JP2012018843A - 燃料電池システム及びその運転方法 - Google Patents

燃料電池システム及びその運転方法 Download PDF

Info

Publication number
JP2012018843A
JP2012018843A JP2010156053A JP2010156053A JP2012018843A JP 2012018843 A JP2012018843 A JP 2012018843A JP 2010156053 A JP2010156053 A JP 2010156053A JP 2010156053 A JP2010156053 A JP 2010156053A JP 2012018843 A JP2012018843 A JP 2012018843A
Authority
JP
Japan
Prior art keywords
heat medium
fuel cell
fuel gas
fuel
medium tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010156053A
Other languages
English (en)
Inventor
Jun Ishikawa
潤 石川
Yasuo Takebe
安男 武部
Yoichiro Tsuji
庸一郎 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2010156053A priority Critical patent/JP2012018843A/ja
Publication of JP2012018843A publication Critical patent/JP2012018843A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

【課題】水素ボンベを取り替えることなく、繰り返し迅速に起動することができる燃料電池システム及びその運転方法を提供する。
【解決手段】 原料ガスを改質して水素を含有する燃料ガスを生成する水素生成装置1と、水素生成装置1で生成された燃料ガスを用いて発電する燃料電池2と、液状の熱媒体と燃料ガスとを貯蔵する熱媒体タンク3と、熱媒体タンク3に貯蔵された熱媒体を用いて燃料電池2を直接又は間接に冷却する冷却システム4と、水素生成装置1、燃料電池2、及び熱媒体タンク3の間における燃料ガスの流通経路を切り替える経路切替機構25と、燃料電池2による発電を制御する制御器50と、を備え、制御器50は、経路切替機構25によって、起動時に熱媒体タンク3から燃料電池2に燃料ガスを供給し、かつ起動後に水素生成装置1から熱媒体タンク3に燃料ガスを充填するようにして燃料電池2による発電を制御するよう構成されている。
【選択図】 図1

Description

本発明は、燃料電池システム及びその運転方法に関するものである。
燃料電池システムは、外部から供給される原料ガスを燃料処理器で改質し、水素を含む燃料ガスを生成する。この燃料ガスと空気など酸素を含む酸化剤ガスとを燃料電池に供給して発電を行う。ところで、燃料処理器における原料ガスの改質は、高温で行う必要がある。そのため、燃料電池システムの起動の際には、まず燃料処理器を昇温させて原料ガスが改質できる温度に保持し、燃料ガスを生成し始める。その後、燃料ガスを燃料電池に供給して発電を開始する。
このため、起動の際には、燃料処理器を加熱するバーナを、外部電力を用いて作動させ、燃料処理器を常温から昇温する必要があり、燃料電池の発電を開始するまでに時間を要した。また、停電時には、外部電力を用いて燃料処理器のバーナを作動させることができず、燃料電池の発電を行うことができなかった。
一方、非常用電源に用いる燃料電池システムとして、起動用の水素ボンベを備えたものが知られている(例えば、特許文献1参照)。特許文献1に記載の燃料電池システムは、ガスを水素に変換するのに長時間を要する燃料改質器(本発明の燃料処理器に相当する)が起動するまでは水素ボンベの水素によって駆動し、燃料改質器による水素が発生した後は、燃料処理機よりの水素で燃料電池本体を駆動するものである。これにより、燃料電池システムを迅速に起動することができる。
特開2002−78238号公報
しかしながら、従来の燃料電池システムでは、水素ボンベ内の水素がなくなった場合に、水素ボンベの取替えが必要になるという課題があった。
本発明の目的は、上記課題を解決するものであり、水素ボンベを取り替えることなく、繰り返し迅速に起動することができる燃料電池システム及びその運転方法を提供することにある。
上記課題を解決するために、本発明のある形態(Aspect)の燃料電池システムは、原料ガスを改質して水素を含有する燃料ガスを生成する水素生成装置と、前記水素生成装置で生成された燃料ガスを用いて発電する燃料電池と、液状の熱媒体と前記燃料ガスとを貯蔵する熱媒体タンクと、前記熱媒体タンクに貯蔵された熱媒体を用いて前記燃料電池を直接又は間接に冷却する冷却システムと、前記水素生成装置、前記燃料電池、及び前記熱媒体タンクの間における前記燃料ガスの流通経路を切り替える経路切替機構と、前記燃料電池による発電を制御する制御器と、を備え、前記制御器は、前記経路切替機構によって、起動時に前記熱媒体タンクから前記燃料電池に前記燃料ガスを供給し、かつ起動後に前記水素生成装置から前記熱媒体タンクに前記燃料ガスを充填するようにして前記燃料電池による発電を制御するよう構成されている。
前記冷却システムは、前記燃料電池を通過するように形成された熱媒体ラインに前記熱媒体タンクに貯蔵された前記熱媒体を通流させて前記燃料電池を直接に冷却するよう構成されていてもよい。
前記冷却システムは、第1熱媒体を貯蔵する第1熱媒体タンクと、前記燃料電池を通過するように形成された第1熱媒体ラインとを有し、前記第1熱媒体タンクに貯蔵された前記第1熱媒体を前記第1熱媒体ラインに通流させて該第1熱媒体が前記燃料電池から排熱を回収するよう構成された一次冷却システムと、前記熱媒体としての第2熱媒体と前記燃料ガスとを貯蔵する前記熱媒体タンクとしての第2熱媒体タンクと、前記第2熱媒体タンクに貯蔵された前記第2熱媒体が通流して該第2熱媒体タンクに戻るように形成された第2熱媒体ラインと、前記第1熱媒体ラインを通流する前記第1熱媒体と前記第2熱媒体ラインを通流する前記第2熱媒体とを熱交換させる熱交換器とを有し、前記第2熱媒体ラインに前記第2熱媒体を通流させて、該第2熱媒体が前記熱交換により前記第1熱媒体から前記排熱を回収することにより前記燃料電池を間接に冷却するよう構成された二次冷却システムと、を備えていてもよい。
前記経路切替機構は、前記水素生成装置から前記燃料電池へ前記燃料ガスを供給する燃料ガス供給ラインと、一端が前記燃料ガス供給ラインに接続され、他端が前記熱媒体タンクに接続された燃料ガス貯蔵ラインと、前記燃料ガスラインの前記燃料ガス貯蔵ラインとの接続点と前記水素生成装置との間の部分を開閉する第1弁と、前記燃料ガスラインの前記水素ガス貯蔵ラインとの接続点と前記燃料電池との間の部分を開閉する第2弁と、前記燃料ガス貯蔵ラインを開閉する第3弁とを備え、前記制御器は、前記第1乃至第3弁を開閉することにより、前記熱媒体タンクから前記燃料電池への前記燃料ガスの供給、前記水素生成装置から前記熱媒体タンクへの前記燃料ガスの充填、及び前記水素生成装置から前記燃料電池への前記燃料ガスの供給を行うよう構成されていてもよい。
前記経路切替機構は、前記水素生成装置から前記熱媒体タンクを通過して前記燃料電池へ至るように形成された燃料ガス供給ラインと、前記燃料ガス供給ラインの前記水素生成装置と前記熱媒体タンクとの間の部分を開閉する第4弁と、前記燃料ガス供給ラインの前記熱媒体タンクと前記燃料電池との間の部分を開閉する第5弁とを備え、前記制御器は、前記第4弁及び第5弁を開閉することにより、前記熱媒体タンクから前記燃料電池への前記燃料ガスの供給、前記水素生成装置から前記熱媒体タンクへの前記燃料ガスの充填、及び前記水素生成装置から前記燃料電池への前記燃料ガスの供給を行うよう構成されていてもよい。
その開放及び閉止により、外部から前記熱媒体タンクに熱媒体を供給及び供給停止する第6弁と、その開放及び閉止により、前記熱媒体タンクから外部に熱媒体を排出及び排出停止する第7弁と、を備え、前記制御器は、前記第6弁を閉止しかつ前記7弁を開放して前記熱媒体タンクから外部に前記熱媒体を排出することにより、前記水素生成装置から前記熱媒体タンクに前記燃料ガスを充填し、かつ、前記第6弁を閉止しかつ前記7弁を開放して前記熱媒体タンクに外部から前記熱媒体を供給することにより、前記熱媒体タンクに充填された前記燃料ガスを前記燃料電池に供給するよう構成されていてもよい。
前記制御器は、前記熱媒体タンクへ前記燃料ガスを充填した後、該熱媒体タンクに連通する全ての燃料ガスのラインを所定の前記弁により閉止し、前記第6弁を閉止しかつ前記第7弁を開放して前記熱媒体タンクに外部から熱媒体を供給し、それにより、前記熱媒体の圧力によって前記燃料ガスを圧縮するよう構成されていてもよい。
前記熱媒体タンクは、前記燃料ガスの流通経路との連通口が前記熱媒体の取り出し口よりも高く位置するように構成されており、前記制御器は、前記熱媒体の液面を前記取り出し口より高く維持しながら当該熱媒体を排出するようにして、前記連通口を介して前記熱媒体タンクに前記燃料ガスを充填するよう構成されていてもよい。
また、本発明の他の形態(aspect)の燃料電池システムの運転方法は、原料ガスを改質して水素を含有する燃料ガスを生成する水素生成装置と、前記水素生成装置で生成された燃料ガスを用いて発電する燃料電池と、液状の熱媒体と前記燃料ガスとを貯蔵する熱媒体タンクと、前記熱媒体タンクに貯蔵された熱媒体を用いて前記燃料電池を直接又は間接に冷却する冷却システムと、前記水素生成装置、前記燃料電池、及び前記熱媒体タンクの間における前記燃料ガスの流通経路を切り替える経路切替機構と、を備えた燃料電池システムの運転方法であって、前記経路切替機構によって、起動時に前記熱媒体タンクから前記燃料電池に前記燃料ガスを供給し、かつ起動後に前記水素生成装置から前記熱媒体タンクに前記燃料ガスを充填するようにして前記燃料電池による発電を制御する。
本発明は以上のように構成され、燃料電池システム及びその運転方法において、水素ボンベを取り替えることなく、繰り返し迅速に起動することができるという効果を奏する。
図1は本発明の実施の形態1に係る燃料電池システムの構成を模式的に示すブロック図である。 図2は図1の燃料電池システムの運転制御を示すフローチャートである。 図3は本発明の実施の形態2に係る燃料電池システムの構成を模式的に示すブロック図である。 図4は本発明の実施の形態3に係る燃料電池システムの構成を模式的に示すブロック図である。 図5は図4の燃料電池システムの運転制御を示すフローチャートである。 図6(a)〜図6(d)は、本発明の実施の形態3の燃料電池システムにおける第2熱媒体タンクの変形例を示す模式図である。 図7は本発明の実施の形態4に係る燃料電池システムの構成を模式的に示すブロック図である。
以下、本発明の実施の形態を、図面を参照しながら説明する。以下では全ての図を通じて、同一又は相当する要素には同一の参照符号を付してその重複する説明を省略する。
(実施の形態1)
本発明の実施の形態1は、燃料電池システムが非常用電源として用いられる場合の構成を例示したものである。
[構成]
図1は本発明の実施の形態1に係る燃料電池システムの構成を模式的に示すブロック図である。
図1に示すように、本実施の形態1の燃料電池システム101Aは、主な要素として、水素生成装置1、燃料電池2、熱媒体タンク3を含む冷却システム4、及び制御器50を備えている。
水素生成装置1には原料ガスライン11の下流端と改質水ライン13の下流端とが接続されている。原料ガスライン11には原料ガス開閉弁12が設けられ、改質水ライン13には改質水開閉弁14が設けられている。
原料ガスライン11の上流端は、天然ガス(都市ガス)のインフラストラクチャ等の原料供給源(図示せず)に接続されている。原料ガスは、水蒸気改質反応により水素含有ガスを生成できるものであればよい。原料ガスとして、例えば、天然ガス、LP市ガス等を用いることができる。改質水ライン13の上流端は市水等の水源(図示せず)に接続されている。
水素生成装置1の構成は公知であるので、簡単に説明する。水素生成装置1は、改質触媒等を収容する反応容器(図示せず)とこの反応容器を加熱する加熱器(図示せず)とを備えている。加熱器は例えばバーナで構成されていて、このバーナは、例えば、燃焼用ガスを燃焼用空気で燃焼させて反応容器を加熱する。燃焼用ガスとして、後述するオフガス、原料ガス等が用いられる。この加熱器は、燃料電池2で発電される電力により作動される(着火、燃焼用空気供給等)。水素生成装置1は、原料ガスライン11から供給される原料ガスと改質水ライン13から供給される改質水とを用いて、水蒸気改質反応により水素含有ガスからなる燃料ガスを生成する。水素生成装置1は、さらに、原料ガスの流量を調整する機能を有していて、生成した燃料ガスを、流量を調整しながら燃料ガス供給ライン15に送出する。
燃料ガス供給ライン15は、燃料ガス水素生成装置1から燃料電池2(燃料極(アノード))に至るように設けられている。燃料ガス供給ライン15の途中(以下、分岐点という)17から燃料ガス貯蔵ライン19が熱媒体タンク3に至るように分岐している。
燃料ガス供給ライン15の水素生成装置1と分岐点17との間の部分には、この部分を開閉する上流側燃料ガス開閉弁16(第1弁)が設けられ、燃料ガス供給ライン15の分岐点17と燃料電池2との間の部分には、この部分を開閉する下流側燃料ガス開閉弁18(第2弁)が設けられている。燃料ガス貯蔵ライン19には貯蔵燃料ガス開閉弁20(第3弁)と流量調整弁21とが設けられている。燃料ガス供給ライン15、燃料ガス貯蔵ライン19、上流側燃料ガス開閉弁16、下流側燃料ガス開閉弁18、及び貯蔵燃料ガス開閉弁20が、燃料ガスの流通経路を切り替える経路切替機構25を構成している。
燃料電池2の空気極(カソード)には、図示されない酸化剤ガス供給器から酸化剤ガスとしての空気が供給される。燃料電池2は、この空気と燃料ガス供給ライン15から供給される燃料ガスとを発電反応させて発電する。発電反応に用いられなかった燃料ガス及び空気は、それぞれ燃料電池2から排出される。燃料電池2から排出された燃料ガス(オフガス)は、例えば、水素生成装置の上述の加熱器(バーナ)に供給され、そこで燃焼されて最終的に大気中に放出される。燃料電池2は、水素を含む燃料ガスと酸化剤ガスとを用いて発電するものであれば、特に限定されないが、本実施の形態1では非常用電源として用いるため、頻繁に起動及び停止できることが好ましい。この観点から、例えば、高分子電解質形燃料電池が好ましい。
冷却システム4は、熱媒体タンク3に貯蔵された熱媒体を用いて燃料電池2を冷却するように構成されている。冷却システム4は、本実施の形態1では、燃料電池2を直接冷却するように構成されている。具体的には、冷却システム4は、熱媒体タンク3と熱媒体ライン31とを主な要素として備えている。
熱媒体タンク3は、液状の熱媒体と燃料ガスとを貯蔵するよう構成されている。具体的には、熱媒体タンク3の上部(例えば上端面)に、燃料ガス貯蔵ライン19の先端が接続されていて、その接続口3cから燃料ガスが熱媒体タンク3に充填される。また、熱媒体タンク3の適所には、熱媒体の取り出し口3dと戻し口3eとが設けられている。従って、熱媒体タンク3には、液面が取り出し口3dを越える高さとなるように熱媒体が貯蔵され、この熱媒体の液面と熱媒体タンク3の天井面(上端面の内面)との間に燃料ガスが貯蔵される。熱媒体タンク3における燃料ガス及び熱媒体が存在する部分がそれぞれ燃料ガス貯蔵部3a及び熱媒体貯蔵部3bを構成する。熱媒体貯蔵部3bの容積は、燃料電池システム101Aの定格出力に応じて定められる(設計される)。例えば、燃料電池システム101Aの出力定格が数kWに定められ、熱媒体貯蔵部3bの容積が500Lに定められる。
そして、熱媒体タンク3の取り出し口3dと戻し口3eとを、燃料電池2を通って接続するように熱媒体ライン31が形成されている。燃料電池2には、熱媒体内部流路31aが設けられていて、これが熱媒体ライン31の燃料電池2を通過する部分を構成している。熱媒体ライン31には熱媒体開閉弁33と熱媒体ポンプ32とが設けられている。なお、熱媒体開閉弁33は省略してもよい。これにより、熱媒体開閉弁33が開放された状態で熱媒体ポンプ32を作動させると、熱媒体タンク3の取り出し口3dから熱媒体が熱媒体ライン31に取り出され、燃料電池2の熱媒体内部流路31aを通過する間に燃料電池2の排熱を回収して昇温するとともに燃料電池2を冷却する。この昇温した熱媒体が熱媒体タンク3の戻し口から熱媒体タンク3に戻る。この昇温した熱媒体により、熱媒体タンク3の熱媒体の温度が上昇すると、熱媒体排出開閉弁44及び熱媒体供給開閉弁43を開放して、熱媒体を入れ替えることにより、熱媒体タンク3の熱媒体の温度が低下される。このようにして、冷却システム4は、燃料電池2を直接に冷却する。
熱媒体タンク3には、さらに、熱媒体供給ライン41と熱媒体排出ライン42とが接続されている。熱媒体供給ライン41には熱媒体供給開閉弁43(第6弁)が設けられ、熱媒体排出ライン42には熱媒体排出開閉弁44(第7弁)が設けられている。熱媒体は液状のものであればよい。熱媒体として、水、不凍液、油等が用いられる。水以外の熱媒体を用いる場合には、熱媒体供給装置を備える必要がある。熱媒体として市水を用いる場合には熱媒体供給装置を備える必要はなく、かつ0.3MPa程度の水圧が得られる。
制御器50は、水素生成装置1、流量調整弁21、熱媒体ポンプ32、各開閉弁12,14,16,18,20,33,43,44を含む燃料電池システム101A全体の動作を制御する。制御器50は、単独の制御器で集中制御を行うよう構成されてもよく、複数の制御器で分散制御を行うよう構成されてもよい。制御器50は、制御機能を有すればよく、例えば、マイクロコンピュータ、プロセッサ、論理回路等で構成される。
燃料電池システム101Aは、また、出力制御器(図示せず)、停電検知器(図示せず)、及び電源切替器(図示せず)を備えている。出力制御器は、例えばインバータで構成されていて、燃料電池2から電力を取り出して負荷に供給する。停電検知器は、例えば、電力系統の電圧を検知する電力で構成されていて、電力系統の停電を検知してこれを制御器50に出力する。電源切替器は、所定の電力負荷を電力系統と非常用電源である燃料電池システム101Aとに選択的に接続するよう構成されている。所定の電力負荷とは、燃料電池システム101Aの電力供給対象の電力負荷である。制御器50は、停電検知器から停電を入力されると、電源切替器によって、所定の電力負荷を燃料電池システム101Aに接続し、かつ、燃料電池システム101Aを起動して発電を行う。また、制御器50は、出力制御器の出力電力(電流)を制御するとともにこれに合わせて燃料電池2への燃料ガスの供給量を制御するようにして燃料電池2の発電を制御する。燃料電池システム101Aは、さらに熱媒体タンク3の熱媒体の温度を検知する温度センサ(図示せず)を備えていて、制御器50は、この温度センサの検知出力に基づいて熱媒体タンク3の熱媒体の温度を制御する。
[動作]
次に、以上のように構成された燃料電池システム101Aの動作(燃料電池システムの運転方法)を図1及び図2を参照しながら説明する。
図2は図1の燃料電池システムの運転制御の一例を示すフローチャートである。
この運転制御は、停電が検知される都度、制御器50によって遂行される。また、初期状態では、前回の燃料電池システム101Aの作動によって、熱媒体タンク3には、燃料ガスと熱媒体とが貯蔵されている。また、燃料ガスは、後述するように圧縮されていて、熱媒体タンク3における熱媒体の液面は上昇している。燃料電池システム101Aでは、各開閉弁12,14,16,18,20,33,43,44は閉止されている。
制御器50は、停電検知器によって停電を検知すると、電源切替器によって、所定の電力負荷を燃料電池システム101Aに接続し、かつ貯蔵燃料ガスを用いて発電を行う(ステップS1)。具体的には、制御器50は、下流側燃料ガス開閉弁18及び貯蔵燃料ガス開閉弁20を開放する。ここで、上流側燃料ガス開閉弁16は閉止されている。これにより、熱媒体タンク3から燃料ガスが、その圧力により、燃料ガス貯蔵ライン19及び燃料ガス供給ライン15を介して燃料電池2の燃料極に供給される。制御器50は、また、酸化剤ガスとしての空気を燃料電池2の空気極に供給する。そして、出力制御器の出力電力に合わせて、流量調整弁21により燃料電池2への燃料ガスの供給量を制御して燃料電池2による発電を行う。また、制御器50は、熱媒体開閉弁33を開放するとともに熱媒体ポンプ32を作動させて、熱媒体ライン31に熱媒体タンク3の熱媒体を通流させる。これにより、燃料電池2が冷却される。そして、制御器50は、熱媒体タンク3の熱媒体の温度が所定温度(例えば70℃)になると、熱媒体排出開閉弁44及び熱媒体供給開閉弁43を開放して熱媒体を入れ替えて熱媒体の温度を下げる。このようにして、当該熱媒体の温度が制御される。
次に、制御器50は、水素生成装置1を昇温する(ステップS2)。具体的には、制御器50は、原料ガス開閉弁12及び改質水開閉弁14を開放し、加熱器を作動させる。この加熱器の作動には燃料電池2で発電される電力が用いられる。これにより、水素生成装置1は昇温する。水素生成装置1の昇温時間は、例えば1時間程度である。
制御器50は、水素生成装置1が所定の温度まで昇温すると、停電検知器によって電力系統の停電が回復した否か判定する(ステップS3)。所定の温度とは、例えば、水素生成装置1で生成される燃料ガスのCO濃度が所定レベルまで低下するような温度である。
停電が回復した場合(ステップS3でYES)には、後述するように電力系統からの電力に切り替える。一方、停電が回復していない場合(ステップS3でNO)には、水素生成装置1から燃料ガスを供給して発電を行う(ステップS4,S5)。具体的には、制御器50は、貯蔵燃料ガス開閉弁20を閉止し、かつ上流側燃料ガス開閉弁16を開放する。これにより、燃料ガスが水素生成装置1から燃料電池2の燃料極に供給されて発電が行われる。
そして、制御器50は、停電が回復するまで、この水素生成装置1からの燃料ガスによる発電を継続する(ステップS6でNO,S4,S5,S6)。
制御器50は、停電が回復すると(ステップS6でYES)、電力系統の電力に切り替える。具体的には、制御器50は、出力制御器による電力の取り出しを停止し、電源切替器によって所定の電力負荷を電力系統に接続する。これにより、燃料電池2による発電が停止される。そして、制御器50は、熱媒体ポンプ32を停止し、かつ熱媒体開閉弁33を閉止する。
その後、制御器50は、熱媒体タンク3に燃料ガスを充填しかつ圧縮する(ステップS8)。具体的には、制御器50は、貯蔵燃料ガス開閉弁20を開放し、下流側燃料ガス開閉弁18を閉止し、かつ熱媒体排出開閉弁44を開放する。これにより、熱媒体タンク3における熱媒体の液面が低下し、それに伴って、水素生成装置1から燃料ガスが燃料ガス供給ライン15及び燃料ガス貯蔵ライン19を介して熱媒体タンク3に供給される。制御器50は、熱媒体の液面が所定の程度まで低下すると、貯蔵燃料ガス開閉弁20及び熱媒体供給開閉弁44を閉止する。これにより、燃料ガスが熱媒体タンク3に充填される。その後、制御器50は、熱媒体供給開閉弁43を開放し、熱媒体を熱媒体タンク3に供給する。これにより、熱媒体の液面が上昇し、それに伴って、熱媒体タンク3に充填された燃料ガスが圧縮される。その後、制御器50は熱媒体供給開閉弁43を閉止する。これにより、熱媒体タンク3に充填された燃料ガスが熱媒体の供給圧力(例えば0.3MPap程度)に圧縮される。なお、熱媒体の液面の制御を、液面高さ、熱媒体の流量等を検知してそれに基づいて行うようにしてもよい。また、燃料ガス貯蔵ライン19に圧縮器を設け、この圧縮器によって、燃料ガスを圧縮しながら熱媒体タンク3に充填するようにしてもよい。
ついで、制御器50は、原料ガス開閉弁12及び改質水開閉弁14を閉止し、かつ加熱器を停止して、水素生成装置1を停止する(ステップS9)。これにより、燃料電池システムが停止される。
以上に説明したように、本実施の形態1の燃料電池システム101Aによれば、燃料電池システム101Aの起動時に水素生成装置1が昇温するまで貯蔵した燃料ガスを用いて発電し、水素生成装置1の昇温後に水素生成装置1で生成された燃料ガスを用いて発電するとともに水素生成装置1で生成された燃料ガスを熱媒体タンク3に貯蔵するので、水素ボンベを取り替えることなく、繰り返し迅速に起動することができる。
[変形例1]
本実施の形態1の変形例1においては、燃料電池システム101Aは、熱媒体貯蔵部3bに貯蔵する燃料ガスを圧縮しない。具体的には、燃料電池システム101Aは、燃料ガス貯蔵ライン19に流量調整弁21を備えておらず、熱媒体供給ライン41に流量調整弁を備えている。
図2のステップS8において、制御器50は、貯蔵燃料ガス開閉弁20を開放し、下流側燃料ガス開閉弁18を閉止し、かつ熱媒体排出開閉弁44を開放する。これにより、熱媒体タンク3における熱媒体の液面が低下し、それに伴って、水素生成装置1から燃料ガスが熱媒体タンク3に供給される。その後、制御器50は貯蔵燃料ガス開閉弁20及び熱媒体供給開閉弁44を閉止する。これにより、燃料ガスが熱媒体タンク3に充填される。その後、制御器50は、水素生成装置1を停止する(ステップS9)。
一方、図2のステップS1において、制御器50は、下流側燃料ガス開閉弁18及び貯蔵燃料ガス開閉弁20を開放する。そして、制御器50は、熱媒体供給開閉弁43を開放し、流量調整弁で流量を調整しながら熱媒体タンク3に熱媒体を供給する。これにより、熱媒体タンク3における熱媒体の液面が上昇し、それに伴って、熱媒体タンク3から貯蔵されていた燃料ガスが燃料電池2に供給される。
これ以外の点は上述の基本構成(図1及び図2の構成)と同じである。本変形例1によれば、燃料ガスの圧縮ステップを省略することができる。
[変形例2]
本実施の形態1の変形例2では、燃料電池システム101Aは、燃料ガス貯蔵ライン19に、流量調整弁21に代えてポンプが設けられる。そして、このポンプの作動により、水素生成装置1から熱媒体タンク3に燃料ガスが充填され、かつ、熱媒体タンク3から燃料ガスが燃料電池2に供給される。これ以外の点は、上述の基本構成(図1及び図2の構成)と同じである。本変形例2によっても、上述の基本構成と同様の効果が得られる。
(実施の形態2)
図3は本発明の実施の形態2に係る燃料電池システムの構成を模式的に示すブロック図である。
図3に示すように、本実施の形態2の燃料電池システム101Bは、燃料ガス貯蔵ライン19が省略されている点が実施の形態1の燃料電池システム101Aと相違し、その他の点は実施の形態1の燃料電池システム101Aと同じである。以下、この相違点を説明する。
本実施の形態2の燃料電池システム101Bでは、燃料ガス供給ライン15の途中に熱媒体タンク3が挿入されている。つまり、熱媒体タンク3の適所(例えば、上端面)に、燃料ガス入口3fと燃料ガス出口3gとが設けられており、燃料ガス入口3fに燃料ガス供給ライン15の上流側部分15aが接続され、燃料ガス出口3gに燃料ガス供給ライン15の下流側部分15bが接続されている。そして、燃料ガス供給ライン15の下流側部分15bに流量調整弁21が設けられている。経路切替機構25は、ここでは、燃料ガス供給ライン15、上流側燃料ガス開閉弁16(第4弁)、及び下流側燃料ガス開閉弁18(第5弁)によって構成されている。
このように構成された燃料電池システム101Bでは、図2のステップS1において、制御器50は、下流側燃料ガス開閉弁18を開放する。これにより、熱媒体タンク3から燃料ガスが、その圧力により、燃料ガス供給ライン15の下流側部分15bを介して燃料電池2の燃料極に供給され、熱媒体タンク3に貯蔵された燃料ガスを用いて発電が行われる。
また、ステップS5において、制御器50は、上流側燃料ガス開閉弁16を開放する。これにより、燃料ガスが、水素生成装置1から燃料ガス供給ライン15の上流側部分15aと熱媒体タンク3と燃料ガス供給ライン15の下流側部分15bとを通って燃料電池2の燃料極に供給されて発電が行われる。
また、ステップS8において、制御器50は、下流側燃料ガス開閉弁18を閉止し、かつ熱媒体排出開閉弁44を開放する。これにより、熱媒体タンク3における熱媒体の液面が低下し、それに伴って、水素生成装置1から燃料ガスが熱媒体タンク3に供給される。その後、実施の形態1と同様にして、熱媒体タンク3に燃料ガスが充填されかつ圧縮される。
本実施の形態2によれば、実施の形態1と同様の効果が得られ、さらに、燃料ガス貯蔵ライン19が省略されるので、構成が簡素化される。
(実施の形態3)
本発明の実施の形態3は、燃料電池システムがコジェネレーションシステムとして用いられる場合の構成を例示したものである。
図4は本発明の実施の形態3に係る燃料電池システムの構成を模式的に示すブロック図である。
図4に示すように、本実施の形態3の燃料電池システム101Cは、基本的に、燃料電池が、非常用電源としての適性を要求されない点と燃料電池を間接的に冷却する二次冷却システムの熱媒体タンクに燃料ガスを貯蔵するよう構成されている点とが実施の形態1の燃料電池システム101Aと相違し、その他の点は実施の形態1の燃料電池システム101Aと同様である。以下、この相違点を具体的に説明する。
本実施の形態1の燃料電池システム101Cでは、燃料電池2は特に限定されず、燃料電池2として、高分子電解質形燃料電池、固体酸化物形燃料電池、燐酸形燃料電池、溶融炭酸塩形燃料電池等の種々のタイプの燃料電池を用いることができる。
また、燃料電池システム101Cでは、冷却システム4が一次冷却システム4Aと二次冷却システム4Bとを含んでいる。
本実施の形態1の一次冷却システム4Aは、基本的に実施の形態1の冷却システム4に相当する。すなわち、一次冷却システム4Aにおける、第1熱媒体、第1熱媒体タンク5、第1熱媒体ライン71、第1熱媒体内部流路71a、及び第1熱媒体ポンプ72は、それぞれ、実施の形態1の冷却システム4における熱媒体、熱媒体タンク3、熱媒体ライン31、熱媒体内部流路31a、及び熱媒体ポンプ32に相当する。但し、一次冷却システム4Aでは、第1熱媒体タンク5は第1熱媒体のみを貯蔵するよう構成され、熱媒体開閉弁33に相当する開閉弁が省略され、かつ第1熱媒体内部流路71aの燃料電池2と第1熱媒体タンク5の戻し口との間の部分に熱交換器75が設けられている。これにより、一次冷却システム4Aでは、第1熱媒体ポンプ72の作動により、第1熱媒体タンク5の取り出し口から第1熱媒体が第1熱媒体ライン71に取り出され、燃料電池2の第1熱媒体内部流路71aを通過する間に燃料電池2の排熱を回収して昇温するとともに燃料電池2を冷却する。この昇温した第1熱媒体が熱交換器75において熱交換により後述する第2熱媒体に回収した排熱を伝達して降温し、第1熱媒体タンク5の戻し口に戻る。このようにして、一次冷却システム4は、燃料電池2を直接に冷却する。
二次冷却システム4Bは、第2熱媒体タンク6に貯蔵された第2熱媒体(熱媒体)を用いて燃料電池2を間接的に冷却するように構成されている。具体的には、二次冷却システム4Bは、第2熱媒体タンク6と第2熱媒体ライン51とを主な要素として備えている。
第2熱媒体タンク6は、液状の第2熱媒体と燃料ガスとを貯蔵するよう構成されている。具体的には、第2熱媒体タンク6の上部(例えば上端面)に、燃料ガス貯蔵ライン19の先端が接続されていて、その接続口6cから燃料ガスが第2熱媒体タンク6に充填される。また、第2熱媒体タンク6の適所には、第2熱媒体の取り出し口6dと戻し口6eとが設けられている。第2熱媒体タンク6は、いわゆる積層沸き上げ型に構成されており、第2熱媒体タンク6の下部に取り出し口6dが設けられ、第2熱媒体タンク6の上部に戻し口6eが設けられている。従って、第2熱媒体タンク6には、液面が戻し口6eを越える高さとなるように第2熱媒体が貯蔵され、この第2熱媒体の液面と第2熱媒体タンク6の天井面(上端面の内面)との間に燃料ガスが貯蔵される。第2熱媒体タンク6における燃料ガス及び第2熱媒体が存在する部分がそれぞれ燃料ガス貯蔵部6a及び第2熱媒体貯蔵部6bを構成する。第2熱媒体貯蔵部6bの容積は、燃料電池システム101Cの定格出力に応じて定められる。例えば、燃料電池システム101Cの定格出力が1kWに定められ、熱媒体貯蔵部3bの容積が250Lに定められる。
そして、第2熱媒体タンク6の取り出し口6dと戻し口6eとを、熱交換器75を通って接続するように第2熱媒体ライン51が形成されている。熱交換器75には、内部に第1熱媒体流路(図示せず)と第2熱媒体流路(図示せず)とが設けられていて、この第2熱媒体流路これが第2熱媒体ライン51の熱交換器75を通過する部分を構成している。第2熱媒体ライン51には第2熱媒体開閉弁53と第2熱媒体ポンプ52とが設けられている。なお、第2熱媒体開閉弁53は省略してもよい。これにより、第2熱媒体開閉弁53が開放された状態で第2熱媒体ポンプ52を作動させると、第2熱媒体タンク6の取り出し口6dから第2熱媒体が第2熱媒体ライン51に取り出され、熱交換器75の第2熱媒体流路を通過する間に第1熱媒体流路71を流れる第1熱媒体から燃料電池2の排熱を回収して昇温するとともに第1熱媒体を冷却する。この昇温した第2熱媒体が第2熱媒体タンク6の戻し口から第2熱媒体タンク6に戻る。このようにして、二次冷却システム4Bは、燃料電池2を間接に冷却する。また、燃料電池2の排熱を第2熱媒体タンク6に貯蔵する。
第2熱媒体タンク6には、さらに、第2熱媒体供給ライン55と第2熱媒体利用ライン56と第2熱媒体排出ライン58とが接続されている。第2熱媒体供給ライン55には第2熱媒体供給開閉弁57が設けられ、第2熱媒体利用ライン56には第2熱媒体利用開閉弁7が設けられ、第2熱媒体排出ライン58には第2熱媒体排出開閉弁8が設けられている。第2熱媒体排出ライン58は、第2熱媒体利用ライン56より低い位置に接続されている。第2熱媒体は液状のものであればよい。第2熱媒体として、水、不凍液、油等が用いられる。水以外の熱媒体を用いる場合には、第2熱媒体供給装置を備える必要がある。典型的には第2熱媒体として市水が用いられる。この場合には第2熱媒体供給装置を備える必要はなく、かつ0.3MPa程度の水圧が得られる。
次に以上のように構成された燃料電池システム101Cの動作(燃料電池システム101Cの運転方法)を図4及び図5を参照しながら説明する。
図5は図4の燃料電池システムの運転制御を示すフローチャートである。
初期状態では、前回の燃料電池システム101Cの作動によって、第2熱媒体タンク6には、圧縮された燃料ガスと第2熱媒体とが貯蔵されている。また、燃料電池システム101Cでは、各開閉弁7,8,12,14,16,18,20,53,57は閉止されている。
制御器50は、起動信号が入力されると、貯蔵燃料ガスを用いて発電を行う(ステップS11)。具体的には、例えば、ユーザが起動ボタンを操作することにより、あるいは電力負荷の要求により起動信号が出力される。すると、制御器50は、実施の形態1(図2)のステップS1と同様に発電を行う。そして、制御器50は、第1熱媒体ポンプ72を作動させて、第1熱媒体により燃料電池2を冷却するとともに燃料電池2から排熱を回収する。また、制御器50は、第2熱媒体開閉弁53を開放するとともに第2熱媒体ポンプ52を作動させて、第2熱媒体ライン51に第2熱媒体タンク6の第2熱媒体を通流させる。これにより、第2熱媒体により熱交換器75において第1熱媒体から燃料電池2の排熱が回収される。その結果、二次冷却システム4Bにより燃料電池2が間接的に冷却されるとともに、燃料電池2の排熱が第2熱媒体タンク6に貯蔵される。
次に、制御器50は、水素生成装置1を昇温する(ステップS12)。これは、実施の形態1のステップS2と同様であるので、説明を省略する。
制御器50は、水素生成装置1が所定の温度まで昇温すると、水素生成装置1から燃料ガスを供給して発電を行う(ステップS13)。これは実施の形態1のステップS4及びS5と同じであるので、説明を省略する。
その後、制御器50は、第2熱媒体タンク6に燃料ガスを充填しかつ圧縮する(ステップS14、S15)。具体的には、制御器50は、貯蔵燃料ガス開閉弁20を開放し、下流側燃料ガス開閉弁18を閉止し、かつ第2熱媒体排出開閉弁8を開放する。第2熱媒体利用開閉弁7ではなく第2熱媒体排出開閉弁8を開放するのは、排熱を回収して昇温した第2熱媒体を排出することによる熱損失を抑制するためである。これにより、第2熱媒体排出ライン58から第2熱媒体が排出されて第2熱媒体タンク6における第2熱媒体の液面が低下し、それに伴って、水素生成装置1から燃料ガスが燃料ガス供給ライン15及び燃料ガス貯蔵ライン19を介して第2熱媒体タンク6に供給される。制御器50は、第2熱媒体の液面が所定の程度まで低下すると、貯蔵燃料ガス開閉弁20及び第2熱媒体排出開閉弁8を閉止する。これにより、燃料ガスが第2熱媒体タンク6に充填される。その後、制御器50は、第2熱媒体供給開閉弁57を開放し、第2熱媒体を第2熱媒体タンク6に供給する。これにより、第2熱媒体の液面が上昇し、それに伴って、第2熱媒体タンク6に充填された燃料ガスが圧縮される。その後、制御器50は第2熱媒体供給開閉弁57を閉止する。これにより、第2熱媒体タンク6に充填された燃料ガスが第2熱媒体の供給圧力(例えば0.3MPap程度)に圧縮される。なお、第2熱媒体の液面の制御を、液面高さ、第2熱媒体の流量等を検知してそれに基づいて行うようにしてもよい。また、燃料ガス貯蔵ライン19に圧縮器を設け、この圧縮器によって、燃料ガスを圧縮しながら第2熱媒体タンク6に充填するようにしてもよい。
その後、制御器50は、第2熱媒体の温度が所定の温度(例えば80℃)に到達するまで、燃料電池2による発電と冷却システム4(一次冷却システム4A及び二次冷却システム4B)による排熱の回収を継続する(ステップS17でNO、S16、S17)。
そして、制御器50は、第2熱媒体の温度が所定の温度に到達すると(ステップS17でYES)、燃料電池システム101Cを停止する(ステップS18)。具体的には、水素生成装置1、第1熱媒体ポンプ72、及び第2熱媒体ポンプ52を停止し、かつ各開閉弁12,14,16,18,53を閉止する。
そして、例えば、第2熱媒体の利用要求があると、制御器50は、第2熱媒体利用開閉弁7及び第2熱媒体供給開閉弁57を開放する。これにより、第2熱媒体供給ライン55から昇温されていない第2熱媒体が供給されるとともに第2熱媒体利用ライン56から昇温された高温の第2熱媒体が外部に排出され、利用に供される(ステップS19)。
以上に説明したように、本実施の形態3の燃料電池システム101Cによれば、実施の形態1と同様に水素ボンベを取り替えることなく、繰り返し迅速に起動することができる。
また、本実施の形態3では、第2熱媒体タンク6が積層沸き上げ型に構成されていて、下から上に向かって温度が高くなるように第2熱媒体が貯蔵されている。一方、第2熱媒体タンク6に、昇温された第2熱媒体を利用するための第2熱媒体利用ライン56と燃料ガスを充填するための第2熱媒体排出ライン58とを設け、第2熱媒体利用ライン56より第2熱媒体排出ライン58を低く設けたので、燃料ガスを第2熱媒体タンク6に充填する際に、昇温した第2熱媒体を排出することによる熱損失を抑制することができる。
また、本実施の形態3では、水素生成装置1が昇温した直後に燃料ガスを第2熱媒体タンク6に充填するので、昇温され始めたばかりの第2熱媒体が第2熱媒体タンク6から排出される。このため、昇温した第2熱媒体を排出することによる熱損失をさらに抑制することができる。
なお、燃料ガスの第2熱媒体タンク6への充填は、水素生成装置1が昇温した後、燃料電池システム101Cが停止されるまでの間の任意のタイミングで行うことができる。
また、昇温した第2熱媒体の外部利用は、第2熱媒体の温度が所定温度に到達した後の任意のタイミングで行うことができる。
[変形例3]
上述の基本構成(図4の構成)では、第2熱媒体を外部に供給する際、第2熱媒体タンク6に貯蔵されている燃料ガスを取り出すことなく、第2熱媒体のみを取り出す(排出する)必要がある。一方、昇温された第2熱媒体は、第2熱媒体タンク6において上部に供給され下方に移動しながら蓄積されるため、第2熱媒体の熱を利用(供給)する場合には、熱媒体貯蔵部6bの上部から第2熱媒体を取り出す必要がある。本実施の形態3の変形例3は、熱媒体貯蔵部6bの上部から第2熱媒体を好適に取り出すことが可能な第2熱媒体タンク6の構成例を示すものである。
図6(a)〜図6(d)は、本実施の形態3の燃料電池システム101Cにおける第2熱媒体タンク6の変形例を示す模式図である。図6(a)〜図6(d)では、第2熱媒体タンク6の第2熱媒体の外部利用に関する要素のみ示し、他の要素の図示を省略している。
図6(a)の構成例では、第2熱媒体タンク6の互いに異なる高さ位置に複数(ここでは4つ)の第2熱媒体利用ライン62が接続されている。そして、第2熱媒体タンク6に第2熱媒体の液面位置を検知する液面位置検知器61が設けられ、その検知出力が制御器50に入力されている。制御器50は、液面位置検知器61の検知出力に基づいて、複数の第2熱媒体利用ライン62のうち、第2熱媒体の液面より低くかつ最も高い位置の第2熱媒体利用ライン62を選択して第2熱媒体を排出する。これにより、第2熱媒体タンク6に貯蔵された燃料ガスが第2熱媒体利用ライン62から誤って排出されるのが防止され、第2熱媒体貯蔵部6bの上部から第2熱媒体を好適に取り出すことができる。
図6(b)の構成例では、第2熱媒体タンク6に1つの第2熱媒体利用ライン62が接続されている。この第2熱媒体利用ライン62には、第2熱媒体タンク6の内部において、取り入れ管63が上下方向に回動可能に接続されている。そして、図6(a)の構成例と同様に、液面位置検知器61が設けられている。制御器50は、液面位置検知器61の検知出力に基づいて、取り入れ管63の先端が第2熱媒体の液面より低くなるように当該取り入れ管63を回動させて、第2熱媒体を排出する。これにより、第2熱媒体貯蔵部6bの上部から第2熱媒体を好適に取り出すことができる。
図6(c)の構成例では、第2熱媒体タンク6に上端面から下方に延びるように隔壁64が設けられている。そして、第2熱媒体タンク6における隔壁64の一方の側に燃料ガス貯蔵ライン19が接続され、隔壁64の他方の側に第2熱媒体利用ライン62が接続されている。従って、圧縮された燃料ガスは第2熱媒体タンク6における隔壁64の一方の側の上部に貯蔵され、残りの部分に第2熱媒体が貯蔵されるので、燃料ガスは隔壁64の他方の側への移動を当該隔壁64によって阻止される。これにより、第2熱媒体貯蔵部6bの上部から第2熱媒体を好適に取り出すことができる。しかも、液面位置検知器61を省略することができる。
図6(d)の構成例では、第2熱媒体タンク6が第2熱媒体を貯蔵する第1タンク65と燃料ガスを貯蔵する第2タンク66とを備えている。第1タンク65には第2熱媒体利用ライン62が接続され、第2タンク66には燃料ガス貯蔵ライン19が接続されている。そして、第1タンク66の下部に連通路67を介して第2タンク66が接続され、当該連通路67にも第2熱媒体が存在している。従って、燃料ガスは第1タンク65中の第2熱媒体の圧力により、第1タンク65への移動を阻止される。これにより、第2熱媒体タンク6に貯蔵された燃料ガスが第2熱媒体利用ライン62から誤って排出されるのが防止され、第2熱媒体貯蔵部6bの上部から第2熱媒体を好適に取り出すことができる。しかも、液面位置検知器61を省略することができる。
このように、本変形例3によれば、第2熱媒体貯蔵部6bの上部から第2熱媒体を好適に取り出すことができる。
(実施の形態4)
図7は本発明の実施の形態4に係る燃料電池システムの構成を模式的に示すブロック図である。
図7に示すように、本実施の形態4の燃料電池システム101Dは、燃料ガス貯蔵ライン19が省略されている点が実施の形態3の燃料電池システム101Cと相違し、その他の点は実施の形態3の燃料電池システム101Cと同じである。両者の相違の詳細な説明は、実施の形態2における、実施の形態1の燃料電池システム101Aと実施の形態2の燃料電池システム101Bとの相違の詳細な説明と同様であるので、これを省略する。
(その他の実施の形態)
実施の形態2の変形例として、当該実施の形態2を実施の形態1の変形例1及び変形例2のように変形してもよい。
また、実施の形態3の変形例として、当該実施の形態3を実施の形態1の変形例1及び変形例2のように変形してもよい。
また、実施の形態4の変形例として、当該実施の形態4を実施の形態1の変形例1及び変形例2のように変形してもよい。
また、実施の形態1(変形例1及び2も含む)及び実施の形態2(変形例を含む)において、熱媒体ライン31に、燃料電池2の排熱を回収した熱媒体を放熱させる放熱器を設け、熱媒体の入れ替えによる熱媒体の降温処理を省略してもよい。
また、実施の形態1及び2では熱媒体タンク3に貯蔵された熱媒体を循環させているが、燃料電池2を通過した後、外部に放出するよう構成してもよい。
上記説明から、当業者にとっては、本発明の多くの改良や他の実施形態が明らかである。従って、上記説明は、例示としてのみ解釈されるべきであり、本発明を実行する最良の態様を当業者に教示する目的で提供されたものである。本発明の精神を逸脱することなく、その構造及び/又は機能の詳細を実質的に変更できる。
本発明の燃料電池システム及びその運転方法は、簡便な構成で迅速に起動できる非常用電源及びその運転方法並びにコジェネレーションシステム及びその運転方法として有用である。
1 水素生成装置
2 燃料電池
3 熱媒体タンク
3a 燃料ガス貯蔵部
3b 熱媒体貯蔵部
3c 接続口
3d 取り出し口
3e 戻し口
3f 燃料ガス入口
3g 燃料ガス出口
4 冷却システム
4A 一次冷却システム
4B 二次冷却システム
5 第1熱媒体タンク
6 第2熱媒体タンク
6a 燃料ガス貯蔵部
6b 第2熱媒体貯蔵部
6c 接続口
6d 取り出し口
6e 戻し口
7 第2熱媒体利用開閉弁
8 第2熱媒体排出開閉弁
11 原料ガスライン
12 原料ガス開閉弁
13 改質水ライン
14 改質水開閉弁
15 燃料ガス供給ライン
15a 上流側部分
15b 下流側部分
16 上流側燃料ガス開閉弁
17 分岐点
18 下流側燃料ガス開閉弁
19 燃料ガス貯蔵ライン
20 貯蔵燃料ガス開閉弁
21 流量調整弁
25 経路切替機構
31 熱媒体ライン
31a 熱媒体内部流路
32 熱媒体ポンプ
33 熱媒体開閉弁
41 熱媒体供給ライン
42 熱媒体排出ライン
43 熱媒体供給開閉弁
44 熱媒体排出開閉弁
50 制御器
51 第2熱媒体ライン
52 第2熱媒体ポンプ
53 第2熱媒体開閉弁
55 第2熱媒体供給ライン
56 第2熱媒体利用ライン
57 第2熱媒体供給開閉弁
58 第2熱媒体排出ライン
61 液面位置検知器
62 第2熱媒体利用ライン
63 取り入れ管
64 隔壁
65 第1タンク
66 第2タンク
67 連通路
71 第1熱媒体ライン
71a 第1熱媒体内部流路
72 第1熱媒体ポンプ
75 熱交換器
101A 燃料電池システム
101B 燃料電池システム
101C 燃料電池システム
101D 燃料電池システム

Claims (9)

  1. 原料ガスを改質して水素を含有する燃料ガスを生成する水素生成装置と、
    前記水素生成装置で生成された燃料ガスを用いて発電する燃料電池と、
    液状の熱媒体と前記燃料ガスとを貯蔵する熱媒体タンクと、
    前記熱媒体タンクに貯蔵された熱媒体を用いて前記燃料電池を直接又は間接に冷却する冷却システムと、
    前記水素生成装置、前記燃料電池、及び前記熱媒体タンクの間における前記燃料ガスの流通経路を切り替える経路切替機構と、
    前記燃料電池による発電を制御する制御器と、を備え、
    前記制御器は、前記経路切替機構によって、起動時に前記熱媒体タンクから前記燃料電池に前記燃料ガスを供給し、かつ起動後に前記水素生成装置から前記熱媒体タンクに前記燃料ガスを充填するようにして前記燃料電池による発電を制御するよう構成されている、燃料電池システム。
  2. 前記冷却システムは、前記燃料電池を通過するように形成された熱媒体ラインに前記熱媒体タンクに貯蔵された前記熱媒体を通流させて前記燃料電池を直接に冷却するよう構成されている、請求項1に記載の燃料電池システム。
  3. 前記冷却システムは、第1熱媒体を貯蔵する第1熱媒体タンクと、前記燃料電池を通過するように形成された第1熱媒体ラインとを有し、前記第1熱媒体タンクに貯蔵された前記第1熱媒体を前記第1熱媒体ラインに通流させて該第1熱媒体が前記燃料電池から排熱を回収するよう構成された一次冷却システムと、
    前記熱媒体としての第2熱媒体と前記燃料ガスとを貯蔵する前記熱媒体タンクとしての第2熱媒体タンクと、前記第2熱媒体タンクに貯蔵された前記第2熱媒体が通流して該第2熱媒体タンクに戻るように形成された第2熱媒体ラインと、前記第1熱媒体ラインを通流する前記第1熱媒体と前記第2熱媒体ラインを通流する前記第2熱媒体とを熱交換させる熱交換器とを有し、前記第2熱媒体ラインに前記第2熱媒体を通流させて、該第2熱媒体が前記熱交換により前記第1熱媒体から前記排熱を回収することにより前記燃料電池を間接に冷却するよう構成された二次冷却システムと、を備えている、請求項1に記載の燃料電池システム。
  4. 前記経路切替機構は、前記水素生成装置から前記燃料電池へ前記燃料ガスを供給する燃料ガス供給ラインと、一端が前記燃料ガス供給ラインに接続され、他端が前記熱媒体タンクに接続された燃料ガス貯蔵ラインと、前記燃料ガスラインの前記燃料ガス貯蔵ラインとの接続点と前記水素生成装置との間の部分を開閉する第1弁と、前記燃料ガスラインの前記水素ガス貯蔵ラインとの接続点と前記燃料電池との間の部分を開閉する第2弁と、前記燃料ガス貯蔵ラインを開閉する第3弁とを備え、
    前記制御器は、前記第1乃至第3弁を開閉することにより、前記熱媒体タンクから前記燃料電池への前記燃料ガスの供給、前記水素生成装置から前記熱媒体タンクへの前記燃料ガスの充填、及び前記水素生成装置から前記燃料電池への前記燃料ガスの供給を行うよう構成されている、請求項1に記載の燃料電池システム。
  5. 前記経路切替機構は、前記水素生成装置から前記熱媒体タンクを通過して前記燃料電池へ至るように形成された燃料ガス供給ラインと、前記燃料ガス供給ラインの前記水素生成装置と前記熱媒体タンクとの間の部分を開閉する第4弁と、前記燃料ガス供給ラインの前記熱媒体タンクと前記燃料電池との間の部分を開閉する第5弁とを備え、
    前記制御器は、前記第4弁及び第5弁を開閉することにより、前記熱媒体タンクから前記燃料電池への前記燃料ガスの供給、前記水素生成装置から前記熱媒体タンクへの前記燃料ガスの充填、及び前記水素生成装置から前記燃料電池への前記燃料ガスの供給を行うよう構成されている、請求項1に記載の燃料電池システム。
  6. その開放及び閉止により、外部から前記熱媒体タンクに熱媒体を供給及び供給停止する第6弁と、
    その開放及び閉止により、前記熱媒体タンクから外部に熱媒体を排出及び排出停止する第7弁と、を備え、
    前記制御器は、前記第6弁を閉止しかつ前記7弁を開放して前記熱媒体タンクから外部に前記熱媒体を排出することにより、前記水素生成装置から前記熱媒体タンクに前記燃料ガスを充填し、かつ、前記第6弁を閉止しかつ前記7弁を開放して前記熱媒体タンクに外部から前記熱媒体を供給することにより、前記熱媒体タンクに充填された前記燃料ガスを前記燃料電池に供給するよう構成されている、請求項4又は5に記載の燃料電池システム。
  7. 前記制御器は、前記熱媒体タンクへ前記燃料ガスを充填した後、該熱媒体タンクに連通する全ての燃料ガスのラインを所定の前記弁により閉止し、前記第6弁を閉止しかつ前記第7弁を開放して前記熱媒体タンクに外部から熱媒体を供給し、それにより、前記熱媒体の圧力によって前記燃料ガスを圧縮するよう構成されている、請求項6に記載の燃料電池システム。
  8. 前記熱媒体タンクは、前記燃料ガスの流通経路との連通口が前記熱媒体の取り出し口よりも高く位置するように構成されており、
    前記制御器は、前記熱媒体の液面を前記取り出し口より高く維持しながら当該熱媒体を排出するようにして、前記連通口を介して前記熱媒体タンクに前記燃料ガスを充填するよう構成されている、請求項1に記載の燃料電池システム。
  9. 原料ガスを改質して水素を含有する燃料ガスを生成する水素生成装置と、
    前記水素生成装置で生成された燃料ガスを用いて発電する燃料電池と、
    液状の熱媒体と前記燃料ガスとを貯蔵する熱媒体タンクと、
    前記熱媒体タンクに貯蔵された熱媒体を用いて前記燃料電池を直接又は間接に冷却する冷却システムと、
    前記水素生成装置、前記燃料電池、及び前記熱媒体タンクの間における前記燃料ガスの流通経路を切り替える経路切替機構と、を備えた燃料電池システムの運転方法であって、
    前記経路切替機構によって、起動時に前記熱媒体タンクから前記燃料電池に前記燃料ガスを供給し、かつ起動後に前記水素生成装置から前記熱媒体タンクに前記燃料ガスを充填するようにして前記燃料電池による発電を制御する、燃料電池システムの運転方法。
JP2010156053A 2010-07-08 2010-07-08 燃料電池システム及びその運転方法 Pending JP2012018843A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010156053A JP2012018843A (ja) 2010-07-08 2010-07-08 燃料電池システム及びその運転方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010156053A JP2012018843A (ja) 2010-07-08 2010-07-08 燃料電池システム及びその運転方法

Publications (1)

Publication Number Publication Date
JP2012018843A true JP2012018843A (ja) 2012-01-26

Family

ID=45603958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010156053A Pending JP2012018843A (ja) 2010-07-08 2010-07-08 燃料電池システム及びその運転方法

Country Status (1)

Country Link
JP (1) JP2012018843A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015136896A1 (ja) * 2014-03-11 2015-09-17 パナソニックIpマネジメント株式会社 水素生成装置およびその運転方法ならびに燃料電池システム
KR102350070B1 (ko) * 2021-05-27 2022-01-11 국방과학연구소 메탄올 수증기 개질 플랜트의 열회로 제어 시스템 및 제어 방법

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015136896A1 (ja) * 2014-03-11 2015-09-17 パナソニックIpマネジメント株式会社 水素生成装置およびその運転方法ならびに燃料電池システム
KR102350070B1 (ko) * 2021-05-27 2022-01-11 국방과학연구소 메탄올 수증기 개질 플랜트의 열회로 제어 시스템 및 제어 방법

Similar Documents

Publication Publication Date Title
CN100448083C (zh) 燃料电池系统
JP5100912B1 (ja) 水素生成装置およびこれを備える燃料電池システム
JP5490102B2 (ja) 水素生成装置、燃料電池システム、水素生成装置の運転方法
CN102414894A (zh) 固体电解质型燃料电池
JPWO2006137390A1 (ja) 固体酸化物形燃料電池システム
JPWO2012165516A1 (ja) 燃料電池装置
EP1758195A1 (en) System for preventing freezing of fuel cell
JP5422780B1 (ja) 燃料電池システム
JP6174578B2 (ja) 固体酸化物形燃料電池システム
JP2011009136A (ja) 固体電解質型燃料電池
JP2013164956A (ja) 固体酸化物形燃料電池システム、及び、セル温度センサ故障時のシステム停止方法
JP2012018843A (ja) 燃料電池システム及びその運転方法
JP4106356B2 (ja) 燃料電池システム
JP2013164955A (ja) 固体酸化物形燃料電池システム、及び、改質触媒温度センサ故障時のシステム停止方法
JP5696875B2 (ja) 固体電解質型燃料電池
KR101080311B1 (ko) 분리형 보조 버너를 갖는 연료전지시스템 및 이의 운전 방법
JP2004039430A (ja) 燃料電池発電装置とその運転方法
WO2013046396A1 (ja) 固体電解質型燃料電池
JP5800273B2 (ja) 固体電解質型燃料電池
JP5501750B2 (ja) 燃料電池システム
JP2019057438A (ja) 燃料電池システム
WO2013046395A1 (ja) 固体電解質型燃料電池
KR20130058506A (ko) 부품 간소화 및 제어 안정성이 우수한 온수저장 장치 및 이를 이용한 연료전지 시스템
JP2018026234A (ja) 燃料電池システム
WO2013046397A1 (ja) 固体電解質型燃料電池