JP2012022812A - Vacuum valve - Google Patents

Vacuum valve Download PDF

Info

Publication number
JP2012022812A
JP2012022812A JP2010158126A JP2010158126A JP2012022812A JP 2012022812 A JP2012022812 A JP 2012022812A JP 2010158126 A JP2010158126 A JP 2010158126A JP 2010158126 A JP2010158126 A JP 2010158126A JP 2012022812 A JP2012022812 A JP 2012022812A
Authority
JP
Japan
Prior art keywords
metal
vacuum valve
vacuum
arc shield
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010158126A
Other languages
Japanese (ja)
Other versions
JP5537303B2 (en
Inventor
Naoki Asari
直紀 浅利
Haruka Sasaki
遥 佐々木
Kosuke Sasage
浩資 捧
Shiro Otake
史郎 大竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2010158126A priority Critical patent/JP5537303B2/en
Priority to KR1020110067133A priority patent/KR101254629B1/en
Priority to EP11173237A priority patent/EP2407991A1/en
Priority to CN201110219982.XA priority patent/CN102332364B/en
Publication of JP2012022812A publication Critical patent/JP2012022812A/en
Application granted granted Critical
Publication of JP5537303B2 publication Critical patent/JP5537303B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/662Housings or protective screens
    • H01H33/66207Specific housing details, e.g. sealing, soldering or brazing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/662Housings or protective screens
    • H01H33/66261Specific screen details, e.g. mounting, materials, multiple screens or specific electrical field considerations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/30Means for extinguishing or preventing arc between current-carrying parts
    • H01H9/34Stationary parts for restricting or subdividing the arc, e.g. barrier plate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/662Housings or protective screens
    • H01H33/66261Specific screen details, e.g. mounting, materials, multiple screens or specific electrical field considerations
    • H01H2033/66269Details relating to the materials used for screens in vacuum switches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/662Housings or protective screens
    • H01H33/66261Specific screen details, e.g. mounting, materials, multiple screens or specific electrical field considerations
    • H01H2033/66284Details relating to the electrical field properties of screens in vacuum switches

Landscapes

  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a vacuum valve arranged so that the dielectric strength characteristic is enhanced between a conducting shaft and an arc shield even when the conducting shaft and arc shield are large in areas of portions opposed to each other and the strength of breakdown electric field is reduced.SOLUTION: The vacuum valve has: a vacuum insulating container 1; a pair of contacts 6 and 7 which are housed in the vacuum insulating container 1 and can be freely brought into and out of contact with each other; a pair of conducting shafts 4 and 8 tightly fixed to the pair of contacts 6 and 7; an arc shield 11 provided to surround the pair of contacts 6 and 7; and metal coatings 5, 9 and 12 provided on outer surfaces of the pair of conducting shafts 4 and 8 and an inner surface of the arc shield 11, and made of metal material higher in fusing point than metal constituting themselves.

Description

本発明の実施形態は、耐電圧特性を向上し得る接離自在の一対の接点を有する真空バルブに関する。   Embodiments of the present invention relate to a vacuum valve having a pair of contact points that can improve withstand voltage characteristics.

従来、この種の真空バルブは、真空中の耐電圧特性を向上させるため、金属蒸気の拡散を防止する筒状のアークシールド端部にセラミック拡散層を生成させたものが知られている(例えば、特許文献1参照。)。   Conventionally, this type of vacuum valve is known in which a ceramic diffusion layer is generated at the end of a cylindrical arc shield that prevents diffusion of metal vapor in order to improve the withstand voltage characteristics in vacuum (for example, , See Patent Document 1).

一方、アークシールド端部などにおいては、曲率を小さくし、耐電圧特性を向上させるものが知られている。所謂、真空中の面積効果を利用したものであり、絶縁破壊に寄与する面積を小さくし、破壊電界を上昇させるものである(例えば、特許文献2参照。)。   On the other hand, an arc shield end or the like is known that has a reduced curvature and improved withstand voltage characteristics. A so-called area effect in a vacuum is used to reduce the area contributing to dielectric breakdown and increase the breakdown electric field (see, for example, Patent Document 2).

特開2007−115599号公報JP 2007-115599 A 特開平10−21802号公報Japanese Patent Laid-Open No. 10-21802

上記の従来の真空バルブにおいては、電界強度の高い部分がアークシールド端部に位置し易く、各種の耐電圧向上策が取られている。一方、接点を固着している通電軸においては、アークシールドとの絶縁距離が比較的に確保され、電界強度が抑制されている。しかしながら、棒状の通電軸と筒状のアークシールド間は、絶縁破壊に寄与する面積がアークシールド端部と比べて格段に広く、真空中の面積効果を考慮すると、破壊電界が低くなる。   In the conventional vacuum valve described above, a portion with a high electric field strength is easily located at the end of the arc shield, and various measures for improving the withstand voltage are taken. On the other hand, in the current-carrying shaft to which the contact is fixed, the insulation distance from the arc shield is relatively ensured, and the electric field strength is suppressed. However, the area that contributes to dielectric breakdown is much wider between the rod-shaped current-carrying shaft and the cylindrical arc shield, and the breakdown electric field becomes lower in consideration of the area effect in vacuum.

特に、大容量化や小型化の要求に対しては、通電軸を太径としたり、絶縁距離を短くしたりするので、対向する面積が増加して破壊電界が低下する。このため、通電軸とアークシールド間において、耐電圧特性が低下する問題がある。   In particular, in response to demands for large capacity and miniaturization, the current-carrying shaft is increased in diameter or the insulation distance is shortened, so that the opposing area increases and the breakdown electric field decreases. For this reason, there exists a problem that a withstand voltage characteristic falls between an electricity supply shaft and an arc shield.

本発明は上記問題を解決するためになされたもので、通電軸とアークシールド間の耐電圧特性を向上させ、大容量化や小型化を図ることのできる真空バルブを提供することを目的とする。   The present invention has been made to solve the above problems, and has an object to provide a vacuum valve capable of improving a withstand voltage characteristic between a current-carrying shaft and an arc shield and achieving a large capacity and a small size. .

上記目的を達成するために、実施形態の真空バルブは、真空絶縁容器と、前記真空絶縁容器内に収納される接離自在の一対の接点と、前記接点に固着された通電軸と、前記接点を包囲するように設けられたアークシールドとを有する真空バルブであって、前記通電軸の外面および前記アークシールドの内面には、当該構成金属よりも融点の高い金属材料からなる金属被膜を設けたことを特徴とする。   In order to achieve the above object, a vacuum valve according to an embodiment includes a vacuum insulating container, a pair of contactable and separable contacts accommodated in the vacuum insulating container, a current-carrying shaft fixed to the contact, and the contact And a metal film made of a metal material having a melting point higher than that of the constituent metal is provided on the outer surface of the current-carrying shaft and the inner surface of the arc shield. It is characterized by that.

本発明の実施例1に係る真空バルブの構成を示す断面図。Sectional drawing which shows the structure of the vacuum valve which concerns on Example 1 of this invention. 本発明の実施例2に係る真空バルブの構成を示す断面図。Sectional drawing which shows the structure of the vacuum valve which concerns on Example 2 of this invention. 本発明の実施例3に係る真空バルブの構成を示す断面図。Sectional drawing which shows the structure of the vacuum valve which concerns on Example 3 of this invention.

本発明による実施形態は、融点の高い金属被膜を用いることにより、真空中での破壊電界を上昇させることにある。以下、図面を参照して本発明の実施例を説明する。   An embodiment according to the present invention is to increase a breakdown electric field in a vacuum by using a metal film having a high melting point. Embodiments of the present invention will be described below with reference to the drawings.

先ず、本発明の実施例1に係る真空バルブを図1を参照して説明する。図1は、本発明の実施例1に係る真空バルブの構成を示す断面図である。   First, a vacuum valve according to Embodiment 1 of the present invention will be described with reference to FIG. FIG. 1 is a cross-sectional view illustrating a configuration of a vacuum valve according to Embodiment 1 of the present invention.

図1に示すように、アルミナ磁器からなる筒状の真空絶縁容器1の両端開口部には、固定側封着金具2と可動側封着金具3が封着されている。固定側封着金具2には、電気銅からなる固定側通電軸4が貫通固定されている。固定側通電軸4の外面には、例えばクロムのような電気銅よりも融点の高い固定側金属被膜5が蒸着やメッキにより設けられている。膜厚は、数100nmである。固定側通電軸4端には、銅合金を有する固定側接点6が固着されている。   As shown in FIG. 1, a fixed-side sealing metal fitting 2 and a movable-side sealing metal fitting 3 are sealed at both end openings of a cylindrical vacuum insulating container 1 made of alumina porcelain. A fixed-side energizing shaft 4 made of electrolytic copper is passed through and fixed to the fixed-side sealing fitting 2. A fixed-side metal coating 5 having a melting point higher than that of electrolytic copper such as chromium is provided on the outer surface of the fixed-side conducting shaft 4 by vapor deposition or plating. The film thickness is several hundred nm. A fixed side contact 6 having a copper alloy is fixed to the end of the fixed side energizing shaft 4.

固定側接点6に対向して接離自在の銅合金を有する可動側接点7が、可動側封着金具3を移動自在に貫通する電気銅からなる可動側通電軸8端に固着されている。可動側通電軸8の外面には、固定側と同様に、電気銅よりも融点の高い可動側金属被膜9が設けられている。   A movable contact 7 having a copper alloy that can be contacted and separated is opposed to the fixed contact 6 and is fixed to an end of a movable energizing shaft 8 made of electrolytic copper that movably penetrates the movable sealing fitting 3. Similar to the fixed side, a movable side metal coating 9 having a melting point higher than that of electrolytic copper is provided on the outer surface of the movable side conducting shaft 8.

可動側通電軸8の中間部には、伸縮自在のベローズ10の一方端が封着され、他方端が可動側封着金具3に封着されている。これにより、真空絶縁容器1内の真空を保って、可動側通電軸8を軸方向に移動させることができる。なお、ベローズ10内に囲まれた可動側通電軸8には、前記可動側金属被膜9を設けなくてもよい。   One end of a telescopic bellows 10 is sealed at the intermediate portion of the movable side energizing shaft 8, and the other end is sealed to the movable side sealing fitting 3. Thereby, the movable side energizing shaft 8 can be moved in the axial direction while maintaining the vacuum in the vacuum insulating container 1. Note that the movable-side metal coating 9 may not be provided on the movable-side conductive shaft 8 surrounded by the bellows 10.

また、固定側接点6と可動側接点7を包囲するように、ステンレスからなる筒状のアークシールド11が真空絶縁容器1内面に固定されている。アークシールド11の内面には、通電軸4、8と同様に、例えばクロムのようなステンレスよりも融点の高いシールド側金属被膜12が設けられている。   A cylindrical arc shield 11 made of stainless steel is fixed to the inner surface of the vacuum insulating container 1 so as to surround the fixed contact 6 and the movable contact 7. On the inner surface of the arc shield 11, similarly to the current-carrying shafts 4 and 8, a shield-side metal coating 12 having a higher melting point than stainless steel such as chromium is provided.

これにより、通電軸4、8では、電気銅(約1020℃)よりも融点の高い例えばクロム(約1900℃)の金属被膜5、9が設けられ、また、アークシールド11では、ステンレス(約1420℃)よりも融点の高い金属被膜12が設けられており、耐電圧特性を向上させることができる。即ち、通電軸4、8とアークシールド11間は、真空バルブ内で対向する面積が最も大きく、面積効果から破壊電界が低下する傾向にあるが、自身を構成している当該構成金属よりも融点の高い金属材料からなる金属被膜5、9、12を設けているので、見かけ上の破壊電界を上昇させることができる。当該構成金属とは、通電軸4、8では電気銅、アークシールド11ではステンレスとなる。   Thus, the current-carrying shafts 4 and 8 are provided with metal coatings 5 and 9 of, for example, chromium (about 1900 ° C.) having a melting point higher than that of the electric copper (about 1020 ° C.). The metal film 12 having a melting point higher than that of the second temperature is provided, and the withstand voltage characteristics can be improved. That is, the area between the current-carrying shafts 4 and 8 and the arc shield 11 is the largest in the vacuum bulb, and the breakdown electric field tends to decrease due to the area effect, but the melting point is higher than that of the constituent metal constituting itself. Since the metal coatings 5, 9, and 12 made of a high metal material are provided, the apparent breakdown electric field can be increased. The constituent metal is electrolytic copper for the current-carrying shafts 4 and 8 and stainless steel for the arc shield 11.

これは、金属被膜5、9、12によって、機械加工時に形成された微小な凸凹が滑らかになり、電界放射による電子放出が抑制されたものと考えられる。また、自身からの電子放出も抑制されたものと考えられる。なお、金属被膜5、9、12に、更に融点の高いチタン(約3170℃)やモリブデン(約2620℃)などを用いることができる。クロム、チタン、モリブデンは、少なくとも1種類を含有するものとする。   This is presumably because the metal coatings 5, 9, and 12 smooth the minute irregularities formed at the time of machining, and suppress the electron emission due to field emission. It is also considered that the electron emission from itself was suppressed. Note that titanium (about 3170 ° C.) or molybdenum (about 2620 ° C.) having a higher melting point can be used for the metal coatings 5, 9, and 12. Chromium, titanium, and molybdenum contain at least one kind.

上記実施例1の真空バルブによれば、対向する面積が大きい通電軸4、8の外面とアークシールド11内面に、当該構成金属よりも融点の高い金属材料を用いて金属被膜5、9、12を設けているので、耐電圧特性を向上させることができ、全体形状の小型化を図ることができる。   According to the vacuum valve of the first embodiment, the metal coatings 5, 9, 12 are formed on the outer surfaces of the current-carrying shafts 4, 8 and the inner surface of the arc shield 11 having a large facing area using a metal material having a melting point higher than that of the constituent metals. Therefore, withstand voltage characteristics can be improved, and the overall shape can be reduced in size.

次に、本発明の実施例2に係る真空バルブを図2を参照して説明する。図2は、本発明の実施例2に係る真空バルブの構成を示す断面図である。なお、この実施例2が実施例1と異なる点は、金属被膜を設ける範囲である。図2において、実施例1と同様の構成部分においては、同一符号を付し、その詳細な説明を省略する。   Next, a vacuum valve according to Embodiment 2 of the present invention will be described with reference to FIG. FIG. 2 is a cross-sectional view showing a configuration of a vacuum valve according to Embodiment 2 of the present invention. In addition, the point in which this Example 2 differs from Example 1 is the range which provides a metal film. In FIG. 2, the same components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

図2に示すように、固定側接点6、可動側接点7の外周部にも、金属被膜5、9と同様の、固定側電極金属被膜13、可動側電極金属被膜14を設けている。固定側接点6、可動側接点7は、例えば縦磁界を発生するコイル電極と接触子などで構成されるが、コイル電極の外面は比較的電界が高くなる。このコイル電極の外面に、金属被膜13、14を設けるものである。また、アークシールド11の端部にも、シールド側金属被膜12と同様の、端部金属被膜15を設けている。   As shown in FIG. 2, a fixed-side electrode metal film 13 and a movable-side electrode metal film 14 similar to the metal films 5 and 9 are provided on the outer peripheral portions of the fixed-side contact 6 and the movable-side contact 7. The fixed side contact 6 and the movable side contact 7 are composed of, for example, a coil electrode that generates a longitudinal magnetic field and a contact, but the outer surface of the coil electrode has a relatively high electric field. Metal coatings 13 and 14 are provided on the outer surface of the coil electrode. Further, an end metal film 15 similar to the shield-side metal film 12 is also provided at the end of the arc shield 11.

即ち、電界が高くなる部分にも、金属被膜13、14、15を設けている。これらの金属被膜13、14、15は、電界強度の低い面に設けた金属被膜5、9、12よりも膜厚が厚い方がよく、より表面を滑らかにすることができる。イオンプレーティングを用いることにより、数〜数10μmの膜厚にすることができる。なお、コイル電極は、通電性を考慮し電気銅で構成される。   That is, the metal films 13, 14, and 15 are provided also in the portion where the electric field is increased. These metal coatings 13, 14, and 15 are preferably thicker than the metal coatings 5, 9, and 12 provided on the surface with low electric field strength, and the surface can be made smoother. By using ion plating, the film thickness can be several to several tens of μm. Note that the coil electrode is made of electrolytic copper in consideration of electrical conductivity.

上記実施例2の真空バルブによれば、実施例1による効果のほかに、電界強度が高くなる部分においても、融点の高い金属材料からなる金属被膜13、14、15を設けているので、耐電圧特性を向上させることができる。   According to the vacuum valve of the second embodiment, in addition to the effects of the first embodiment, the metal films 13, 14, and 15 made of a metal material having a high melting point are provided in the portion where the electric field strength is high. The voltage characteristics can be improved.

次に、本発明の実施例3に係る真空バルブを図3を参照して説明する。図3は、本発明の実施例3に係る真空バルブの構成を示す断面図である。なお、この実施例3が実施例2と異なる点は、真空絶縁容器の外周に絶縁層を設けたことである。図3において、実施例2と同様の構成部分においては、同一符号を付し、その詳細な説明を省略する。   Next, a vacuum valve according to Embodiment 3 of the present invention will be described with reference to FIG. FIG. 3 is a cross-sectional view illustrating a configuration of a vacuum valve according to Embodiment 3 of the present invention. The third embodiment is different from the second embodiment in that an insulating layer is provided on the outer periphery of the vacuum insulating container. In FIG. 3, the same components as those in the second embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

図3に示すように、真空絶縁容器1に外周には、エポキシ樹脂をモールドして形成した絶縁層16を設けている。   As shown in FIG. 3, an insulating layer 16 formed by molding an epoxy resin is provided on the outer periphery of the vacuum insulating container 1.

上記実施例3の真空バルブによれば、実施例2による効果のほかに、絶縁層16により、真空絶縁容器1の外部沿面の絶縁補強をすることができ、更に真空バルブの小型化を図ることができる。   According to the vacuum valve of the third embodiment, in addition to the effects of the second embodiment, the insulation layer 16 can insulate and reinforce the external creepage of the vacuum insulating container 1, and further reduce the size of the vacuum valve. Can do.

以上述べたような実施形態は、通電軸では電気銅、アークシールドではステンレスよりも融点の高い金属材料からなる金属被膜を設けることにより、耐電圧特性を向上させることができる。   In the embodiment as described above, the withstand voltage characteristics can be improved by providing a metal film made of a metal material having a melting point higher than that of stainless steel for the current-carrying shaft and for the arc shield.

以上において幾つかの実施形態を述べたが、これらの実施形態は、単に例として示したもので、本発明の範囲を限定することを意図したものではない。実際、ここにおいて述べた新規な装置は、種々の他の形態に具体化されてもよいし、さらに、本発明の主旨またはスピリットから逸脱することなく、ここにおいて述べた装置の形態における種々の省略、置き換えおよび変更を行ってもよい。付随する請求項およびそれらの均等物は、本発明の範囲および主旨またはスピリットに入るようにそのような形態若しくは変形を含むことを意図している。   Several embodiments have been described above, but these embodiments are merely given as examples and are not intended to limit the scope of the present invention. Indeed, the novel devices described herein may be embodied in a variety of other forms, and various omissions may be made in the form of devices described herein without departing from the spirit or spirit of the invention. Replacements and changes may be made. The appended claims and their equivalents are intended to include such forms or modifications as would fall within the scope and spirit or spirit of the present invention.

1 真空絶縁容器
2、3 封着金具
4、8 通電軸
5、9、12、13、14、15 金属被膜
6、7 接点
10 ベローズ
11 アークシールド
16 絶縁層
DESCRIPTION OF SYMBOLS 1 Vacuum insulation container 2, 3 Sealing metal fittings 4, 8 Current supply shaft 5, 9, 12, 13, 14, 15 Metal coating 6, 7 Contact 10 Bellows 11 Arc shield 16 Insulation layer

Claims (6)

真空絶縁容器と、
前記真空絶縁容器内に収納される接離自在の一対の接点と、
前記接点に固着された通電軸と、
前記接点を包囲するように設けられたアークシールドとを有する真空バルブであって、
前記通電軸の外面および前記アークシールドの内面には、当該構成金属よりも融点の高い金属材料からなる金属被膜を設けたことを特徴とする真空バルブ。
A vacuum insulation container;
A pair of contactable and separable contacts housed in the vacuum insulating container;
A current-carrying shaft fixed to the contact;
A vacuum valve having an arc shield provided to surround the contact,
A vacuum valve, wherein a metal coating made of a metal material having a melting point higher than that of the constituent metal is provided on an outer surface of the current-carrying shaft and an inner surface of the arc shield.
前記接点は、接離する接触子と、
前記接触子に固着された磁界を発生するコイル電極とで構成され、
前記コイル電極の外面に、当該構成金属よりも融点の高い金属材料からなる金属被膜を設けたことを特徴とする請求項1に記載の真空バルブ。
The contact is a contactor that contacts and separates;
A coil electrode that generates a magnetic field fixed to the contact;
The vacuum valve according to claim 1, wherein a metal film made of a metal material having a melting point higher than that of the constituent metal is provided on an outer surface of the coil electrode.
前記アークシールドの端部に、当該構成金属よりも融点の高い金属材料からなる金属被膜を設けたことを特徴とする請求項1または請求項2に記載の真空バルブ。   The vacuum valve according to claim 1 or 2, wherein a metal film made of a metal material having a melting point higher than that of the constituent metal is provided at an end of the arc shield. 前記金属被膜は、クロム、チタン、モリブデンの少なくとも1種類を含有していることを特徴とする請求項1乃至請求項3のいずれか1項に記載の真空バルブ。   The vacuum valve according to any one of claims 1 to 3, wherein the metal coating contains at least one of chromium, titanium, and molybdenum. 前記金属被膜をイオンプレーティングで設けたことを特徴とする請求項1乃至請求項4のいずれか1項に記載の真空バルブ。   The vacuum valve according to any one of claims 1 to 4, wherein the metal coating is provided by ion plating. 前記真空絶縁容器の周りに絶縁層を設けたことを特徴とする請求項1乃至請求項5のいずれか1項に記載の真空バルブ。   The vacuum valve according to claim 1, wherein an insulating layer is provided around the vacuum insulating container.
JP2010158126A 2010-07-12 2010-07-12 Vacuum valve Active JP5537303B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010158126A JP5537303B2 (en) 2010-07-12 2010-07-12 Vacuum valve
KR1020110067133A KR101254629B1 (en) 2010-07-12 2011-07-07 Vacuum valve
EP11173237A EP2407991A1 (en) 2010-07-12 2011-07-08 Vacuum valve
CN201110219982.XA CN102332364B (en) 2010-07-12 2011-07-12 Vacuum valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010158126A JP5537303B2 (en) 2010-07-12 2010-07-12 Vacuum valve

Publications (2)

Publication Number Publication Date
JP2012022812A true JP2012022812A (en) 2012-02-02
JP5537303B2 JP5537303B2 (en) 2014-07-02

Family

ID=44652110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010158126A Active JP5537303B2 (en) 2010-07-12 2010-07-12 Vacuum valve

Country Status (4)

Country Link
EP (1) EP2407991A1 (en)
JP (1) JP5537303B2 (en)
KR (1) KR101254629B1 (en)
CN (1) CN102332364B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021048029A (en) * 2019-09-18 2021-03-25 富士電機株式会社 Vacuum valve

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60163322A (en) * 1984-02-03 1985-08-26 三菱電機株式会社 Vacuum breaker
JPS6455634U (en) * 1987-09-30 1989-04-06
JPH04115431A (en) * 1990-09-05 1992-04-16 Mitsubishi Electric Corp Vacuum switching tube
JPH09245589A (en) * 1996-03-01 1997-09-19 Toshiba Corp Vacuum valve
JP2000294088A (en) * 1999-04-05 2000-10-20 Mitsubishi Electric Corp Switch gear
JP2002319342A (en) * 2001-04-19 2002-10-31 Mitsubishi Electric Corp Vacuum valve
JP2003203546A (en) * 2002-01-09 2003-07-18 Toshiba Corp Mold vacuum switching device
JP2004235121A (en) * 2003-02-03 2004-08-19 Japan Ae Power Systems Corp Vacuum circuit breaker
JP2007115599A (en) * 2005-10-21 2007-05-10 Toshiba Corp Vacuum valve
JP2010129337A (en) * 2008-11-27 2010-06-10 Toshiba Corp Vacuum valve

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6129151Y2 (en) * 1979-10-09 1986-08-28
EP0286335B2 (en) * 1987-04-02 2001-10-17 Kabushiki Kaisha Toshiba Air-tight ceramic container
JP3431319B2 (en) * 1994-12-26 2003-07-28 株式会社東芝 Electrode for vacuum valve
JP4159938B2 (en) * 2003-07-25 2008-10-01 株式会社東芝 Mold electric apparatus and molding method thereof
EP1794350A1 (en) * 2004-09-25 2007-06-13 ABB Technology AG Method for producing an arc-erosion resistant coating and corresponding shield for vacuum arcing chambers
DE102005043484B4 (en) * 2005-09-13 2007-09-20 Abb Technology Ag Vacuum interrupter chamber
CN201364855Y (en) * 2009-01-14 2009-12-16 湖北汉光科技股份有限公司 Vacuum switch tube

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60163322A (en) * 1984-02-03 1985-08-26 三菱電機株式会社 Vacuum breaker
JPS6455634U (en) * 1987-09-30 1989-04-06
JPH04115431A (en) * 1990-09-05 1992-04-16 Mitsubishi Electric Corp Vacuum switching tube
JPH09245589A (en) * 1996-03-01 1997-09-19 Toshiba Corp Vacuum valve
JP2000294088A (en) * 1999-04-05 2000-10-20 Mitsubishi Electric Corp Switch gear
JP2002319342A (en) * 2001-04-19 2002-10-31 Mitsubishi Electric Corp Vacuum valve
JP2003203546A (en) * 2002-01-09 2003-07-18 Toshiba Corp Mold vacuum switching device
JP2004235121A (en) * 2003-02-03 2004-08-19 Japan Ae Power Systems Corp Vacuum circuit breaker
JP2007115599A (en) * 2005-10-21 2007-05-10 Toshiba Corp Vacuum valve
JP2010129337A (en) * 2008-11-27 2010-06-10 Toshiba Corp Vacuum valve

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021048029A (en) * 2019-09-18 2021-03-25 富士電機株式会社 Vacuum valve

Also Published As

Publication number Publication date
EP2407991A1 (en) 2012-01-18
JP5537303B2 (en) 2014-07-02
KR20120006447A (en) 2012-01-18
CN102332364B (en) 2015-02-25
CN102332364A (en) 2012-01-25
KR101254629B1 (en) 2013-04-15

Similar Documents

Publication Publication Date Title
CN113678219A (en) Vacuum valve
US10134546B2 (en) Maximizing wall thickness of a Cu—Cr floating center shield component by moving contact gap away from center flange axial location
JP5139179B2 (en) Vacuum valve
JP5197065B2 (en) Vacuum valve
JP5537303B2 (en) Vacuum valve
CN105529209A (en) Axial magnetic field coil for vacuum interrupter
JP5475601B2 (en) Vacuum valve
JP5475559B2 (en) Vacuum switchgear
JP5139214B2 (en) Vacuum valve
JP4703360B2 (en) Vacuum valve
JP4940020B2 (en) Gas insulated switchgear
JP2016048636A (en) Vacuum valve
JP2007188661A (en) Vacuum valve
JP7471929B2 (en) Vacuum Switchgear
JP4291013B2 (en) Vacuum valve
US10840044B2 (en) Ceramic insulator for vacuum interrupters
JP5525316B2 (en) Vacuum valve
JP5525364B2 (en) Vacuum valve
JP5854925B2 (en) Vacuum valve
JP2005197128A (en) Complex insulation switchgear
JP2014116183A (en) Vacuum valve
JP2014049353A (en) Solid insulation switch gear and vacuum valve for solid insulation switch gear
JP2021089828A (en) Vacuum valve
JP2014182876A (en) Resin mold vacuum valve
JP2011014285A (en) Vacuum valve

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111125

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111205

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140425

R151 Written notification of patent or utility model registration

Ref document number: 5537303

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313121

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350