JP2012017500A - Method for production of high-strength steel sheet - Google Patents

Method for production of high-strength steel sheet Download PDF

Info

Publication number
JP2012017500A
JP2012017500A JP2010155669A JP2010155669A JP2012017500A JP 2012017500 A JP2012017500 A JP 2012017500A JP 2010155669 A JP2010155669 A JP 2010155669A JP 2010155669 A JP2010155669 A JP 2010155669A JP 2012017500 A JP2012017500 A JP 2012017500A
Authority
JP
Japan
Prior art keywords
temperature
strength steel
steel sheet
sec
variation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010155669A
Other languages
Japanese (ja)
Other versions
JP5462736B2 (en
Inventor
Kenji Saito
賢司 斉藤
Toshio Murakami
俊夫 村上
Hideo Hatake
英雄 畠
Yoko Onishi
陽子 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2010155669A priority Critical patent/JP5462736B2/en
Publication of JP2012017500A publication Critical patent/JP2012017500A/en
Application granted granted Critical
Publication of JP5462736B2 publication Critical patent/JP5462736B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method for production of a high-strength steel sheet capable of reducing to the utmost, variation in composition and characteristics of the finally-produced high-strength steel sheet even in such a case that the composition before continuous annealing varies, or that the temperature condition or the like when continuously annealing fluctuates.SOLUTION: The method includes: elevating the temperature of a steel material having desired component composition to 600°C at an average temperature rising rate of 3°C/sec or more and to 600-750°C at the rising rate of 0.2-2.5°C/sec; performing a heating process of elevating the temperature to the range of Ac3 to (Ac3+50°C); performing a soaking process of keeping the above temperature range for ≤600 sec; and then quenching and tempering.

Description

本発明は、自動車用等に用いられる高強度鋼板を連続焼鈍により製造する高強度鋼板の製造方法、より詳しくは、組織ばらつきやその組織ばらつきに起因する機械的特性ばらつきを低減することが可能な高強度鋼板の製造方法に関するものである。   The present invention relates to a method for producing a high-strength steel sheet for producing a high-strength steel sheet used for automobiles or the like by continuous annealing, and more specifically, it is possible to reduce structural variations and mechanical property variations caused by the structural variations. The present invention relates to a method for producing a high-strength steel plate.

自動車用等に用いられる高強度鋼板の代表例として、フェライトおよびマルテンサイトからなる組織を有する複合組織鋼(DP鋼)が従来から知られている。このDP鋼は、軟質なフェライトと硬質なマルテンサイトを混在する組織とすることにより、軟質なフェライトで延性(伸び)を確保し、硬質なマルテンサイトで強度を確保しようというものである。従って、このDP鋼は、強度と伸びの両立が可能であることから優れた成形性が要求される高強度自動車鋼板等として近年多く採用されており、例えば、特許文献1〜3などにはその特性が記載されている。   As a representative example of a high-strength steel plate used for automobiles and the like, a composite structure steel (DP steel) having a structure composed of ferrite and martensite has been conventionally known. This DP steel has a structure in which soft ferrite and hard martensite are mixed, thereby ensuring ductility (elongation) with soft ferrite and securing strength with hard martensite. Therefore, this DP steel has been widely adopted in recent years as a high-strength automobile steel sheet and the like that require excellent formability since both strength and elongation can be achieved. Properties are listed.

しかしながら、近年の技術開発や外観デザインの向上により、自動車等の形状は年々複雑な形状になってきており、このような複雑な形状の自動車部材等をプレス成形により成形不良なく製造するために、自動車用鋼板等にはより優れた機械的特性等が求められている。このような自動車用鋼板等に要求される機械的特性としては、降伏強さ(YP)、引張強さ(TS)、伸び(EL)、伸びフランジ性(λ)等を挙げることができるが、前述したように、近年はこれらの機械特性に関してより高い性能が求められており、またこれらの特性を兼備することと相まって、その高強度鋼板の製造条件はより厳しくなってきており、製造そのものが困難になってきているというのが現状である。   However, due to recent technological development and improvement in appearance design, the shape of automobiles and the like has become complicated every year, and in order to produce such complicated shaped automobile members and the like by press molding without molding defects, Automotive steel sheets and the like are required to have better mechanical properties. Examples of mechanical properties required for such steel sheets for automobiles include yield strength (YP), tensile strength (TS), elongation (EL), stretch flangeability (λ), and the like. As described above, in recent years, higher performance has been demanded with respect to these mechanical characteristics, and coupled with the combination of these characteristics, the manufacturing conditions for the high-strength steel sheet have become more stringent, and the manufacturing itself has become difficult. The current situation is that it is becoming difficult.

軟質なフェライトと硬質なマルテンサイトを共存する複合組織鋼であるDP鋼において、先に説明した諸特性を併存させるためには、組織の大部分を占めるフェライトとマルテンサイトの相分率や硬さを精度良く所望の値に制御する必要がある。しかしながら、フェライトとマルテンサイトの相分率や硬さは、製造時の温度や時間の条件によって大きく変動するため、諸特性を所望の値に高精度に制御することは非常に難しいと考えられる。   In DP steel, which is a composite structure steel in which soft ferrite and hard martensite coexist, in order to coexist with the properties described above, the phase fraction and hardness of ferrite and martensite that occupy most of the structure. Must be accurately controlled to a desired value. However, since the phase fraction and hardness of ferrite and martensite vary greatly depending on temperature and time conditions during production, it is considered very difficult to control various characteristics to desired values with high accuracy.

また、DP鋼を製造するにあたっては、連続焼鈍ラインで熱処理を行って最終的に製造される高強度鋼板の組織や特性を制御しているのが現状である。しかしながら、既に連続焼鈍工程の前工程である熱延工程や冷延工程において、そのプロセス条件のばらつき等によって組織のばらつきが発生していることが多く、この前工程でのばらつきがある場合は、最終的に製造される高強度鋼板の組織や特性のばらつきの発生を抑制することはできない。すなわち、この前工程でのばらつきが最終的に製造される高強度鋼板の組織や特性のばらつきを、より一層大きくする要因となっている。   Moreover, when manufacturing DP steel, the present condition is controlling the structure | tissue and the characteristic of the high strength steel plate finally manufactured by heat-processing in a continuous annealing line. However, in the hot rolling process and the cold rolling process that are already the previous process of the continuous annealing process, there are often variations in the structure due to variations in the process conditions, etc.If there is a variation in this previous process, It is not possible to suppress the occurrence of variations in the structure and characteristics of the finally produced high-strength steel sheet. That is, this variation in the previous process is a factor that further increases the variation in the structure and characteristics of the high-strength steel sheet that is finally produced.

従来から、均熱工程でγ単相域まで昇温すれば、このような連続焼鈍工程の前工程で発生する組織のばらつきは無害化されるといわれているが、実際には、前工程での組織のばらつきが、最終的に製造される高強度鋼板の組織や特性のばらつきとして残ってしまい易く、近年の高特性および低特性ばらつきを要求される状況においては、従来では問題視されない程度のばらつきの低減が課題として顕在化しつつあるのが現状であるといえる。   Conventionally, it is said that if the temperature is raised to the γ single phase region in the soaking process, the variation in the structure that occurs in the preceding process of the continuous annealing process is made harmless, but in practice, in the preceding process However, in the situation where high and low characteristic variations are required in recent years, it has not been regarded as a problem in the past. It can be said that the current situation is that the reduction of variation is becoming an issue.

更には、連続焼鈍ラインの中においても様々なプロセス条件がばらついてしまうことがあり、そのような場合には、最終的に製造される高強度鋼板の組織や特性の制御を行うことがより一層難しくなっている。このように最終的に製造される高強度鋼板の組織や特性にばらつきが発生してしまった場合には、高強度鋼板を材料として製造される自動車等の製造時の不具合につながる可能性が高くなる。   Furthermore, various process conditions may vary even in a continuous annealing line. In such a case, it is even more necessary to control the structure and characteristics of the high-strength steel sheet that is finally produced. It's getting harder. In this way, when variations occur in the structure and characteristics of the high-strength steel sheet that is finally produced, there is a high possibility that it will lead to problems during the manufacture of automobiles and the like that are produced using the high-strength steel sheet as a material. Become.

高強度自動車鋼板等に求められる特性としては、前述の降伏強さ(YP)、引張強さ(TS)、伸び(EL)、伸びフランジ性(λ)等の機械的特性があることは勿論ではあるが、高強度自動車鋼板等においては、その組織や特性のばらつきが小さいことも求められている。しかしながら、DP鋼の組織や特性のばらつきは、従来の手法では低減することが非常に困難であるのが現状である。   Of course, the properties required for high-strength automotive steel sheets include mechanical properties such as the above-mentioned yield strength (YP), tensile strength (TS), elongation (EL), stretch flangeability (λ) and the like. However, high-strength automobile steel sheets and the like are also required to have small variations in structure and characteristics. However, at present, it is very difficult to reduce variations in the structure and characteristics of DP steel by conventional methods.

特開2009−215571号公報JP 2009-215571 A 特開2009−215572号公報JP 2009-215572 A 特開2004−18911号公報JP 2004-18911 A

本発明は、上記従来の問題を解決せんとしてなされたもので、連続焼鈍を行う前の組織がばらついている場合や、連続焼鈍時の温度条件等にばらつきがある場合であっても、最終的に製造される高強度鋼板の組織や特性のばらつきを極力低減することができる高強度鋼板の製造方法を提供することを課題とするものである。   The present invention has been made as a solution to the above-described conventional problems, and even if the structure before continuous annealing is varied or the temperature conditions during continuous annealing vary, the final It is an object of the present invention to provide a method for producing a high-strength steel sheet that can reduce variations in the structure and characteristics of the high-strength steel sheet produced as much as possible.

請求項1記載の発明は、質量%で、C:0.05〜0.3%、Si:0.7〜3.0%、Mn:0.5〜3.0%、Al:0.01〜0.1%を含有すると共に、主としてフェライトおよびマルテンサイトからなる組織を有する高強度鋼板を連続焼鈍により製造する高強度鋼板の製造方法であって、600℃までの平均昇温速度を3℃/sec以上、600℃〜750℃の平均昇温速度を0.2〜2.5℃/secで昇温し、その後、Ac3〜(Ac3+50℃)の温度範囲まで昇温する加熱工程を実施した後、そのAc3〜(Ac3+50℃)の温度範囲で600sec以下保持する均熱工程を実施し、次いで、焼入れおよび焼戻しを行うことを特徴とする高強度鋼板の製造方法である。   Invention of Claim 1 is the mass%, C: 0.05-0.3%, Si: 0.7-3.0%, Mn: 0.5-3.0%, Al: 0.01 A method for producing a high-strength steel sheet, which contains 0.1% and a high-strength steel sheet having a structure mainly composed of ferrite and martensite by continuous annealing, and has an average temperature increase rate up to 600 ° C. of 3 ° C. / Sec or more, an average heating rate of 600 ° C. to 750 ° C. was increased at 0.2 to 2.5 ° C./sec, and then a heating step was performed to increase the temperature to Ac3− (Ac3 + 50 ° C.). Then, it is the manufacturing method of the high-strength steel plate characterized by implementing the soaking process which hold | maintains 600 sec or less in the temperature range of Ac3- (Ac3 + 50 degreeC), and then performing hardening and tempering.

本発明の高強度鋼板の製造方法によると、連続焼鈍を行う前の組織がばらついている場合や、連続焼鈍時の温度条件等にばらつきがある場合であっても、最終的に製造される高強度鋼板の組織や特性のばらつきを低減することができる。   According to the method for producing a high-strength steel sheet of the present invention, even if the structure before continuous annealing is varied or the temperature conditions during continuous annealing vary, the final manufactured high Variations in the structure and characteristics of the high strength steel sheet can be reduced.

DP鋼を連続焼鈍ラインで製造する場合の基本的な熱処理工程の温度と時間の関係を示すグラフ図である。It is a graph which shows the relationship between the temperature and time of a basic heat treatment process in case DP steel is manufactured with a continuous annealing line. 本発明の高強度鋼板の製造方法の加熱工程および均熱工程の温度と時間の関係を示すグラフ図である。It is a graph which shows the relationship between the temperature and time of the heating process and soaking process of the manufacturing method of the high strength steel plate of this invention.

本発明者らは、高強度鋼板を連続焼鈍により製造する際に、連続焼鈍を行う前の組織がばらついている場合や、連続焼鈍時の温度条件等にばらつきがある場合であっても、最終的に製造される高強度鋼板の特性のばらつきを低減することができる方法を見出すために、その検討を鋭意行った。その結果、連続焼鈍終了時のγ粒径をばらつきなく安定化させることが、最終的に製造される高強度鋼板の特性のばらつきを低減させるための有効な方法であることを見出した。   When manufacturing the high-strength steel sheet by continuous annealing, the present inventors have a final structure even if the structure before the continuous annealing varies or the temperature conditions during continuous annealing vary. In order to find a method capable of reducing the variation in characteristics of the high-strength steel sheet manufactured in an efficient manner, the inventors have made extensive studies. As a result, it has been found that stabilizing the γ grain size at the end of continuous annealing without variation is an effective method for reducing variation in characteristics of the finally produced high-strength steel sheet.

主としてフェライトおよびマルテンサイトからなる組織を有する複合組織鋼(DP鋼)を、連続焼鈍ラインで製造する場合は、図1に示すように、加熱、均熱、徐冷、急冷、再加熱、保持、冷却という熱処理工程を経ることになる。   When producing a composite structure steel (DP steel) having a structure mainly composed of ferrite and martensite in a continuous annealing line, as shown in FIG. 1, heating, soaking, slow cooling, rapid cooling, reheating, holding, It goes through a heat treatment process called cooling.

この熱処理工程を経てDP鋼が製造される際の鋼材の組織は以下のように変化する。まず、加熱工程および均熱工程で鋼材の組織はγ単相組織となる。次の焼入れ開始温度までの徐冷工程で組織中にフェライトが析出し、その後の急冷工程で残部のオーステナイトがマルテンサイトに変態する。その結果、急冷工程を終了した鋼材は主としてフェライトおよびマルテンサイトからなる組織となる。更に、再加熱、保持、冷却からなる焼戻し工程によりマルテンサイトの強度が調整される。   The structure of the steel material when DP steel is manufactured through this heat treatment process changes as follows. First, in the heating process and the soaking process, the steel material has a γ single-phase structure. In the slow cooling process up to the next quenching start temperature, ferrite is precipitated in the structure, and the remaining austenite is transformed into martensite in the subsequent rapid cooling process. As a result, the steel material that has finished the rapid cooling step has a structure mainly composed of ferrite and martensite. Furthermore, the strength of martensite is adjusted by a tempering process including reheating, holding, and cooling.

この際、鋼材の成分組成や熱処理条件等によっては、フェライトおよびマルテンサイトの他、ベイナイト、パーライト、セメンタイト等の他の組織を含有する場合があるが、これらの組織が少量含まれる場合においても本発明の効果はされるものであり、従って、これらは本発明の範疇に含まれる。尚、フェライトおよびマルテンサイト以外の組織の許容範囲は、面積率で10%以下、好ましくは5%以下、より好ましくは3%以下である。   At this time, depending on the component composition of the steel material, heat treatment conditions, etc., it may contain other structures such as bainite, pearlite, and cementite in addition to ferrite and martensite. The effects of the present invention are intended, and therefore these are included in the scope of the present invention. The allowable range of the structure other than ferrite and martensite is 10% or less in area ratio, preferably 5% or less, more preferably 3% or less.

先に、自動車用鋼板等に要求される機械的特性として、降伏強さ(YP)、引張強さ(TS)、伸び(EL)、伸びフランジ性(λ)等があると説明したが、これらの特性を支配する組織因子としては、主としてフェライトおよびマルテンサイトからなるDP鋼の場合には、フェライト分率とマルテンサイトの硬さを挙げることができる。このうち、フェライト分率は焼入れ開始までの温度履歴より決定され、マルテンサイトの硬さは再加熱(焼戻し)の温度履歴より決定される。   Previously, the mechanical properties required for steel sheets for automobiles, etc. were explained as yield strength (YP), tensile strength (TS), elongation (EL), stretch flangeability (λ), etc. In the case of DP steel mainly composed of ferrite and martensite, the ferrite fraction and the hardness of martensite can be cited as the structure factor that governs the above characteristics. Among these, the ferrite fraction is determined from the temperature history until the start of quenching, and the hardness of martensite is determined from the temperature history of reheating (tempering).

ここで、連続焼鈍前の組織や均熱温度にばらつきがあることで連続焼鈍終了時のγ粒径に大きなばらつきが発生すると、その後の熱履歴のばらつきをたとえ最小限に抑えたとしても、最終的に製造される高強度鋼板の特性のばらつきを低減することはできない。   Here, if there is a large variation in the γ grain size at the end of continuous annealing due to variations in the structure and soaking temperature before continuous annealing, even if the subsequent thermal history variation is minimized, the final The variation in characteristics of high strength steel sheets that are manufactured in a conventional manner cannot be reduced.

前述したように、DP鋼は、その製造時に均熱工程においてγ単相域で保持された後、続く徐冷工程においてα+γ2相域でフェライトが析出されることになるが、このフェライトの析出挙動は均熱工程が終了した時点でのγ粒径により変化する。均熱工程が終了した時点でのγ粒径が粗大になると、フェライトの核生成頻度が低下する。一方、均熱工程が終了した時点でのγ粒径が微細になると、フェライトの核生成頻度が増加する。   As described above, DP steel is retained in the γ single phase region in the soaking process at the time of production, and then ferrite is precipitated in the α + γ2 phase region in the subsequent slow cooling step. Changes depending on the γ particle size at the end of the soaking step. When the γ grain size at the end of the soaking step becomes coarse, the frequency of ferrite nucleation decreases. On the other hand, when the γ grain size at the time when the soaking process is completed becomes fine, the frequency of nucleation of ferrite increases.

そのため、均熱工程が終了した時点でのγ粒径に大きなばらつきがある場合には、たとえその後の徐冷工程でばらつきを制御しようとしても、最終的なフェライト分率にはばらつきが生じてしまう。逆にいうと、均熱工程が終了した時点でのγ粒径のばらつきを低減できた場合には、たとえその後の熱履歴に多少のばらつきがあったとしても、所望のフェライト分率と、所望の焼戻し後のマルテンサイト硬さを得ることができ、最終的に製造される高強度鋼板の特性のばらつきを低減することが可能になるということができる。   Therefore, if there is a large variation in the γ grain size at the time when the soaking process is completed, even if it is attempted to control the variation in the subsequent slow cooling step, the final ferrite fraction will vary. . Conversely, if the variation in γ grain size at the end of the soaking process can be reduced, even if there is some variation in the subsequent heat history, the desired ferrite fraction and the desired It can be said that the martensite hardness after tempering can be obtained, and it becomes possible to reduce variations in characteristics of the finally produced high-strength steel sheet.

そこで、均熱工程が終了した時点でのγ粒径のばらつきがどの程度のばらつきであれば、最終的に製造される高強度鋼板の組織や特性のばらつきを低減することができるかを、具体的に予備試験を実施し、評価した。   Therefore, the degree of variation in the γ grain size at the end of the soaking process can specifically reduce the variation in the structure and properties of the high-strength steel sheet that is finally produced. Preliminary tests were conducted and evaluated.

この予備試験では、まず均熱工程終了後、直ちに焼入れを行う熱処理を行ってオーステナイト粒径を測定した。その際に、均熱温度および保持時間を変化させることで、オーステナイト粒径を種々作り分けた。同一熱処理を3回行い、N=3の平均値によって、均熱工程の熱処理条件と、それによって変化するオーステナイと粒径の関係を明らかにした。   In this preliminary test, first, after the soaking step, a heat treatment for quenching was performed immediately to measure the austenite grain size. At that time, various austenite grain sizes were prepared by changing the soaking temperature and holding time. The same heat treatment was performed three times, and the average value of N = 3 clarified the heat treatment conditions of the soaking step, and the relationship between the austenite and the particle size that changed accordingly.

次に、前記手法で均熱工程終了時のオーステナイト粒径が判明している種々の均熱工程熱処理を施した後に、図1に示すような通常のDP鋼の製造で考えられる以下に説明する熱処理条件の範囲の種々の熱処理を施した。熱処理終了後にJIS5号引張試験片を採取し、引張試験を行って引張強度を測定した。一つの均熱工程(即ち、オーステナイト粒径)に対して、その後の同一条件での熱処理および引張試験を5回行い、その平均値により引張強度を判定した。   Next, after performing various soaking process heat treatments in which the austenite grain size at the end of the soaking process is known by the above-described method, the following explanation will be given which can be considered in the production of ordinary DP steel as shown in FIG. Various heat treatments in the range of heat treatment conditions were applied. After completion of the heat treatment, a JIS No. 5 tensile test piece was collected and subjected to a tensile test to measure the tensile strength. For one soaking step (i.e., austenite particle size), the heat treatment and the tensile test were performed five times under the same conditions thereafter, and the tensile strength was determined based on the average value.

これらの予備試験において、最終的に製造されたDP鋼の強度ばらつきが±3%以内に収まるものを合格とした。その結果、均熱工程終了時点でのγ粒径のばらつきが4μm以下であれば、最終的に製造される高強度鋼板の組織や特性のばらつきを低減することができることを確認した。   In these preliminary tests, the DP steel that was finally produced had a strength variation within ± 3%, and was accepted. As a result, it was confirmed that if the variation in γ grain size at the end of the soaking process was 4 μm or less, the variation in the structure and characteristics of the finally produced high-strength steel sheet could be reduced.

尚、通常のDP鋼の製造で考えられる熱処理条件とは、図1における徐冷速度R11が3〜20℃/sec、急冷開始温度T11が500〜700℃、急冷速度R12が50℃/sec以上、再加熱度T12が250〜550℃、保持時間t12が30〜1200secである。   The heat treatment conditions considered in the production of ordinary DP steel are as follows: annealing rate R11 in FIG. 1 is 3 to 20 ° C./sec, quenching start temperature T11 is 500 to 700 ° C., and quenching rate R12 is 50 ° C./sec or more. The reheating degree T12 is 250 to 550 ° C., and the holding time t12 is 30 to 1200 sec.

また、均熱工程が終了した時点でのγ粒径のばらつきは、連続焼鈍前の組織や均熱温度にばらつきがあることで増加するということができるが、本発明者らが種々検討した結果、連続焼鈍における加熱工程と均熱工程における各種条件を規定することで、連続焼鈍前の組織や均熱温度にばらつきがある場合であっても、最終的に製造される高強度鋼板の組織や特性のばらつきを低減することができることを見出した。   In addition, it can be said that the variation in the γ grain size at the time when the soaking process is completed increases due to the variation in the structure and soaking temperature before the continuous annealing, the results of various studies by the present inventors. By defining various conditions in the heating process and soaking process in continuous annealing, even if there is a variation in the structure before soaking and soaking temperature, It has been found that variation in characteristics can be reduced.

具体的には、図2に示すように、まず、加熱工程を複数の段階に分けて、夫々異なる昇温速度で加熱を行うことが重要であり、600℃までの平均昇温速度を3℃/sec以上、600℃〜750℃の平均昇温速度を0.2〜2.5℃/secとすることが要点である。また、その後、Ac3〜(Ac3+50℃)の温度範囲まで昇温する加熱工程を実施した後、そのAc3〜(Ac3+50℃)の温度範囲で600sec以下保持する均熱工程を実施することも重要である。   Specifically, as shown in FIG. 2, first, it is important to divide the heating process into a plurality of stages and perform heating at different heating rates, and the average heating rate up to 600 ° C. is 3 ° C. The important point is that the average rate of temperature increase from 600 ° C. to 750 ° C. is from 0.2 to 2.5 ° C./sec. It is also important to carry out a heating step for raising the temperature to a temperature range of Ac3 to (Ac3 + 50 ° C.), and then a soaking step for 600 sec or less in the temperature range of Ac3 to (Ac3 + 50 ° C.). .

600℃までの平均昇温速度を3℃/sec以上とした理由は、600℃までの温度では、再結晶が殆ど生じないため昇温速度を遅くする必要はないが、生産性の観点から3℃/sec以上とした。   The reason for setting the average temperature rising rate up to 600 ° C. to 3 ° C./sec or higher is that there is almost no recrystallization at temperatures up to 600 ° C., but it is not necessary to slow down the temperature rising rate. It was set to ° C / sec or more.

これに対し、600℃〜750℃は、再結晶挙動が急激に発生する温度領域であるため、600℃〜750℃の平均昇温速度を0.2〜2.5℃/secとし、600℃までの昇温速度と比べて遅くすることで、再結晶を十分に促進させることとした。昇温速度の上限を2.5℃/secとした理由は、昇温速度が2.5℃/secを超えると十分に再結晶させることができなくなるからである。一方、昇温速度の下限を0.2℃/secとした理由は、昇温速度が0.2℃/sec未満では、AlNの析出、粗大化が顕著になり、次の均熱工程でのγ粒径のピニング効果が希薄になってしまうからである。   On the other hand, 600 ° C. to 750 ° C. is a temperature region in which recrystallization behavior occurs abruptly. It was decided that the recrystallization was sufficiently promoted by slowing it up compared to the temperature rising rate until. The reason for setting the upper limit of the heating rate to 2.5 ° C./sec is that sufficient recrystallization cannot be achieved when the heating rate exceeds 2.5 ° C./sec. On the other hand, the reason for setting the lower limit of the heating rate to 0.2 ° C./sec is that when the heating rate is less than 0.2 ° C./sec, precipitation and coarsening of AlN become remarkable, and in the next soaking step. This is because the pinning effect of the γ grain size becomes dilute.

一方、750℃を超えてAc3〜(Ac3+50℃)の温度範囲までにある均熱温度に達するまでの昇温速度については、組織変化に及ぼす影響は極めて少ないため、この間の昇温速度は特に規定する必要はないといえるが、設備の昇温能力や生産性を考慮すると、0.3〜10℃/secの通常実施されている昇温速度の範囲で適宜決定することが望ましい。   On the other hand, the rate of temperature rise until reaching the soaking temperature in the temperature range of Ac3 to (Ac3 + 50 ° C) exceeding 750 ° C has very little effect on the structure change. Although it is not necessary to take this into consideration, it is desirable that the temperature is appropriately determined within a range of a temperature increase rate that is normally performed at 0.3 to 10 ° C./sec in consideration of the temperature increase capability and productivity of the equipment.

尚、通常のDP鋼における昇温工程においては、特に途中で昇温速度を変化させるようなことは行われていない。例えば、特許文献3の実施例に示されているように、約20℃/秒程度の昇温速度で、途中で昇温速度を変えることなく、目標の均熱温度まで加熱を行っている。   In addition, in the temperature rising process in ordinary DP steel, there is no particular change in the temperature rising rate during the process. For example, as shown in the example of Patent Document 3, heating is performed to a target soaking temperature at a temperature rising rate of about 20 ° C./second without changing the temperature rising rate on the way.

また、Ac3〜(Ac3+50℃)の温度範囲で600sec以下保持する均熱工程を実施するとしたが、この均熱工程での保持時間もγ粒径のばらつきに影響を及ぼす。この保持時間が600secを超えると、生産性を阻害するという欠点があるばかりか、γ粒の成長が促進されてしまいγ粒径にばらつきが生じてしまう。一方、均熱工程での保持時間の下限については限定しないが、保持時間が短すぎると逆変態が不十分になる可能性があるため、60sec以上とすることが望ましい。   In addition, the soaking step for holding 600 sec or less in the temperature range of Ac3 to (Ac3 + 50 ° C.) is performed, but the holding time in this soaking step also affects the variation in γ particle size. When this holding time exceeds 600 seconds, not only has the disadvantage of inhibiting productivity, but also the growth of γ grains is promoted, resulting in variations in γ grain sizes. On the other hand, the lower limit of the holding time in the soaking step is not limited. However, if the holding time is too short, the reverse transformation may become insufficient, and thus it is desirable that the holding time be 60 seconds or longer.

次に、本発明の製造方法で製造される高強度鋼板における化学成分組成について説明する。本発明の製造方法で製造される高強度鋼板は先に説明した製造方法が適切であっても、夫々の化学成分(元素)の含有量が適正範囲内でなければ、所望の作用効果を奏することができない。従って、本発明の製造方法で製造される高強度鋼板は、夫々の化学成分の含有量が、以下に説明する範囲内にあることも要件とする。尚、下記の化学成分の含有量(%)は全て質量%を示す。   Next, the chemical component composition in the high-strength steel plate manufactured by the manufacturing method of the present invention will be described. Even if the production method described above is appropriate, the high-strength steel plate produced by the production method of the present invention has a desired effect as long as the content of each chemical component (element) is not within an appropriate range. I can't. Therefore, the high-strength steel sheet produced by the production method of the present invention also requires that the content of each chemical component is within the range described below. In addition, all the content (%) of the following chemical component shows the mass%.

C:0.05〜0.3%
Cは、マルテンサイトの面積率およびその硬さに影響し、降伏強度および伸びフランジ性に影響する重要な元素である。0.05%未満ではマルテンサイトの面積率が不足して十分な降伏強度を確保することができなくなる。一方、0.3%を超えるとマルテンサイトの硬さが硬くなりすぎて伸びフランジ性が確保できなくなる。従って、Cの含有量は0.05〜0.3%とする必要がある。Cの含有量の好ましい下限は0.07%、好ましい上限は0.2%である。
C: 0.05-0.3%
C is an important element that affects the area ratio of martensite and its hardness and affects the yield strength and stretch flangeability. If it is less than 0.05%, the area ratio of martensite is insufficient and sufficient yield strength cannot be ensured. On the other hand, if it exceeds 0.3%, the martensite becomes too hard and stretch flangeability cannot be secured. Therefore, the C content needs to be 0.05 to 0.3%. The minimum with preferable content of C is 0.07%, and a preferable upper limit is 0.2%.

Si:0.7〜3.0%
Siは、固溶強化元素として伸びを劣化させずに降伏強度を高めると共に、焼戻し時におけるマルテンサイト中に存在するセメンタイト粒子の粗大化を抑制する作用も有し、このように粗大なセメンタイト粒子の生成を抑制することで、伸びフランジ性を向上させる効果も有する有用な元素である。0.7%未満ではこのような作用を有効に発揮させることができない。一方、3.0%を超えると加熱時におけるオーステナイトの形成を阻害するため、マルテンサイトの面積率を確保できず、降伏強度と伸びフランジ性が確保できなくなる。従って、Siの含有量は0.05〜3.0%とする必要がある。Siの含有量の好ましい下限は1.0%、好ましい上限は2.0%である。
Si: 0.7-3.0%
Si, as a solid solution strengthening element, increases the yield strength without degrading the elongation, and also has the effect of suppressing the coarsening of the cementite particles present in the martensite during tempering. It is a useful element that also has the effect of improving stretch flangeability by suppressing its formation. If it is less than 0.7%, such an effect cannot be exhibited effectively. On the other hand, if it exceeds 3.0%, the formation of austenite at the time of heating is hindered, so the area ratio of martensite cannot be secured, and the yield strength and stretch flangeability cannot be secured. Therefore, the Si content needs to be 0.05 to 3.0%. The preferable lower limit of the Si content is 1.0%, and the preferable upper limit is 2.0%.

Mn:0.5〜3.0%
Mnは、Siと同様に、固溶強化元素として伸びを劣化させずに降伏強度を高めると共に、焼戻し時におけるマルテンサイト中に存在するセメンタイト粒子の粗大化を抑制する作用も有し、粗大なセメンタイト粒子の生成を抑制することで、伸びフランジ性を向上させる効果も有する有用な元素である。また、焼入れ性を高めてマルテンサイトの面積率の確保に寄与することで、降伏強度と伸びフランジ性を向上させる効果も有する。0.5%未満では、固溶強化作用およびセメンタイト粗大化抑制作用を有効に発揮させることができなくなるうえ、焼入れのための急冷時にベイナイトが多量に形成されてしまい、マルテンサイトの面積率が不足するため、降伏強度と伸びフランジ性が確保できなくなる。従って、Mnの含有量は0.5〜3.0%とする。Mnの含有量の好ましい下限は1.0%、好ましい上限は2.5%である。
Mn: 0.5 to 3.0%
Similar to Si, Mn, as a solid solution strengthening element, increases the yield strength without deteriorating the elongation, and also has the effect of suppressing the coarsening of cementite particles present in the martensite during tempering. It is a useful element that also has the effect of improving stretch flangeability by suppressing the generation of particles. Moreover, it has the effect of improving yield strength and stretch flangeability by increasing the hardenability and contributing to securing the area ratio of martensite. If it is less than 0.5%, the solid solution strengthening action and the cementite coarsening suppressing action cannot be exhibited effectively, and a large amount of bainite is formed during quenching for quenching, resulting in insufficient martensite area ratio. Therefore, the yield strength and stretch flangeability cannot be secured. Therefore, the Mn content is set to 0.5 to 3.0%. The preferable lower limit of the Mn content is 1.0%, and the preferable upper limit is 2.5%.

Al:0.01〜0.1%
Alは、不可避的不純物のNと結合してAlNを形成し、歪時効の発生に寄与する固溶Nを低減させることで伸びフランジ性の低下を防止すると共に、固溶強化により強度向上に寄与する。0.01%未満では鋼中に固溶Nが残存するため歪時効が発生し、伸びと伸びフランジ性を確保できなくなる。一方、0.1%を超えると加熱時におけるオーステナイトの形成を阻害するため、マルテンサイトの面積率を確保できず、伸びフランジ性が確保できなくなる。従って、Alの含有量は0.01〜0.1%とする。Alの含有量の好ましい下限は0.03%、好ましい上限は0.08%である。
Al: 0.01 to 0.1%
Al combines with the inevitable impurity N to form AlN, reducing the solid solution N that contributes to the occurrence of strain aging, thereby preventing the stretch flangeability from deteriorating and contributing to improving the strength by solid solution strengthening. To do. If it is less than 0.01%, solute N remains in the steel, strain aging occurs, and it becomes impossible to ensure elongation and stretch flangeability. On the other hand, if it exceeds 0.1%, the formation of austenite at the time of heating is inhibited, so the area ratio of martensite cannot be ensured and stretch flangeability cannot be ensured. Therefore, the Al content is set to 0.01 to 0.1%. The preferable lower limit of the Al content is 0.03%, and the preferable upper limit is 0.08%.

以上が本発明で規定する必須の含有元素であって、残部は鉄および不可避的不純物である。また、更に以下に示す元素を積極的に含有させることも有効であり、含有される化学成分(元素)の種類によって本発明の製造方法で製造される高強度鋼板の特性が更に改善される。   The above are the essential elements specified in the present invention, and the balance is iron and inevitable impurities. Further, it is also effective to positively contain the following elements, and the characteristics of the high-strength steel plate produced by the production method of the present invention are further improved depending on the type of chemical component (element) contained.

本発明の製造方法で製造される高強度鋼板には、Ti、Nb、V、Zrのうち少なくとも1種以上を合計で0.01〜0.1%含有させることが有効である。更には、Niおよび/またはCuを合計で1%以下含有させることが有効である。また更には、Cr:2%以下および/またはMo:1%以下含有させることが有効である。また更には、Bを0.0001〜0.005%含有させることが有効である。また更には、CaおよびREMから選択される元素を合計で0.003%以下含有させることが有効である。   It is effective for the high-strength steel plate manufactured by the manufacturing method of the present invention to contain at least one of Ti, Nb, V, and Zr in a total of 0.01 to 0.1%. Furthermore, it is effective to contain 1% or less of Ni and / or Cu in total. Furthermore, it is effective to contain Cr: 2% or less and / or Mo: 1% or less. Furthermore, it is effective to contain B in an amount of 0.0001 to 0.005%. Furthermore, it is effective to contain a total of 0.003% or less of elements selected from Ca and REM.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、本発明の趣旨に適合し得る範囲で適宜変更を加えて実施することも可能であり、それらは何れも本発明の技術的範囲に含まれる。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, and the present invention is implemented with appropriate modifications within a range that can meet the gist of the present invention. These are all included in the technical scope of the present invention.

本発明の実施例では、まず、表1に示す各成分組成の鋼を溶解し、熱延工程、酸洗工程、冷延工程を経て種々の組織を有する各種鋼板を作製した。その後、表2および図2に示す製造条件で、連続焼鈍ラインでの加熱工程および均熱工程を模擬した熱処理を行った後、最後に図2に示すように急冷し、急冷後の各種鋼板の組織のγ粒径を測定した。尚、表2の熱延後組織でBと示すのはベイナイト、Fと示すのはファライト、Pと示すのはパーライト、Mと示すのはマルテンサイトである。   In Examples of the present invention, first, steels having respective component compositions shown in Table 1 were melted, and various steel sheets having various structures were produced through a hot rolling process, a pickling process, and a cold rolling process. Then, after performing the heat treatment simulating the heating process and the soaking process in the continuous annealing line under the manufacturing conditions shown in Table 2 and FIG. 2, finally quenching as shown in FIG. The γ particle size of the tissue was measured. In the heat-rolled structure in Table 2, B indicates bainite, F indicates pearlite, P indicates pearlite, and M indicates martensite.

γ粒径の測定は、JIS G0551に示される手法に倣って行い、粒度番号を粒径に換算して評価を行った。   The measurement of the γ particle size was performed according to the method described in JIS G0551, and the evaluation was performed by converting the particle size number into a particle size.

試験結果を表2に示す。本試験では均熱工程の温度条件、保持時間が違う4つの条件を模擬して熱処理を行い、急冷後の各種鋼板の組織のγ粒径を夫々測定し、その最大値と最小値の差を連続焼鈍終了時のγ粒径のばらつきとした。本試験ではこのばらつきが4μm以内のものを合格とした。   The test results are shown in Table 2. In this test, heat treatment was performed simulating the four conditions of temperature equalization process and holding time, and the γ grain size of each steel sheet structure after rapid cooling was measured, and the difference between the maximum and minimum values was measured. It was set as the dispersion | variation in (gamma) particle size at the time of completion | finish of continuous annealing. In this test, the variation was within 4 μm.

Figure 2012017500
Figure 2012017500

Figure 2012017500
Figure 2012017500

No.1〜6は、本発明の要件を満足する発明例であり、γ粒径のばらつきは全て4μm以内であり、試験結果は合格であった。これに対し、No.7〜9は、600℃〜750℃の平均昇温速度、あるいは保持する均熱温度条件が不適切な比較例であり、その結果、γ粒径のばらつきが4μmより大きくなり、試験結果は不合格であった。   No. Nos. 1 to 6 are invention examples satisfying the requirements of the present invention, and the variations in the γ particle diameter were all within 4 μm, and the test results were acceptable. In contrast, no. Nos. 7 to 9 are comparative examples in which the average temperature rising rate of 600 ° C. to 750 ° C. or the soaking temperature condition to be maintained is inappropriate. As a result, the variation in the γ particle size becomes larger than 4 μm, and the test results are not good. It was a pass.

Claims (1)

質量%で、C:0.05〜0.3%、Si:0.7〜3.0%、Mn:0.5〜3.0%、Al:0.01〜0.1%を含有すると共に、主としてフェライトおよびマルテンサイトからなる組織を有する高強度鋼板を連続焼鈍により製造する高強度鋼板の製造方法であって、
600℃までの平均昇温速度を3℃/sec以上、600℃〜750℃の平均昇温速度を0.2〜2.5℃/secで昇温し、その後、Ac3〜(Ac3+50℃)の温度範囲まで昇温する加熱工程を実施した後、
そのAc3〜(Ac3+50℃)の温度範囲で600sec以下保持する均熱工程を実施し、次いで、焼入れおよび焼戻しを行うことを特徴とする高強度鋼板の製造方法。
In mass%, C: 0.05-0.3%, Si: 0.7-3.0%, Mn: 0.5-3.0%, Al: 0.01-0.1% A manufacturing method of a high-strength steel sheet for manufacturing a high-strength steel sheet having a structure mainly composed of ferrite and martensite by continuous annealing,
The average temperature increase rate up to 600 ° C. is 3 ° C./sec or more, the average temperature increase rate from 600 ° C. to 750 ° C. is increased from 0.2 to 2.5 ° C./sec, and then Ac3— (Ac3 + 50 ° C.) After carrying out the heating process to raise the temperature to the temperature range,
The manufacturing method of the high strength steel plate characterized by implementing the soaking process which hold | maintains 600 sec or less in the temperature range of the Ac3- (Ac3 + 50 degreeC), and then quenching and tempering.
JP2010155669A 2010-07-08 2010-07-08 Manufacturing method of high-strength steel sheet Expired - Fee Related JP5462736B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010155669A JP5462736B2 (en) 2010-07-08 2010-07-08 Manufacturing method of high-strength steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010155669A JP5462736B2 (en) 2010-07-08 2010-07-08 Manufacturing method of high-strength steel sheet

Publications (2)

Publication Number Publication Date
JP2012017500A true JP2012017500A (en) 2012-01-26
JP5462736B2 JP5462736B2 (en) 2014-04-02

Family

ID=45602956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010155669A Expired - Fee Related JP5462736B2 (en) 2010-07-08 2010-07-08 Manufacturing method of high-strength steel sheet

Country Status (1)

Country Link
JP (1) JP5462736B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017214646A (en) * 2016-05-30 2017-12-07 株式会社神戸製鋼所 High strength steel sheet and manufacturing method therefor
WO2017208763A1 (en) * 2016-05-30 2017-12-07 株式会社神戸製鋼所 High-strength steel sheet and method for producing same
CN114669699A (en) * 2022-03-23 2022-06-28 北京少仕科技有限公司 Torsion shaft manufacturing method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009132981A (en) * 2007-11-30 2009-06-18 Jfe Steel Corp High-strength cold-rolled steel sheet having small in-plane anisotropy of elongation, and manufacturing method therefor
WO2009125874A1 (en) * 2008-04-10 2009-10-15 新日本製鐵株式会社 High-strength steel sheets which are extremely excellent in the balance between burring workability and ductility and excellent in fatigue endurance, zinc-coated steel sheets, and processes for production of both
JP2011140688A (en) * 2010-01-06 2011-07-21 Sumitomo Metal Ind Ltd Method for producing cold-rolled steel sheet
JP2011140687A (en) * 2010-01-06 2011-07-21 Sumitomo Metal Ind Ltd Method for producing cold-rolled steel sheet
JP2011140686A (en) * 2010-01-06 2011-07-21 Sumitomo Metal Ind Ltd Method of producing cold-rolled steel sheet
JP4903915B2 (en) * 2010-01-26 2012-03-28 新日本製鐵株式会社 High-strength cold-rolled steel sheet and manufacturing method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009132981A (en) * 2007-11-30 2009-06-18 Jfe Steel Corp High-strength cold-rolled steel sheet having small in-plane anisotropy of elongation, and manufacturing method therefor
WO2009125874A1 (en) * 2008-04-10 2009-10-15 新日本製鐵株式会社 High-strength steel sheets which are extremely excellent in the balance between burring workability and ductility and excellent in fatigue endurance, zinc-coated steel sheets, and processes for production of both
JP2011140688A (en) * 2010-01-06 2011-07-21 Sumitomo Metal Ind Ltd Method for producing cold-rolled steel sheet
JP2011140687A (en) * 2010-01-06 2011-07-21 Sumitomo Metal Ind Ltd Method for producing cold-rolled steel sheet
JP2011140686A (en) * 2010-01-06 2011-07-21 Sumitomo Metal Ind Ltd Method of producing cold-rolled steel sheet
JP4903915B2 (en) * 2010-01-26 2012-03-28 新日本製鐵株式会社 High-strength cold-rolled steel sheet and manufacturing method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017214646A (en) * 2016-05-30 2017-12-07 株式会社神戸製鋼所 High strength steel sheet and manufacturing method therefor
WO2017208763A1 (en) * 2016-05-30 2017-12-07 株式会社神戸製鋼所 High-strength steel sheet and method for producing same
CN114669699A (en) * 2022-03-23 2022-06-28 北京少仕科技有限公司 Torsion shaft manufacturing method

Also Published As

Publication number Publication date
JP5462736B2 (en) 2014-04-02

Similar Documents

Publication Publication Date Title
JP6383808B2 (en) High-strength cold-rolled steel sheet having excellent ductility, hot-dip galvanized steel sheet, and production methods thereof
JP5879364B2 (en) Steel sheet for molded member having excellent ductility, molded member, and manufacturing method thereof
JP2018536764A (en) Ultra-high-strength steel sheet excellent in formability and hole expansibility and manufacturing method thereof
JP2023065520A (en) Steel sheet excellent in toughness, ductility and strength and manufacturing method thereof
JP5457840B2 (en) High strength cold-rolled steel sheet with excellent elongation and stretch flangeability
JP5860343B2 (en) High strength cold-rolled steel sheet with small variations in strength and ductility and method for producing the same
JP6858253B2 (en) Ultra-high-strength steel sheet with excellent hole expansion and yield ratio and its manufacturing method
KR20180033202A (en) A moldable lightweight steel having improved mechanical properties and a method for producing a semi-finished product from said steel
TWI742721B (en) Austenitic stainless steel and manufacturing method thereof
KR101697093B1 (en) Ferritic stainless steel and method of manufacturing the same
JP5462736B2 (en) Manufacturing method of high-strength steel sheet
JP5462742B2 (en) Method for producing high-strength steel sheet with excellent mechanical property stability
JP2010100896A (en) High strength cold rolled steel sheet having excellent stability in mechanical property and method of producing the same
JP6678240B2 (en) Cold rolled steel sheet for continuous self-brazing and method for producing the same
EP1888799A1 (en) Cold rolled steel sheet having superior formability , process for producing the same
JP2018502992A (en) Composite steel sheet with excellent formability and method for producing the same
KR101403215B1 (en) Ultra high strength high manganese steel sheet with excellent ductility and method of manufacturing the same
JP2023507801A (en) Cold-rolled steel sheet with excellent heat resistance and formability and its manufacturing method
KR20140118312A (en) Cold-rolled steel sheet and method of manufacturing the same
KR102123665B1 (en) High-strength ferritic stainless steel for clamp and method for manufacturing the same
KR101449135B1 (en) Baking hardening type galvanized steel sheet having excellent formability and powdering resistance, and method for manufacturing the same
JP2017025397A (en) Hot rolled steel sheet and method of producing the same
JP6410543B2 (en) Ferritic stainless steel plate excellent in hole expansibility and manufacturing method thereof
JP2021502480A (en) Ultra-high-strength, high-ductility steel sheet with excellent cold formability and its manufacturing method
KR101516870B1 (en) High strength cold-rolled steel sheet and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120828

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131008

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140117

R150 Certificate of patent or registration of utility model

Ref document number: 5462736

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees