉やガラス粉やフライアッシュやアスベスト及びアスベスト分解物など、各種の粉末状の物質を利用することができ、いずれの場合でも、上記粒径に篩選別して利用することで良好な耐圧縮強度の低水セメント成形体を得ることができる。   Here, the fine powder is not limited to municipal waste molten slag, but sludge during crushed stone, noro during cleaning of ready-mixed concrete, foundry sand, metal powder, metal oxide powder, grinding stone powder, glass powder, fly ash and asbestos Various powdered substances such as asbestos decomposition products can be used, and in any case, a low water cement molded article with good compression strength can be obtained by screening and using the above particle size. .

特に、微粉体として都市ごみ溶融スラグを水砕した後に篩選別したものを利用した場合には、廃棄物としての都市ごみ溶融スラグの有効利用を図ることもできる。   In particular, when municipal waste molten slag is finely powdered and then screened and then screened, it is possible to effectively use the municipal waste molten slag as waste.

この都市ごみ溶融スラグは、通常、水砕によって一般的に0.075mm〜5mmのサイズにばらついた砂粒体として排出される。また、都市ごみ溶融スラグは、マイクロクラックが多く生じており、圧縮強度が通常の石材に比べて非常に低く割れやすいといった欠点を有している。   This municipal waste molten slag is usually discharged as sand particles dispersed in a size of 0.075 mm to 5 mm by water granulation. In addition, municipal waste molten slag has a number of microcracks, and has a disadvantage that its compressive strength is very low compared to ordinary stones and is easily cracked.

そのため、都市ごみ溶融スラグを土木用途以外に利用する場合には、排出された状態のままで使用するには適していない。   For this reason, when municipal waste molten slag is used for purposes other than civil engineering, it is not suitable for use in the discharged state.

一方、都市ごみ溶融スラグは、硬度がモース硬度5程度と高く、比重が通常の石材と同程度であって、吸水率が0.3%程度と低く、異物の混入が少ないといった特徴を有している。   On the other hand, municipal waste molten slag has a high hardness of about 5 Mohs hardness, a specific gravity of the same level as that of ordinary stone, a low water absorption of about 0.3%, and a small amount of foreign matter. .

そこで、本発明では、排出された都市ごみ溶融スラグをロールクラッシャーで破砕し、その後、破砕した都市ごみ溶融スラグを1mm角メッシュのスクリーンを用いて篩選別した。   Therefore, in the present invention, the discharged municipal waste molten slag was crushed with a roll crusher, and then the crushed municipal waste molten slag was sieved using a 1 mm square mesh screen.

これにより、破砕した都市ごみ溶融スラグを、篩選別にてスクリーン上に残留した粒径1mm以上の都市ごみ溶融スラグと、篩選別にてスクリーンを通過した粒径1mm未満の都市ごみ溶融スラグとに分離した。   As a result, the crushed municipal waste molten slag was separated into municipal waste molten slag with a particle size of 1 mm or more remaining on the screen by sieve sorting and municipal waste molten slag with a particle size of less than 1 mm that passed through the screen by sieve sorting. .

ここで、都市ごみ溶融スラグのサイズとしては、微粒化するほど耐圧縮強度が向上することから、求められる耐圧縮強度との関係で選択されるが、実用的には1mm以下がよく、0.5mm以下が好ましいく、望ましくは0.25mm以下がよい。   Here, the size of municipal waste molten slag is selected in relation to the required compressive strength, since the compressive strength improves as the size of the slag becomes finer. The following is preferable, desirably 0.25 mm or less.

そして、粒径1mm以上の都市ごみ溶融スラグを回収し、それらをショットブラストのブラスト材として供給し、ブラスト材として5〜6回繰り返して利用した。   Then, municipal waste molten slag having a particle diameter of 1 mm or more was recovered, supplied as shot blasting material, and repeatedly used as blasting material 5-6 times.

この粒径1mm以上の都市ごみ溶融スラグは、硬度が高く吸水率が低いなどの特徴から、ブラスト材として使用しても、ブラスト面の粗度やブラスト材としての沈降速度や硬度や耐久性や吸湿による流動性において全く問題がなく、優れたブラスト材として利用することができ、しかも、従来のグリット材と比較すると数分の1程度のコストとなるために、非常に経済的な効果が得られることが確認された。   This municipal waste molten slag with a particle size of 1 mm or more has characteristics such as high hardness and low water absorption, so even if it is used as a blasting material, the roughness of the blasting surface, the sedimentation speed, hardness, durability, etc. There is no problem in fluidity due to moisture absorption, it can be used as an excellent blasting material, and it costs about a fraction of the cost of a conventional grit material. It was confirmed that

また、上記ブラスト材として供給された都市ごみ溶融スラグは、ブラスト材として5〜6回繰り返して利用した後に回収した。この回収したブラスト材(都市ごみ溶融スラグ)は、ブラスト材として繰り返して利用されることによって、粉砕や摩耗が行われ、供給時よりもサイズが小さくなっている。なお、回収する際には、ショットブラストにおいて発生する粉末状の金属や錆や塗装剤なども混合された状態で回収した。   Moreover, the municipal waste molten slag supplied as the blast material was collected after being repeatedly used as the blast material 5 to 6 times. The recovered blast material (city waste molten slag) is repeatedly used as a blast material, so that it is crushed and worn, and is smaller in size than at the time of supply. When collecting, powdery metal generated in shot blasting, rust, coating agent, and the like were also collected.

この回収したブラスト材(都市ごみ溶融スラグ)を骨材として利用することにした。その際に、回収したブラスト材を篩選別して粒径1mm未満のブラスト材だけを骨材として利用してもよいが、上記篩選別において分離された1mm未満の都市ごみ溶融スラグと混合して骨材として利用することにした。   This recovered blast material (city waste molten slag) was used as aggregate. At that time, the recovered blast material may be screened and only the blast material having a particle size of less than 1 mm may be used as the aggregate. However, the aggregate is mixed with the municipal waste molten slag of less than 1 mm separated in the screen screening. I decided to use it as

このように、篩選別により所定サイズ(ここでは、粒径1mm)未満の都市ごみ溶融スラグとブラスト材として繰り返して利用された都市ごみ溶融スラグは、初期の排出された都市ごみ溶融スラグと比べて微粒化されている。これは、初期の都市ごみ溶融スラグは、圧縮強度が低いために、骨材としては不向きであるが、微粒化により圧縮強度が増大し、固化剤の骨材として大量に混合することが可能となるからである。   In this way, municipal waste molten slag less than a predetermined size (here, particle size of 1 mm) by sieving and municipal waste molten slag repeatedly used as blasting material is compared with the municipal waste molten slag discharged at the beginning. Atomized. This is because the initial municipal waste molten slag is unsuitable as an aggregate because of its low compressive strength, but the compressive strength increases due to atomization and can be mixed in large quantities as an aggregate of a solidifying agent. Because it becomes.

以上に説明したように、本発明では、セメントと粒径1mm未満の微粉体と対セメント比5〜20%の水とを混練した後に圧縮成型することで低水セメント成形体を製造することにしている。   As described above, in the present invention, a low water cement molded body is manufactured by compression molding after kneading cement, fine powder having a particle size of less than 1 mm, and water with a cement ratio of 5 to 20%. ing.

このように、セメントと微粉体とを圧縮成型することで、良好にセメント成形体を製造することができ、必要十分な水分として対セメント比5〜20%の水を添加することで、従来のセメント成形よりも水の使用量が著しく少なくなって養生時間を大幅に短縮することができるとともに圧縮時のすべりの発生を防いで良好に成型することができ、さらに、骨材となる微粉体の粒径を1mm未満のものを篩選別して用いることで、耐圧縮強度を増大させることができる。   Thus, by compressing and molding cement and fine powder, a cement molded body can be produced satisfactorily, and by adding water of 5 to 20% to the cement ratio as necessary and sufficient water, The amount of water used is significantly less than cement molding, and the curing time can be greatly shortened, and it can be molded well by preventing the occurrence of slipping during compression. Compressive strength can be increased by screening and using particles having a particle size of less than 1 mm.

また、水分の含有率が低い低水セメントであるために、圧縮成型直後に脱型することができ、型枠内での養生期間を省略することができ、短期間での製造が可能である。   Moreover, since it is a low water cement with a low moisture content, it can be removed immediately after compression molding, the curing period in the mold can be omitted, and the production in a short period is possible. .

また、脱型後に、アルカリ水(アルカリ性の水)又は通常水(中和状態の水)の中にたとえば10時間程度浸漬させ、固化に必要となる充分な反応水を得るようにしてもよい。このアルカリ水中又は通常水中での養生とその後の乾燥(たとえば、3日間自然放置)とを複数回繰り返し行ってもよい。なお、水中に限られず水分が過飽和状態の空気中で養生するようにしてもよい。   Further, after demolding, sufficient reaction water required for solidification may be obtained by immersing in alkaline water (alkaline water) or normal water (neutralized water) for about 10 hours, for example. This curing in alkaline water or normal water and subsequent drying (for example, natural standing for 3 days) may be repeated a plurality of times. In addition, you may make it cure in the air which is not restricted to water but a water | moisture content is supersaturated.

また、セメントと微粉体と水とを混練する際に、対セメント重量比が5〜20%の水を添加した場合に限られず、水分を排出可能な構造の脱水型枠を用いて対セメント重量比が20%以上の水を添加し、型枠から脱水された後の残留する水分量が対セメント重量比で5〜20%となるようにしてもよい。   Moreover, when kneading cement, fine powder and water, it is not limited to the case where water with a weight ratio of cement of 5 to 20% is added. Water having a ratio of 20% or more may be added so that the amount of water remaining after dewatering from the mold is 5 to 20% in terms of the weight ratio of cement.

さらに、補強のためにたとえばセルロース等の繊維体を混入させてもよい。繊維体を混入させた場合には、内部に粗粒物を含んでおらず流動性が良好であるために、圧縮成型時に圧縮方向と直交する向きに繊維体が整列されて固化することになり、低水セメント成形体の曲げ強度を増大させることができる。   Furthermore, a fibrous body such as cellulose may be mixed for reinforcement. When a fiber body is mixed, since it does not contain coarse particles and has good fluidity, the fiber body is aligned and solidified in a direction perpendicular to the compression direction during compression molding. The bending strength of the low water cement molded product can be increased.

Claims (8)

セメントと粒径1mm未満の微粉体と対セメント比5〜20%の水とを混練した後に圧縮成型することでセメント成形体を製造することを特徴とする低水セメント成形方法。   A low water cement molding method comprising producing a cement molded body by kneading cement, fine powder having a particle diameter of less than 1 mm, and water having a cement ratio of 5 to 20%, followed by compression molding. 前記微粉体として都市ごみ溶融スラグを水砕した後に篩選別したものを利用することを特徴とする請求項1に記載の低水セメント成形方法。   The low water cement molding method according to claim 1, wherein the fine powder is obtained by granulating municipal waste molten slag and then screening. 脱型後にアルカリ水中又は通常水中で養生することを特徴とする請求項1又は請求項2に記載の低水セメント成形方法。   The low water cement molding method according to claim 1 or 2, wherein the molding is performed in alkaline water or normal water after demolding. 脱型後に、アルカリ水中又は通常水中での養生と、その後の乾燥とを繰返し行うことを特徴とする請求項3に記載の低水セメント成形方法。   4. The low water cement molding method according to claim 3, wherein after demolding, curing in alkaline water or normal water and subsequent drying are repeated. 繊維体を混練することを特徴とする請求項1〜請求項4のいずれかに記載の低水セメント成形方法。   The low water cement molding method according to any one of claims 1 to 4, wherein the fiber body is kneaded. セメントと粒径1mm未満の微粉体と対セメント比5〜20%の水とを混練した後に圧縮成型することで製造したことを特徴とする低水セメント成形体。   A low water cement molded article produced by compression molding after kneading cement, fine powder having a particle size of less than 1 mm and water having a cement ratio of 5 to 20%. 前記微粉体として都市ごみ溶融スラグを水砕した後に篩選別したものを利用することを特徴とする請求項6に記載の低水セメント成形体。   The low water cement molded article according to claim 6, wherein a municipal waste molten slag which has been subjected to water granulation and then screened is used as the fine powder. 繊維体を混練したことを特徴とする請求項6又は請求項7に記載の低水セメント成形体。   The low water cement molded article according to claim 6 or 7, wherein a fibrous body is kneaded.
JP2010165713A 2010-07-23 2010-07-23 Low water cement molding and low water cement molding method Active JP5662722B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010165713A JP5662722B2 (en) 2010-07-23 2010-07-23 Low water cement molding and low water cement molding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010165713A JP5662722B2 (en) 2010-07-23 2010-07-23 Low water cement molding and low water cement molding method

Publications (2)

Publication Number Publication Date
JP2012025620A true JP2012025620A (en) 2012-02-09
JP5662722B2 JP5662722B2 (en) 2015-02-04

Family

ID=45779012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010165713A Active JP5662722B2 (en) 2010-07-23 2010-07-23 Low water cement molding and low water cement molding method

Country Status (1)

Country Link
JP (1) JP5662722B2 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5223128A (en) * 1975-08-18 1977-02-21 Shinetsu Chemical Co Method of manufacturing molded cement products
JPS53134819A (en) * 1977-04-27 1978-11-24 Ici Ltd Uniform unhardened cement natured composition and method for its production
JPS61247651A (en) * 1985-04-23 1986-11-04 電気化学工業株式会社 Manufacture of high strength cement product
JPH0671626A (en) * 1992-08-31 1994-03-15 Sekisui Chem Co Ltd Production of hardened body of water-curable inorganic composition
JPH06279084A (en) * 1992-05-09 1994-10-04 Keihan Concrete Kogyo Kk Concrete product containing aggregate prepared by crushing fused slag and its production
JPH10330146A (en) * 1997-05-29 1998-12-15 Sekisui Chem Co Ltd Production of hydraulic inorganic molded product
JP2002115204A (en) * 2000-10-06 2002-04-19 Masao Sato Manufacturing method for permeable concrete block using molten slag of general waste
JP2003267767A (en) * 2002-03-13 2003-09-25 Taiheiyo Cement Corp Instant stripping concrete product
JP2004339043A (en) * 2003-04-25 2004-12-02 Taiheiyo Cement Corp Hydraulic composition and hardened body
JP2010159378A (en) * 2009-01-09 2010-07-22 Denki Kagaku Kogyo Kk Composition and grouting method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5223128A (en) * 1975-08-18 1977-02-21 Shinetsu Chemical Co Method of manufacturing molded cement products
JPS53134819A (en) * 1977-04-27 1978-11-24 Ici Ltd Uniform unhardened cement natured composition and method for its production
JPS61247651A (en) * 1985-04-23 1986-11-04 電気化学工業株式会社 Manufacture of high strength cement product
JPH06279084A (en) * 1992-05-09 1994-10-04 Keihan Concrete Kogyo Kk Concrete product containing aggregate prepared by crushing fused slag and its production
JPH0671626A (en) * 1992-08-31 1994-03-15 Sekisui Chem Co Ltd Production of hardened body of water-curable inorganic composition
JPH10330146A (en) * 1997-05-29 1998-12-15 Sekisui Chem Co Ltd Production of hydraulic inorganic molded product
JP2002115204A (en) * 2000-10-06 2002-04-19 Masao Sato Manufacturing method for permeable concrete block using molten slag of general waste
JP2003267767A (en) * 2002-03-13 2003-09-25 Taiheiyo Cement Corp Instant stripping concrete product
JP2004339043A (en) * 2003-04-25 2004-12-02 Taiheiyo Cement Corp Hydraulic composition and hardened body
JP2010159378A (en) * 2009-01-09 2010-07-22 Denki Kagaku Kogyo Kk Composition and grouting method

Also Published As

Publication number Publication date
JP5662722B2 (en) 2015-02-04

Similar Documents

Publication Publication Date Title
JP6299711B2 (en) Rolled concrete pavement
CN101045617B (en) Magnesium waste slag building brick and producing method
CN113563001A (en) Method for preparing recycled aggregate by using iron tailing fine sand
JP2007015880A (en) Heavy weight aggregate and heavy concrete, and manufacturing method thereof
JP5662722B2 (en) Low water cement molding and low water cement molding method
JP2008094640A (en) Method of manufacturing ceramic product
JP4382937B2 (en) Method for producing coal-ash quality artificial aggregate
JP3628661B2 (en) Method for producing porous granular material using inorganic waste as raw material
CN109153611B (en) Hydrated cured body and method for producing same
JP6315063B2 (en) Method for producing hydrated solid body
JP7047810B2 (en) Manufacturing method of non-firing molded product and non-firing molded product
JPS59105882A (en) Setting agent for dust or the like
JP5483336B2 (en) Fine aggregate for mortar or concrete, and mortar and concrete manufacturing method using the same
JP5974534B2 (en) Lightweight immediate demolding block and manufacturing method thereof
JP3583323B2 (en) Blast furnace slag fine aggregate, method for producing the same, and fine aggregate for concrete or mortar
JP2004083336A (en) Fresh concrete, its producing method, and concrete formed article formed from the fresh concrete
JP2002145678A (en) Coal-ash-containing porous block and its production process
KR100321239B1 (en) The processing method of cement bricks using rock sludge
JP6786158B2 (en) Manufacturing method of coal ash granular material
JP2005281040A (en) Fiber-reinforced plastic aggregate for concrete product, method of manufacturing the same and concrete product using the same
JPH10216669A (en) Method of solidifying incineration ash of waste powder paint
JPH07237949A (en) Method for making aggregate by modification of ground stone sludge
NL2006650C2 (en) CONSTRUCTION COMPOSITION.
JP2006083062A (en) Fine aggregate and its manufacturing method
JP4340057B2 (en) Method for producing hydrothermal solidified body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130723

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140408

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141205

R150 Certificate of patent or registration of utility model

Ref document number: 5662722

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250