JP2012024855A - Surface-coated cutting tool - Google Patents

Surface-coated cutting tool Download PDF

Info

Publication number
JP2012024855A
JP2012024855A JP2010162599A JP2010162599A JP2012024855A JP 2012024855 A JP2012024855 A JP 2012024855A JP 2010162599 A JP2010162599 A JP 2010162599A JP 2010162599 A JP2010162599 A JP 2010162599A JP 2012024855 A JP2012024855 A JP 2012024855A
Authority
JP
Japan
Prior art keywords
layer
peak intensity
diffraction peak
plane
nbn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010162599A
Other languages
Japanese (ja)
Inventor
Daisuke Kazami
大介 風見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2010162599A priority Critical patent/JP2012024855A/en
Publication of JP2012024855A publication Critical patent/JP2012024855A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Drilling Tools (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a surface-coated cutting tool the hard coating layer of which exhibits excellent adhesiveness, lubricity and wear resistance under high-speed heavy cutting conditions of a soft material to be cut such as low-carbon steel and soft steel.SOLUTION: The surface-coated cutting tool has, as a hard coating layer, a layer having an alternately stacked structure formed on the surface of a tool base made of a WC-based cemented carbide alloy or TiCN-based cermet. The layer has a thin layer A and another thin layer B. The thin layer A is an (AlTi)N layer or an (AlTiM)N layer. The thin layer B has a mixed structure of NbN having a cubic structure and NbN having a hexagonal structure and has a diffraction peak intensity ratio satisfying 0.1≤Ih/Ic≤0.7, wherein Ic is the diffraction peak intensity from the (200) plane of the NbN having the cubic structure and Ih is the diffraction peak intensity from the (103) plane and the (110) plane of the NbN having the hexagonal structure, when the diffraction peak intensity of the mixed structure is inspected by X-ray diffraction.

Description

本発明は、低炭素鋼、軟鋼等の軟質被削材を、高熱発生を伴い、かつ、切刃に高負荷が作用する高送り、高切込みの高速重切削条件で加工した場合にも、硬質被覆層がすぐれた靭性と潤滑性とを有し、長期に亘ってすぐれた耐摩耗性を発揮する表面被覆切削工具(以下、被覆工具という)に関するものである。   The present invention provides a hard work even when a soft work material such as low carbon steel and mild steel is processed under high feed rate and high cut heavy cutting conditions with high heat generation and high load acting on the cutting edge. The present invention relates to a surface-coated cutting tool (hereinafter referred to as a coated tool) in which a coating layer has excellent toughness and lubricity and exhibits excellent wear resistance over a long period of time.

一般に、被覆工具には、各種の鋼や鋳鉄などの被削材の旋削加工や平削り加工にバイトの先端部に着脱自在に取り付けて用いられるスローアウエイチップ、被削材の穴あけ切削加工などに用いられるドリルやミニチュアドリル、さらに被削材の面削加工や溝加工、肩加工などに用いられるソリッドタイプのエンドミルなどがあり、またスローアウエイチップを着脱自在に取り付けてソリッドタイプのエンドミルと同様に切削加工を行うスローアウエイエンドミル工具などが知られている。   Generally, coated tools are used for throwaway inserts that are detachably attached to the tip of cutting tools for drilling and cutting of various materials such as steel and cast iron. There are drills and miniature drills used, as well as solid type end mills used for chamfering, grooving and shoulder machining of work materials, etc. A slow-away end mill tool that performs cutting is known.

具体的な被覆工具としては、例えば、炭化タングステン基(以下、WC基で示す)超硬合金または炭窒化チタン基(以下、TiCN基で示す)サーメット等で構成された工具基体の表面に硬質皮膜を蒸着形成し、被覆工具の耐摩耗性、工具寿命の改善を図ったものが一般的に知られている。
例えば、特許文献1に示すように、工具基体表面に、ZrN、HfN、NbN、TaN、MoN、WNからなる一種以上の固体潤滑膜を形成し、この固体潤滑膜と硬質皮膜との組み合わせにより、耐凝着性を高めた被覆工具が知られている。
また、特許文献2に示すように、工具基体表面に、h− [(V,Cr,Nb,Ta)(Ti,Zr,Hf,Al,Si)1−a](N,C,O,B)で表した場合、0.5≦b≦1.0でかつ六方晶構造を有する硬質被覆層を形成することにより、耐摩耗性を改善した被覆工具が知られている。
また、特許文献3に示されるように、硬質被覆層をX線回折により測定した場合、六方晶構造の窒化ニオブの(103)面からの回折ピーク強度と六方晶構造の窒化ニオブの(110)面からの回折ピーク強度の合計量「Ih」と、立方晶構造の窒化ニオブの(220)面からの回折ピーク強度「Ic」との比の値Ih/Icを2.0以下とすることにより、Ti合金の切削加工に適した被覆工具が提供されることが知られている。
As a specific coated tool, for example, a hard film is formed on the surface of a tool base made of tungsten carbide group (hereinafter referred to as WC group) cemented carbide or titanium carbonitride group (hereinafter referred to as TiCN group) cermet. Is generally known to improve wear resistance and tool life of coated tools.
For example, as shown in Patent Document 1, one or more solid lubricant films made of ZrN, HfN, NbN, TaN, MoN, and WN are formed on the surface of the tool base, and a combination of the solid lubricant film and the hard film, Coated tools with improved adhesion resistance are known.
Further, as shown in Patent Document 2, h-[(V, Cr, Nb, Ta) a (Ti, Zr, Hf, Al, Si) 1-a ] (N, C, O, B) When represented by b , a coated tool with improved wear resistance by forming a hard coating layer having a hexagonal structure with 0.5 ≦ b ≦ 1.0 is known.
Further, as shown in Patent Document 3, when the hard coating layer is measured by X-ray diffraction, the diffraction peak intensity from the (103) plane of hexagonal niobium nitride and the (110) hexagonal niobium nitride (110) By setting the value Ih / Ic of the total amount of diffraction peak intensities “Ih” from the plane to the diffraction peak intensity “Ic” from the (220) plane of niobium nitride having a cubic structure to 2.0 or less It is known that a coated tool suitable for cutting Ti alloy is provided.

特開2001−179533号公報JP 2001-179533 A 特開2006−312235号公報JP 2006-31235 A 国際公開パンフレット WO2009/035396International publication pamphlet WO2009 / 035396

近年の切削加工装置のFA化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴って切削加工は一段と高効率化する傾向にあるが、前記従来被覆工具においては、これを通常条件での切削加工に用いた場合には問題はないが、これを特に、低炭素鋼、軟鋼等の軟質被削材の、高い発熱を伴い、かつ、切刃に高負荷が作用する高送り、高切込みの高速重切削条件で用いた場合には、切削時に発生する高熱によって硬質被覆層が過熱されることにより、高温硬さの低下が生じるとともに、潤滑性が不足し、その結果、耐摩耗性の低下が避けられないことに加えて、硬質被覆層の靭性が十分でないため、比較的短時間で使用寿命に至るのが現状である。   In recent years, the use of FA for cutting devices has been remarkable. On the other hand, there has been a strong demand for labor saving and energy saving and further cost reduction for cutting, and with this, cutting tends to become more efficient. In the case of a coated tool, there is no problem when this is used for cutting under normal conditions, but this is particularly accompanied by high heat generation of a soft work material such as low carbon steel and mild steel, and a cutting edge. When used under high-feed, high-cut high-speed heavy cutting conditions in which a high load acts on the hard coating layer is overheated by the high heat generated during cutting, resulting in a decrease in high-temperature hardness and lubricity. As a result, in addition to the inevitable decrease in wear resistance, the toughness of the hard coating layer is not sufficient, so that the service life is reached in a relatively short time.

そこで、本発明者らは、前述のような観点から、高熱を発生し、かつ、切刃に対して高負荷が作用する高速重切削条件で用いた場合にも、硬質被覆層がすぐれた潤滑性、耐摩耗性および靭性を発揮する被覆工具を開発すべく、前記従来被覆工具に着目し研究を行った結果、以下の知見を得た。   In view of the above, the inventors of the present invention have excellent lubrication even when used under high-speed heavy cutting conditions in which high heat is generated and a high load acts on the cutting edge. As a result of conducting research while focusing on the conventional coated tool in order to develop a coated tool that exhibits high performance, wear resistance, and toughness, the following knowledge was obtained.

(イ)被覆工具の硬質被覆層を窒化ニオブで構成した場合、窒化ニオブからなる硬質被覆層は、高硬度および高靭性を備え、かつ、化学的安定性にも優れることが一般的に知られているが、高硬度被削材を、高熱発生を伴うとともに切刃に高負荷が作用する高速重切削条件で使用した場合には、その硬度、靭性は十分であるとはいえない。
そこで、本発明者らは、窒化ニオブが有する複数の化合物形態、複数の結晶構造について詳細に検討したところ、特定の結晶構造からなる窒化ニオブが、特定の割合で混合した混合組織からなる窒化ニオブ層は、一段と優れた高温硬さと高靭性を備え、かつ、高温条件下での高硬度被削材との潤滑性に優れることを見出したのである。
(B) When the hard coating layer of the coated tool is made of niobium nitride, it is generally known that the hard coating layer made of niobium nitride has high hardness and high toughness and is excellent in chemical stability. However, when a high-hardness work material is used under high-speed heavy cutting conditions that cause high heat generation and a high load acts on the cutting edge, the hardness and toughness cannot be said to be sufficient.
Accordingly, the present inventors have studied in detail the compound forms and crystal structures of niobium nitride. As a result, niobium nitride having a mixed structure in which niobium nitride having a specific crystal structure is mixed at a specific ratio. It has been found that the layer has excellent high-temperature hardness and high toughness, and is excellent in lubricity with a high-hardness work material under high-temperature conditions.

(ロ)即ち、窒化ニオブには、その化合物形態、結晶構造として、β−Nb2N(六方晶),γ−Nb4N3(正方晶),δ−NbN(立方晶),δ’−NbN(六方晶),ε−NbN(六方晶),η−NbN(六方晶)などがあるが、アークイオンプレーティングにより窒化ニオブを成膜するにあたり、例えば、窒素圧力を9.3Paとした条件でバイアス電圧を付加し成膜したところ、図2に示すように、バイアス電圧が0〜−60Vでは、立方晶構造の窒化ニオブ(以下、これをc−NbNで示す)が優先的に成膜されるが、バイアス電圧を高くし、−70V以上のバイアス電圧範囲で成膜したところ、六方晶構造の窒化ニオブ(以下、これをh−NbNで示す)が優先的に成膜されるようになり、硬質被覆層としては、c−NbNとh−NbNの混合組織からなる窒化ニオブが成膜された。
なお、前記成膜したc−NbNとh−NbNについての結晶構造は、例えば、Kα照射によるX線回折を行い、その回折ピーク強度位置によって確認することができる。
(B) That is, niobium nitride has β-Nb2N (hexagonal), γ-Nb4N3 (tetragonal), δ-NbN (cubic), and δ'-NbN (hexagonal) as its compound form and crystal structure. , Ε-NbN (hexagonal crystal), η-NbN (hexagonal crystal), etc., but when forming a niobium nitride film by arc ion plating, for example, a bias voltage is applied under the condition of a nitrogen pressure of 9.3 Pa. As shown in FIG. 2, when the bias voltage is 0 to −60 V, cubic niobium nitride (hereinafter referred to as c-NbN) is preferentially deposited. When the voltage was increased and the film was formed in a bias voltage range of −70 V or higher, niobium nitride having a hexagonal crystal structure (hereinafter referred to as h-NbN) was preferentially formed, and the hard coating layer As c-NbN and h-N Niobium nitride having a mixed structure of bN was formed.
The crystal structure of the deposited c-NbN and h-NbN can be confirmed by, for example, X-ray diffraction by Kα irradiation and the diffraction peak intensity position.

(ハ)さらに、本発明者らは、バイアス電圧を適正範囲に維持してアークイオンプレーティングで窒化ニオブ層を成膜した場合に、硬質被覆層は所定比率のc−NbNとh−NbNが存在する混合組織となり、そして、所定比率の混合組織からなる窒化ニオブによって硬質被覆層を構成した場合には、高熱発生を伴い、かつ、切刃に対して高負荷が作用する高送り、高切込みの高速重切削条件において、硬質被覆層がすぐれた潤滑性と耐摩耗性を発揮することを見出したのである。 (C) Furthermore, when the present inventors have formed a niobium nitride layer by arc ion plating while maintaining the bias voltage in an appropriate range, the hard coating layer has a predetermined ratio of c-NbN and h-NbN. When the hard coating layer is made of niobium nitride composed of a mixed structure with a predetermined ratio, it is accompanied by high heat generation and high feed and high cutting with high load acting on the cutting blade. It was found that the hard coating layer exhibits excellent lubricity and wear resistance under the high-speed heavy cutting conditions.

(ニ)そして、本発明者らは、工具基体の表面に、硬質膜である(Al,Ti)N層あるいは(Al,Ti,M)N層を薄層Aとして2〜100nmの平均層厚で形成し、これの上に、硬質潤滑膜である窒化ニオブ層を薄層Bとして形成し、さらにその上に薄層A、薄層B・・・のようにナノオーダーで交互積層すると、硬質膜である(Al,Ti)N層あるいは(Al,Ti,M)N層は、すぐれた高温硬さ、高温強度、耐熱性を示し、また、硬質潤滑膜であるNbN層はすぐれた高硬度および高靭性を示すが、特に、硬質潤滑膜のNbN層中に含有されるNb成分によって、硬質膜の皮膜靭性が向上することから、高熱発生を伴う切削加工においても、NbN層のすぐれた高硬度および高靭性は維持され、したがって、軟質被削材の高速高送り切削加工において、切刃部が高温になったとしても被削材との潤滑性にすぐれ、その結果、切刃部におけるチッピング(微少欠け)の発生が抑制され、長期に亘ってすぐれた耐摩耗性が発揮されるという新規な知見を得て、かかる知見に基づき、本発明を完成するに至ったものである。 (D) And the present inventors have an average layer thickness of 2 to 100 nm on the surface of the tool base, with the hard layer (Al, Ti) N layer or (Al, Ti, M) N layer as the thin layer A. When a niobium nitride layer, which is a hard lubricating film, is formed as a thin layer B on top of this, and further laminated on the nano-order like a thin layer A, a thin layer B. The (Al, Ti) N layer or (Al, Ti, M) N layer that is a film exhibits excellent high-temperature hardness, high-temperature strength, and heat resistance, and the NbN layer that is a hard lubricating film has excellent high hardness. In particular, the Nb component contained in the NbN layer of the hard lubricating film improves the film toughness of the hard film, so that the NbN layer has an excellent high toughness even in cutting with high heat generation. Hardness and high toughness are maintained, thus the high speed of soft work material In feed cutting, even if the cutting edge becomes hot, it has excellent lubricity with the work material. As a result, the occurrence of chipping (small chipping) in the cutting edge is suppressed, and excellent durability over a long period of time. The present inventors have obtained new knowledge that wearability is exhibited, and have completed the present invention based on such knowledge.

本発明は、前記知見に基づいてなされたものであって、
「(1)炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、硬質被覆層が蒸着形成された表面被覆切削工具において、
前記硬質被覆層が、2〜100nmの層厚の薄層Aと2〜100nmの層厚の薄層Bとが交互に積層された0.5〜8μmの交互積層構造として構成され、かつ、
(a)前記薄層Aは、
組成式:(Al1−αTiα)N(ここで、αはTiの含有割合を示し、原子比で、0.25≦α≦0.55である)を満足するAlとTiの複合窒化物層からなり、
(b)前記薄層Bは、
立方晶構造の窒化ニオブと六方晶構造の窒化ニオブの混合組織として構成され該混合組織についてX線回折による回折ピーク強度を測定したとき、
立方晶構造の窒化ニオブの(200)面からの回折ピーク強度をIc、
六方晶構造の窒化ニオブの(103)面と(110)面からの回折ピーク強度をIh、
とした場合、
0.1≦Ih/Ic≦0.7
を満足する回折ピーク強度比を有し、
(c)前記工具基体直上は、前記薄層Aであることを特徴とする表面被覆切削工具。
(2)炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に硬質被覆層を形成してなる表面被覆切削工具において、
前記硬質被覆層が、2〜100nmの層厚の薄層Aと2〜100nmの層厚の薄層Bとが交互に積層された0.5〜8μmの交互積層構造として構成され、かつ、
前記硬質被覆層が、
(a)前記薄層Aは、
組成式:(Al1−α−βTiαβ)N(ここで、Mは、Tiを除く周期律表4a,5a,6a族の元素、Si、B、Yのうちから選ばれた1種又は2種以上の添加成分を示し、また、αはTiの含有割合、βはMの含有割合をそれぞれ示し、原子比で、0.25≦α≦0.55、0.01≦β≦0.25である)を満足するAlとTiの複合窒化物層からなり、
(b)前記薄層Bは、
立方晶構造の窒化ニオブと六方晶構造の窒化ニオブの混合組織として構成され該混合組織についてX線回折による回折ピーク強度を測定したとき、
立方晶構造の窒化ニオブの(200)面からの回折ピーク強度をIc、
六方晶構造の窒化ニオブの(103)面と(110)面からの回折ピーク強度をIh、
とした場合、
0.1≦Ih/Ic≦0.7
を満足する回折ピーク強度比を有し、
(c)前記工具基体直上は、前記薄層Aであることを特徴とする表面被覆切削工具。」
に特徴を有するものである。
The present invention has been made based on the above findings,
“(1) In a surface-coated cutting tool in which a hard coating layer is deposited on the surface of a tool base composed of a tungsten carbide-based cemented carbide or a titanium carbonitride-based cermet,
The hard coating layer is configured as an alternating laminated structure of 0.5 to 8 μm in which thin layers A having a thickness of 2 to 100 nm and thin layers B having a thickness of 2 to 100 nm are alternately laminated, and
(A) The thin layer A is
Composite nitriding of Al and Ti satisfying the composition formula: (Al 1-α Ti α ) N (where α is the content ratio of Ti and the atomic ratio is 0.25 ≦ α ≦ 0.55) Consists of layers
(B) The thin layer B is
Constructed as a mixed structure of cubic structure niobium nitride and hexagonal structure niobium nitride, when the diffraction peak intensity by X-ray diffraction was measured for the mixed structure,
The diffraction peak intensity from the (200) plane of the cubic niobium nitride is Ic,
The diffraction peak intensity from the (103) plane and the (110) plane of hexagonal niobium nitride is Ih,
If
0.1 ≦ Ih / Ic ≦ 0.7
Having a diffraction peak intensity ratio satisfying
(C) The surface-coated cutting tool, wherein the thin layer A is just above the tool base.
(2) In a surface-coated cutting tool formed by forming a hard coating layer on the surface of a tool base composed of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet,
The hard coating layer is configured as an alternating laminated structure of 0.5 to 8 μm in which thin layers A having a thickness of 2 to 100 nm and thin layers B having a thickness of 2 to 100 nm are alternately laminated, and
The hard coating layer is
(A) The thin layer A is
Composition formula: (Al 1-α-β Ti α M β ) N (where M is one selected from elements of groups 4a, 5a, and 6a of the periodic table excluding Ti, Si, B, and Y) Species or two or more additional components, α represents the Ti content, β represents the M content, and atomic ratios of 0.25 ≦ α ≦ 0.55 and 0.01 ≦ β ≦ A composite nitride layer of Al and Ti satisfying
(B) The thin layer B is
Constructed as a mixed structure of cubic structure niobium nitride and hexagonal structure niobium nitride, when the diffraction peak intensity by X-ray diffraction was measured for the mixed structure,
The diffraction peak intensity from the (200) plane of the cubic niobium nitride is Ic,
The diffraction peak intensity from the (103) plane and the (110) plane of hexagonal niobium nitride is Ih,
If
0.1 ≦ Ih / Ic ≦ 0.7
Having a diffraction peak intensity ratio satisfying
(C) The surface-coated cutting tool, wherein the thin layer A is just above the tool base. "
It has the characteristics.

つぎに、本発明の被覆工具の硬質被覆層について説明する。   Next, the hard coating layer of the coated tool of the present invention will be described.

(a)薄層Aの組成
薄層Aを構成する(Al,Ti,M)N層の構成成分であるAl成分には硬質被覆層における高温硬さを向上させ、同Ti成分には高温強度を向上させる作用があり、さらに、M成分のうちの、Tiを除く周期律表4a,5a,6a族の元素、Si、Bには硬質被覆層の耐摩耗性を向上させる作用があり、また、Yには硬質被覆層の高温耐酸化性を向上させる作用があるが、Tiの割合を示すα値がAlとの合量あるいはAlとMの合量に占める割合(原子比、以下同じ)で0.25未満になると、所定の高温硬さを確保することができず、これが耐摩耗性低下の原因となり、一方、Tiの割合を示すα値が同0.55を越えると、相対的にAlの含有割合が減少し、高速高送り切削加工で必要とされる高温硬さを確保することができず、耐摩耗性が低下し、さらに、M成分の含有割合を示すβ値がAlとの合量に占める割合(原子比、以下同じ)で0.01未満では、M成分を含有させたことによる耐摩耗性、高温耐酸化性等の特性向上が期待できず、一方、同β値が0.25を超えると、高温強度に低下傾向が現れるようになることから、α値を0.25〜0.55、β値を0.01〜0.25と定めた。
(A) Composition of thin layer A The Al component, which is a component of the (Al, Ti, M) N layer constituting the thin layer A, improves the high temperature hardness of the hard coating layer, and the Ti component has a high temperature strength. In addition, among the M components, the elements of the periodic table 4a, 5a, and 6a group except Ti, Si and B, have the effect of improving the wear resistance of the hard coating layer. , Y has the effect of improving the high temperature oxidation resistance of the hard coating layer, but the α value indicating the proportion of Ti accounts for the total amount of Al or the total amount of Al and M (atomic ratio, the same applies hereinafter). If it is less than 0.25, the predetermined high-temperature hardness cannot be ensured, which causes a decrease in wear resistance. On the other hand, if the α value indicating the proportion of Ti exceeds 0.55, In addition, the content ratio of Al decreases, ensuring the high temperature hardness required for high-speed, high-feed cutting. In addition, the wear resistance decreases, and the β value indicating the content ratio of the M component is less than 0.01 in terms of the total amount with Al (atomic ratio, the same shall apply hereinafter). The improvement in properties such as wear resistance and high-temperature oxidation resistance due to the treatment cannot be expected. On the other hand, if the β value exceeds 0.25, the high temperature strength tends to decrease. 0.25 to 0.55 and β value were determined to be 0.01 to 0.25.

このような硬質被覆層の薄層Aは、例えば、図1に概略説明図で示される物理蒸着装置の1種であるアークイオンプレーティング装置に基体を装入し、ヒーターで装置内を、例えば、500℃の温度に加熱した状態で、装置内に所定組成のAl−Ti合金あるいはAl−Ti−M合金からなるカソード電極(蒸発源)を配置し、アノード電極とカソード電極(蒸発源)との間に、例えば、電流:90Aの条件でアーク放電を発生させ、同時に装置内に反応ガスとして窒素ガスを導入して、例えば、2Paの反応雰囲気とし、一方、前記基体には、例えば、−100Vのバイアス電圧を印加した条件で蒸着することに形成することができる。
(b)薄層Bの組成
その後、c−NbN(立方晶構造の窒化ニオブ)とh−NbN(六方晶構造の窒化ニオブ)の混合組織からなる硬質潤滑膜を構成するが、このような混合組織からなる硬質潤滑膜は、例えば、以下の条件のアークイオンプレーティングによって形成することができる。
The thin layer A of such a hard coating layer is, for example, a base is placed in an arc ion plating apparatus which is one type of physical vapor deposition apparatus schematically shown in FIG. A cathode electrode (evaporation source) made of an Al—Ti alloy or an Al—Ti—M alloy having a predetermined composition is placed in the apparatus while being heated to a temperature of 500 ° C., and an anode electrode and a cathode electrode (evaporation source) In the meantime, for example, arc discharge is generated under the condition of current: 90 A, and simultaneously nitrogen gas is introduced into the apparatus as a reaction gas to form a reaction atmosphere of 2 Pa, for example. It can form by vapor-depositing on the conditions which applied the bias voltage of 100V.
(B) Composition of thin layer B Thereafter, a hard lubricating film composed of a mixed structure of c-NbN (cubic niobium nitride) and h-NbN (hexagonal niobium nitride) is formed. The hard lubricating film made of a structure can be formed by, for example, arc ion plating under the following conditions.

成膜条件:
カソード電極: 金属Nb
反応ガス: N
反応ガス圧力: 1.0〜30Pa、
バイアス電圧: −20〜−60V、
そして、蒸着形成された前記c−NbNとh−NbNの混合組織からなる窒化ニオブ層について、Kα照射によるX線回折を行い、c−NbNの(200)面からの回折ピーク強度をIc、また、h−NbNの(103)面と(110)面からの回折ピーク強度をIhとして、回折ピーク強度比Ih/Icの値を求めると、Ih/Icは0.1〜0.7となる。
図2から明らかなように、この回折ピーク強度Ic,Ihの値は、前記アークプレーティング法における成膜条件の内のバイアス電圧によって変化し、その結果、回折ピーク強度比Ih/Icの値(即ち、c−NbNとh−NbNとの混合比率)も、前記アークプレーティング法におけるバイアス電圧によって大きく影響される。
そして、バイアス電圧が−20V未満の場合には、c−NbNの形成割合が高くh−NbNの形成が少ないため、回折ピーク強度比Ih/Ic<0.1となるが、c−NbNの混合比率が増加すると硬質被覆層の硬さを低下させ、耐摩耗性が劣化傾向を示すようになる。
一方、バイアス電圧が−60Vを超えると、優先的にh−NbNが形成され、c−NbNの形成割合が低下するため、回折ピーク強度比が0.7<Ih/Icとなるが、h−NbNの混合比率の増加によって硬質被覆層の硬さ、高硬度被削材に対する潤滑性は大となるものの、半面、硬質被覆層の靭性の低下が生じるため、重切削加工においてチッピングが発生しやすくなる。
したがって、本発明では、c−NbNとh−NbNとの混合比率を表す回折ピーク強度比Ih/Icの値を0.1〜0.7と定めた。
Deposition conditions:
Cathode electrode: Metal Nb
Reaction gas: N 2 ,
Reaction gas pressure: 1.0-30 Pa,
Bias voltage: -20 to -60V
Then, the deposited niobium nitride layer composed of the mixed structure of c-NbN and h-NbN is subjected to X-ray diffraction by Kα irradiation, and the diffraction peak intensity from the (200) plane of c-NbN is Ic, When the diffraction peak intensity ratio from the (103) plane and the (110) plane of h-NbN is Ih and the value of the diffraction peak intensity ratio Ih / Ic is determined, Ih / Ic is 0.1 to 0.7.
As is apparent from FIG. 2, the values of the diffraction peak intensities Ic and Ih vary depending on the bias voltage among the film forming conditions in the arc plating method. As a result, the value of the diffraction peak intensity ratio Ih / Ic ( That is, the mixing ratio of c-NbN and h-NbN is also greatly influenced by the bias voltage in the arc plating method.
When the bias voltage is less than −20 V, the formation ratio of c-NbN is high and the formation of h-NbN is small, so that the diffraction peak intensity ratio Ih / Ic <0.1. When the ratio increases, the hardness of the hard coating layer decreases, and the wear resistance tends to deteriorate.
On the other hand, when the bias voltage exceeds −60 V, h-NbN is preferentially formed and the formation ratio of c-NbN is reduced, so that the diffraction peak intensity ratio becomes 0.7 <Ih / Ic. Although increasing the NbN mixing ratio increases the hardness of the hard coating layer and the lubricity of high-hardness work materials, on the other hand, the toughness of the hard coating layer decreases, so chipping is likely to occur in heavy cutting. Become.
Therefore, in the present invention, the value of the diffraction peak intensity ratio Ih / Ic representing the mixing ratio of c-NbN and h-NbN is set to 0.1 to 0.7.

なお、本発明でいう「h−NbNの(103)面と(110)面からの回折ピーク強度Ih」は、図2からも分かるように、2θ≒61.9°に出現する(103)面からのX線回折強度と、2θ≒62.6°に出現する(110)面からのX線回折強度との合計に相当する値である。   Note that the “diffraction peak intensity Ih from the (103) plane and the (110) plane of h-NbN” in the present invention appears at 2θ≈61.9 ° (103) plane as can be seen from FIG. And the X-ray diffraction intensity from the (110) plane appearing at 2θ≈62.6 °.

本発明では、回折ピーク強度比Ih/Icの値を0.1〜0.7の範囲に維持することによって、低炭素鋼、軟鋼等の軟質被削材を、高熱発生を伴い、かつ、切刃に対して高負荷が作用する高送り、高切込みの高速重切削条件において切削加工する場合でも、硬質被覆層がすぐれた潤滑性と耐摩耗性を発揮することによって、長期の使用に亘ってすぐれた切削性能を維持することができる。   In the present invention, by maintaining the value of the diffraction peak intensity ratio Ih / Ic in the range of 0.1 to 0.7, soft work materials such as low carbon steel and mild steel are accompanied by high heat generation and are cut. Even when cutting under high-feed, high-cut, high-speed heavy cutting conditions where a high load is applied to the blade, the hard coating layer exhibits excellent lubricity and wear resistance, so that it can be used for a long time. Excellent cutting performance can be maintained.

(c)薄層Aおよび薄層Bの層厚
薄層Aと薄層Bとを交互に積層して構成した複層領域では、それぞれの層が隣接して組成の異なる層を形成することにより、それぞれの層の粒子の成長の粗大化が防止され、粒子の微細化が図られ、膜強度が向上するとともに、この積層構造によってクラックの伝播・進展が防止されることで耐欠損性、耐チッピング性が向上するが、前記薄層Aおよび薄層Bのそれぞれの層厚が2nm未満では、各薄層を所定組成のものとして明確に形成することが困難であるばかりか、各薄層の有する前記のすぐれた特性を発揮することができず、一方、それぞれの層厚が100nmを超えると、粒子の粗大化による膜強度の低下により、耐欠損性、耐チッピング性が低下することから、薄層A、薄層Bのそれぞれの層厚を、2〜100nmと定めた。
また、薄層Aと薄層Bとを交互に積層した複層領域は、その領域厚みが1μm未満では、薄層Aの備える高硬度を充分発揮して耐摩耗性の向上を図ることができず、一方、その領域厚みが8μmを超えると、チッピング、欠損を発生しやすくなるので、薄層Aと薄層Bとを交互に積層した複層領域の領域厚みは、0.5〜8μmであることが望ましい。
(C) Layer thickness of thin layer A and thin layer B In a multilayer region formed by alternately laminating thin layer A and thin layer B, each layer is adjacent to each other to form layers having different compositions. The grain growth of each layer is prevented from being coarsened, the particles are made finer, the film strength is improved, and the propagation and progress of cracks are prevented by this laminated structure, thereby preventing fracture resistance and resistance. Although the chipping property is improved, if the thickness of each of the thin layer A and the thin layer B is less than 2 nm, it is difficult to clearly form each thin layer as having a predetermined composition. On the other hand, when the respective layer thicknesses exceed 100 nm, the chipping resistance and chipping resistance decrease due to the decrease in film strength due to the coarsening of the particles. Each layer thickness of thin layer A and thin layer B Was determined to be 2 to 100 nm.
In addition, the multi-layer region in which the thin layers A and B are alternately laminated can exhibit the high hardness provided by the thin layer A and improve the wear resistance when the region thickness is less than 1 μm. On the other hand, if the area thickness exceeds 8 μm, chipping and defects are likely to occur. Therefore, the area thickness of the multilayer area in which the thin layers A and B are alternately laminated is 0.5 to 8 μm. It is desirable to be.

本発明の被覆工具は、硬質被覆層を、(Al,Ti)N層あるいは(Al,Ti,M)層からなる薄層Aと、立方晶構造の窒化ニオブ(c−NbN)と六方晶構造の窒化ニオブ(h−NbN)の混合組織を有し、かつ、X線回折により該混合組織について回折ピーク強度を測定したとき、立方晶構造の窒化ニオブ(c−NbN)の(200)面からの回折ピーク強度Icと、六方晶構造の窒化ニオブ(h−NbN)の(103)面と(110)面からの回折ピーク強度Ihとの回折ピーク強度比Ih/Icが、0.1〜0.7となるような薄層Bとが交互に積層された交互積層構造として構成したことにより、低炭素鋼、軟鋼等の軟質被削材を、高熱発生を伴い、かつ、切刃に対して高負荷が作用する高送り、高切込みの高速重切削条件において用いた場合でも、硬質被覆層がすぐれた靭性と潤滑性と耐摩耗性を発揮することによって、長期の使用に亘ってすぐれた切削性能を維持するものである。   In the coated tool of the present invention, the hard coating layer includes a thin layer A composed of an (Al, Ti) N layer or (Al, Ti, M) layer, niobium nitride having a cubic structure (c-NbN), and a hexagonal structure. When the diffraction peak intensity of the mixed structure of niobium nitride (h-NbN) was measured by X-ray diffraction, the (200) plane of niobium nitride (c-NbN) having a cubic structure was measured. The diffraction peak intensity ratio Ih / Ic between the diffraction peak intensity Ic of Nb and the diffraction peak intensity Ih from the (103) plane and (110) plane of niobium nitride (h-NbN) having a hexagonal structure is 0.1-0. .7 is formed as an alternate laminated structure in which thin layers B are alternately laminated, so that a soft work material such as low carbon steel and mild steel is accompanied by high heat generation and with respect to the cutting edge. For high feed, high depth and high speed heavy cutting conditions where high loads are applied. Even with Te, by exerting a hard coating layer excellent toughness and lubricity and wear resistance, it is to maintain a good cutting performance over a long period of use.

被覆工具を構成する硬質被覆層を形成するのに用いたアークイオンプレーティング装置の概略正面図である。It is a schematic front view of the arc ion plating apparatus used for forming the hard coating layer which comprises a coating tool. アークイオンプレーティングにおいて、バイアス電圧とX線回折ピーク強度の関係を示す。In arc ion plating, the relationship between bias voltage and X-ray diffraction peak intensity is shown. 本発明の被覆工具の硬質被覆層の断面模式図である。It is a cross-sectional schematic diagram of the hard coating layer of the coated tool of this invention.

つぎに、本発明の被覆工具を実施例により具体的に説明する。   Next, the coated tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPa の圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったWC基超硬合金製の工具基体A1〜A10を形成した。 WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder, and Co powder all having an average particle diameter of 1 to 3 μm are prepared as raw material powders. These raw material powders are blended in the composition shown in Table 1, wet mixed by a ball mill for 72 hours, dried, and then pressed into a green compact at a pressure of 100 MPa. Medium, sintered at 1400 ° C for 1 hour, after sintering, WC-based carbide with honing of R: 0.03 on the cutting edge and chip shape of ISO standard CNMG120408 Alloy tool bases A1 to A10 were formed.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比で、TiC/TiN=50/50)粉末、MoC粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を2kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったTiCN基サーメット製の工具基体B1〜B6を形成した。 In addition, as raw material powders, TiCN (mass ratio, TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC, all having an average particle diameter of 0.5 to 2 μm. Prepare powder, Co powder, and Ni powder, mix these raw material powders into the composition shown in Table 2, wet mix for 24 hours with a ball mill, dry, and press-mold into green compact at 100 MPa pressure The green compact was sintered in a nitrogen atmosphere of 2 kPa at a temperature of 1500 ° C. for 1 hour. After sintering, the cutting edge portion was subjected to a honing process of R: 0.03 to meet ISO standards / Tool bases B1 to B6 made of TiCN base cermet having a chip shape of CNMG120408 were formed.

(a)ついで、前記工具基体A−1〜A−10およびB−1〜B−6のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図1に示されるアークイオンプレーティング装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部にそって装着し、前記回転テーブルを挟んで相対向する両側にカソード電極(蒸発源)を配置し、その一方には、カソード電極(蒸発源)として薄層B形成用の金属Nbを配置し、対向する他方側のカソード電極(蒸発源)として、表3に示される薄層Aの目標組成に対応した成分組成をもった薄層A形成用のAl−Ti合金あるいはAl−Ti−M合金を前記回転テーブルを挟んで配置する。
なお、金属Nbからなるカソード電極(蒸発源)は薄層Bの蒸着形成に用い、Al−Ti合金あるいはAl−Ti−M合金からなるカソード電極(蒸発源)は薄層Aの蒸着形成および工具基体のボンバード洗浄用に用いる。
(b)まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記回転テーブル上で自転しながら回転する工具基体に−1000Vの直流バイアス電圧を印加し、例えば、Al−Ti合金カソード電極とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって工具基体表面をボンバード洗浄する。
(c)ついで、装置内に反応ガスとして窒素ガスを導入して4Paの反応雰囲気とすると共に、前記回転テーブル上で、6〜48rpmの速度で自転しながら、同時に、回転テーブルの回転中心軸の周りに1〜8rpmの速度で回転(公転)する工具基体に−100Vの直流バイアス電圧を印加し、かつカソード電極のAl−Ti合金あるいはAl−Ti−M合金のいずれかとアノード電極との間に120Aの電流を流してアーク放電を発生させ、前記工具基体の表面に、表3に示される目標組成、一層目標層厚の硬質膜としての(Al,Ti)N層あるいは(Al,Ti,M)N層を蒸着形成した後、前記カソード電極(蒸発源)とアノード電極との間のアーク放電を停止する。
(d)ついで、装置内に反応ガスとして、窒素ガスを導入して表3に示される反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する工具基体に表3に示される直流バイアス電圧を印加して、カソード電極の金属Nbとアノード電極との間に100Aの電流を流してアーク放電を発生させ、表3に示される一層目標層厚のc−NbN(立方晶構造の窒化ニオブ)とh−NbN(六方晶構造の窒化ニオブ)の混合組織からなる硬質潤滑膜を蒸着形成する。
(e)ついで、前記(c)、(d)を、目標とする硬質被覆層の全体膜厚になるまで交互に繰り返すことにより、図3に示される硬質潤滑膜:c−NbN(立方晶構造の窒化ニオブ)とh−NbN(六方晶構造の窒化ニオブ)の混合組織からなるNbN層(薄層B)と硬質膜:(Al,Ti)N層あるいは(Al,Ti,M)N層(薄層A)との交互積層構造からなる硬質被覆層を有する、ISO・CNMG120408に規定するスローアウエイチップ形状の本発明被覆工具1〜16(以下、本発明チップ1〜16という)をそれぞれ製造した。
(A) Next, each of the tool bases A-1 to A-10 and B-1 to B-6 is ultrasonically cleaned in acetone and dried, and then the arc ion plating apparatus shown in FIG. It is mounted along the outer periphery at a position that is a predetermined distance in the radial direction from the central axis on the inner rotary table, and cathode electrodes (evaporation sources) are arranged on both sides facing each other across the rotary table. The metal composition Nb for forming the thin layer B is disposed as the cathode electrode (evaporation source), and the component composition corresponding to the target composition of the thin layer A shown in Table 3 is provided as the opposite cathode electrode (evaporation source). An Al—Ti alloy or an Al—Ti—M alloy for forming the thin layer A having the structure is disposed with the rotary table interposed therebetween.
The cathode electrode (evaporation source) made of metal Nb is used for vapor deposition of thin layer B, and the cathode electrode (evaporation source) made of Al-Ti alloy or Al-Ti-M alloy is used for vapor deposition formation of thin layer A and a tool. Used for bombard cleaning of substrates.
(B) First, the inside of the apparatus is heated to 500 ° C. with a heater while the inside of the apparatus is evacuated and kept at a vacuum of 0.1 Pa or less, and then the tool base that rotates while rotating on the rotary table is −1000 V. A DC bias voltage is applied, for example, a current of 100 A is passed between an Al—Ti alloy cathode electrode and an anode electrode to generate an arc discharge, and the tool base surface is bombarded.
(C) Next, nitrogen gas is introduced as a reaction gas into the apparatus to form a reaction atmosphere of 4 Pa. While rotating on the rotary table at a speed of 6 to 48 rpm, the rotation center axis of the rotary table is simultaneously rotated. A DC bias voltage of −100 V is applied to a tool base that rotates (revolves) around at a speed of 1 to 8 rpm, and between the cathode electrode Al—Ti alloy or Al—Ti—M alloy and the anode electrode An arc discharge is generated by supplying a current of 120 A, and an (Al, Ti) N layer or (Al, Ti, M) as a hard film having a target composition and a target layer thickness shown in Table 3 is formed on the surface of the tool base. ) After the N layer is deposited, arc discharge between the cathode electrode (evaporation source) and the anode electrode is stopped.
(D) Next, nitrogen gas is introduced as a reaction gas into the apparatus to form a reaction atmosphere shown in Table 3, and a DC bias voltage shown in Table 3 is applied to the tool base that rotates while rotating on the rotary table. Is applied to cause a current of 100 A to flow between the metal Nb of the cathode electrode and the anode electrode to generate an arc discharge, and c-NbN (cubic structure niobium nitride) having a target layer thickness shown in Table 3 And a hard lubricating film having a mixed structure of h-NbN (niobium nitride having a hexagonal crystal structure) is formed by vapor deposition.
(E) Next, the above-mentioned (c) and (d) are alternately repeated until the target total thickness of the hard coating layer is reached, whereby the hard lubricating film shown in FIG. 3: c-NbN (cubic crystal structure) NbN layer (thin layer B) and hard film consisting of a mixed structure of h-NbN (hexagonal niobium nitride) and hard film: (Al, Ti) N layer or (Al, Ti, M) N layer ( The present coated tools 1 to 16 (hereinafter referred to as the present chips 1 to 16) of the throwaway tip shape defined in ISO · CNMG120408, each having a hard coating layer composed of an alternating laminated structure with the thin layer A), were produced. .

比較の目的で、前記工具基体A1〜A10およびB1〜B6のそれぞれを、本発明と同様な方法でISO・CNMG120408に規定するスローアウエイチップ形状の比較例被覆工具1〜16(以下、比較例チップ1〜16という)をそれぞれ製造した。   For comparison purposes, each of the tool bases A1 to A10 and B1 to B6 is compared with a comparative example coated tool 1 to 16 (hereinafter referred to as a comparative example chip) having a throwaway tip shape defined in ISO / CNMG120408 in the same manner as the present invention. 1-16).

つぎに、本発明チップ1〜16および比較例チップ1〜16のそれぞれの硬質被覆層について、Kα照射によるX線回折を行い、c−NbNの(200)面からの回折ピーク強度Ic、また、h−NbNの(103)面からの回折ピーク強度Ihを求め、回折ピーク強度比Ih/Icの値を算出した。
この算出値を表3、表4に示す。
なお、図2には、本発明チップ16(バイアス電圧−50V)、比較例チップ10(バイアス電圧−100V)、比較例チップ14(バイアス電圧−200V)、比較例チップ4(バイアス電圧−300V)について測定したX線回折チャートを示す。
表3、表4から、本発明チップ1〜16の回折ピーク強度比Ih/Icの値は、いずれも0.1〜0.7の範囲内であるのに対して、比較例チップ1〜2、11〜12の回折ピーク強度比Ih/Icの値は、0.1〜0.7の範囲内であり、比較例チップ3〜10、13〜16の回折ピーク強度比Ih/Icの値は、0.1〜0.7の範囲を外れたものであることが分かる。なお、比較例チップ1〜2、11〜12は、薄層Aを形成せず、c−NbN(立方晶構造の窒化ニオブ)とh−NbN(六方晶構造の窒化ニオブ)の混合組織からなるNbN層の単層を表4に示される目標膜厚で形成したものである。
Next, X-ray diffraction by Kα irradiation is performed on each of the hard coating layers of the chips 1 to 16 of the present invention and the comparative chips 1 to 16, and the diffraction peak intensity Ic from the (200) plane of c-NbN, The diffraction peak intensity Ih from the (103) plane of h-NbN was determined, and the value of the diffraction peak intensity ratio Ih / Ic was calculated.
The calculated values are shown in Tables 3 and 4.
FIG. 2 shows the chip 16 (bias voltage −50 V), the comparative example chip 10 (bias voltage −100 V), the comparative example chip 14 (bias voltage −200 V), and the comparative example chip 4 (bias voltage −300 V). The X-ray diffraction chart measured about is shown.
From Tables 3 and 4, the values of the diffraction peak intensity ratios Ih / Ic of the inventive chips 1 to 16 are all in the range of 0.1 to 0.7, while the comparative chips 1 to 2 are used. The values of the diffraction peak intensity ratios Ih / Ic of 11 to 12 are in the range of 0.1 to 0.7, and the values of the diffraction peak intensity ratios Ih / Ic of the comparative example chips 3 to 10 and 13 to 16 are It can be seen that it is out of the range of 0.1 to 0.7. The comparative chips 1 to 2 and 11 to 12 do not form the thin layer A, and are composed of a mixed structure of c-NbN (cubic niobium nitride) and h-NbN (hexagonal niobium nitride). A single NbN layer is formed with the target film thickness shown in Table 4.

つぎに、前記の各種の被覆チップを、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明チップ1〜16および比較例チップ1〜16について、
被削材:JIS・S10Cの丸棒、
切削速度: 270m/min.、
切り込み: 2.0mm、
送り: 0.4mm/rev.、
切削時間: 9分、
の条件(切削条件A)での炭素鋼の乾式高速高送り切削加工試験(通常の切削速度および送りは、それぞれ、200m/min.、0.25mm/rev.)、
被削材:JIS・SS400の丸棒、
切削速度: 280m/min.、
切り込み: 3.5mm、
送り: 0.25mm/rev.、
切削時間: 8分、
の条件(切削条件B)での軟鋼の乾式高速高切込み切削加工試験(通常の切削速度および切込みは、それぞれ、200m/min.、2.0mm)、
被削材:JIS・SCM415の丸棒、
切削速度: 270m/min.、
切り込み: 3.5mm、
送り: 0.45mm/rev.、
切削時間: 6分、
の条件(切削条件B)での合金鋼の乾式高速高送り・高切込み切削加工試験(通常の切削速度、送りおよび切込みは、それぞれ、190m/min.、0.3mm/rev.、2.0mm)、
を行い、いずれの切削加工試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表5に示した。
Next, for the present invention chips 1 to 16 and the comparative example chips 1 to 16, the above various coated chips are all screwed to the tip of the tool steel tool with a fixing jig.
Work material: JIS / S10C round bar,
Cutting speed: 270 m / min. ,
Cutting depth: 2.0mm,
Feed: 0.4 mm / rev. ,
Cutting time: 9 minutes
Of carbon steel under the above conditions (cutting conditions A) (normal cutting speed and feed are 200 m / min. And 0.25 mm / rev., Respectively),
Work material: JIS / SS400 round bar,
Cutting speed: 280 m / min. ,
Cutting depth: 3.5mm,
Feed: 0.25 mm / rev. ,
Cutting time: 8 minutes,
Dry high-speed high-cut cutting test of mild steel under the following conditions (cutting condition B) (normal cutting speed and cutting are 200 m / min. And 2.0 mm, respectively),
Work material: JIS / SCM415 round bar,
Cutting speed: 270 m / min. ,
Cutting depth: 3.5mm,
Feed: 0.45 mm / rev. ,
Cutting time: 6 minutes,
(High cutting speed, feed and cutting are 190 m / min., 0.3 mm / rev., 2.0 mm, respectively) ),
In each cutting test, the flank wear width of the cutting edge was measured. The measurement results are shown in Table 5.

Figure 2012024855
Figure 2012024855

Figure 2012024855
Figure 2012024855

Figure 2012024855
Figure 2012024855

Figure 2012024855
Figure 2012024855

Figure 2012024855
Figure 2012024855

表3〜5に示される結果から、本発明の被覆工具は、低炭素鋼、軟鋼等の軟質被削材を、高熱発生を伴い、かつ、切刃に高負荷が作用する高送り、高切込みの高速重切削条件で加工した場合にも、硬質被覆層がすぐれた靭性と潤滑性と高硬度を有し、長期に亘ってすぐれた耐摩耗性を発揮するのに対して、比較例被覆工具においては、軟質被削材を高速重切削条件で加工した場合、硬さ、潤滑性、靭性の不足によって、溶着、チッピング等の発生によって、比較的短時間で使用寿命に至ることが明らかである。
なお、被覆チップばかりでなく、被覆エンドミル、被覆ドリルを作成し、同様な切削試験を行ったところ、被覆エンドミル、被覆ドリルについても、被覆チップの場合と同様な結果が得られた。
From the results shown in Tables 3 to 5, the coated tool of the present invention is a soft work material such as low carbon steel, mild steel, etc., which is accompanied by high heat generation and high feed and high cutting with high load acting on the cutting edge. Even when machined under high-speed heavy cutting conditions, the hard coating layer has excellent toughness, lubricity, and high hardness, and exhibits excellent wear resistance over a long period of time. It is clear that when a soft work material is machined under high-speed heavy cutting conditions, the service life will be reached in a relatively short time due to lack of hardness, lubricity and toughness, due to occurrence of welding, chipping, etc. .
In addition, not only the coated chip but also a coated end mill and a coated drill were prepared and the same cutting test was performed. As a result, the same results as the coated chip were obtained for the coated end mill and the coated drill.

前述のように、本発明の被覆工具は、一般鋼や普通鋳鉄などの切削加工は勿論のこと、軸受鋼、合金工具鋼、浸炭焼入れ鋼等の高硬度被削材の高い発熱を伴うとともに、切刃に高負荷が作用する高速重切削加工に用いた場合でも、長期に亘ってすぐれた耐摩耗性、耐チッピング性を発揮し、すぐれた切削性能を示すものであるから、切削加工装置のFA化、並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the coated tool of the present invention is accompanied by high heat generation of high-hardness work materials such as bearing steel, alloy tool steel, carburized and hardened steel as well as cutting of general steel and ordinary cast iron, Even when used for high-speed heavy cutting where a high load acts on the cutting edge, it exhibits excellent wear resistance and chipping resistance over a long period of time and exhibits excellent cutting performance. It can be used satisfactorily for FA, labor saving and energy saving of cutting, and cost reduction.

Claims (2)

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、硬質被覆層が蒸着形成された表面被覆切削工具において、
前記硬質被覆層が、2〜100nmの層厚の薄層Aと2〜100nmの層厚の薄層Bとが交互に積層された0.5〜8μmの交互積層構造として構成され、かつ、
(a)前記薄層Aは、
組成式:(Al1−αTiα)N(ここで、αはTiの含有割合を示し、原子比で、0.25≦α≦0.55である)を満足するAlとTiの複合窒化物層からなり、
(b)前記薄層Bは、
立方晶構造の窒化ニオブと六方晶構造の窒化ニオブの混合組織として構成され該混合組織についてX線回折による回折ピーク強度を測定したとき、
立方晶構造の窒化ニオブの(200)面からの回折ピーク強度をIc、
六方晶構造の窒化ニオブの(103)面と(110)面からの回折ピーク強度をIh、
とした場合、
0.1≦Ih/Ic≦0.7
を満足する回折ピーク強度比を有し、
(c)前記工具基体直上は、前記薄層Aであることを特徴とする表面被覆切削工具。
In a surface-coated cutting tool in which a hard coating layer is deposited on the surface of a tool base composed of a tungsten carbide-based cemented carbide or a titanium carbonitride-based cermet,
The hard coating layer is configured as an alternating laminated structure of 0.5 to 8 μm in which thin layers A having a thickness of 2 to 100 nm and thin layers B having a thickness of 2 to 100 nm are alternately laminated, and
(A) The thin layer A is
Composite nitriding of Al and Ti satisfying the composition formula: (Al 1-α Ti α ) N (where α is the content ratio of Ti and the atomic ratio is 0.25 ≦ α ≦ 0.55) Consists of layers
(B) The thin layer B is
Constructed as a mixed structure of cubic structure niobium nitride and hexagonal structure niobium nitride, when the diffraction peak intensity by X-ray diffraction was measured for the mixed structure,
The diffraction peak intensity from the (200) plane of the cubic niobium nitride is Ic,
The diffraction peak intensity from the (103) plane and the (110) plane of hexagonal niobium nitride is Ih,
If
0.1 ≦ Ih / Ic ≦ 0.7
Having a diffraction peak intensity ratio satisfying
(C) The surface-coated cutting tool, wherein the thin layer A is just above the tool base.
炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に硬質被覆層を形成してなる表面被覆切削工具において、
前記硬質被覆層が、2〜100nmの層厚の薄層Aと2〜100nmの層厚の薄層Bとが交互に積層された0.5〜8μmの交互積層構造として構成され、かつ、
前記硬質被覆層が、
(a)前記薄層Aは、
組成式:(Al1−α−βTiαβ)N(ここで、Mは、Tiを除く周期律表4a,5a,6a族の元素、Si、B、Yのうちから選ばれた1種又は2種以上の添加成分を示し、また、αはTiの含有割合、βはMの含有割合をそれぞれ示し、原子比で、0.25≦α≦0.55、0.01≦β≦0.25である)を満足するAlとTiの複合窒化物層からなり、
(b)前記薄層Bは、
立方晶構造の窒化ニオブと六方晶構造の窒化ニオブの混合組織として構成され該混合組織についてX線回折による回折ピーク強度を測定したとき、
立方晶構造の窒化ニオブの(200)面からの回折ピーク強度をIc、
六方晶構造の窒化ニオブの(103)面と(110)面からの回折ピーク強度をIh、
とした場合、
0.1≦Ih/Ic≦0.7
を満足する回折ピーク強度比を有し、
(c)前記工具基体直上は、前記薄層Aであることを特徴とする表面被覆切削工具。
In a surface-coated cutting tool formed by forming a hard coating layer on the surface of a tool base composed of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet,
The hard coating layer is configured as an alternating laminated structure of 0.5 to 8 μm in which thin layers A having a thickness of 2 to 100 nm and thin layers B having a thickness of 2 to 100 nm are alternately laminated, and
The hard coating layer is
(A) The thin layer A is
Composition formula: (Al 1-α-β Ti α M β ) N (where M is one selected from elements of groups 4a, 5a, and 6a of the periodic table excluding Ti, Si, B, and Y) Species or two or more additional components, α represents the Ti content, β represents the M content, and atomic ratios of 0.25 ≦ α ≦ 0.55 and 0.01 ≦ β ≦ A composite nitride layer of Al and Ti satisfying
(B) The thin layer B is
Constructed as a mixed structure of cubic structure niobium nitride and hexagonal structure niobium nitride, when the diffraction peak intensity by X-ray diffraction was measured for the mixed structure,
The diffraction peak intensity from the (200) plane of the cubic niobium nitride is Ic,
The diffraction peak intensity from the (103) plane and the (110) plane of hexagonal niobium nitride is Ih,
If
0.1 ≦ Ih / Ic ≦ 0.7
Having a diffraction peak intensity ratio satisfying
(C) The surface-coated cutting tool, wherein the thin layer A is just above the tool base.
JP2010162599A 2010-07-20 2010-07-20 Surface-coated cutting tool Withdrawn JP2012024855A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010162599A JP2012024855A (en) 2010-07-20 2010-07-20 Surface-coated cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010162599A JP2012024855A (en) 2010-07-20 2010-07-20 Surface-coated cutting tool

Publications (1)

Publication Number Publication Date
JP2012024855A true JP2012024855A (en) 2012-02-09

Family

ID=45778431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010162599A Withdrawn JP2012024855A (en) 2010-07-20 2010-07-20 Surface-coated cutting tool

Country Status (1)

Country Link
JP (1) JP2012024855A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3173169A4 (en) * 2014-07-25 2018-01-17 Tungaloy Corporation Coated cutting tool

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3173169A4 (en) * 2014-07-25 2018-01-17 Tungaloy Corporation Coated cutting tool
US10189089B2 (en) 2014-07-25 2019-01-29 Tungaloy Corporation Coated cutting tool

Similar Documents

Publication Publication Date Title
JP5594575B2 (en) Surface coated cutting tool with excellent wear resistance due to hard coating layer
JP2009101491A (en) Surface-coated cutting tool having hard coating layer exerting excellent lubricity and wear resistance in high-speed cutting
JP5344129B2 (en) Surface coated cutting tool with excellent wear resistance due to hard coating layer
JP2009061520A (en) Surface-coated cutting tool with hard coating layer exhibiting excellent abrasion resistance in high-speed cutting
JP2012024854A (en) Surface-coated cutting tool
JP5440345B2 (en) Surface coated cutting tool
JP5440346B2 (en) Surface coated cutting tool
JP5429693B2 (en) Surface coated cutting tool with excellent wear resistance due to hard coating layer
JP2009101490A (en) Surface-coated cutting tool having hard coating layer exerting excellent lubricity and wear resistance in high-speed cutting
JP2011104737A (en) Surface coated cutting tool
JP2011189436A (en) Surface coated cutting tool
JP2009101475A (en) Surface-coated cutting tool having hard coating layer capable of exhibiting excellent lubricating performance and wear resistance during high-speed cutting
JP5234499B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed, high-feed cutting.
JP2011240438A (en) Surface coated cutting tool excellent in heat resistance and fusion resistance
JP5234332B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed, high-feed cutting.
JP5459618B2 (en) Surface coated cutting tool
JP2016175161A (en) Surface-coated cutting tool
JP2011189470A (en) Surface coated cutting tool
JP2012081548A (en) Surface coated cutting tool
JP2012024855A (en) Surface-coated cutting tool
JP2012024856A (en) Surface-coated cutting tool
JP5499861B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5454788B2 (en) Surface coated cutting tool
JP2012024853A (en) Surface-coated cutting tool
JP5440350B2 (en) Surface coated cutting tool

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20131001