JP2012011461A - Copper-plated solid wire for welding - Google Patents

Copper-plated solid wire for welding Download PDF

Info

Publication number
JP2012011461A
JP2012011461A JP2011119786A JP2011119786A JP2012011461A JP 2012011461 A JP2012011461 A JP 2012011461A JP 2011119786 A JP2011119786 A JP 2011119786A JP 2011119786 A JP2011119786 A JP 2011119786A JP 2012011461 A JP2012011461 A JP 2012011461A
Authority
JP
Japan
Prior art keywords
copper
welding
solid wire
wire
plated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011119786A
Other languages
Japanese (ja)
Inventor
Ryohei Kuriyama
良平 栗山
Keiichi Suzuki
啓一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2011119786A priority Critical patent/JP2012011461A/en
Publication of JP2012011461A publication Critical patent/JP2012011461A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/38Selection of media, e.g. special atmospheres for surrounding the working area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0255Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
    • B23K35/0261Rods, electrodes, wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0255Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
    • B23K35/0261Rods, electrodes, wires
    • B23K35/0272Rods, electrodes, wires with more than one layer of coating or sheathing material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/365Selection of non-metallic compositions of coating materials either alone or conjoint with selection of soldering or welding materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Nonmetallic Welding Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a copper-plated solid wire for welding which enables continuous welding over a long period of time with excellent wire-feeding capability.SOLUTION: The copper-plated solid wire for welding is used for carbon dioxide gas shielded arc welding, and has a lubricant oil and a solid lubricant coated on its surface. Copper powder and iron powder attached to the surface of the copper-plated solid wire for welding have particle sizes not exceeding 20 μm, and are in total at most 0.10g per 10 kg of the copper-plated solid wire for welding. The following are attached to the surface per 10 kg of the copper-plated solid wire for welding: 0.4-2.0g of an animal or plant oil, or a mineral oil as the lubricant oil; and 0.03-0.15g of molybdenum disulfide having a particle size of 0.1-10 μm as the solid lubricant.

Description

本発明は、炭酸ガスシールドアーク溶接に用いる溶接用銅めっきソリッドワイヤに関するもので、特に送給性に優れて長時間の連続溶接を可能とするものである。   The present invention relates to a copper-plated solid wire for welding used for carbon dioxide shielded arc welding, and is particularly excellent in feedability and enables continuous welding for a long time.

建築鉄骨分野においては、ガスシールドアーク溶接法、特にCO2をシールドガスとする炭酸ガスシールドアーク溶接法が、その高能率性の利点から主として使用されている。従前、このガスシールドアーク溶接法は、人手による半自動溶接法がほとんどであったが、近年は省人化によるコストダウンおよび夜間や休日の無人運転によるいっそうの溶接能率向上を目的として、溶接ロボットによる自動溶接も普及してきている。 In the field of building steel frames, the gas shielded arc welding method, particularly the carbon dioxide shielded arc welding method using CO 2 as the shielding gas, is mainly used because of its high efficiency. Previously, most of the gas shielded arc welding methods were manual semi-automatic welding methods, but in recent years, welding robots have been used to reduce costs through labor savings and to further improve welding efficiency through unattended operation at night and on holidays. Automatic welding has also become widespread.

溶接ロボットによる長時間連続溶接に対応している溶接用ワイヤは、最大500kgの大容量ペイルパックに格納されており、溶接機または溶接ロボットに溶接用ワイヤを通し始める作業は、通常、ペイルパックの交換時にのみ行われる。すなわち、一度溶接用ワイヤを溶接機に通した後は、ペイルパックに格納された溶接用ワイヤがすべて溶接で消費されて空になるまで、再び溶接用ワイヤの先端を通す作業を要しないことになる。ここで、ガスシールドアーク溶接に用いられる溶接用ワイヤは、スムーズに送給されるように表面に銅めっきを施したソリッドワイヤであり、さらに溶接用ワイヤがスムーズに送給される、すなわちワイヤ送給性を向上させるために潤滑油や固形潤滑剤が表面に塗布される。したがって、溶接用ワイヤの表面には、潤滑剤以外に、当該溶接用ワイヤの製造時に発生しためっき由来の銅粉および芯地(鋼線)由来の鉄粉等の金属粉も付着している。このような溶接用ワイヤ表面に付着している固形物は、その一部がコンジットライナや給電チップの内側に付着し、人為的にコンジットライナ内を清掃、および給電チップを交換しない限り、その量は増えて堆積し続ける。その結果、給電チップ内に堆積した金属粉や固形潤滑剤が溶接用ワイヤとの空隙を埋めて詰まらせてしまい、溶接用ワイヤの送給停止に至ることがある。そのため、長時間連続溶接可能な溶接ロボットに大量な溶接用ワイヤをペイルパックにて供給しても、ペイルパック交換前に自動溶接が停止されることになる。   The welding wire that supports long-term continuous welding by a welding robot is stored in a large-capacity pail pack with a maximum capacity of 500 kg. Only done at the time of exchange. That is, once the welding wire is passed through the welding machine, it is not necessary to pass the tip of the welding wire again until all the welding wires stored in the pail pack are consumed by welding and become empty. Become. Here, the welding wire used for gas shielded arc welding is a solid wire with copper plating on the surface so that it can be fed smoothly, and the welding wire is fed smoothly, that is, wire feeding. Lubricating oil or solid lubricant is applied to the surface to improve feedability. Therefore, in addition to the lubricant, metal powder such as copper powder derived from plating and iron powder derived from the core (steel wire) generated during the production of the welding wire adheres to the surface of the welding wire. Part of the solid matter adhering to the surface of the welding wire adheres to the inside of the conduit liner or power supply tip, and the amount of the solid matter is not changed unless the inside of the conduit liner is manually cleaned and the power supply tip is replaced. Continues to accumulate. As a result, the metal powder and solid lubricant deposited in the power feed tip may fill the clogging with the welding wire and clog it, leading to the stop of feeding the welding wire. Therefore, even when a large amount of welding wire is supplied to the welding robot capable of continuous welding for a long time using a pail pack, automatic welding is stopped before the pail pack is replaced.

このような金属粉等の詰りを防止するために、表面に種々の潤滑剤を塗布して摩擦抵抗を軽減することで金属粉の発生を抑えて堆積を低減させた溶接用ワイヤが提案されている。特許文献1には、表面に二硫化モリブデン、二硫化タングステンおよび四フッ化エチレンの1種以上、ならびに脂肪酸、脂肪酸の1価または2価のアルコールのエステルおよび石油蝋の1種以上をそれぞれ所定量塗布した溶接用ワイヤが記載されている。特許文献2には、表面に、二硫化モリブデンおよび窒化ホウ素の1種以上、カリウム化合物、銅粉、ならびにワックスからなる固形潤滑剤を塗布し、さらにその上に潤滑油を塗布して2層の被覆層を設けた溶接用銅めっきワイヤが記載されている。特許文献3には、カリウム、二硫化モリブデン、リン脂質、潤滑油を塗布し、かつ前記カリウム等の固形物および金属粉の合計付着量を当該溶接用銅めっきソリッドワイヤ10kgあたり0.30g以下に規制した溶接用銅めっきソリッドワイヤが記載されている。   In order to prevent such clogging of metal powder, etc., a welding wire has been proposed in which various lubricants are applied to the surface to reduce frictional resistance, thereby suppressing the generation of metal powder and reducing deposition. Yes. Patent Document 1 discloses that a predetermined amount of at least one of molybdenum disulfide, tungsten disulfide, and tetrafluoroethylene, and one or more fatty acids, esters of mono- or dihydric alcohols of fatty acids, and petroleum waxes on the surface. The applied welding wire is described. In Patent Document 2, a solid lubricant composed of one or more of molybdenum disulfide and boron nitride, potassium compound, copper powder, and wax is applied to the surface, and a lubricant is further applied thereon to form two layers. A copper plating wire for welding provided with a coating layer is described. In Patent Document 3, potassium, molybdenum disulfide, phospholipid, lubricating oil is applied, and the total adhesion amount of solid matter such as potassium and metal powder is 0.30 g or less per 10 kg of the copper plating solid wire for welding. Regulated copper-plated solid wire for welding is described.

特開平8−229697号公報JP-A-8-229697 特開2003−225794号公報JP 2003-225794 A 特開2008−194716号公報JP 2008-194716 A

しかしながら、特許文献1〜3に記載された技術は、いずれも昼夜連続の長時間の自動溶接においては、金属粉や塗布した固形潤滑剤が堆積して、通電不良等により溶接用ワイヤの送給停止に至り、このような溶接に対応するためには不十分である。さらに、特許文献3は、固形分の付着量を制限しているが12hrの連続溶接には不十分であり、また、表面に二硫化モリブデンを均一に分散させるためにリン脂質を塗布しているが、溶接用銅めっきソリッドワイヤにリン脂質が付着すると銅が腐食し易く、めっき皮膜の経時劣化に伴う表面酸化による通電性劣化の虞がある。したがって、これらの従来技術は、ワイヤ送給が停止することを許されない昼夜連続のロボット溶接において、金属粉の給電チップ詰りに起因するワイヤ送給停止に対する配慮を欠いたものである。   However, in the techniques described in Patent Documents 1 to 3, in long-time automatic welding that is continuous day and night, metal powder or applied solid lubricant accumulates, and welding wires are fed due to poor conduction. It is insufficient to cope with such welding. Furthermore, Patent Document 3 restricts the amount of solids deposited, but is insufficient for continuous welding for 12 hours, and phospholipids are applied to uniformly disperse molybdenum disulfide on the surface. However, when phospholipid adheres to the copper plating solid wire for welding, copper is easily corroded, and there is a possibility of deterioration of conductivity due to surface oxidation accompanying deterioration with time of the plating film. Therefore, these conventional techniques lack consideration for the wire feeding stop caused by clogging of the power supply tip of the metal powder in the day-and-night continuous robot welding in which the wire feeding is not allowed to stop.

また、これらの技術は、スプール巻の溶接用ワイヤとペイルパックに格納された溶接用ワイヤの両方に対応させるように開発されたものである。しかし、より大容量で長時間の連続溶接に好適なペイルパックに格納された溶接用ワイヤについては、送給トラブルの発生頻度がスプール巻よりも高いという問題点をさらに有する。そのため、これらの技術による溶接用ワイヤをペイルパックに格納して使用しても、スプール巻としたときのような効果が十分には得られない。   Further, these technologies have been developed to cope with both the welding wire for spool winding and the welding wire stored in the pail pack. However, a welding wire stored in a pail pack suitable for continuous welding for a long time with a larger capacity further has a problem that the frequency of occurrence of feeding trouble is higher than that of spool winding. Therefore, even if the welding wire by these techniques is stored in a pail pack and used, the effect as in the case of spool winding cannot be obtained sufficiently.

本発明は、前記問題点に鑑みてなされたものであり、ペイルパックに格納されて用いられる銅めっきソリッドワイヤについて、送給抵抗の軽減はもとより、主に建築鉄骨分野で適用される溶接ロボットによる長時間の連続溶接を可能とするワイヤ送給性の向上に好適な銅めっきソリッドワイヤを提供することを目的とする。   The present invention has been made in view of the above-mentioned problems, and it is a copper-plated solid wire used by being stored in a pail pack. An object of the present invention is to provide a copper-plated solid wire suitable for improving wire feedability that enables continuous welding for a long time.

前記課題を解決するために、本発明者らは、ペイルパックに格納された溶接用ワイヤにおける送給トラブルのメカニズムを調査した結果、以下の現象が判明した。すなわち、ペイルパックに格納された溶接用ワイヤは、スプール巻による曲がり癖がなく直線状を呈しているため、コンジットライナおよび給電チップでの接触圧が弱く、給電チップ内面と溶接用ワイヤとの通電接触点が容易に変動し易いことにより、通電点変動の際に発生する微小チップ融着が頻発する。そこで、本発明者らは、鋭意研究の結果、給電チップ内面との融着をいっそう低減できる溶接用ワイヤとして、表面に付着した固形物の量を制御する思想に至った。   In order to solve the above-mentioned problems, the present inventors have investigated the feeding trouble mechanism in the welding wire stored in the pail pack, and as a result, the following phenomenon has been found. In other words, the welding wire stored in the pail pack has a straight shape without bending due to spool winding, so that the contact pressure between the conduit liner and the power supply tip is weak, and the power supply between the inner surface of the power supply tip and the welding wire is weak. Due to the fact that the contact point easily varies, microchip fusion that occurs when the energization point varies frequently occurs. Therefore, as a result of intensive studies, the present inventors have come to the idea of controlling the amount of solid matter attached to the surface as a welding wire that can further reduce the fusion with the inner surface of the power feed tip.

すなわち、本発明は炭酸ガスシールドアーク溶接に用いる溶接用銅めっきソリッドワイヤであって、表面に付着している銅粉および鉄粉は、粉径が20μmを超えず、当該溶接用銅めっきソリッドワイヤ10kgあたり合計0.10g以下であり、表面に、当該溶接用銅めっきソリッドワイヤ10kgあたりで、潤滑油として動植物油または鉱物油:0.4〜2.0g、および固形潤滑剤として粒径0.1〜10μmの二硫化モリブデン:0.03〜0.15gが、付着していることを特徴とする。   That is, the present invention is a copper-plated solid wire for welding used in carbon dioxide shielded arc welding, and the copper powder and iron powder adhering to the surface do not exceed 20 μm in diameter, and the copper-plated solid wire for welding The total amount is not more than 0.10 g per 10 kg, and on the surface, 0.4 kg to 2.0 g of animal or vegetable oil or mineral oil as a lubricating oil and a particle size of 0. 1 to 10 μm molybdenum disulfide: 0.03 to 0.15 g is attached.

このような溶接用銅めっきソリッドワイヤは、潤滑油を塗布することで、金属製のコンジットライナおよび給電チップの内面との摩擦抵抗を低減させて、溶接用銅めっきソリッドワイヤ表面から削られて発生する金属粉を低減させることができる。そして潤滑油と共に固形潤滑剤として二硫化モリブデンを塗布することで、給電チップ内面との融着を軽減して、給電チップでの滑り性を向上させ、また金属粉が堆積し易い給電チップ内面の融着痕を低減させることができる。また、潤滑油および二硫化モリブデンの付着量を規制することで適切な効果が得られる。さらに、不可避的に表面に付着する金属粉の量を、従来よりも少ない範囲に抑制することで、昼夜連続の長時間のロボット溶接において、ワイヤ送給停止に至ることがない。   Such copper-plated solid wire for welding is generated by applying lubricating oil to reduce the frictional resistance between the metal conduit liner and the inner surface of the power feed tip, and scraping from the surface of the copper-plated solid wire for welding. Metal powder to be reduced can be reduced. And by applying molybdenum disulfide as a solid lubricant together with the lubricating oil, the fusion with the inner surface of the power supply chip is reduced, the slipping property of the power supply chip is improved, and the inner surface of the power supply chip where metal powder is easily deposited Fusion marks can be reduced. Moreover, an appropriate effect is acquired by regulating the adhesion amount of lubricating oil and molybdenum disulfide. Furthermore, the amount of the metal powder adhering to the surface is inevitably suppressed to a range smaller than the conventional one, so that the wire feeding is not stopped in long-time continuous robot welding day and night.

本発明に係る溶接用銅めっきソリッドワイヤによれば、炭酸ガスシールドアーク溶接に用いて、コンジットライナおよび給電チップでの滑り性が向上し、かつ滑り性が長時間維持されるため、ペイルパックに格納されても通電点変動の際に微小チップ融着が発生し難くなり、その結果、送給トラブルの発生頻度が低減し、溶接ロボットによる昼夜連続の長時間の自動溶接を可能とする。   According to the copper-plated solid wire for welding according to the present invention, it is used for carbon dioxide shielded arc welding, the slipperiness at the conduit liner and the power feed tip is improved, and the slipperiness is maintained for a long time. Even if stored, microchip fusion is less likely to occur when the energization point fluctuates. As a result, the frequency of occurrence of feeding troubles is reduced, and the welding robot can perform automatic welding for a long time day and night.

本発明に係る溶接用銅めっきソリッドワイヤの製造方法を説明するフローチャートである。It is a flowchart explaining the manufacturing method of the copper plating solid wire for welding which concerns on this invention. 高圧水洗浄装置の構造を模式的に示す部分断面斜視図である。It is a partial section perspective view showing typically the structure of a high-pressure water washing device. 溶接用銅めっきソリッドワイヤの表面のSEM画像写真およびSEM画像からEPMA分析にてモリブデンを検出した画像写真であり、(a)および(b)は静電塗布装置を用いて潤滑油を塗布したもので本発明に係る実施例、(c)および(d)はフェルトにて塗布したものである。SEM image of the surface of the copper-plated solid wire for welding and an image of the molybdenum detected from the SEM image by EPMA analysis. (A) and (b) are applied with lubricating oil using an electrostatic coating device In the examples according to the present invention, (c) and (d) are coated with felt.

以下、本発明に係る溶接用銅めっきソリッドワイヤ(以下、銅めっきソリッドワイヤという)を実現するための形態について説明する。   Hereinafter, the form for implement | achieving the copper plating solid wire for welding which concerns on this invention (henceforth a copper plating solid wire) is demonstrated.

〔銅めっきソリッドワイヤ〕
本発明に係る銅めっきソリッドワイヤは、炭酸ガスシールドアーク溶接に用いられる銅めっきソリッドワイヤの表面に、潤滑油として動植物油または鉱物油を、および固形潤滑剤として二硫化モリブデンを塗布したものである。詳しくは、当該銅めっきソリッドワイヤ10kgあたりで、潤滑油:0.4〜2.0g、および粒径0.1〜10μmの二硫化モリブデン:0.03〜0.15gが、表面に付着するように塗布されたものである。また、本発明に係る銅めっきソリッドワイヤの、前記の潤滑油および固形潤滑剤を塗布する前の銅めっきソリッドワイヤ(以下、適宜、塗布前銅めっきソリッドワイヤと称す)は、その製造工程や搬送時に、めっき由来の銅粉や芯地由来の鉄粉が発生して表面に付着する。本発明に係る銅めっきソリッドワイヤは、これらの銅粉および鉄粉が、径(粉径)が20μmを超えないものであり、当該銅めっきソリッドワイヤ10kgあたりの付着量を合計0.10g以下とする。以下、本発明に係る銅めっきソリッドワイヤの表面の付着物について説明する。
[Copper-plated solid wire]
The copper-plated solid wire according to the present invention is obtained by applying animal or vegetable oil or mineral oil as a lubricating oil and molybdenum disulfide as a solid lubricant on the surface of a copper-plated solid wire used for carbon dioxide shielded arc welding. . Specifically, the lubricating oil: 0.4 to 2.0 g and molybdenum disulfide having a particle diameter of 0.1 to 10 μm: 0.03 to 0.15 g are attached to the surface per 10 kg of the copper-plated solid wire. It was applied to. Moreover, the copper plating solid wire before applying the lubricating oil and the solid lubricant of the copper plating solid wire according to the present invention (hereinafter, appropriately referred to as pre-coating copper plating solid wire) is the manufacturing process and conveyance thereof. Occasionally, copper powder derived from plating and iron powder derived from interlining are generated and adhered to the surface. In the copper-plated solid wire according to the present invention, these copper powder and iron powder have a diameter (powder diameter) of not more than 20 μm, and the amount of adhesion per 10 kg of the copper-plated solid wire is 0.10 g or less in total. To do. Hereinafter, the deposits on the surface of the copper-plated solid wire according to the present invention will be described.

(銅粉および鉄粉)
塗布前銅めっきソリッドワイヤは、前記した通り、表面に銅粉および鉄粉(以下、適宜まとめて金属粉)が付着しており、これらが潤滑油および固形潤滑剤を塗布した後においても持ち越されて付着し続ける。このような銅めっきソリッドワイヤを用いた溶接においては、金属粉のほとんどは、銅めっきソリッドワイヤ表面に付着したままコンジットライナや給電チップの内部を通過して、排出される。しかしながら、金属粉の一部は銅めっきソリッドワイヤ表面から離れてコンジットライナ内や給電チップ内に付着し、銅めっきソリッドワイヤの消費量と共に給電チップ内等で堆積する。したがって、銅めっきソリッドワイヤへの金属粉の付着量が多いと、給電チップ内等への堆積速度が速くなり、送給停止に至るまでの銅めっきソリッドワイヤの送給長さが短くなる。具体的には、銅めっきソリッドワイヤ10kgあたり金属粉(銅粉と鉄粉の合計)が0.10gを超えて付着していると、長時間の連続溶接が困難になる。したがって、金属粉の付着量はより少ないことが好ましく、本発明に係る銅めっきソリッドワイヤの表面に付着している銅粉および鉄粉は、当該溶接用銅めっきソリッドワイヤ10kgあたり合計0.10g以下とする。金属粉の付着量は、後記するように、潤滑油および固形潤滑剤を塗布する前に、塗布前銅めっきソリッドワイヤを洗浄することで、低減することができる。
(Copper powder and iron powder)
As described above, copper powder and iron powder (hereinafter collectively referred to as metal powder) adhere to the surface of the copper-plated solid wire before coating, and these are carried over even after the lubricant and solid lubricant are applied. And continue to adhere. In welding using such a copper-plated solid wire, most of the metal powder passes through the inside of the conduit liner and the power feed chip while being adhered to the surface of the copper-plated solid wire, and is discharged. However, a part of the metal powder is separated from the surface of the copper-plated solid wire and adheres in the conduit liner and the power supply chip, and is deposited in the power supply chip and the like together with the consumption of the copper-plated solid wire. Therefore, if the amount of metal powder adhering to the copper-plated solid wire is large, the deposition rate in the power supply chip or the like is increased, and the feeding length of the copper-plated solid wire until the feeding is stopped is shortened. Specifically, when metal powder (total of copper powder and iron powder) exceeds 10 g per 10 kg of the copper-plated solid wire, continuous welding for a long time becomes difficult. Therefore, it is preferable that the adhesion amount of the metal powder is smaller, and the total amount of copper powder and iron powder adhering to the surface of the copper plating solid wire according to the present invention is 0.10 g or less per 10 kg of the copper plating solid wire for welding. And The adhesion amount of the metal powder can be reduced by washing the pre-application copper-plated solid wire before applying the lubricating oil and the solid lubricant, as will be described later.

また、金属粉は、付着量の多少にかかわらず、最大径が20μmを超えるものが付着していると、給電チップ内を通過する際に給電チップの通電性を阻害する虞があり、さらに給電チップから排出され難く内部に付着して堆積し易いため、本発明に係る銅めっきソリッドワイヤの表面に付着している銅粉および鉄粉は、径が20μmを超えないこととする。このような粗大な金属粉は、塗布前銅めっきソリッドワイヤについて、銅めっきの密着性が良好でない場合に、めっきカスとして発生し、表面に残存したものが挙げられる。   Moreover, if the metal powder having a maximum diameter of more than 20 μm adheres regardless of the amount of adhesion, there is a risk of impeding the conductivity of the power supply chip when passing through the power supply chip. Since the copper powder and iron powder adhering to the surface of the copper-plated solid wire according to the present invention do not exceed 20 μm because they are not easily discharged from the chip and easily adhere to and accumulate inside. Such coarse metal powder is generated as plating residue when the copper plating solid wire before coating is not good in adhesion of copper plating, and remains on the surface.

(潤滑油)
本発明に係る銅めっきソリッドワイヤは、潤滑油として、動物油や植物油またはこれらを混合したもの(以下、まとめて動植物油)、あるいは鉱油や合成油(以下、まとめて鉱物油)を適用する。具体的に、動植物油としては、パーム油、菜種油、ひまし油、豚脂、牛脂等が挙げられ、鉱物油としては、潤滑油として一般的に使用されるパラフィン系炭化水素やナフテン系炭化水素を含有する石油精製物等からなるものが挙げられる。これらの油は、金属同士の摩擦抵抗を低減する効果を有する。そして動植物油または鉱物油は、潤滑油として、後記の二硫化モリブデンの粒子を混合した状態で銅めっきソリッドワイヤ表面に適量塗布されることにより、溶接において、銅めっきソリッドワイヤがコンジットライナおよび給電チップの内面と接触した際に、表面を削られて金属粉を発生させることを抑制することができる。潤滑油は、銅めっきソリッドワイヤ10kgあたりでの表面における付着量が、0.4g未満では、前記効果が得られないため、ワイヤ送給性が低く、溶接開始直後からスパッタが多量に発生してこれに伴うアーク長変動が多発し、さらにスパッタが給電チップ内に付着して送給停止に至る場合がある。一方、同付着量が2.0gを超えると、連続溶接において潤滑油が給電チップ内に油溜りを形成し、この潤滑油が定期的に給電チップ先端から漏出するようになって、油滴となって溶接ビードへ落下し、健全な溶接金属が得られない。さらに潤滑油の付着量が過大になると、銅めっきソリッドワイヤが送給ローラでスリップして安定した送給ができなくなる。したがって、本発明に係る銅めっきソリッドワイヤの表面に付着した潤滑油は、当該溶接用銅めっきソリッドワイヤ10kgあたり0.4g以上2.0g以下とする。なお、鉱物油は動植物油よりも摩擦低減効果が小さいため、潤滑油に適用する場合は、溶接用銅めっきソリッドワイヤ10kgあたりの付着量は0.8g以上が好ましく、0.85g以上がさらに好ましい。また、鉱物油は動植物油よりもアーク熱による蒸発が生じ難いため、潤滑油に適用する場合は、前記付着量は1.0g以下が好ましい。
(Lubricant)
The copper-plated solid wire according to the present invention applies animal oil, vegetable oil or a mixture thereof (hereinafter collectively animal and vegetable oil), or mineral oil or synthetic oil (hereinafter collectively mineral oil) as a lubricating oil. Specific examples of animal and vegetable oils include palm oil, rapeseed oil, castor oil, lard, and beef tallow. Mineral oil contains paraffinic hydrocarbons and naphthenic hydrocarbons commonly used as lubricating oils. And those made of refined petroleum products. These oils have the effect of reducing the frictional resistance between metals. The animal or vegetable oil or mineral oil is applied as a lubricant to the surface of the copper-plated solid wire in a state in which the particles of molybdenum disulfide described below are mixed. When contacting with the inner surface of the metal, it is possible to suppress generation of metal powder by scraping the surface. When the amount of adhesion of the lubricating oil on the surface of the copper-plated solid wire per 10 kg is less than 0.4 g, the above effect cannot be obtained, so the wire feedability is low, and a large amount of spatter is generated immediately after the start of welding. As a result, the arc length fluctuates frequently, and spatter may adhere to the inside of the power supply tip and stop feeding. On the other hand, when the adhesion amount exceeds 2.0 g, the lubricating oil forms a sump in the power supply tip in continuous welding, and this lubricating oil periodically leaks from the tip of the power supply tip. It falls to the weld bead and a healthy weld metal cannot be obtained. Further, if the amount of lubricant applied becomes excessive, the copper-plated solid wire slips on the feeding roller and stable feeding cannot be performed. Therefore, the lubricating oil adhering to the surface of the copper-plated solid wire according to the present invention is 0.4 g or more and 2.0 g or less per 10 kg of the copper-plated solid wire for welding. Since mineral oil has a smaller friction reducing effect than animal and vegetable oils, when applied to lubricating oil, the amount of adhesion per 10 kg of copper plating solid wire for welding is preferably 0.8 g or more, and more preferably 0.85 g or more. . Further, since mineral oil is less likely to evaporate due to arc heat than animal and vegetable oils, when applied to lubricating oil, the amount of adhesion is preferably 1.0 g or less.

(二硫化モリブデン)
本発明に係る銅めっきソリッドワイヤは、固形潤滑剤として、一般に用いられている二硫化モリブデン(MoS2)を適用する。二硫化モリブデンは、銅めっきソリッドワイヤの給電チップ内面への融着を軽減する効果を有するため、給電チップでの滑り性を向上させ、また給電チップ内面の融着痕には金属粉が選択的に堆積し易いが、この融着痕が低減することで給電チップ内の金属粉の堆積を低減させることができる。二硫化モリブデンは、銅めっきソリッドワイヤ10kgあたりでの表面における付着量が、0.03g未満では、前記効果が十分に得られない。一方、二硫化モリブデンは、前記金属粉と同様に固形物であるので、溶接において、その一部は銅めっきソリッドワイヤ表面から離れてコンジットライナ内や給電チップ内に付着して堆積し、その量が多くなると送給停止に至る。具体的には、同付着量が0.15gを超えると、長時間の連続溶接が困難になる。したがって、本発明に係る銅めっきソリッドワイヤの表面に付着した二硫化モリブデンは、当該溶接用銅めっきソリッドワイヤ10kgあたり0.03g以上0.15g以下とする。二硫化モリブデンは、潤滑油に混合された状態で銅めっきソリッドワイヤ表面に塗布され、その混合比を調整することで、付着量を制御することができる。具体的には、潤滑油に対する質量比で4〜10%が好ましい。この混合比であれば、後記の静電塗布法で塗布された際に、潤滑油、二硫化モリブデン共に、適切な付着量とすることが容易である。
(Molybdenum disulfide)
The commonly used molybdenum disulfide (MoS 2 ) is applied to the copper-plated solid wire according to the present invention as a solid lubricant. Molybdenum disulfide has the effect of reducing the adhesion of the copper-plated solid wire to the inner surface of the power supply tip, so it improves the slipperiness of the power supply tip, and metal powder is selectively used for the fusing marks on the inner surface of the power supply tip. However, it is possible to reduce the deposition of the metal powder in the power feed tip by reducing the fusion marks. When molybdenum disulfide has an adhesion amount on the surface of 10 kg of copper-plated solid wire of less than 0.03 g, the above effect cannot be obtained sufficiently. On the other hand, since molybdenum disulfide is a solid material like the metal powder, a part of the molybdenum disulfide is deposited and adhered to the inside of the conduit liner and the power supply tip away from the surface of the copper-plated solid wire. If the number increases, the supply will stop. Specifically, when the adhesion amount exceeds 0.15 g, long-time continuous welding becomes difficult. Therefore, the molybdenum disulfide adhering to the surface of the copper-plated solid wire according to the present invention is 0.03 g or more and 0.15 g or less per 10 kg of the copper-plated solid wire for welding. Molybdenum disulfide is applied to the surface of the copper-plated solid wire in a state of being mixed with the lubricating oil, and the amount of adhesion can be controlled by adjusting the mixing ratio. Specifically, 4 to 10% is preferable by mass ratio with respect to the lubricating oil. With this mixing ratio, it is easy to obtain an appropriate adhesion amount for both the lubricating oil and molybdenum disulfide when applied by the electrostatic coating method described later.

二硫化モリブデンは、銅めっきソリッドワイヤの表面に偏りなく均一に付着するように塗布される。付着量に偏りがあると、銅めっきソリッドワイヤ表面の多い箇所からは二硫化モリブデンが給電チップ内等へ付着し、少ない箇所では給電チップ内に融着する。本発明においては、二硫化モリブデンを均一に付着させるため、潤滑油との混合物は、後記するように静電塗布法にて銅めっきソリッドワイヤの表面に塗布される。   Molybdenum disulfide is applied so as to adhere uniformly to the surface of the copper-plated solid wire. If there is a bias in the amount of adhesion, molybdenum disulfide adheres to the inside of the power feed chip from a portion where the surface of the copper-plated solid wire is large, and melts in the power feed tip at a location where there is little. In the present invention, in order to uniformly deposit molybdenum disulfide, the mixture with the lubricating oil is applied to the surface of the copper-plated solid wire by an electrostatic coating method as will be described later.

前記した通り、二硫化モリブデンは固形物であり、本発明においては粒状のものを適用するが、その径が大きく、具体的には10μmを超えると、溶接の際に、粗大な固形物として給電チップ内への堆積量を増大させる。一方、二硫化モリブデンの粒径が0.1μm未満では、銅めっきソリッドワイヤの表面に塗布されるために潤滑油に混合された際、この混合物の粘度が増大し、塗布装置に供給する配管での流動性が低下し、二硫化モリブデンおよび潤滑油の塗布装置による吐出量が不安定となる。したがって、二硫化モリブデンは、その粒径が0.1μm以上10μm以下のものを適用する。このような粒径の二硫化モリブデンは、例えばミルで粉砕して得られる。   As described above, molybdenum disulfide is a solid material, and in the present invention, a granular material is applied. However, when the diameter is large, specifically, when it exceeds 10 μm, power is supplied as a coarse solid material during welding. Increase the amount of deposition in the chip. On the other hand, if the particle size of molybdenum disulfide is less than 0.1 μm, the viscosity of the mixture increases when mixed with lubricating oil to be applied to the surface of the copper-plated solid wire. The fluidity of the liquid is reduced, and the discharge amount of the molybdenum disulfide and lubricating oil by the coating device becomes unstable. Therefore, molybdenum disulfide having a particle size of 0.1 μm or more and 10 μm or less is used. Molybdenum disulfide having such a particle diameter is obtained by pulverizing with a mill, for example.

銅めっきソリッドワイヤの表面に付着した金属粉(銅粉、鉄粉)および二硫化モリブデンの量は、例えば以下の方法で測定することができる。銅めっきソリッドワイヤを手等に触れないように1〜10kg程度切り出して質量を測定した後、エタノール、アセトン、ノルマルパラフィン、石油エーテル等の有機溶媒で洗浄し、この洗浄に用いた有機溶媒を乾燥したろ紙でろ過し、残渣の質量を測定する。具体的には、予め質量を測定したろ紙でろ過した後、このろ紙を乾燥させて再び質量を測定した質量増加分が残渣の質量となる。残渣の質量は金属粉と二硫化モリブデンの合計である。そこで、ろ紙に付着した残渣について、エネルギー分散型蛍光X線分析装置(EDX)にて定量分析を行って、銅粉(Cu)、鉄粉(Fe)、二硫化モリブデン(MoS2)の質量比を求め、残渣の質量で換算してそれぞれの質量を算出する。あるいは、残渣の付着したろ紙から硫酸白煙処理により二硫化モリブデンを溶解し、この溶液を原子吸光法で定量分析を行ってモリブデン(Mo)の質量を求め、二硫化モリブデンの質量に換算する。二硫化モリブデンの質量を残渣の質量から減じて金属粉(銅粉と鉄粉の合計)の質量が算出される。これらの質量を、切り出した銅めっきソリッドワイヤの質量にて10kgあたりに換算することで、銅めっきソリッドワイヤの表面に付着した金属粉および二硫化モリブデンのそれぞれの質量を求めることができる。 The amount of metal powder (copper powder, iron powder) and molybdenum disulfide adhering to the surface of the copper-plated solid wire can be measured, for example, by the following method. Cut about 1 to 10 kg of copper-plated solid wire so that it is not touched, measure the mass, and then wash with an organic solvent such as ethanol, acetone, normal paraffin, or petroleum ether, and dry the organic solvent used for this washing. Filter with a filter paper and measure the mass of the residue. Specifically, after filtering with a filter paper whose mass has been measured in advance, the mass increase obtained by drying the filter paper and measuring the mass again becomes the mass of the residue. The mass of the residue is the sum of the metal powder and molybdenum disulfide. Therefore, the residue attached to the filter paper is quantitatively analyzed with an energy dispersive X-ray fluorescence spectrometer (EDX), and the mass ratio of copper powder (Cu), iron powder (Fe), and molybdenum disulfide (MoS 2 ). Is calculated by converting the mass of the residue. Or molybdenum disulfide is melt | dissolved by the sulfuric acid white smoke process from the filter paper to which the residue adhered, and this solution is quantitatively analyzed by atomic absorption method, the mass of molybdenum (Mo) is calculated | required, and it converts into the mass of molybdenum disulfide. The mass of the metal powder (total of copper powder and iron powder) is calculated by subtracting the mass of molybdenum disulfide from the mass of the residue. By converting these masses per 10 kg by the mass of the cut copper plating solid wire, the respective masses of the metal powder and molybdenum disulfide adhering to the surface of the copper plating solid wire can be obtained.

銅めっきソリッドワイヤの表面に付着した金属粉(銅粉、鉄粉)および二硫化モリブデンの大きさは、前記のろ紙に付着した残渣を走査型電子顕微鏡(SEM)で観察することで求めることができる。あるいは、銅めっきソリッドワイヤの表面を直接にSEMで観察してもよい。ただし、図3(a)に示すように、SEM画像においては銅粉、鉄粉、および二硫化モリブデンはすべて黒く写る。そこで、同時に電子線マイクロアナライザ(EPMA)で面分析を行うことで固形物の同定を行うことができ、例えばモリブデンの検出位置に合致した固形物を二硫化モリブデンと識別することができる。また、銅めっきソリッドワイヤの表面を直接に観察した場合は、図3(b)に示すように、二硫化モリブデンが白く写ってその分布状態を観察することができる。   The size of the metal powder (copper powder, iron powder) and molybdenum disulfide adhering to the surface of the copper-plated solid wire can be determined by observing the residue adhering to the filter paper with a scanning electron microscope (SEM). it can. Or you may observe the surface of a copper plating solid wire directly by SEM. However, as shown in FIG. 3A, copper powder, iron powder, and molybdenum disulfide all appear black in the SEM image. Therefore, it is possible to identify solids by simultaneously performing surface analysis with an electron beam microanalyzer (EPMA). For example, a solid that matches the detection position of molybdenum can be identified as molybdenum disulfide. In addition, when the surface of the copper-plated solid wire is directly observed, molybdenum disulfide appears white and the distribution state can be observed as shown in FIG.

銅めっきソリッドワイヤの表面に付着した潤滑油の量も、前記固形物と同様に、銅めっきソリッドワイヤを切り出して質量を測定した後、溶媒で洗浄することで測定できる。詳しくは、四塩化炭素(CCl4)で洗浄し、この洗浄液を、赤外吸収分光法(IR)で定量分析を行って質量を求め、切り出した銅めっきソリッドワイヤの質量にて10kgあたりに換算することで、銅めっきソリッドワイヤの表面に付着した潤滑油の質量を求めることができる。 The amount of lubricating oil adhering to the surface of the copper-plated solid wire can also be measured by cutting out the copper-plated solid wire and measuring its mass, followed by washing with a solvent, as in the case of the solid material. Specifically, it is washed with carbon tetrachloride (CCl 4 ), and this washing solution is quantitatively analyzed by infrared absorption spectroscopy (IR) to obtain the mass, and converted to the mass of the cut copper plating solid wire per 10 kg. By doing so, the mass of the lubricating oil adhering to the surface of the copper plating solid wire can be obtained.

〔銅めっきソリッドワイヤの製造方法〕
塗布前銅めっきソリッドワイヤは、炭酸ガスシールドアーク溶接に用いられる公知の銅めっきソリッドワイヤを適用でき、JIS Z3312 YGW18、YGW11等、JIS規定の銅めっきソリッドワイヤを適用できる。このような塗布前銅めっきソリッドワイヤは、公知の方法にて製造でき、図1に示すように、所定成分の鋼材からなる線材を、必要に応じて途中に焼鈍を挟んで(図示省略)伸線し、めっきにて銅を被覆した後、さらに伸線して製品径とする。
[Manufacturing method of copper-plated solid wire]
As the copper-plated solid wire before coating, a known copper-plated solid wire used for carbon dioxide shielded arc welding can be applied, and JIS-specified copper-plated solid wires such as JIS Z3312 YGW18 and YGW11 can be applied. Such a pre-coating copper-plated solid wire can be produced by a known method, and as shown in FIG. 1, a wire made of a steel material having a predetermined component is stretched with annealing in the middle as necessary (not shown). After the wire is coated and coated with copper, it is further drawn to obtain a product diameter.

塗布前銅めっきソリッドワイヤは、表面に伸線潤滑剤および金属粉が付着しているので、洗浄してこれらを除去する。洗浄方法としては、塗布前銅めっきソリッドワイヤをインラインで通過させる洗浄装置を用いることが生産上で望ましい。一例としては、水温50℃以上の水に所定時間浸漬させる浸漬湯洗槽、付着した水等を除去する圧力0.3〜0.5MPaの高圧の液切エアブレス、温度80〜100℃、圧力0.1〜0.5MPaの高圧の水蒸気洗浄装置、水温40℃以上、圧力8〜12MPaの高圧水洗浄装置、を直列してこの順に塗布前銅めっきソリッドワイヤを一定速度で通過させる。高圧水洗浄装置は、図2に示すように、二重管構造の内管のさらに内側を塗布前銅めっきソリッドワイヤが通過するもので、二重管構造の外管と内管の間に水をポンプで供給し、内管に形成された多数のノズルから塗布前銅めっきソリッドワイヤに向けて高圧水を噴霧する構成である。洗浄装置における塗布前銅めっきソリッドワイヤの通過速度は、装置の大きさ等によって設定する。さらにこれらの装置にキャビテーション装置を併設して、塗布前銅めっきソリッドワイヤに直接または間接に振動を与えてもよい。   Since the wire-drawing lubricant and metal powder adhere to the surface of the pre-coating copper-plated solid wire, it is washed to remove them. As a cleaning method, it is desirable in production to use a cleaning device that allows the pre-coating copper-plated solid wire to pass in-line. As an example, an immersion hot water bath immersed in water having a water temperature of 50 ° C. or higher for a predetermined time, a high-pressure liquid breathing pressure of 0.3 to 0.5 MPa for removing attached water, a temperature of 80 to 100 ° C., a pressure of 0 A high-pressure steam cleaning apparatus having a high pressure of 1 to 0.5 MPa, a high-temperature water cleaning apparatus having a water temperature of 40 ° C. or higher, and a pressure of 8 to 12 MPa are serially passed through the copper-plated solid wire before coating in this order. As shown in FIG. 2, the high-pressure water washing apparatus is a device in which a copper-plated solid wire before coating passes further inside the inner pipe of the double pipe structure, and the water is placed between the outer pipe and the inner pipe of the double pipe structure. Is supplied by a pump, and high-pressure water is sprayed from a large number of nozzles formed in the inner pipe toward the copper-plated solid wire before coating. The passing speed of the pre-coating copper-plated solid wire in the cleaning apparatus is set according to the size of the apparatus. Further, a cavitation device may be added to these devices to directly or indirectly vibrate the pre-coating copper-plated solid wire.

潤滑油として動植物油または鉱物油、および固形潤滑剤として二硫化モリブデンを混合して、洗浄した塗布前銅めっきソリッドワイヤに塗布する。ここで、潤滑油と二硫化モリブデンとの混合物を塗布する方法として静電塗布法を適用することが望ましい。静電塗布法によれば、混合物中の二硫化モリブデンの濃度を保持して塗布されるため、刷毛やフェルト等の塗布媒体で塗布するよりも、銅めっきソリッドワイヤ表面に二硫化モリブデンが均一に付着し易い。刷毛等によると、特に銅めっきソリッドワイヤの表面の周方向に均一とすることが困難である。以下に、静電塗布装置を用いた塗布方法の一例を説明する。   Animal and vegetable oils or mineral oils are mixed as a lubricating oil, and molybdenum disulfide is mixed as a solid lubricant, and the mixture is applied to a cleaned pre-application copper-plated solid wire. Here, it is desirable to apply an electrostatic coating method as a method of applying a mixture of lubricating oil and molybdenum disulfide. According to the electrostatic coating method, it is applied while maintaining the concentration of molybdenum disulfide in the mixture, so that molybdenum disulfide is evenly distributed on the surface of the copper-plated solid wire, rather than coating with a coating medium such as a brush or felt. Easy to adhere. According to a brush or the like, it is particularly difficult to make it uniform in the circumferential direction of the surface of the copper-plated solid wire. Below, an example of the coating method using an electrostatic coating apparatus is demonstrated.

混合用貯蔵槽にて所定粒径の二硫化モリブデンを質量比4〜10%で混合した潤滑油を、定量ポンプにより静電塗布装置に供給する。静電塗布装置においては、被塗装物である塗布前銅めっきソリッドワイヤを正極に、静電塗布装置の噴出部を負極に設定して高電圧を印加することで、大気中の両極間に電界を形成する。噴出部から前記潤滑油の混合物を霧化して噴出すると、この混合物が負極とした静電塗布装置の噴出部により負の電荷を帯びるため、大気中の電界勾配を介して、一定比率で被塗装物に吸着されることによって付着する。このような静電塗布装置を用いることで、銅めっきソリッドワイヤ表面への付着量について、潤滑油に対する二硫化モリブデンが、混合用貯蔵槽内の混合比とほぼ合致する。   Lubricating oil in which molybdenum disulfide having a predetermined particle diameter is mixed at a mass ratio of 4 to 10% in a mixing storage tank is supplied to the electrostatic coating apparatus by a metering pump. In an electrostatic coating device, a pre-application copper-plated solid wire, which is the object to be coated, is set as the positive electrode, and the ejection portion of the electrostatic coating device is set as the negative electrode. Form. When the mixture of the lubricating oil is atomized and ejected from the ejection part, the mixture is negatively charged by the ejection part of the electrostatic coating device as a negative electrode, so that it is coated at a constant ratio via an electric field gradient in the atmosphere. It adheres by being adsorbed by an object. By using such an electrostatic coating apparatus, molybdenum disulfide with respect to the lubricating oil substantially matches the mixing ratio in the mixing storage tank with respect to the amount of adhesion to the surface of the copper plating solid wire.

このようにして得られた銅めっきソリッドワイヤの表面は、そのSEM画像写真(図3(a))およびEPMA分析にてモリブデンを検出した画像写真(図3(b))に示すように、固形物、特に二硫化モリブデンの分布が均一となる。これに対して、塗布媒体としてフェルトにて同じ混合物を塗布すると、図3(c)、(d)に示すように、銅めっきソリッドワイヤの長さ方向に沿って筋状に固形物の偏りを生じ易い。特に図3(d)に示すように、二硫化モリブデンの分布の均一性が低下し、局所的に、付着量が本発明の範囲外となる虞がある。   The surface of the copper-plated solid wire thus obtained was solid as shown in the SEM image photograph (FIG. 3 (a)) and the image photograph (FIG. 3 (b)) in which molybdenum was detected by EPMA analysis. The distribution of the material, particularly molybdenum disulfide, becomes uniform. On the other hand, when the same mixture is applied as a coating medium with felt, as shown in FIGS. 3C and 3D, the solid matter is unevenly distributed along the length of the copper-plated solid wire. It is likely to occur. In particular, as shown in FIG. 3D, the uniformity of the distribution of molybdenum disulfide is lowered, and there is a possibility that the amount of adhesion locally falls outside the scope of the present invention.

このように、静電塗布装置を用いることで、二硫化モリブデンが銅めっきソリッドワイヤ表面に均一に付着する。そして前記した通り、その付着量は混合用貯蔵槽内の混合比とほぼ合致するので、潤滑油に対する混合比および塗布量により容易に制御できる。以上の方法により得られた本発明に係る銅めっきソリッドワイヤは、ペイルパックに巻き取られて格納される。   Thus, by using an electrostatic coating apparatus, molybdenum disulfide adheres uniformly to the surface of the copper-plated solid wire. As described above, the amount of adhesion almost coincides with the mixing ratio in the mixing storage tank, and can be easily controlled by the mixing ratio and the coating amount with respect to the lubricating oil. The copper-plated solid wire according to the present invention obtained by the above method is wound and stored in a pail pack.

以上、本発明を実施するための形態について述べてきたが、以下に、本発明の効果を確認した実施例を、本発明の要件を満たさない比較例と対比して具体的に説明する。なお、本発明はこの実施例に限定されるものではない。   As mentioned above, although the form for implementing this invention has been described, the Example which confirmed the effect of this invention is demonstrated concretely compared with the comparative example which does not satisfy | fill the requirements of this invention below. In addition, this invention is not limited to this Example.

〔供試材作製〕
炭酸ガスシールドアーク溶接に用いられるJIS Z3312 YGW18の規格に合致する径1.2mmの銅めっきソリッドワイヤを、インライン式洗浄装置にて、以下の範囲で条件を変えて洗浄した。
(洗浄条件)
装置通過速度:400〜1000m/min
浸漬湯洗槽水温:40〜100℃
液切エアブレス圧力:0.1〜1.0MPa
水蒸気洗浄装置温度:80〜200℃、圧力:0.1〜1.0MPa
高圧水洗浄装置水温:40〜80℃、圧力:5〜30MPa
[Sample preparation]
A copper-plated solid wire having a diameter of 1.2 mm that conforms to the standard of JIS Z3312 YGW18 used for carbon dioxide shielded arc welding was cleaned with an in-line type cleaning device under the following conditions.
(Cleaning conditions)
Device passing speed: 400 to 1000 m / min
Immersion bath temperature: 40-100 ° C
Liquid cutting air breath pressure: 0.1-1.0 MPa
Steam cleaning device temperature: 80 to 200 ° C., pressure: 0.1 to 1.0 MPa
High pressure water washer water temperature: 40-80 ° C, pressure: 5-30MPa

潤滑油に、表1に示す質量混合比で二硫化モリブデンの粒子を混合した。この混合物を静電塗布装置にて塗布量を変えて前記洗浄後の銅めっきソリッドワイヤに塗布して、銅めっきソリッドワイヤの供試材(ワイヤNo.1〜23)とした。なお、動植物油としてはパーム油を、鉱物油としてはポリブデン系合成油を使用した。また、ワイヤNo.22は、パーム油をベースにリン脂質10質量%を混合した比較例である。   Molybdenum disulfide particles were mixed with the lubricating oil at a mass mixing ratio shown in Table 1. The mixture was applied to the washed copper-plated solid wire by changing the coating amount with an electrostatic coating apparatus to obtain a test material (wire Nos. 1 to 23) for the copper-plated solid wire. In addition, palm oil was used as animal and vegetable oil, and polybutene synthetic oil was used as mineral oil. In addition, wire No. 22 is a comparative example in which 10% by mass of phospholipid is mixed based on palm oil.

(表面に付着した固形物の測定)
作製した銅めっきソリッドワイヤを手等に触れないように1〜10kg程度切り出して質量を測定した後、ノルマルパラフィンで洗浄し、この洗浄液を乾燥したろ紙でろ過し、残渣の質量を測定した。また、ろ紙に付着した残渣について、エネルギー分散型蛍光X線分析装置(EDX)にて定量分析を行って、銅粉(Cu)、鉄粉(Fe)、二硫化モリブデン(MoS2)の質量比を求め、残渣の質量で換算してそれぞれの質量を算出した。金属粉(銅粉と鉄粉の合計)および二硫化モリブデンについて、算出した質量を、切り出した銅めっきソリッドワイヤの質量にて10kgあたりに換算し、表1に示す。また、前記のろ紙に付着した残渣について、走査型電子顕微鏡(SEM)にて400倍で観察して金属粉(銅粉、鉄粉)の径を測定し、分布範囲を表1に示す。さらに、残渣の付着したろ紙から硫酸白煙処理により二硫化モリブデンを溶解し、この溶液を原子吸光法で定量分析を行ってモリブデン(Mo)の質量を求め、二硫化モリブデンの質量に換算し、さらにこの質量を残渣の質量から減じて金属粉(銅粉と鉄粉の合計)の質量を算出した。これらの質量と前記EDXにより求めた質量はほぼ一致した。
(Measurement of solid matter attached to the surface)
About 1 to 10 kg of the produced copper-plated solid wire was cut out so as not to touch the hands, and the mass was measured. Then, the mass was washed with normal paraffin, and this washing solution was filtered with dry filter paper, and the mass of the residue was measured. Further, the residue adhering to the filter paper is quantitatively analyzed with an energy dispersive X-ray fluorescence spectrometer (EDX), and the mass ratio of copper powder (Cu), iron powder (Fe), and molybdenum disulfide (MoS 2 ). Each of the masses was calculated in terms of the mass of the residue. For the metal powder (total of copper powder and iron powder) and molybdenum disulfide, the calculated mass is converted per 10 kg by the mass of the cut copper plating solid wire, and is shown in Table 1. Moreover, about the residue adhering to the said filter paper, it observed by 400 time with a scanning electron microscope (SEM), the diameter of metal powder (copper powder, iron powder) was measured, and distribution range is shown in Table 1. Furthermore, molybdenum disulfide is dissolved by white smoke treatment from the filter paper to which the residue is attached, and the solution is quantitatively analyzed by atomic absorption method to determine the mass of molybdenum (Mo), which is converted to the mass of molybdenum disulfide, Further, the mass of the metal powder (total of copper powder and iron powder) was calculated by subtracting this mass from the mass of the residue. These masses almost coincided with the masses determined by the EDX.

銅めっきソリッドワイヤの表面をSEMにて400倍で観察し、同時に電子線マイクロアナライザ(EPMA)で面分析を行うことで固形物の同定を行って、モリブデンの検出位置に合致した固形物を二硫化モリブデンとして、その粒径を測定して、分布範囲を表1に示す。さらに、銅めっきソリッドワイヤの表面における二硫化モリブデンの分布状態を観察し、ワイヤNo.4について、表面のSEM画像写真(黒く写っているものが、銅粉、鉄粉、二硫化モリブデン)を図3(a)に、SEM画像からEPMA分析にてモリブデンを検出した画像写真(白く写っているものが二硫化モリブデン)を図3(b)に示す。   The surface of the copper-plated solid wire is observed with a SEM at a magnification of 400, and at the same time, the solid is identified by performing surface analysis with an electron beam microanalyzer (EPMA). The particle size of molybdenum sulfide was measured, and the distribution range is shown in Table 1. Further, the distribution state of molybdenum disulfide on the surface of the copper-plated solid wire was observed. Fig. 3 (a) shows a SEM image of the surface (copper powder, iron powder, molybdenum disulfide) in Fig. 3. Fig. 3 (a) shows a photograph of molybdenum detected by EPMA analysis (white image). Fig. 3 (b) shows the molybdenum disulfide.

(表面に付着した潤滑油の測定)
作製した銅めっきソリッドワイヤを手等に触れないように1〜10kg程度切り出して質量を測定した後、四塩化炭素(CCl4)で洗浄し、この洗浄液を、赤外吸収分光法(IR)を応用した油分濃度計で質量を求めた。この質量を切り出した銅めっきソリッドワイヤの質量にて10kgあたりに換算し、表1に示す。
(Measurement of lubricant adhering to the surface)
Cut out about 1-10kg of the prepared copper-plated solid wire so as not to touch it, measure its mass, and then wash with carbon tetrachloride (CCl 4 ). The mass was determined with the applied oil concentration meter. This mass is converted per 10 kg by the mass of the copper-plated solid wire cut out and shown in Table 1.

〔評価〕
溶接試験として、水冷式ストレートトーチを搭載した溶接ロボットにて、作製した銅めっきソリッドワイヤを用いて、給電チップ−溶接母材(鋼板)間距離を30mmとし、シールドガスとしてCO2を供給しながら、電流340〜370A、電圧37〜40Vにて、下向ビードオンプレート溶接を行った。なお、銅めっきソリッドワイヤの送給抵抗が通常の溶接ロボットにおける場合の約2.5倍となるように送給経路を配置した。このような苛酷な送給経路としたことで、本溶接試験を、溶接時間を6hrで通常の溶接における連続溶接時間12hr超相当となる促進試験とした。すなわち溶接試験は最長で6hr連続して行い、6hr経過する前に、銅めっきソリッドワイヤの送給停止により溶接不能となった供試材については、溶接停止時間を連続溶接時間として表1に示す。
[Evaluation]
As a welding test, with a welding robot equipped with a water-cooled straight torch, using the prepared copper-plated solid wire, the distance between the power supply tip and the welding base material (steel plate) was set to 30 mm, and CO 2 was supplied as the shielding gas. Downward bead-on-plate welding was performed at a current of 340 to 370 A and a voltage of 37 to 40V. The feeding path was arranged so that the feeding resistance of the copper-plated solid wire was about 2.5 times that in a normal welding robot. By adopting such a severe feeding route, this welding test was an accelerated test in which the welding time was 6 hours and the continuous welding time in normal welding was equivalent to more than 12 hours. That is, the welding test is continuously performed for 6 hours at the longest, and for the specimens that are not weldable due to the stop of feeding of the copper-plated solid wire before 6 hours elapse, the welding stop time is shown in Table 1 as the continuous welding time. .

溶接試験終了後、給電チップ内の付着物の質量を固形物の堆積量とみなして測定し、連続溶接時間から固形物堆積速度を算出し、表1に示す。また、6hrの連続溶接ができなかった供試材について、給電チップ内を目視にて観察し、送給停止が堆積物の詰りによるものを給電チップ詰りが「×」、それ以外を「○」として表1に示す。また、銅めっきソリッドワイヤの融着のないものを「○」、微小融着の発生したものを「△」、融着の発生したものを「×」として表1に示す。   Table 1 shows the solid deposition rate calculated from the continuous welding time after measuring the mass of the deposit in the power feed tip as the solid deposition amount after the welding test. For the specimens that could not be continuously welded for 6 hours, the inside of the power supply tip was visually observed. If the feed stop was due to clogging of the deposit, the power supply tip was clogged, and the others were “○”. As shown in Table 1. Further, Table 1 shows “◯” when the copper-plated solid wire is not fused, “Δ” when micro-fusion is generated, and “X” when fusion is generated.

6hrの連続溶接が可能で、かつ溶接部等に異常のなかった供試材を合格として総合評価「○」で表1に示し、軽微な異常の発生したものを「△」、また連続溶接時間3hr以上6hr未満も「△」で表1に示す。連続溶接時間3hr未満は「×」で表1に示す。   A test material that can be continuously welded for 6 hours and that there was no abnormality in the welded part or the like is shown in Table 1 with a comprehensive evaluation of “○”, and “△” indicates that a slight abnormality occurred, and the continuous welding time Table 3 also shows “Δ” for 3 hours or more and less than 6 hours. The continuous welding time of less than 3 hr is indicated by “x” in Table 1.

表1に示すように、ワイヤNo.1〜8は、表面に残存する金属粉の径および量、塗布されて付着した潤滑油の量、ならびに二硫化モリブデンの粒径、量のすべてが本発明の範囲の実施例であり、給電チップ内への固形物の堆積速度は4mg/hr未満と少ないため、6hrの連続溶接で送給停止に至ることはなく、溶接部等にも異常はなかった。さらに静電塗布装置で塗布されたことにより、図3(a)、(b)に示すように、本発明に係る実施例の銅めっきソリッドワイヤ表面は、固形物、特に二硫化モリブデンの分布が均一であり、このような付着状態であるために、二硫化モリブデンの効果が適度なものとなり、良好なワイヤ送給性を長時間維持できた。   As shown in Table 1, the wire No. 1 to 8 are examples in which the diameter and amount of the metal powder remaining on the surface, the amount of the lubricant oil applied and adhered, and the particle size and amount of molybdenum disulfide are all within the scope of the present invention. Since the deposition rate of the solid matter inside was as low as less than 4 mg / hr, the feed was not stopped by continuous welding for 6 hr, and there was no abnormality in the welded portion. Furthermore, as shown in FIGS. 3 (a) and 3 (b), the surface of the copper-plated solid wire of the example according to the present invention has a distribution of solid matter, particularly molybdenum disulfide, as shown in FIGS. Since it is uniform and is in such an adhesion state, the effect of molybdenum disulfide becomes appropriate, and good wire feedability can be maintained for a long time.

(残存した金属粉による評価)
これに対して、ワイヤNo.17〜20は、塗布前の洗浄が不十分で金属粉の付着量が過剰なため、潤滑油等を本発明の範囲としても、いずれも金属粉が給電チップ内に堆積し、給電チップに詰りを生じて6hr未満で送給停止に至った。また、ワイヤNo.21は、塗布前の銅めっきソリッドワイヤについて、そのめっき前の活性化処理を緩和したことで、粗大な金属粉が付着した比較例である。そのために、金属粉の付着量は本発明の範囲であるが粗大な金属粉が給電チップから排出されずに内部に付着して後続の固形物をさらに堆積させ、その結果、前記の金属粉の付着量が過剰な比較例よりも短時間で送給停止に至った。さらに、この粗大な金属粉が給電チップと銅めっきソリッドワイヤとの通電性が阻害したために、アーク不安定が多発した。
(Evaluation by remaining metal powder)
On the other hand, the wire No. In Nos. 17 to 20, since washing before application is insufficient and the amount of metal powder adhering is excessive, even if lubricating oil or the like is within the scope of the present invention, any metal powder accumulates in the power supply chip and clogs the power supply chip. The feed was stopped in less than 6 hours. In addition, wire No. No. 21 is a comparative example in which coarse metal powder adhered to the copper-plated solid wire before coating by relaxing the activation treatment before the plating. For this reason, the amount of metal powder adhering is within the scope of the present invention, but the coarse metal powder is not discharged from the power supply chip and adheres to the inside to further deposit subsequent solids. Feeding was stopped in a shorter time than the comparative example with an excessive amount of adhesion. In addition, this coarse metal powder hindered the electrical conductivity between the power feed tip and the copper-plated solid wire, resulting in frequent arc instability.

(潤滑油による評価)
ワイヤNo.11,15は、潤滑油の塗布量が不足したため、ワイヤ送給性が低下し、給電チップ内の固形物の堆積が少ない状態でも、ワイヤ送給停止に至った。一方、ワイヤNo.12,16は、潤滑油の塗布量が過剰なため、6hrの連続溶接は可能であったが、溶接中に給電チップ先端から油滴が溶接母材上の溶融金属に落下して、溶接ビードの数箇所にブローホールを形成した。また、ワイヤNo.22は、潤滑油のパーム油にリン脂質を添加した比較例で、リン脂質の付着量は約0.08gである。このリン脂質が銅めっきソリッドワイヤの銅を腐食させたため、腐食した銅が給電チップの通電性を阻害して、溶接開始直後からアーク不安定が発生して送給停止に至り、また表面に変色が観察された。
(Evaluation with lubricating oil)
Wire No. Nos. 11 and 15 were insufficient in the amount of lubricant applied, so that the wire feeding performance was lowered, and the wire feeding was stopped even in a state where there was little accumulation of solid matter in the power feed tip. On the other hand, wire No. Nos. 12 and 16 were capable of continuous welding for 6 hours because the amount of lubricant applied was excessive, but during welding, oil droplets dropped from the tip of the power feed tip onto the molten metal on the weld base metal, resulting in a weld bead. Blow holes were formed at several locations. In addition, wire No. 22 is a comparative example in which phospholipid was added to palm oil as a lubricating oil, and the amount of phospholipid deposited was about 0.08 g. Since this phospholipid corroded the copper of the copper-plated solid wire, the corroded copper hindered the current-carrying power of the power supply tip, causing arc instability immediately after the start of welding, leading to the stop of feeding, and discoloration on the surface Was observed.

(固形潤滑剤による評価)
ワイヤNo.9,13は二硫化モリブデンの付着量が不足したために、給電チップへの微小融着が発生して送給停止に至った。さらに給電チップ内に生じた微小融着痕に金属粉(主に銅粉)が堆積し易くなり、送給停止までに給電チップ内に堆積した固形物が増加した。一方、ワイヤNo.10,14は二硫化モリブデンの付着量が過剰なために、給電チップ内に潤滑剤として作用する二硫化モリブデンが連続溶接の許容限界を超えて堆積し、送給停止に至った。また、ワイヤNo.23は、粒径が過大な二硫化モリブデンを使用した比較例であり、二硫化モリブデンの粒径が金属粉と同程度に大きいために、金属粉と同様に固形物として給電チップ内に堆積した結果、短時間で給電チップに詰りを生じて送給停止に至り、給電チップ内には金属粉と共に粒径の大きい二硫化モリブデンが多く堆積した。
(Evaluation with solid lubricant)
Wire No. In Nos. 9 and 13, since the adhesion amount of molybdenum disulfide was insufficient, minute fusion to the power supply chip occurred and the supply was stopped. Furthermore, metal powder (mainly copper powder) easily accumulates on the minute fusion marks generated in the power supply chip, and the solid matter accumulated in the power supply chip increases before the supply is stopped. On the other hand, wire No. In Nos. 10 and 14, since the adhering amount of molybdenum disulfide was excessive, molybdenum disulfide acting as a lubricant was deposited in the power supply tip beyond the allowable limit of continuous welding, and the supply was stopped. In addition, wire No. No. 23 is a comparative example using molybdenum disulfide having an excessively large particle size. Since the particle size of molybdenum disulfide is as large as that of the metal powder, it was deposited in the power supply chip as a solid material like the metal powder. As a result, the power supply chip was clogged in a short time and the supply was stopped, and a large amount of molybdenum disulfide having a large particle size was deposited in the power supply chip together with the metal powder.

Claims (1)

炭酸ガスシールドアーク溶接に用いる溶接用銅めっきソリッドワイヤであって、
表面に付着している銅粉および鉄粉は、粉径が20μmを超えず、当該溶接用銅めっきソリッドワイヤ10kgあたり合計0.10g以下であり、
表面に、当該溶接用銅めっきソリッドワイヤ10kgあたりで、潤滑油として動植物油または鉱物油:0.4〜2.0g、および固形潤滑剤として粒径0.1〜10μmの二硫化モリブデン:0.03〜0.15gが、付着していることを特徴とする溶接用銅めっきソリッドワイヤ。
A copper-plated solid wire for welding used in carbon dioxide shielded arc welding,
The copper powder and iron powder adhering to the surface do not exceed 20 μm in diameter, and the total is 0.10 g or less per 10 kg of the copper plating solid wire for welding,
On the surface, per 10 kg of the copper plating solid wire for welding, animal or vegetable oil or mineral oil: 0.4 to 2.0 g as a lubricating oil, and molybdenum disulfide having a particle diameter of 0.1 to 10 μm as a solid lubricant: 0. A copper-plated solid wire for welding, characterized in that 03 to 0.15 g is adhered.
JP2011119786A 2010-05-31 2011-05-27 Copper-plated solid wire for welding Pending JP2012011461A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011119786A JP2012011461A (en) 2010-05-31 2011-05-27 Copper-plated solid wire for welding

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010124601 2010-05-31
JP2010124601 2010-05-31
JP2011119786A JP2012011461A (en) 2010-05-31 2011-05-27 Copper-plated solid wire for welding

Publications (1)

Publication Number Publication Date
JP2012011461A true JP2012011461A (en) 2012-01-19

Family

ID=45066708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011119786A Pending JP2012011461A (en) 2010-05-31 2011-05-27 Copper-plated solid wire for welding

Country Status (3)

Country Link
JP (1) JP2012011461A (en)
CN (1) CN102905844B (en)
WO (1) WO2011152341A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107030279A (en) * 2017-03-21 2017-08-11 海安南京大学高新技术研究院 Iron-based magnetic insulating coating method

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103537819B (en) * 2013-09-23 2016-06-15 中冶焊接科技有限公司 A kind of non-copper plating solid core welding wire used for gas shield welding and preparation method thereof
CN106541224B (en) * 2016-10-28 2019-01-15 北京工业大学 A kind of no copper facing specific coatings welding wire nano lubricating oil and preparation method thereof
JP6788550B2 (en) * 2017-06-16 2020-11-25 株式会社神戸製鋼所 Arc welding method and solid wire
CN108372373B (en) * 2018-05-04 2023-12-08 杭州星冠机械科技有限公司 Welding wire high-speed copper plating production process and production line
JP7376411B2 (en) * 2020-03-31 2023-11-08 株式会社神戸製鋼所 Solid wire for arc welding
WO2024054538A1 (en) * 2022-09-08 2024-03-14 Lincoln Global, Inc. Welding electrode with functional coatings
CN115743687B (en) * 2023-01-10 2023-04-11 昆明金方金属制品有限公司 Copper facing welding wire apparatus for producing

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07164185A (en) * 1993-12-10 1995-06-27 Kobe Steel Ltd Wire for gas shielded arc welding
JP2003320481A (en) * 2002-04-26 2003-11-11 Kobe Steel Ltd Method for applying lubricant to welding wire
JP2006315059A (en) * 2005-05-13 2006-11-24 Kobe Steel Ltd Copper-plated solid wire for arc welding
JP2007290028A (en) * 2006-03-31 2007-11-08 Nippon Steel & Sumikin Welding Co Ltd Copper plating wire for gas-shielded arc welding
JP2008006474A (en) * 2006-06-29 2008-01-17 Nippon Steel & Sumikin Welding Co Ltd Copper plated wire for carbon acid gas shielded arc welding

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1199762C (en) * 2001-05-22 2005-05-04 株式会社神户制钢所 Solid wire for welding
KR100626416B1 (en) * 2004-12-03 2006-09-20 고려용접봉 주식회사 Copper plated wire for gas-shielded arc welding
CN101633083B (en) * 2009-07-31 2012-07-18 天津大学 Coating welding wire for carbon dioxide arc welding and preparation method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07164185A (en) * 1993-12-10 1995-06-27 Kobe Steel Ltd Wire for gas shielded arc welding
JP2003320481A (en) * 2002-04-26 2003-11-11 Kobe Steel Ltd Method for applying lubricant to welding wire
JP2006315059A (en) * 2005-05-13 2006-11-24 Kobe Steel Ltd Copper-plated solid wire for arc welding
JP2007290028A (en) * 2006-03-31 2007-11-08 Nippon Steel & Sumikin Welding Co Ltd Copper plating wire for gas-shielded arc welding
JP2008006474A (en) * 2006-06-29 2008-01-17 Nippon Steel & Sumikin Welding Co Ltd Copper plated wire for carbon acid gas shielded arc welding

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107030279A (en) * 2017-03-21 2017-08-11 海安南京大学高新技术研究院 Iron-based magnetic insulating coating method

Also Published As

Publication number Publication date
CN102905844B (en) 2017-04-05
WO2011152341A1 (en) 2011-12-08
CN102905844A (en) 2013-01-30

Similar Documents

Publication Publication Date Title
WO2011152341A1 (en) Copper-plated solid welding wire
JP2682814B2 (en) Arc welding wire
JP3959380B2 (en) Manufacturing method of seamed flux-cored welding wire
US4913927A (en) Lubricated aluminum weld wire and process for spooling it
BRPI0914290B1 (en) SUBMERSE ARC WELDING PROCESS FOR ONE PIECE WELDING AND WELDING WIRE
CN101664851A (en) Titanium and steel AC helium arc brazing method
CN103537819B (en) A kind of non-copper plating solid core welding wire used for gas shield welding and preparation method thereof
JP4440059B2 (en) Copper plated wire for carbon dioxide shielded arc welding
KR100798493B1 (en) A copper-free solid wire assembly for gas shielded arc welding and a welding method using thereof
KR101181214B1 (en) Copper-Plated Flux Cored Wire for Gas Shield Arc Welding and Method for Preparing The Same
JP4020903B2 (en) Copper plated wire for carbon dioxide shielded arc welding
JP3753173B2 (en) Steel wire for gas shielded arc welding
JP3830409B2 (en) Solid wire for welding
KR100668170B1 (en) Baked flux cored wire for gas shield arc welding having excellent rust resistance and feedability and a method for preparing thereof
JP2008043990A (en) COPPER PLATED SOLID WIRE FOR Ar-CO2 MIXED GAS SHIELDED ARC WELDING
JP3399712B2 (en) Steel wire for arc welding
JP5068483B2 (en) Copper plated wire for gas shielded arc welding
JP2001179481A (en) Flux cored wire for arc welding and method of manufacturing the same
JP3901600B2 (en) Solid wire for MAG welding without plating
JP2003311475A (en) Nonplated solid wire for welding
JPS649117B2 (en)
JP2007331006A (en) Copper plated wire for gas shielded arc welding
JP2007054891A (en) Non-plated wire for gas shielded arc welding
JP3383486B2 (en) Steel wire for arc welding
JP2008006474A (en) Copper plated wire for carbon acid gas shielded arc welding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140819

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150106