JP2012018799A - Method for manufacturing oxide superconductive thin film - Google Patents

Method for manufacturing oxide superconductive thin film Download PDF

Info

Publication number
JP2012018799A
JP2012018799A JP2010154862A JP2010154862A JP2012018799A JP 2012018799 A JP2012018799 A JP 2012018799A JP 2010154862 A JP2010154862 A JP 2010154862A JP 2010154862 A JP2010154862 A JP 2010154862A JP 2012018799 A JP2012018799 A JP 2012018799A
Authority
JP
Japan
Prior art keywords
film
heat treatment
thin film
treatment step
calcination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010154862A
Other languages
Japanese (ja)
Inventor
Kei Hanafusa
慶 花房
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2010154862A priority Critical patent/JP2012018799A/en
Publication of JP2012018799A publication Critical patent/JP2012018799A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing an oxide superconductive thin film, in which, when a coating film of a MOD solution is subjected to calcination heat treatment to form a thick calcined film, reduced calcination period to improve its productivity, reduced thermal consumption, and reduced thermal history for a substrate allow the oxide superconductive thin film having a sufficiently high Ic to be formed in subsequent burning treatment.SOLUTION: A method for manufacturing an oxide superconductive thin film comprises: forming a coating film by applying a raw material solution containing metallic organic compounds of Re, Ba and Cu to a substrate (coating film formation step); pyrolyzing only the organic compound of Cu contained in the coating film to remove its organic component (first calcination treatment step); pyrolyzing the organic compounds of Re and Ba contained in the coating film to remove those organic components to form a calcined film (second calcination treatment step); and crystallizing the calcined film to form the oxide superconductive thin film (burning treatment step), in which the coating formation step and the first calcination treatment step are alternately repeated and thereafter the second calcination treatment is performed.

Description

本発明は、酸化物超電導薄膜の製造方法に関し、詳しくは、超電導線材の製造に用いられる臨界電流値が高い酸化物超電導薄膜の製造方法に関する。   The present invention relates to a method for manufacturing an oxide superconducting thin film, and more particularly to a method for manufacturing an oxide superconducting thin film having a high critical current value used for manufacturing a superconducting wire.

酸化物超電導薄膜を用いた超電導線材の一層の普及のため、臨界電流値Icをより高めた酸化物超電導薄膜の製造の研究が行われている。   In order to further spread the superconducting wire using the oxide superconducting thin film, research on the production of an oxide superconducting thin film having a higher critical current value Ic has been conducted.

このような酸化物超電導薄膜の製造方法の1つに、塗布熱分解法(Metal Organic Deposition、略称:MOD法)と言われる方法がある(特許文献1)。   One method of manufacturing such an oxide superconducting thin film is a method called a coating organic decomposition method (abbreviation: MOD method) (Patent Document 1).

この方法は、Re(希土類元素)、Ba(バリウム)、Cu(銅)の各金属有機化合物を溶媒に溶解して製造された原料溶液(以下、「MOD溶液」とも言う)を基板に塗布した後、金属有機化合物を例えば500℃付近で熱処理(仮焼)し、含有する有機成分を熱分解させて除去して、酸化物超電導薄膜の前駆体である仮焼膜を形成し、得られた仮焼膜をさらに高温(例えば、750〜800℃)で熱処理(本焼)することにより結晶化を行って酸化物超電導薄膜を製造するものであり、主に真空中で製造される気相法(スパッタ法、パルスレーザ蒸着法等)に比較して製造設備が簡単で済み、また大面積や複雑な形状への対応が容易である等の特徴を有しているため、広く用いられている。   In this method, a raw material solution (hereinafter, also referred to as “MOD solution”) produced by dissolving each metal organic compound of Re (rare earth element), Ba (barium), and Cu (copper) in a solvent is applied to a substrate. Thereafter, the metal organic compound was heat-treated (calcined) at, for example, around 500 ° C., and the organic components contained were thermally decomposed and removed to form a calcined film that is a precursor of the oxide superconducting thin film. A vapor phase method in which an oxide superconducting thin film is manufactured by crystallizing a calcined film by further heat treatment (main baking) at a higher temperature (for example, 750 to 800 ° C.), and mainly manufactured in a vacuum. Compared to (sputtering method, pulsed laser deposition method, etc.), manufacturing equipment is simple, and it is widely used because it has features such as easy handling of large areas and complex shapes. .

また、MOD法を用いて、厚膜でIcが高い酸化物超電導薄膜を製造する方法としては、MOD溶液の塗布と仮焼を繰り返し行って仮焼膜を積層、即ち多層化して厚膜の仮焼膜とした後、本焼する方法が一般的に採られている。   In addition, as a method of manufacturing a thick oxide superconducting thin film having a high Ic by using the MOD method, the MOD solution is repeatedly applied and calcined, and the calcined films are laminated, that is, multilayered to obtain a thick film temporarily. A method of firing is generally employed after forming a fired film.

特開2007−165153号公報JP 2007-165153 A

しかしながら、従来の製造方法においては仮焼熱処理に多大な時間を要していた。図7に、基板上に3層の仮焼膜を形成させる従来の仮焼熱処理工程の温度プロファイルを示す。図7に示すように、従来の製造方法では、1層毎に、350℃まで10℃/分の昇温速度で昇温し、次いで、505℃まで0.5℃/分の昇温速度で昇温した後、505℃で120分保持することにより、各金属有機化合物の全ての有機物を熱分解している。このため、1層の仮焼熱処理に約8時間を要し、3層積層タイプの仮焼膜を作製する場合に24時間を要していた。   However, in the conventional manufacturing method, much time is required for the calcining heat treatment. FIG. 7 shows a temperature profile of a conventional calcining heat treatment process for forming a three-layer calcined film on a substrate. As shown in FIG. 7, in the conventional manufacturing method, each layer is heated up to 350 ° C. at a rate of 10 ° C./min, and then up to 505 ° C. at a rate of 0.5 ° C./min. After raising the temperature, the organic matter of each metal organic compound is thermally decomposed by holding at 505 ° C. for 120 minutes. For this reason, it took about 8 hours for the calcining heat treatment of one layer, and it took 24 hours to produce a calcined film of a three-layer laminated type.

このように、仮焼熱処理だけで膨大な時間を要するため、生産性が悪く、また、消費する熱量が多いという問題があった。   As described above, since only a calcination heat treatment requires an enormous amount of time, there is a problem in that productivity is poor and a large amount of heat is consumed.

また、仮焼熱処理時に高い温度に長時間繰り返してさらすため、基板に熱履歴が生じる。このため、酸化物超電導薄膜の超電導特性に悪影響を及ぼす恐れがあった。   Further, since the substrate is repeatedly exposed to a high temperature for a long time during the calcination heat treatment, a thermal history is generated on the substrate. For this reason, the superconducting properties of the oxide superconducting thin film may be adversely affected.

そこで、基板上に、2層分の厚さの塗布膜を形成して、仮焼熱処理を行い、厚膜の仮焼膜を作製することが試みられたが、仮焼膜にクラックが生じるという新たな問題が発生した。クラックが生じた仮焼膜では、本焼熱処理を行ったとしても高いIcの酸化物超電導薄膜を得ることができない。   Therefore, an attempt was made to form a thick calcined film by forming a coating film having a thickness of two layers on the substrate and performing a calcining heat treatment, but the calcined film is cracked. A new problem has occurred. With a calcined film in which cracks have occurred, a high Ic oxide superconducting thin film cannot be obtained even if a main heat treatment is performed.

本発明は、MOD溶液の塗膜を仮焼熱処理して厚い仮焼膜を作製する際に、時間を短縮して生産性を向上すると共に、熱消費量を低減し、さらに基板に対する熱履歴を抑制することにより、その後の本焼熱処理において充分に高いIcを有する酸化物超電導薄膜を作製することができる酸化物超電導薄膜の製造方法を提供することを課題とする。   In the present invention, when a thick calcined film is produced by calcining a coating film of a MOD solution, the time is shortened to improve the productivity, the heat consumption is reduced, and the thermal history for the substrate is further reduced. It is an object of the present invention to provide a method for producing an oxide superconducting thin film, which can produce an oxide superconducting thin film having a sufficiently high Ic in the subsequent main annealing heat treatment.

本発明者は、鋭意研究の結果、以下の各請求項に示す発明により、上記課題が解決できることを見出し、本発明を完成するに至った。   As a result of earnest research, the present inventor has found that the above problems can be solved by the inventions shown in the following claims, and has completed the present invention.

請求項1に記載の発明は、
超電導線材の製造に用いる酸化物超電導薄膜を、Re(希土類元素)、BaおよびCuの各金属有機化合物を原料とし、塗布熱分解法により製造する酸化物超電導薄膜の製造方法であって、
基板上に前記各金属有機化合物を含有する原料溶液を塗布して塗膜を作製する塗膜作製工程と、
前記塗膜に含有される前記Cuの有機化合物のみを熱分解して有機成分を除去する第1仮焼熱処理工程と、
前記塗膜に含有される前記ReおよびBaの有機化合物を熱分解して有機成分を除去し、仮焼膜を作製する第2仮焼熱処理工程と、
前記仮焼膜を結晶化させて、酸化物超電導薄膜を作製する本焼熱処理工程とを備えており、
前記塗膜作製工程と第1仮焼熱処理工程とを交互に2回以上繰り返し行った後、第2仮焼熱処理工程を行うことを特徴とする酸化物超電導薄膜の製造方法である。
The invention described in claim 1
An oxide superconducting thin film used for the production of a superconducting wire is a method for producing an oxide superconducting thin film produced from a metal organic compound of Re (rare earth element), Ba and Cu by a coating pyrolysis method,
A coating film production step of producing a coating film by applying a raw material solution containing each metal organic compound on the substrate;
A first calcining heat treatment step of thermally decomposing only the organic compound of Cu contained in the coating film to remove organic components;
A second calcining heat treatment step of thermally decomposing the organic compound of Re and Ba contained in the coating film to remove organic components and producing a calcined film;
A calcination heat treatment step of crystallizing the calcined film to produce an oxide superconducting thin film,
The method for producing an oxide superconducting thin film is characterized in that after the coating film preparation step and the first calcination heat treatment step are alternately repeated twice or more, a second calcination heat treatment step is performed.

本請求項の発明は、Re、BaおよびCuの各金属有機化合物のうち、Cuの有機化合物の熱分解温度は200℃台と低く、低温で塗膜に含まれる有機成分の大半が分解されることに着目したものである。   In the invention of this claim, among the metal organic compounds of Re, Ba and Cu, the thermal decomposition temperature of the organic compound of Cu is as low as 200 ° C., and most of the organic components contained in the coating film are decomposed at a low temperature. It pays attention to.

一例として、図8に、YBCO超電導薄膜の作製における塗膜のTG−DTA測定結果を示す。図8に示すように、Cuの有機化合物の熱分解温度は247℃であり、一方YおよびBaの有機化合物の熱分解温度は443℃である。そして、247℃までに塗膜に含まれる有機成分の約40%が分解されていることが分かる。   As an example, FIG. 8 shows a TG-DTA measurement result of a coating film in the production of a YBCO superconducting thin film. As shown in FIG. 8, the thermal decomposition temperature of the organic compound of Cu is 247 ° C., while the thermal decomposition temperature of the organic compound of Y and Ba is 443 ° C. And it turns out that about 40% of the organic component contained in a coating film is decomposed | disassembled by 247 degreeC.

そして、Cuの金属有機化合物の熱分解が終了する320℃まで昇温した場合、50%近くの有機成分が分解されることが分かる。なお、昇温速度を従来と同様に10℃/分とした場合、この処理に要する時間としては約30分で充分である。   And when it heats up to 320 degreeC which the thermal decomposition of the metal organic compound of Cu is complete | finished, it turns out that 50% of organic components are decomposed | disassembled. When the rate of temperature increase is 10 ° C./minute as in the conventional case, about 30 minutes is sufficient as the time required for this treatment.

本請求項の発明においては、仮焼熱処理工程を、前記したCuの有機化合物の熱分解を行う第1仮焼熱処理工程と、Cu以外、即ち、YおよびBaの有機化合物の熱分解を行う第2仮焼熱処理工程とに分け、塗膜作製工程と第1仮焼熱処理工程とを交互に2回以上繰り返し行って厚膜化した後、第2仮焼熱処理工程において全体を仮焼熱処理することにより、厚膜の仮焼膜を作製している。   In the invention of this claim, the calcination heat treatment step includes the first calcination heat treatment step of thermally decomposing the organic compound of Cu, and the first step of thermally decomposing organic compounds other than Cu, that is, Y and Ba. The process is divided into two calcining heat treatment processes, and the coating film preparation process and the first calcining heat treatment process are alternately repeated twice or more to increase the film thickness, and then the entire calcining heat treatment is performed in the second calcining heat treatment process. Thus, a thick calcined film is produced.

このため、前記した通り、第1仮焼熱処理工程に要する時間としては30分程度であり、多大な時間を要することなく、塗膜作製工程と第1仮焼熱処理工程とを繰り返し行うことができる。そして、最後に、従来の仮焼熱処理温度と同じ温度でYおよびBaの有機化合物の熱分解を行うため、塗膜を厚膜化したとしても、仮焼熱処理に要する時間を大幅に短縮することができると共に、仮焼熱処理の消費熱量を抑制することができ、さらに、基板の熱履歴も低減することができる。   Therefore, as described above, the time required for the first calcination heat treatment step is about 30 minutes, and the coating film preparation step and the first calcination heat treatment step can be repeatedly performed without requiring much time. . And finally, since the organic compounds of Y and Ba are thermally decomposed at the same temperature as the conventional calcining heat treatment temperature, the time required for the calcining heat treatment is greatly shortened even if the coating film is thickened. In addition, the heat consumption of the calcining heat treatment can be suppressed, and the thermal history of the substrate can also be reduced.

そして、このようにして得られた仮焼膜に対して、本焼熱処理を行った場合においても、結晶成長が阻害されることが抑制され、結晶が充分にc軸成長するため、充分に高いIcを有する酸化物超電導薄膜を製造することができる。   Further, even when the calcination heat treatment is performed on the calcined film thus obtained, inhibition of crystal growth is suppressed, and the crystal grows sufficiently c-axis, so that it is sufficiently high. An oxide superconducting thin film having Ic can be produced.

また、前記したように、基板の熱履歴も低減しているため、本焼熱処理工程において高い品質を有する酸化物超電導薄膜を製造することができる。   Further, as described above, since the thermal history of the substrate is also reduced, it is possible to manufacture an oxide superconducting thin film having high quality in the main annealing process.

請求項2に記載の発明は、
前記第1仮焼熱処理工程における処理温度が、150〜350℃であることを特徴とする請求項1に記載の酸化物超電導薄膜の製造方法である。
The invention described in claim 2
2. The method for producing an oxide superconducting thin film according to claim 1, wherein a treatment temperature in the first calcining heat treatment step is 150 to 350 ° C. 3.

本請求項においては、第1仮焼熱処理工程における処理温度を150〜350℃としているため、仮焼成時間が短く、基板が受ける熱履歴を低減することができる点から好ましい。   In this claim, since the processing temperature in the first calcining heat treatment step is set to 150 to 350 ° C., it is preferable in that the calcining time is short and the thermal history received by the substrate can be reduced.

請求項3に記載の発明は、
前記第2仮焼熱処理工程における処理温度が、350〜600℃であることを特徴とする請求項1または請求項2に記載の酸化物超電導薄膜の製造方法である。
The invention according to claim 3
3. The method for producing an oxide superconducting thin film according to claim 1, wherein a treatment temperature in the second calcining heat treatment step is 350 to 600 ° C. 4.

本請求項においては、第2仮焼熱処理工程における処理温度を350〜600℃としているため、複数層分のY、Ba有機化合物をまとめて分解することができる点から好ましい。   In the present claim, since the treatment temperature in the second calcining heat treatment step is set to 350 to 600 ° C., it is preferable from the viewpoint that a plurality of layers of Y and Ba organic compounds can be decomposed together.

本発明によれば、MOD溶液の塗膜を仮焼熱処理して厚い仮焼膜を作製する際に、時間を短縮して生産性を向上させることができると共に、熱消費量を低減し、さらに基板に対する熱履歴を抑制することにより、その後の本焼熱処理において充分に高いIcを有する酸化物超電導薄膜を作製することができる。   According to the present invention, when a thick calcined film is produced by calcining a coating film of a MOD solution, the time can be shortened to improve productivity, and the heat consumption can be reduced. By suppressing the thermal history with respect to the substrate, an oxide superconducting thin film having a sufficiently high Ic can be produced in the subsequent main annealing heat treatment.

本発明の実施例1の仮焼熱処理工程の仮焼温度プロファイルを示す図である。It is a figure which shows the calcination temperature profile of the calcination heat treatment process of Example 1 of this invention. (a)(b)はそれぞれ本発明の実施例1の仮焼膜および酸化物超電導薄膜(本焼膜)のLSM写真である。(A) and (b) are LSM photographs of the calcined film and the oxide superconducting thin film (fired film) of Example 1 of the present invention, respectively. 本発明の実施例1の酸化物超電導薄膜のSEM写真である。It is a SEM photograph of the oxide superconducting thin film of Example 1 of this invention. 本発明の実施例2の形態の仮焼熱処理工程の仮焼温度プロファイルを示す図である。It is a figure which shows the calcination temperature profile of the calcination heat treatment process of the form of Example 2 of this invention. (a)(b)は、それぞれ本発明の実施例2の3層積層タイプの仮焼膜の2層積層段階の仮焼膜および3層積層後の仮焼膜のLSM写真である。(A) and (b) are LSM photographs of the calcined film at the two-layer lamination stage and the calcined film after the three-layer lamination of the three-layer lamination type calcined film of Example 2 of the present invention, respectively. 本発明の実施例2の仮焼熱処理の所要時間を説明する図である。It is a figure explaining the required time of the calcination heat processing of Example 2 of this invention. 従来の仮焼熱処理工程の3層積層仮焼温度プロファイルを示す図である。It is a figure which shows the three-layer lamination | stacking calcination temperature profile of the conventional calcination heat treatment process. Y、Ba、CuのMOD溶液を基板に塗布して昇温して測定した温度に対するTG/重量減少率とDTAの関係を示す図である。It is a figure which shows the relationship between TG / weight reduction rate and DTA with respect to the temperature measured by apply | coating the MOD solution of Y, Ba, and Cu to a board | substrate, and heating up.

以下、本発明を実施例に基づいて具体的に説明する。   Hereinafter, the present invention will be specifically described based on examples.

本実施例は、YBCO(Y123)酸化物超電導薄膜に関する。
[1]実施例1
This example relates to a YBCO (Y123) oxide superconducting thin film.
[1] Example 1

1.原料溶液の作製
Y、Ba、Cuの各アセチルアセトン金属錯体を、Y:Ba:Cuのモル比が、1:2:3となるように調整してアルコール(メタノール)に溶解し、アセチルアセトン金属錯体溶液を調製した。
1. Preparation of raw material solution Each acetylacetone metal complex of Y, Ba, and Cu is adjusted so that the molar ratio of Y: Ba: Cu is 1: 2: 3 and dissolved in alcohol (methanol) to obtain an acetylacetone metal complex solution. Was prepared.

2.酸化物超電導薄膜の作製
(1)塗膜作製工程
調製した原料溶液を、CeO/YSZ単結晶基板上に塗布後、乾燥して、厚さ0.90μmの塗膜を作製した。
(2)仮焼熱処理工程
図1は、実施例1の仮焼熱処理工程の仮焼温度プロファイルを示す図である。仮焼熱処理工程は、第1仮焼熱処理工程および第2仮焼熱処理工程を備えている。
2. Preparation of oxide superconducting thin film (1) Coating film preparation process The prepared raw material solution was applied on a CeO 2 / YSZ single crystal substrate and then dried to prepare a coating film having a thickness of 0.90 μm.
(2) Calcination Heat Treatment Step FIG. 1 is a diagram showing a calcination temperature profile in the calcination heat treatment step of Example 1. The calcination heat treatment step includes a first calcination heat treatment step and a second calcination heat treatment step.

(a)第1仮焼熱処理工程
作製した塗膜を、大気雰囲気の下で、図1に示すように10℃/分の昇温速度で350℃に昇温した後、同温度で約10分保持して、厚さが0.30μmの仮焼膜を作製した。
(A) First calcination heat treatment step The prepared coating film was heated to 350 ° C. at a temperature increase rate of 10 ° C./min as shown in FIG. The calcined film having a thickness of 0.30 μm was prepared.

塗膜作製工程と第1仮焼熱処理工程とを交互に2回繰り返し行い、厚さ0.60μmの仮焼膜を作製した。   The coating film production step and the first calcining heat treatment step were alternately repeated twice to produce a calcined film having a thickness of 0.60 μm.

(b)第2仮焼熱処理工程
作製した仮焼膜を、さらに大気雰囲気下で、350℃から0.5℃/分の昇温速度で505℃まで昇温後、同温度で120分間保持して、2層積層タイプの厚さ0.40μmの仮焼膜を作製した。
(B) Second calcination heat treatment step The prepared calcination film is further heated from 350 ° C. to 505 ° C. at a temperature increase rate of 0.5 ° C./min, and then held at the same temperature for 120 minutes. Thus, a calcined film having a thickness of 0.40 μm of a two-layer laminate type was produced.

(3)本焼熱処理工程
仮焼熱処理工程を経た後、仮焼膜を、Ar/O(25PPM)雰囲気下で、505℃から昇温速度30℃/分で、770℃迄昇温し、同温度で90分維持した。その後、室温まで降温し、厚さ0.30μmの酸化物超電導薄膜を作製した。
(3) Main calcination heat treatment step After the calcination heat treatment step, the calcined film was heated from 505 ° C. to 770 ° C. at a temperature increase rate of 30 ° C./min in an Ar / O 2 (25PPM) atmosphere. The temperature was maintained for 90 minutes. Thereafter, the temperature was lowered to room temperature to produce an oxide superconducting thin film having a thickness of 0.30 μm.

3.仮焼熱処理工程後の仮焼膜および酸化物超電導薄膜の評価
図2(a)(b)は、それぞれ実施例1の仮焼膜および酸化物超電導薄膜(本焼膜)のLSM写真である。図3は、実施例1の酸化物超電導薄膜のSEM写真である。図2より仮焼膜、本焼膜共にクラックが認められず、良好な仮焼膜および本焼膜が得られていることが分かる。また、図3より、表面までc軸配向した均一な組成の組織が得られていることが分かる。
3. Evaluation of calcined film and oxide superconducting thin film after calcining heat treatment step FIGS. 2A and 2B are LSM photographs of the calcined film and the oxide superconducting thin film (fired film) of Example 1, respectively. FIG. 3 is a SEM photograph of the oxide superconducting thin film of Example 1. FIG. 2 shows that no cracks are observed in the calcined film and the main-fired film, and that a good calcined film and the main-fired film are obtained. In addition, it can be seen from FIG. 3 that a uniform composition with c-axis orientation up to the surface is obtained.

4.仮焼熱処理工程の所要時間の評価
図1に示すように、実施例1における仮焼熱処理の所要時間、即ち第1仮焼熱処理工程と第2仮焼熱処理工程を合わせた所要時間は、500分である。これに対して、実施例1と同じ2層積層タイプの仮焼膜を、従来の方法で作製する場合は、約900分である。実施例1によれば、従来に比べて、仮焼熱処理の所要時間を大幅に短縮できることが分かる。
4). Evaluation of the time required for the calcination heat treatment step As shown in FIG. 1, the time required for the calcination heat treatment in Example 1, that is, the total time required for the first calcination heat treatment step and the second calcination heat treatment step is 500 minutes. It is. On the other hand, when the same two-layered calcined film as in Example 1 is produced by a conventional method, it takes about 900 minutes. According to Example 1, it can be seen that the time required for the calcining heat treatment can be greatly shortened as compared with the prior art.

[2]実施例2
1.原料溶液の作製
実施例1と同じようにして原料溶液を作製した。
[2] Example 2
1. Preparation of raw material solution A raw material solution was prepared in the same manner as in Example 1.

2.酸化物超電導薄膜の作製
(1)塗膜作製工程
調製した原料溶液を、実施例1と同じ基板上に塗布後、乾燥して、厚さ0.90μmの塗膜を作製した。
2. Preparation of oxide superconducting thin film (1) Coating film preparation process The prepared raw material solution was applied on the same substrate as in Example 1 and then dried to prepare a coating film having a thickness of 0.90 μm.

(2)仮焼熱処理工程
図4は、実施例2の仮焼熱処理工程の仮焼温度プロファイルを示す図である。
(2) Calcination Heat Treatment Step FIG. 4 is a diagram showing a calcination temperature profile in the calcination heat treatment step of Example 2.

(a)第1仮焼熱処理工程
作製した塗膜を、大気雰囲気の下で、図4に示すように10℃/分の昇温速度で350℃に昇温した後、同温度で約10分保持して、厚さが0.30μmの仮焼膜を作製した。
(A) First calcination heat treatment step The prepared coating film was heated to 350 ° C. at a temperature rising rate of 10 ° C./min as shown in FIG. The calcined film having a thickness of 0.30 μm was prepared.

塗膜作製工程と第1仮焼熱処理工程とを交互に3回繰り返し行い、厚さ0.90μmの仮焼膜を作製した。   The coating film production process and the first calcining heat treatment process were alternately repeated three times to produce a calcined film having a thickness of 0.90 μm.

(b)第2仮焼熱処理工程
作製した仮焼膜を、さらに大気雰囲気下で、350℃から0.5℃/分の昇温速度で505℃まで昇温後、同温度で120分間保持して、3層積層タイプの厚さ0.60μmの仮焼膜を作製した。
(B) Second calcination heat treatment step The prepared calcination film is further heated from 350 ° C. to 505 ° C. at a temperature increase rate of 0.5 ° C./min, and then held at the same temperature for 120 minutes. Thus, a calcined film having a thickness of 0.60 μm was manufactured.

(3)本焼熱処理工程
仮焼熱処理工程を経た後、仮焼膜を、Ar/O(25PPM)雰囲気下で、505℃から昇温速度30℃/分で、770℃迄昇温し、同温度で90分維持した。その後、室温まで降温し、厚さ0.45μmの酸化物超電導薄膜を作製した。
(3) Main calcination heat treatment step After the calcination heat treatment step, the calcined film was heated from 505 ° C. to 770 ° C. at a temperature increase rate of 30 ° C./min in an Ar / O 2 (25PPM) atmosphere. The temperature was maintained for 90 minutes. Thereafter, the temperature was lowered to room temperature to produce an oxide superconducting thin film having a thickness of 0.45 μm.

3.仮焼熱処理工程後の仮焼膜および酸化物超電導薄膜の評価
図5の(a)は、実施例2の3層積層タイプの仮焼膜の2層積層段階の仮焼膜、(b)は、3層積層後の仮焼膜のLSM写真である。図5(a)(b)より、従来法であればクラックが発生していた2層積層段階においてもクラックが発生してないことが分かる。さらに、3層積層後の仮焼膜においてもクラックが発生していないことが分かる。
3. Evaluation of calcined film and oxide superconducting thin film after calcining heat treatment step FIG. 5A is a calcined film in a two-layer lamination stage of the three-layer laminated type calcined film of Example 2, and FIG. It is a LSM photograph of the calcined film after three-layer lamination. 5 (a) and 5 (b), it can be seen that cracks do not occur even in the two-layer lamination stage where cracks have occurred in the conventional method. Furthermore, it turns out that the crack has not generate | occur | produced also in the calcined film after three-layer lamination.

4.仮焼熱処理工程の所要時間の評価
図6は、図4に示された実施例2の3層積層タイプの仮焼温度プロファイルについて、従来の3層積層タイプの仮焼温度プロファイルを示す図7と横軸の時間表示を同じ長さにして表した図である。
4). Evaluation of Time Required for Calcination Heat Treatment Step FIG. 6 is a diagram illustrating a calcination temperature profile of the conventional three-layer lamination type with respect to the calcination temperature profile of the three-layer lamination type of Example 2 shown in FIG. It is the figure which expressed the time display of the horizontal axis as the same length.

図6に示すように、実施例2における仮焼熱処理工程の所要時間は、9時間である。これに対して、実施例2と同じ3層積層タイプの仮焼膜を従来の方法で作製する場合は、図7に示したように24時間である。これより、実施例2によれば、従来に比べて仮焼熱処理工程の所要時間を大幅に短縮できることが分かる。   As shown in FIG. 6, the time required for the calcination heat treatment step in Example 2 is 9 hours. On the other hand, in the case of producing the same three-layer laminated type calcined film as in Example 2 by the conventional method, it takes 24 hours as shown in FIG. Thus, according to Example 2, it can be seen that the time required for the calcination heat treatment step can be significantly shortened as compared with the conventional case.

以上、本発明の実施の形態について説明したが、本発明は、前記した実施の形態に限定されるものではない。本発明と同一および均等の範囲内において、前記の実施の形態に対して種々の変更を加えることが可能である。   As mentioned above, although embodiment of this invention was described, this invention is not limited to above-described embodiment. Various modifications can be made to the above-described embodiment within the same and equivalent scope as the present invention.

Claims (3)

超電導線材の製造に用いる酸化物超電導薄膜を、Re(希土類元素)、BaおよびCuの各金属有機化合物を原料とし、塗布熱分解法により製造する酸化物超電導薄膜の製造方法であって、
基板上に前記各金属有機化合物を含有する原料溶液を塗布して塗膜を作製する塗膜作製工程と、
前記塗膜に含有される前記Cuの有機化合物のみを熱分解して有機成分を除去する第1仮焼熱処理工程と、
前記塗膜に含有される前記ReおよびBaの金属化合物を熱分解して有機成分を除去し、仮焼膜を作製する第2仮焼熱処理工程と、
前記仮焼膜を結晶化させて、酸化物超電導薄膜を作製する本焼熱処理工程とを備えており、
前記塗膜作製工程と第1仮焼熱処理工程とを交互に2回以上繰り返し行った後、第2仮焼熱処理工程を行うことを特徴とする酸化物超電導薄膜の製造方法。
An oxide superconducting thin film used for the production of a superconducting wire is a method for producing an oxide superconducting thin film produced from a metal organic compound of Re (rare earth element), Ba and Cu by a coating pyrolysis method,
A coating film production step of producing a coating film by applying a raw material solution containing each metal organic compound on the substrate;
A first calcining heat treatment step of thermally decomposing only the organic compound of Cu contained in the coating film to remove organic components;
A second calcining heat treatment step of thermally decomposing the metal compound of Re and Ba contained in the coating film to remove organic components and producing a calcined film;
A calcination heat treatment step of crystallizing the calcined film to produce an oxide superconducting thin film,
A method for producing an oxide superconducting thin film, comprising performing the second calcination heat treatment step after alternately performing the coating film preparation step and the first calcination heat treatment step twice or more.
前記第1仮焼熱処理工程における処理温度が、150〜350℃であることを特徴とする請求項1に記載の酸化物超電導薄膜の製造方法。   2. The method for producing an oxide superconducting thin film according to claim 1, wherein a treatment temperature in the first calcination heat treatment step is 150 to 350 ° C. 3. 前記第2仮焼熱処理工程における処理温度が、350〜600℃であることを特徴とする請求項1または請求項2に記載の酸化物超電導薄膜の製造方法。   The method for producing an oxide superconducting thin film according to claim 1 or 2, wherein a treatment temperature in the second calcining heat treatment step is 350 to 600 ° C.
JP2010154862A 2010-07-07 2010-07-07 Method for manufacturing oxide superconductive thin film Pending JP2012018799A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010154862A JP2012018799A (en) 2010-07-07 2010-07-07 Method for manufacturing oxide superconductive thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010154862A JP2012018799A (en) 2010-07-07 2010-07-07 Method for manufacturing oxide superconductive thin film

Publications (1)

Publication Number Publication Date
JP2012018799A true JP2012018799A (en) 2012-01-26

Family

ID=45603923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010154862A Pending JP2012018799A (en) 2010-07-07 2010-07-07 Method for manufacturing oxide superconductive thin film

Country Status (1)

Country Link
JP (1) JP2012018799A (en)

Similar Documents

Publication Publication Date Title
JP5838596B2 (en) Superconducting thin film material and manufacturing method thereof
JP5686437B2 (en) Oxide superconducting thin film wire and method for producing the same
JP2013235766A (en) Oxide superconducting thin film and method for manufacturing the same
JP2012018799A (en) Method for manufacturing oxide superconductive thin film
JP5740795B2 (en) Manufacturing method of oxide superconducting wire
JP5556410B2 (en) Method for manufacturing oxide superconducting thin film
JP2012064394A (en) Method for manufacturing oxide superconductive thin film
JP5505867B2 (en) Method for manufacturing oxide superconducting thin film
JP2012003962A (en) Manufacturing method of oxide superconducting thin film
JP2013235765A (en) Oxide superconducting wire material and method for manufacturing the same
JP2011253768A (en) Method of manufacturing oxide superconductor thin film
JP5721144B2 (en) Superconducting multilayer structure thin film
JP2012049086A (en) Oxide superconductive thin film wire rod, metal substrate for oxide superconductive thin film wire rod, and method of manufacturing the same
JP5453627B2 (en) Manufacturing method of oxide superconductor film with reduced internal stress
JP2011253766A (en) Method of manufacturing oxide superconductor thin film
JP2012221922A (en) Raw material solution for formation of oxide superconducting thin film layer, oxide superconducting thin film layer, and oxide superconducting thin film wire material
JP2012123998A (en) Oxide superconducting thin film wire rod and manufacturing method thereof
JP2011230946A (en) Method for producing oxide superconductive thin film
JP2010123433A (en) Method of manufacturing re123 superconducting thin film wire rod, and re123 superconducting thin film wire rod
JP2012113860A (en) Superconducting oxide thin film wire rod, and method for manufacturing the same
JP2012234649A (en) Oxide superconductive film, and method for manufacturing the same
JP2013218799A (en) Oxide superconducting wire material and method for manufacturing the same
JP2014167941A (en) Manufacturing method of oxide superconducting thin film
JP2011141984A (en) Manufacturing method of oxide superconducting thin film
JP5713440B2 (en) Oxide superconducting thin film and manufacturing method thereof