KR20140118312A - Cold-rolled steel sheet and method of manufacturing the same - Google Patents

Cold-rolled steel sheet and method of manufacturing the same Download PDF

Info

Publication number
KR20140118312A
KR20140118312A KR1020130033950A KR20130033950A KR20140118312A KR 20140118312 A KR20140118312 A KR 20140118312A KR 1020130033950 A KR1020130033950 A KR 1020130033950A KR 20130033950 A KR20130033950 A KR 20130033950A KR 20140118312 A KR20140118312 A KR 20140118312A
Authority
KR
South Korea
Prior art keywords
cold
less
steel sheet
slab
rolled steel
Prior art date
Application number
KR1020130033950A
Other languages
Korean (ko)
Other versions
KR101516864B1 (en
Inventor
임지형
이경호
Original Assignee
현대제철 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대제철 주식회사 filed Critical 현대제철 주식회사
Priority to KR1020130033950A priority Critical patent/KR101516864B1/en
Publication of KR20140118312A publication Critical patent/KR20140118312A/en
Application granted granted Critical
Publication of KR101516864B1 publication Critical patent/KR101516864B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

Disclosed are a cold rolled steel sheet capable of ensuring excellent formability by reducing the content of phosphorus (P) and manganese (Mn), and performing heat treatment in a batch annealing furnace by refining a grain and adding niobium (Nb) which is a precipitation hardening element; and a method of manufacturing the same. According to the present invention, the method of manufacturing the cold rolled steel sheet comprises: (a) a step of finish hot rolling a slab comprising 0.05-0.08 wt% of carbon (C), 0.025 wt% or less of silicon (Si), 0.7-0.9 wt% of manganese (Mn), 0.02 wt% or less of phosphorus (P), 0.008 wt% or less of sulfur (S), 0.01-0.05 wt% of aluminum (Al), 0.02-0.03 wt% of niobium (Nb), and the remainder consisting of Fe and inevitable impurities at 800-900°C which is a finishing delivery temperature (FDT); (b) a step of coiling the slab by cooling the hot rolled slab to 600-700°C which is a coiling temperature (CT); (c) a step of cold rolling the slab after pickling the slab by uncoiling the coiled slab; and (d) a step of heat treating the cold rolled slab for 10-15 hours at 680-700°C in a batch annealing furnace.

Description

냉연강판 및 그 제조 방법{COLD-ROLLED STEEL SHEET AND METHOD OF MANUFACTURING THE SAME}Technical Field [0001] The present invention relates to a cold-rolled steel sheet and a method of manufacturing the same,

본 발명은 냉연강판 및 그 제조 방법에 관한 것으로, 보다 상세하게는 합금성분 조절 및 공정조건 제어를 통하여 우수한 가공성을 확보할 수 있는 고강도 냉연강판 및 그 제조 방법에 관한 것이다.
The present invention relates to a cold-rolled steel sheet and a method of manufacturing the same, and more particularly, to a high-strength cold-rolled steel sheet capable of securing excellent workability through control of alloy components and process conditions and a method of manufacturing the same.

자동차, 가전제품 등에 사용되는 강판은 품질에 대한 고급화 및 다양화에 대한 요구가 높아지고 있다.Steel plates used in automobiles, household appliances, etc. are increasingly demanding for quality and diversification of quality.

특히, 자동차, 가전제품 등의 외판재에 적용되는 강판은 주로 표면 품질과 가공성이 우수한 냉연강판이 적용된다.In particular, cold rolled steel sheets, which have excellent surface quality and workability, are mainly applied to steel sheets applied to outer plates of automobiles and household appliances.

일반적으로, 냉연강판은 열간 압연(hot-rolling) 과정, 냉각/권취(cooling/coiling) 과정, 산세(acid pickling) 과정, 냉간 압연(cold-rolling) 과정, 소둔 열처리(annealing) 과정 등을 통하여 제조된다.Generally, the cold-rolled steel sheet is manufactured by a hot-rolling process, a cooling / coiling process, an acid pickling process, a cold-rolling process and an annealing process .

관련 선행문헌으로는 대한민국 공개특허공보 제10-2011-0026751호(2011.03.16. 공개)가 있으며, 상기 문헌에는 고강도와 고성형성을 가지는 극박 냉연강판 및 그 제조방법이 기재되어 있다.
A related prior art is Korean Patent Laid-Open Publication No. 10-2011-0026751 (Mar. 16, 2011), which discloses an ultra-thin cold-rolled steel sheet having high strength and high-strength formation and a manufacturing method thereof.

본 발명의 목적은 인(P) 및 망간(Mn)의 함량을 저감하고, 결정립 미세화 및 석출경화형 원소인 니오븀(Nb)을 첨가하여 상자소둔 열처리를 실시함으로써, 우수한 가공성을 확보할 수 있는 냉연강판을 제조하는 방법을 제공하는 것이다.An object of the present invention is to provide a cold-rolled steel sheet which can reduce the content of phosphorus (P) and manganese (Mn) and which is capable of ensuring excellent workability by carrying out box annealing heat treatment by addition of niobium (Nb) And a method for producing the same.

본 발명의 다른 목적은 상기 방법으로 제조되어, 인장강도(TS) : 440 ~ 480MPa, 항복강도(YP) : 260 ~ 380MPa 및 연신율(EL) : 30 ~ 40%를 갖는 냉연강판을 제공하는 것이다.
Another object of the present invention is to provide a cold rolled steel sheet produced by the above method and having a tensile strength (TS) of 440 to 480 MPa, a yield strength (YP) of 260 to 380 MPa and an elongation (EL) of 30 to 40%.

상기 목적을 달성하기 위한 본 발명의 실시예에 따른 냉연강판 제조 방법은 (a) 탄소(C) : 0.05 ~ 0.08 중량%, 실리콘(Si) : 0.025 중량% 이하, 망간(Mn) : 0.7 ~ 0.9 중량%, 인(P) : 0.02 중량% 이하, 황(S) : 0.008 중량% 이하, 알루미늄(Al) : 0.01 ~ 0.05 중량%, 니오븀(Nb) : 0.02 ~ 0.03 중량% 및 나머지 철(Fe)과 불가피한 불순물로 이루어지는 슬라브 판재를 FDT(Finishing Delivery Temperature) : 800 ~ 900℃ 조건으로 마무리 열간압연하는 단계; (b) 상기 열간압연된 판재를 CT(Coiling Temperature) : 600 ~ 700℃까지 냉각하여 권취하는 단계; (c) 상기 권취된 판재를 언코일링하여 산세 처리한 후, 냉간압연하는 단계; 및 (d) 상기 냉간압연된 판재를 680 ~ 700℃에서 10 ~ 15시간 동안 상자소둔 열처리하는 단계;를 포함하는 것을 특징으로 한다.
(A) 0.05 to 0.08% by weight of carbon (C), 0.025% by weight or less of silicon (Si), and 0.7 to 0.9% of manganese (Mn) in accordance with an embodiment of the present invention. (Fe), 0.02 wt% or less of phosphorus (P), 0.008 wt% or less of sulfur (S), 0.01 to 0.05 wt% of aluminum (Al), 0.02 to 0.03 wt% of niobium (Nb) And finishing hot rolling at a finishing delivery temperature (FDT) of 800 to 900 ° C; (b) cooling the hot-rolled plate by cooling to a CT (Coiling Temperature) of 600 to 700 占 폚 and winding; (c) uncoiling and pickling the rolled sheet material, followed by cold rolling; And (d) subjecting the cold-rolled plate to box annealing at 680 to 700 ° C for 10 to 15 hours.

상기 다른 목적을 달성하기 위한 본 발명의 실시예에 따른 냉연강판은 탄소(C) : 0.05 ~ 0.08 중량%, 실리콘(Si) : 0.025 중량% 이하, 망간(Mn) : 0.7 ~ 0.9 중량%, 인(P) : 0.02 중량% 이하, 황(S) : 0.008 중량% 이하, 알루미늄(Al) : 0.01 ~ 0.05 중량%, 니오븀(Nb) : 0.02 ~ 0.03 중량% 및 나머지 철(Fe)과 불가피한 불순물로 이루어지며, 인장강도(TS) : 440 ~ 480MPa, 항복강도(YP) : 260 ~ 380MPa 및 연신율(EL) : 30 ~ 40%를 갖는 것을 특징으로 한다.
According to another aspect of the present invention, there is provided a cold rolled steel sheet comprising 0.05 to 0.08% by weight of carbon (C), 0.025% by weight or less of silicon (Si), 0.7 to 0.9% by weight of manganese (Mn) (Fe) in an amount of 0.02 wt% or less, sulfur (S) in an amount of 0.008 wt% or less, aluminum (Al) in an amount of 0.01 to 0.05 wt%, niobium (Nb) And has tensile strength (TS) of 440 to 480 MPa, yield strength (YP) of 260 to 380 MPa and elongation (EL) of 30 to 40%.

본 발명은 인(P) 및 망간(Mn)의 함량을 저감하고, 결정립 미세화 및 석출경화형 원소인 니오븀(Nb)을 첨가하여 상자소둔 열처리를 실시함으로써, 템퍼칼라의 발생을 최소화할 수 있으면서도, 우수한 가공성을 나타내는 냉연강판을 제조할 수 있다.The present invention reduces the content of phosphorus (P) and manganese (Mn) and performs box annealing by addition of niobium (Nb) which is a crystal grain refinement and precipitation hardening type element, thereby minimizing occurrence of a temper color, A cold rolled steel sheet exhibiting workability can be produced.

본 발명에 따른 방법으로 제조된 냉연강판은 인장강도(TS) : 440 ~ 480MPa, 항복강도(YP) : 260 ~ 380MPa 및 연신율(EL) : 30 ~ 40%를 나타낼 수 있음과 더불어, 템퍼칼라 발생의 최소화로 양측 가장자리로부터 각각 50mm 이하의 너비를 절단하여 사용할 수 있게 된다.The cold rolled steel sheet produced by the method according to the present invention can exhibit a tensile strength (TS) of 440 to 480 MPa, a yield strength (YP) of 260 to 380 MPa and an elongation (EL) of 30 to 40% It is possible to cut the width of 50 mm or less from the edges of both sides and use it.

이를 통해, 본 발명에 따른 방법으로 제조된 냉연강판은 딥 드로잉(deep drawing)성과 고강도 확보가 가능하므로, 성형 가공이 많이 요구되는 자동차용 구조부재나 보강재 등으로 활용하기에 적합하다.
As a result, the cold-rolled steel sheet produced by the method according to the present invention is suitable for use as a structural member for automobiles or a reinforcing material, which requires a large amount of forming work, because deep drawing and high strength can be secured.

도 1은 본 발명의 실시예에 따른 냉연강판 제조 방법을 나타낸 공정 순서도이다.FIG. 1 is a process flow chart showing a cold-rolled steel sheet manufacturing method according to an embodiment of the present invention.

본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나, 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성요소를 지칭한다.BRIEF DESCRIPTION OF THE DRAWINGS The advantages and features of the present invention, and the manner of achieving them, will be apparent from and elucidated with reference to the embodiments described hereinafter in conjunction with the accompanying drawings. It should be understood, however, that the invention is not limited to the disclosed embodiments, but is capable of many different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, To fully disclose the scope of the invention to those skilled in the art, and the invention is only defined by the scope of the claims. Like reference numerals refer to like elements throughout the specification.

이하 첨부된 도면을 참조하여 본 발명의 바람직한 실시예에 따른 냉연강판 및 그 제조 방법에 관하여 상세히 설명하면 다음과 같다.
Hereinafter, a cold-rolled steel sheet according to a preferred embodiment of the present invention and a method of manufacturing the same will be described in detail with reference to the accompanying drawings.

냉연강판Cold rolled steel plate

본 발명에 따른 냉연강판은 합금성분 조절 및 공정조건 제어를 통하여, 인장강도(TS) : 440 ~ 480MPa, 항복강도(YP) : 260 ~ 380MPa 및 연신율(EL) : 30 ~ 40%를 나타내는 것을 목표로 한다.The cold-rolled steel sheet according to the present invention has a tensile strength (TS) of 440 to 480 MPa, a yield strength (YP) of 260 to 380 MPa and an elongation (EL) of 30 to 40% .

이를 위하여, 본 발명에 따른 냉연강판은 탄소(C) : 0.05 ~ 0.08 중량%, 실리콘(Si) : 0.025 중량% 이하, 망간(Mn) : 0.7 ~ 0.9 중량%, 인(P) : 0.02 중량% 이하, 황(S) : 0.008 중량% 이하, 알루미늄(Al) : 0.01 ~ 0.05 중량%, 니오븀(Nb) : 0.02 ~ 0.03 중량% 및 나머지 철(Fe)과 불가피한 불순물로 이루어진다.
The cold-rolled steel sheet according to the present invention comprises 0.05 to 0.08 wt% of carbon (C), 0.025 wt% or less of silicon (Si), 0.7 to 0.9 wt% of manganese (Mn) 0.008 wt% or less of sulfur (S), 0.01 to 0.05 wt% of aluminum (Al), 0.02 to 0.03 wt% of niobium (Nb), and the balance of iron (Fe) and unavoidable impurities.

이하, 본 발명에 따른 냉연강판에 포함되는 각 성분의 역할 및 그 함량에 대하여 설명하면 다음과 같다.
Hereinafter, the role and content of each component contained in the cold-rolled steel sheet according to the present invention will be described.

탄소(C)Carbon (C)

탄소(C)는 강 중의 침입형 고용강화 원소로써, 이상 조직강에서는 고용강화 뿐만 아니라 오스테나이트에 농화되어 냉연 열처리시 마르텐사이트 형성 및 강도 증가에 기여한다.Carbon (C) is an intrinsic solid solution strengthening element in steel. It is hardened not only in solid solution strengthening but also in austenite, and contributes to formation of martensite and increase of strength in cold rolling heat treatment.

상기 탄소(C)는 본 발명에 따른 냉연강판 전체 중량의 0.05 ~ 0.08 중량%의 함량비로 첨가되는 것이 바람직하다. 탄소(C)의 함량이 0.05 중량% 미만일 경우에는 NbC 석출물의 양이 줄어들어 결정립의 크기가 조대해져, 성형시 오렌지필과 같은 표면 불량을 유발하는 문제가 있다. 반대로, 탄소(C)의 함량이 0.08 중량%를 초과할 경우에는 고용탄소가 내시효성을 크게 악화시키므로 상기 고용탄소를 제거하기 위해 고가의 니오븀(Nb)을 다량 첨가해야 하는 데 따른 제조 비용의 상승 문제가 있다.
The carbon (C) is preferably added in an amount of 0.05 to 0.08% by weight based on the total weight of the cold-rolled steel sheet according to the present invention. When the content of carbon (C) is less than 0.05% by weight, the amount of NbC precipitates is reduced and the size of crystal grains becomes large, which causes surface defects such as orange peel during molding. On the contrary, when the content of carbon (C) is more than 0.08% by weight, since the employment of carbon dioxide greatly deteriorates the antioxidant property, the increase in the manufacturing cost due to the addition of a large amount of expensive niobium (Nb) there is a problem.

실리콘(Si)Silicon (Si)

실리콘(Si)은 탄화물 형성을 억제하여 고용탄소 증가로 소부경화성을 향상시키는 역할을 한다.Silicon (Si) plays a role in suppressing the formation of carbide and enhancing the hardening hardenability by increasing the solid carbon.

다만, 본 발명에서 실리콘(Si)의 함량이 0.025 중량%를 초과하여 다량 첨가될 경우에는 항복점 연신 현상이 발생하고, 강도가 증가하나 연성이 저하되는 문제가 있다.However, when the content of silicon (Si) is more than 0.025 wt% in the present invention, elongation at the yield point occurs and the strength is increased but ductility is lowered.

따라서, 실리콘(Si)은 본 발명에 따른 냉연강판 전체 중량의 0.025 중량% 이하의 함량비로 첨가하는 것이 바람직하다.
Therefore, silicon (Si) is preferably added at a content ratio of 0.025% by weight or less based on the total weight of the cold-rolled steel sheet according to the present invention.

망간(Mn)Manganese (Mn)

망간(Mn)은 강판에 고용된 황(S)과의 반응으로 MnS 석출물을 형성시켜 고용 황에 의한 적열취성(hot shortness)을 방지하는 고용강화 원소로서, 오스테나이트를 안정화하여 2상역 소둔 온도를 저하시키며 낮은 임계냉각속도에서도 마르텐사이트가 생성되기 쉽게 한다.Manganese (Mn) is a solid solution strengthening element that prevents MnS precipitates from reacting with sulfur (S) dissolved in a steel sheet to prevent hot shortness due to solid solution sulfur. It stabilizes austenite to obtain a two- And it is easy to generate martensite even at a low critical cooling rate.

상기 망간(Mn)은 본 발명에 따른 냉연강판 전체 중량의 0.7 ~ 0.9 중량%의 함량비로 첨가되는 것이 바람직하다. 망간(Mn)의 함량이 0.7 중량% 미만일 경우에는 충분한 강도를 확보하는 데 어려움이 따를 수 있다. 반대로, 망간(Mn)의 함량이 0.9 중량%를 초과할 경우에는 강판의 강도가 지나치게 높아지는 데 따른 연신율의 저하로 성형성을 확보하기 어려운 문제가 있다.
The manganese (Mn) is preferably added in an amount of 0.7 to 0.9% by weight based on the total weight of the cold-rolled steel sheet according to the present invention. When the content of manganese (Mn) is less than 0.7% by weight, it may be difficult to secure a sufficient strength. On the other hand, when the content of manganese (Mn) exceeds 0.9% by weight, there is a problem that it is difficult to secure moldability due to a decrease in elongation due to an excessively high strength of the steel sheet.

인(P)In (P)

인(P)은 고용강화에 의하여 강판의 강도를 높이며, 탄화물의 형성을 억제하는 데 효과적인 원소이다.Phosphorus (P) is an element effective in strengthening the steel sheet by solid solution strengthening and suppressing the formation of carbide.

다만, 본 발명에 따른 냉연강판에서 인(P)의 함량이 0.02 중량%를 초과하여 다량 함유될 경우에는 가공취성이 발생하는 문제를 야기할 수 있다. 따라서, 본 발명에서는 인(P)의 함량을 냉연강판 전체 중량의 0.02 중량% 이하로 제한하였다.
However, if the content of phosphorus (P) exceeds 0.02% by weight in the cold-rolled steel sheet according to the present invention, a large amount of phosphorus (P) may cause a problem of brittleness. Therefore, in the present invention, the content of phosphorus (P) is limited to 0.02% by weight or less based on the total weight of the cold-rolled steel sheet.

황(S)Sulfur (S)

황(S)은 망간(Mn)과 반응하여 미세한 MnS의 석출물을 형성하여 가공성을 향상시킨다.Sulfur (S) reacts with manganese (Mn) to form precipitates of fine MnS to improve processability.

다만, 본 발명에 따른 냉연강판에서 황(S)의 함량이 0.008 중량%를 초과하여 다량 함유될 경우에는 고용된 황(S)의 함량이 너무 많아 연성 및 성형성이 크게 낮아질 수 있으며, 적열취성의 우려가 있다. 따라서, 본 발명에서는 황(S)의 함량을 냉연강판 전체 중량의 0.008 중량% 이하로 제한하였다.
However, when the content of sulfur (S) exceeds 0.008% by weight in the cold-rolled steel sheet according to the present invention, the amount of sulfur (S) dissolved therein is too large to significantly reduce ductility and formability, There is a concern. Therefore, in the present invention, the content of sulfur (S) is limited to 0.008% by weight or less based on the total weight of the cold-rolled steel sheet.

알루미늄(Al)Aluminum (Al)

알루미늄(Al)은 탈산제로 주로 사용하는 원소로서, 페라이트 결정립을 청정화하여 연신율을 향상시키며, 오스테나이트내 탄소 농화량을 증진하여 오스테나이트를 안정화시킨다. 또한, 알루미늄은 철과 아연도금층 사이에 레이어(layer)로 작용하여 도금성을 개선하는 원소이며, 열연 코일내 망간 밴드의 형성을 억제하는데 효과적인 원소이다. Aluminum (Al) is an element mainly used as a deoxidizer, which improves the elongation by purifying the ferrite grains, and stabilizes the austenite by increasing the carbon concentration in the austenite. In addition, aluminum acts as a layer between the iron and the zinc plated layer to improve the plating ability, and is an effective element for suppressing the formation of manganese bands in the hot-rolled coil.

상기 알루미늄(Al)은 본 발명에 따른 냉연강판 전체 중량의 0.01 ~ 0.05 중량%의 함량비로 첨가되는 것이 바람직하다. 알루미늄(Al)의 함량이 0.01 중량% 미만일 경우에는 알루미늄 첨가 효과를 제대로 발휘할 수 있다. 반대로, 알루미늄(Al)의 함량이 0.05 중량%를 초과하여 과다 첨가될 경우에는 연주성을 저하시키며 슬라브내 AlN을 형성하여 열연 크랙을 유발하는 문제점이 있다.
The aluminum (Al) is preferably added in an amount of 0.01 to 0.05% by weight based on the total weight of the cold-rolled steel sheet according to the present invention. When the content of aluminum (Al) is less than 0.01% by weight, the effect of adding aluminum can be exhibited properly. On the contrary, when the content of aluminum (Al) is over 0.05% by weight, the performance is deteriorated and AlN is formed in the slab to cause hot cracking.

니오븀(Nb)Niobium (Nb)

니오븀(Nb)은 강력한 탄질화물 형성원소로써, 열간압연 시 강 중에 존재하는 탄소(C), 질소(N) 등과 반응하여 미세한 NbC, NbN 석출물 등을 형성하여 결정립 성장을 억제한다. 또한, 니오븀(Nb)은 결정립 미세화 효과를 통해 강도향상 및 2차 가공취성을 억제하는 효과를 갖는다.Niobium (Nb) is a strong carbonitride-forming element. It reacts with carbon (C) and nitrogen (N) present in steel during hot rolling to form fine NbC and NbN precipitates and suppress grain growth. Further, niobium (Nb) has an effect of improving the strength and suppressing the secondary machining brittleness through grain refining effect.

상기 니오븀(Nb)은 본 발명에 따른 냉연강판 전체 중량의 0.02 ~ 0.03 중량%의 함량비로 첨가되는 것이 바람직하다. 니오븀(Nb)의 함량이 강판 전체 중량의 0.02 중량% 미만일 경우에는 일정량의 고용 탄소량이 과다하여 항복점 연신 및 시효현상이 가속화된다. 반대로, 니오븀(Nb)의 함량이 강판 전체 중량의 0.03 중량%를 초과할 경우에는 고용탄소량이 감소하여 소부경화성을 확보하기 어려워질 뿐만 아니라, 결정립 미세화로 인한 항복강도 증가현상이 가속화되어 페라이트 내에 고용된 상태로 존재하여 오히려 인성을 저하시키는 문제가 있다.
The niobium (Nb) is preferably added in an amount of 0.02 to 0.03% by weight of the total weight of the cold-rolled steel sheet according to the present invention. When the content of niobium (Nb) is less than 0.02% by weight of the total weight of the steel sheet, a certain amount of the solid carbon is excessive and the yield point drawing and aging phenomenon is accelerated. On the contrary, when the content of niobium (Nb) exceeds 0.03% by weight of the total weight of the steel sheet, the amount of solid carbon is reduced and it is difficult to secure the hardening of the hardening, and the phenomenon of increase in yield strength due to grain refinement is accelerated, There is a problem that the toughness is deteriorated.

냉연강판 제조 방법Cold rolled steel sheet manufacturing method

도 1은 본 발명의 실시예에 따른 냉연강판 제조 방법을 나타낸 공정 순서도이다.FIG. 1 is a process flow chart showing a cold-rolled steel sheet manufacturing method according to an embodiment of the present invention.

도 1을 참조하면, 도시된 본 발명의 실시예에 따른 냉연강판 제조 방법은 슬라브 재가열 단계(S110), 열간압연 단계(S120), 냉각/권취 단계(S130), 냉간압연 단계(S140), 상자소둔 열처리 단계(S150) 및 냉각 단계(S160)를 포함한다. 이때, 슬라브 재가열 단계(S110)는 반드시 수행되어야 하는 것은 아니나, 석출물의 재고용 등의 효과를 도출하기 위해서는 실시하는 것이 더 바람직하다.
Referring to FIG. 1, a cold rolled steel sheet manufacturing method according to an embodiment of the present invention includes a slab reheating step S110, a hot rolling step S120, a cooling / winding step S130, a cold rolling step S140, Annealing heat treatment step S150 and cooling step S160. At this time, the slab reheating step (S110) is not necessarily performed, but it is more preferable to carry out the step to derive effects such as reuse of precipitates.

본 발명에 따른 냉연강판 제조 방법에서 열연공정의 대상이 되는 반제품 상태의 슬라브 판재는 탄소(C) : 0.05 ~ 0.08 중량%, 실리콘(Si) : 0.025 중량% 이하, 망간(Mn) : 0.7 ~ 0.9 중량%, 인(P) : 0.02 중량% 이하, 황(S) : 0.008 중량% 이하, 알루미늄(Al) : 0.01 ~ 0.05 중량%, 니오븀(Nb) : 0.02 ~ 0.03 중량% 및 나머지 철(Fe)과 불가피한 불순물로 이루어진다.
In the cold rolled steel sheet manufacturing method according to the present invention, the semi-finished slab plate to be subjected to the hot rolling process contains 0.05 to 0.08 wt% of carbon (C), 0.025 wt% or less of silicon (Si) (Fe), 0.02 wt% or less of phosphorus (P), 0.008 wt% or less of sulfur (S), 0.01 to 0.05 wt% of aluminum (Al), 0.02 to 0.03 wt% of niobium (Nb) And inevitable impurities.

슬라브 재가열Reheating slabs

슬라브 재가열 단계(S110)에서는 상기 조성을 갖는 슬라브 판재를 SRT(Slab Reheating Temperature) : 1150 ~ 1250℃로 재가열한다. 여기서, 상기 슬라브 판재는 제강공정을 통해 원하는 조성의 용강을 얻은 다음에 연속주조공정을 통해 얻어질 수 있다. 이때, 슬라브 재가열 단계(S110)에서는 연속주조공정을 통해 확보한 슬라브 판재를 재가열하는 것을 통하여, 주조 시 편석된 성분을 재고용한다.In the slab reheating step S110, the slab plate having the above composition is reheated to a slab reheating temperature (SRT) of 1150 to 1250 ° C. Here, the slab plate can be obtained through a continuous casting process after obtaining a molten steel having a desired composition through a steelmaking process. At this time, in the slab reheating step (S110), the slab plate obtained through the continuous casting process is reheated to reuse the segregated components during casting.

본 단계에서, 슬라브 재가열 온도(SRT)가 1150℃ 미만일 경우에는 주조 시 편석된 성분이 충분히 재고용되지 못하는 문제점이 있다. 반대로, 슬라브 재가열 온도(SRT)가 1250℃를 초과할 경우에는 오스테나이트 결정입도가 증가하여 강도 확보가 어려울 수 있으며, 과도한 가열 공정으로 인하여 강판의 제조 비용만 상승할 수 있다.
If the slab reheating temperature (SRT) is less than 1150 DEG C in this step, the segregated components in casting may not be sufficiently reused. On the other hand, if the SRT reheating temperature (SRT) exceeds 1250 ° C, the austenite crystal grain size may increase and the strength of the steel sheet may be difficult to secure, and the manufacturing cost of the steel sheet may be increased due to the excessive heating process.

열간 압연Hot rolling

열간압연 단계(S120)에서는 슬라브 판재를 FDT(Finishing Delivery Temperature) : 800 ~ 900℃ 조건으로 마무리 열간 압연하다.In the hot rolling step (S120), the slab plate is subjected to finishing hot rolling under the condition of FDT (Finishing Delivery Temperature): 800 to 900 ° C.

본 단계에서, 마무리 열간 압연온도(FDT)가 800℃ 미만으로 너무 낮으면, 이상역 압연에 의한 혼립 조직이 발생하는 문제가 있다. 반대로, 마무리 열간 압연온도(FDT)가 900℃를 초과할 경우에는 오스테나이트 결정립이 조대화되며, 이에 따라 강도 확보가 어려워질 수 있다.
At this stage, if the finish hot rolling temperature (FDT) is too low, which is lower than 800 占 폚, there is a problem that an uncrosslinked structure due to an abnormal reverse rolling occurs. On the other hand, when the finish hot rolling temperature (FDT) is higher than 900 캜, the austenite grains become coarse, which may make it difficult to secure strength.

냉각/권취Cooling / Winding

냉각/권취 단계(S130)에서는 열간압연된 판재를 CT(Coiling Temperature) : 600 ~ 700℃까지 냉각하여 권취한다.In the cooling / winding step (S130), the hot rolled plate is cooled to a CT (Coiling Temperature): 600 to 700 ° C and is wound.

본 단계에서, 권취 온도가 600℃ 미만일 경우에는 마무리 압연온도와 권취 온도의 급격한 차이로 인해 강판의 표면 품질이 저하되는 문제가 있다. 반대로, 권취 온도가 700℃를 초과할 경우에는 석출물이 너무 조대하게 성장하여 결정립 미세화 효과가 떨어지므로 충분한 강도를 확보하는 데 어려움이 따를 수 있다.At this stage, when the coiling temperature is less than 600 ° C, there is a problem that the surface quality of the steel sheet is deteriorated due to the rapid difference between the finish rolling temperature and the coiling temperature. On the other hand, when the coiling temperature exceeds 700 캜, the precipitates grow too coarse and the grain refinement effect deteriorates, so that it may be difficult to ensure sufficient strength.

한편, 냉각/권취 단계(S130)에서 냉각 속도는 10 ~ 25℃/sec로 실시하는 것이 바람직하다. 본 단계에서, 냉각 속도가 10℃/sec 미만일 경우에는 석출물의 평균입자 크기가 대략 0.2㎛를 초과하는 문제로 강도 확보에 어려움이 따를 수 있다. 반대로, 냉각 속도가 25℃/sec를 초과할 경우에는 조직이 경해져서 충격인성이 저하되는 문제가 있다.
On the other hand, the cooling rate in the cooling / winding step (S130) is preferably 10 to 25 DEG C / sec. In this step, when the cooling rate is less than 10 ° C / sec, the average particle size of the precipitate is more than about 0.2 탆, which makes it difficult to secure the strength. On the other hand, when the cooling rate exceeds 25 DEG C / sec, there is a problem that the structure is weakened and impact toughness is lowered.

냉간 압연Cold rolling

냉간압연 단계(S140)에서는 권취된 판재를 언코일링하여 산세 처리한 후, 냉간압연한다. 이때, 산세는 열연과정을 통하여 제조된 열연 코일의 스케일을 제거하기 위한 목적으로 실시하게 된다.In the cold rolling step (S140), the rolled sheet is uncoiled, pickled, and then cold rolled. At this time, the pickling is carried out for the purpose of removing the scale of the hot-rolled coil manufactured through the hot rolling process.

본 단계에서, 냉간 압하율은 60 ~ 80%로 실시하는 것이 바람직하다. 냉간 압하율이 60% 미만일 경우에는 소둔재결정 핵생성양이 적기 때문에 후술할 상자소둔 열처리시 결정립이 과도하게 성장하여 강도가 급격히 저하되는 문제가 있다. 반대로, 냉간 압하율이 80%를 초과할 경우에는 핵생성 양이 지나치게 많아져 소둔 결정립이 오히려 너무 미세하여 연성이 감소하며, 성형성이 저하되는 문제가 있다.
In this step, the cold rolling reduction rate is preferably 60 to 80%. When the cold rolling reduction rate is less than 60%, there is a problem that the amount of annealed recrystallized nuclei is small, so that crystal grains are excessively grown during box annealing, which will be described later, and the strength is rapidly lowered. On the other hand, when the cold rolling reduction is more than 80%, the amount of nucleation becomes too large, so that the annealing grains are rather too fine to reduce the ductility and deteriorate the formability.

상자소둔 열처리Box annealing heat treatment

상자소둔 열처리 단계(S150)에서는 냉간압연된 판재를 상자소둔로(Batch Annealing Furnace : BAF) 내에 장입한 후, 680 ~ 700℃에서 10 ~ 15시간 동안 상자소둔 열처리한다.In the box annealing heat treatment step S150, the cold-rolled plate material is charged into a batch annealing furnace (BAF), and then subjected to box annealing at 680 to 700 ° C for 10 to 15 hours.

이때, 상자소둔 열처리는 최종 제품의 재질을 결정하는 중요한 공정 변수 중 하나이다. 특히, 본 발명에서는 니오븀의 함량을 0.02 ~ 0.03 중량%로 상향 조절하고, 인(P) 및 망간(Mn)의 함량을 하향 조절함과 더불어, 성분계 변화에 따른 재질 확보를 위해 상자소둔 열처리 온도를 680 ~ 700℃로 하향 조절함으로써, 기존의 고 망간을 함유하는 강과 동일한 재질을 확보할 수 있으면서도, 망간(Mn)을 0.7 ~ 0.9 중량%로 하향 조절하여 첨가함으로써 템퍼칼라의 발생을 최소화할 수 있게 된다.At this time, the heat treatment of the box annealing is one of important process parameters for determining the material of the final product. Particularly, in the present invention, the content of phosphorus (P) and manganese (Mn) is adjusted downward by adjusting the content of niobium to 0.02 to 0.03% by weight, By controlling the temperature down to 680 to 700 ° C, it is possible to secure the same material as that of a steel containing a high manganese content, and additionally adjusting the manganese (Mn) to 0.7-0.9 wt% do.

본 단계에서, 상자소둔 열처리 온도가 680℃ 미만이거나, 또는 상자소둔 열처리 유지시간이 10시간 미만일 경우에는 재결정이 충분히 완료되지 못하여 목표로 하는 연성을 확보하는 데 어려움이 따를 수 있다. 반대로, 상자소둔 열처리 온도가 700℃를 초과하거나, 또는 상자소둔 열처리 유지시간이 15시간을 초과할 경우에는 재결정립의 조대화로 강도가 저하되는 문제가 있다.If the box annealing heat treatment temperature is less than 680 占 폚 or the box annealing heat treatment retention time is less than 10 hours in this stage, recrystallization is not sufficiently completed and it may be difficult to secure the desired ductility. On the other hand, when the box annealing heat treatment temperature exceeds 700 占 폚 or the box annealing heat treatment retention time exceeds 15 hours, there is a problem that strength is lowered due to coarsening of recrystallized grains.

특히, 본 단계에서, 상자소둔 열처리의 승온 속도는 20 ~ 40℃/min로 실시하는 것이 바람직하다. 상자소둔 열처리의 승온 속도가 20℃/min 미만일 경우에는 NbC, AlN 등의 석출물이 재 성장하여 인성 확보에는 유리하나, 충분한 강도를 확보하는 데 어려움이 따를 수 있다. 반대로, 상자소둔 열처리의 승온 속도가 40℃/min를 초과할 경우에는 NbC, AlN 등의 석출물이 발생하지는 않으나, 재결정립의 미립화로 목표로 하는 연신율을 확보하는 데 어려움이 따를 수 있다.
Particularly, in this step, the temperature raising rate of the box annealing heat treatment is preferably 20 to 40 占 폚 / min. When the temperature raising rate of the box annealing heat treatment is less than 20 캜 / min, the precipitates such as NbC and AlN are regrown and toughness is secured, but it may be difficult to secure sufficient strength. On the other hand, when the temperature raising rate of the box annealing heat treatment exceeds 40 캜 / min, precipitates such as NbC and AlN do not occur, but it may be difficult to secure the aimed elongation by atomization of the recrystallized grains.

냉각Cooling

냉각 단계(S160)에서는 상자소둔 열처리 과정에 의하여 재결정화된 판재를 550 ~ 650℃까지 냉각한다. 이때, 냉각은 550 ~ 650℃까지는 로냉하고 550℃~상온까지는 간접수냉 또는 간접가스젯 쿨링(Gas Jet Cooling : GJC)을 이용하는 것이 바람직하다.In the cooling step (S160), the recrystallized sheet material is cooled to 550 to 650 deg. C by the box annealing heat treatment process. At this time, it is preferable that the cooling is performed at a temperature of 550 to 650 ° C. and the indirect cooling is performed at a temperature of 550 ° C. to room temperature by using indirect gas jet cooling (GJC).

본 단계에서, 냉각 속도는 대략 10 ~ 30℃/min로 실시하는 것이 바람직하다. 냉각 속도가 10℃/min 미만일 경우에는 고용탄소와 니오븀간에 재석출이 발생하여 충분한 강도를 확보하는 데 어려움이 따를 수 있다. 반대로, 냉각 속도가 30℃/min를 초과할 경우에는 강도 확보에는 유리하나, 연신율이 급격히 저하되는 문제가 있다.
In this step, the cooling rate is preferably about 10 to 30 DEG C / min. When the cooling rate is less than 10 ° C / min, re-precipitation occurs between the solid carbon and the niobium, so that it may be difficult to ensure sufficient strength. On the other hand, when the cooling rate exceeds 30 캜 / min, it is advantageous in securing the strength but there is a problem that the elongation rate is rapidly lowered.

상기의 과정(S110 ~ S160)으로 제조되는 냉연강판은 인(P) 및 망간(Mn)의 함량을 저감하고, 결정립 미세화 및 석출경화형 원소인 니오븀(Nb)을 첨가하여 상자소둔 열처리를 실시함으로써, 템퍼칼라의 발생을 최소화할 수 있으면서도 우수한 가공성을 갖는 냉연강판을 제조할 수 있다.The cold-rolled steel sheet produced in the above-described processes (S110 to S160) reduces the content of phosphorus (P) and manganese (Mn) and performs annealing of the box annealing by adding grain refinement and precipitation hardening element niobium (Nb) A cold-rolled steel sheet having excellent workability while minimizing occurrence of a temper color can be produced.

따라서, 본 발명에 따른 방법으로 제조된 냉연강판은 인장강도(TS) : 440 ~ 480MPa, 항복강도(YP) : 260 ~ 380MPa 및 연신율(EL) : 30 ~ 40%를 나타낼 수 있음과 더불어, 템퍼칼라 발생의 최소화로 양측 가장자리로부터 각각 50mm 이하의 너비를 절단하여 사용할 수 있게 된다.Accordingly, the cold-rolled steel sheet produced by the method according to the present invention can exhibit a tensile strength (TS) of 440 to 480 MPa, a yield strength (YP) of 260 to 380 MPa and an elongation (EL) of 30 to 40% It is possible to cut the width of 50 mm or less from the edges of both sides by minimizing the occurrence of the color.

이를 통해, 본 발명에 따른 방법으로 제조된 냉연강판은 딥 드로잉(deep drawing)성과 고강도 확보가 가능하므로, 성형 가공이 많이 요구되는 자동차용 구조부재나 보강재 등으로 활용하기에 적합하다.
As a result, the cold-rolled steel sheet produced by the method according to the present invention is suitable for use as a structural member for automobiles or a reinforcing material, which requires a large amount of forming work, because deep drawing and high strength can be secured.

실시예Example

이하, 본 발명의 바람직한 실시예를 통해 본 발명의 구성 및 작용을 더욱 상세히 설명하기로 한다. 다만, 이는 본 발명의 바람직한 예시로 제시된 것이며 어떠한 의미로도 이에 의해 본 발명이 제한되는 것으로 해석될 수는 없다. Hereinafter, the configuration and operation of the present invention will be described in more detail with reference to preferred embodiments of the present invention. It is to be understood, however, that the same is by way of illustration and example only and is not to be construed in a limiting sense.

여기에 기재되지 않은 내용은 이 기술 분야에서 숙련된 자이면 충분히 기술적으로 유추할 수 있는 것이므로 그 설명을 생략하기로 한다.
The contents not described here are sufficiently technically inferior to those skilled in the art, and a description thereof will be omitted.

1. 시편의 제조1. Preparation of specimens

표 1의 조성 및 표 2의 공정 조건으로 실시예 1 ~ 4 및 비교예 1 ~ 2에 따른 시편을 제조하였다.
Specimens according to Examples 1 to 4 and Comparative Examples 1 and 2 were prepared with the composition shown in Table 1 and the process conditions shown in Table 2.

[표 1] (단위 : 중량%)[Table 1] (unit:% by weight)

Figure pat00001

Figure pat00001

[표 2][Table 2]

Figure pat00002

Figure pat00002

2. 기계적 물성 평가2. Evaluation of mechanical properties

표 3은 실시예 1 ~ 4 및 비교예 1 ~ 2에 따른 시편의 기계적 물성에 대한 평가 결과를 나타낸 것이다.
Table 3 shows the evaluation results of the mechanical properties of the specimens according to Examples 1 to 4 and Comparative Examples 1 and 2.

[표 3][Table 3]

Figure pat00003
Figure pat00003

표 1 내지 표 3을 참조하면, 비교예 1 ~ 2에 따른 시편들과 실시예 1 ~ 4에 따라 제조된 시편들 모두 목표값에 해당하는 인장강도(TS) : 440 ~ 480MPa, 항복강도(YP) : 260 ~ 380MPa 및 연신율(EL) : 30 ~ 40%를 모두 만족하는 것을 알 수 있다.Referring to Tables 1 to 3, the tensile strength (TS) corresponding to the target values of 440 to 480 MPa, the yield strength (YP) of the specimens according to Comparative Examples 1 to 2 and the specimens prepared according to Examples 1 to 4 ): 260 to 380 MPa and elongation (EL): 30 to 40%.

다만, 비교예 1 ~ 2에 따른 시편들의 경우, 비교예 1과 비교해 볼 때 망간의 함량이 다량 첨가되었음에 불구하고 강도 보상 효과가 없을 뿐만 아니라, 양측 가장자리로 템퍼칼라가 발생하는 것을 확인하였다.
Compared with Comparative Example 1, however, the test pieces according to Comparative Examples 1 and 2 were found not only to have no strength compensation effect despite the addition of manganese in a large amount, but also to cause a temper color at both sides.

위의 실험 결과에서 알 수 있는 바와 같이, 실시예 1 ~ 4에 따라 제조된 시편들의 경우, 인(P) 및 망간(Mn)의 함량을 저감하고, 결정립 미세화 및 석출경화형 원소인 니오븀(Nb)을 첨가하여 최적의 조건으로 상자소둔 열처리를 실시함으로써, 코일의 양측 가장자리 부분에서의 템퍼칼라 발생을 최소화할 수 있음과 더불어 우수한 가공성을 확보할 수 있다는 것을 확인하였다.
As can be seen from the above experimental results, in the case of the specimens prepared according to Examples 1 to 4, the contents of phosphorus (P) and manganese (Mn) were reduced, and grain refinement and precipitation hardening elements such as niobium (Nb) It was confirmed that the generation of the temper color at both side edge portions of the coil can be minimized and excellent workability can be ensured by performing the box annealing heat treatment under the optimum conditions by adding.

이상에서는 본 발명의 실시예를 중심으로 설명하였지만, 당업자의 수준에서 다양한 변경이나 변형을 가할 수 있다. 이러한 변경과 변형이 본 발명의 범위를 벗어나지 않는 한 본 발명에 속한다고 할 수 있다. 따라서 본 발명의 권리범위는 이하에 기재되는 청구범위에 의해 판단되어야 할 것이다.
While the invention has been described in connection with what is presently considered to be the most practical and preferred embodiment, it is to be understood that the invention is not limited to the disclosed embodiments. Such changes and modifications are intended to fall within the scope of the present invention unless they depart from the scope of the present invention. Accordingly, the scope of the present invention should be determined by the following claims.

S110 : 슬라브 재가열 단계
S120 : 열간압연 단계
S130 : 냉각/권취 단계
S140 : 냉간압연 단계
S150 : 상자소둔 열처리 단계
S160 : 냉각 단계
S110: Slab reheating step
S120: Hot rolling step
S130: cooling / winding step
S140: Cold rolling step
S150: Box annealing heat treatment step
S160: cooling step

Claims (6)

(a) 탄소(C) : 0.05 ~ 0.08 중량%, 실리콘(Si) : 0.025 중량% 이하, 망간(Mn) : 0.7 ~ 0.9 중량%, 인(P) : 0.02 중량% 이하, 황(S) : 0.008 중량% 이하, 알루미늄(Al) : 0.01 ~ 0.05 중량%, 니오븀(Nb) : 0.02 ~ 0.03 중량% 및 나머지 철(Fe)과 불가피한 불순물로 이루어지는 슬라브 판재를 FDT(Finishing Delivery Temperature) : 800 ~ 900℃ 조건으로 마무리 열간압연하는 단계;
(b) 상기 열간압연된 판재를 CT(Coiling Temperature) : 600 ~ 700℃까지 냉각하여 권취하는 단계;
(c) 상기 권취된 판재를 언코일링하여 산세 처리한 후, 냉간압연하는 단계; 및
(d) 상기 냉간압연된 판재를 680 ~ 700℃에서 10 ~ 15시간 동안 상자소둔 열처리하는 단계;를 포함하는 것을 특징으로 하는 냉연강판 제조 방법.
(Si): 0.025 wt% or less, manganese (Mn): 0.7 to 0.9 wt%, phosphorus (P): 0.02 wt% or less, sulfur (S) 0.008 wt% or less, aluminum (Al): 0.01 to 0.05 wt%, niobium (Nb): 0.02 to 0.03 wt%, and the balance of iron (Fe) and unavoidable impurities is subjected to Finishing Delivery Temperature (FDT) Lt; RTI ID = 0.0 > C < / RTI >
(b) cooling the hot-rolled plate by cooling to a CT (Coiling Temperature) of 600 to 700 占 폚 and winding;
(c) uncoiling and pickling the rolled sheet material, followed by cold rolling; And
(d) subjecting the cold-rolled sheet to box annealing at 680 to 700 ° C for 10 to 15 hours.
제1항에 있어서,
상기 (c) 단계에서,
상기 냉각은
10 ~ 25℃/sec의 속도로 실시하는 것을 특징으로 하는 냉연강판 제조 방법.
The method according to claim 1,
In the step (c)
The cooling
At a rate of 10 to 25 占 폚 / sec.
제1항에 있어서,
상기 (d) 단계에서,
상기 상자소둔 열처리의 승온 속도는
20 ~ 40℃/min로 실시하는 것을 특징으로 하는 냉연강판 제조 방법.
The method according to claim 1,
In the step (d)
The temperature raising rate of the box annealing heat treatment is
20 to 40 占 폚 / min.
제1항에 있어서,
상기 (d) 단계 이후,
(e) 상기 상자소둔 열처리된 판재를 10 ~ 30℃/min의 속도로 550 ~ 650℃까지 냉각하는 단계;를 더 포함하는 것을 특징으로 하는 냉연강판 제조 방법.
The method according to claim 1,
After the step (d)
(e) cooling the box-annealed heat-treated plate to 550 to 650 ° C at a rate of 10 to 30 ° C / min.
탄소(C) : 0.05 ~ 0.08 중량%, 실리콘(Si) : 0.025 중량% 이하, 망간(Mn) : 0.7 ~ 0.9 중량%, 인(P) : 0.02 중량% 이하, 황(S) : 0.008 중량% 이하, 알루미늄(Al) : 0.01 ~ 0.05 중량%, 니오븀(Nb) : 0.02 ~ 0.03 중량% 및 나머지 철(Fe)과 불가피한 불순물로 이루어지며,
인장강도(TS) : 440 ~ 480MPa, 항복강도(YP) : 260 ~ 380MPa 및 연신율(EL) : 30 ~ 40%를 갖는 것을 특징으로 하는 냉연강판.
(Si): 0.025 wt% or less, Mn: 0.7 to 0.9 wt%, P: 0.02 wt% or less, S: 0.008 wt% or less, (Al): 0.01 to 0.05 wt%, niobium (Nb): 0.02 to 0.03 wt%, and the balance of iron (Fe) and unavoidable impurities,
, A tensile strength (TS) of 440 to 480 MPa, a yield strength (YP) of 260 to 380 MPa and an elongation (EL) of 30 to 40%.
제5항에 있어서,
상기 강판은
양측 가장자리로부터 각각 50mm 이하의 너비를 절단하여 사용하는 것을 특징으로 하는 냉연강판.
6. The method of claim 5,
The steel sheet
And a width of 50 mm or less is cut from both side edges of the cold-rolled steel sheet.
KR1020130033950A 2013-03-28 2013-03-28 Method of manufacturing cold-rolled steel sheet KR101516864B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020130033950A KR101516864B1 (en) 2013-03-28 2013-03-28 Method of manufacturing cold-rolled steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020130033950A KR101516864B1 (en) 2013-03-28 2013-03-28 Method of manufacturing cold-rolled steel sheet

Publications (2)

Publication Number Publication Date
KR20140118312A true KR20140118312A (en) 2014-10-08
KR101516864B1 KR101516864B1 (en) 2015-05-04

Family

ID=51991184

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130033950A KR101516864B1 (en) 2013-03-28 2013-03-28 Method of manufacturing cold-rolled steel sheet

Country Status (1)

Country Link
KR (1) KR101516864B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105088067A (en) * 2015-08-31 2015-11-25 武汉钢铁(集团)公司 Coating steel for 380 MPa automotive frame and production method
CN105463321A (en) * 2015-12-08 2016-04-06 武汉钢铁(集团)公司 Batch annealing process plane isotropy steel and manufacturing method thereof
CN115287429A (en) * 2022-07-21 2022-11-04 湖南华菱涟源钢铁有限公司 Method for producing cold-rolled low-carbon steel and cold-rolled low-carbon steel

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240106597A (en) 2022-12-29 2024-07-08 현대제철 주식회사 The precipitation hardening cold rolled steel sheet having excellent yield strength and method of manufacturing the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4003401B2 (en) 2001-02-13 2007-11-07 住友金属工業株式会社 Steel sheet having high formability and low yield ratio with small variation in yield strength and elongation at break, and method for producing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105088067A (en) * 2015-08-31 2015-11-25 武汉钢铁(集团)公司 Coating steel for 380 MPa automotive frame and production method
CN105463321A (en) * 2015-12-08 2016-04-06 武汉钢铁(集团)公司 Batch annealing process plane isotropy steel and manufacturing method thereof
CN115287429A (en) * 2022-07-21 2022-11-04 湖南华菱涟源钢铁有限公司 Method for producing cold-rolled low-carbon steel and cold-rolled low-carbon steel

Also Published As

Publication number Publication date
KR101516864B1 (en) 2015-05-04

Similar Documents

Publication Publication Date Title
KR101516864B1 (en) Method of manufacturing cold-rolled steel sheet
JP2013224476A (en) High-strength thin steel sheet excellent in workability and method for manufacturing the same
KR20160001485A (en) Cold-rolled steel sheet and method of manufacturing the same
KR101467056B1 (en) Cold-rolled steel sheet for enamel and method of manufacturing the same
KR101344651B1 (en) Manufacturing method of steel-sheet
KR20150001469A (en) High strength cold-rolled steel sheet and method of manufacturing the cold-rolled steel sheet
KR101368576B1 (en) Cold-rolled steel sheet and method of manufacturing the same
KR101455470B1 (en) Method of manufacturing cold-rolled steel sheet
KR101516870B1 (en) High strength cold-rolled steel sheet and method of manufacturing the same
KR101957601B1 (en) Cold rolled steel sheet and method of manufacturing the same
KR101035767B1 (en) Hot-rolled steel sheet with good formability, and method for producing the same
KR101424863B1 (en) Cold-rolled steel sheet and method of manufacturing the cold-rolled steel sheet
KR101467055B1 (en) Cold-rolled steel sheet and method of manufacturing the same
KR101467057B1 (en) Cold-rolled steel sheet and method of manufacturing the same
KR101344549B1 (en) Cold-rolled steel sheet and method of manufacturing the cold-rolled steel sheet
KR101412395B1 (en) Method of manufacturing high strength cold-rolled steel sheet
KR101185199B1 (en) Extemely low carbon steel with excellent aging resistance and workability and method of manufacturing the low carbon steel
KR101412269B1 (en) Method for manufacturing high strength cold-rolled steel sheet
KR101412365B1 (en) High strength steel sheet and method of manufacturing the same
KR101344663B1 (en) Cold-rolled steel sheet and method of manufacturing the same
KR101412293B1 (en) High strength cold-rolled steel sheet and method of manufacturing the same
KR101412436B1 (en) Method of manufacturing cold-rolled steel sheet
KR101290468B1 (en) Cold-rolled steel sheet and method of manufacturing the cold-rolled steel sheet
KR20130110635A (en) Cold-rolled steel sheet and method of manufacturing the same
KR101615032B1 (en) Cold-rolled steel sheet and method of manufacturing the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
X091 Application refused [patent]
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20180411

Year of fee payment: 4