JP2008043990A - COPPER PLATED SOLID WIRE FOR Ar-CO2 MIXED GAS SHIELDED ARC WELDING - Google Patents
COPPER PLATED SOLID WIRE FOR Ar-CO2 MIXED GAS SHIELDED ARC WELDING Download PDFInfo
- Publication number
- JP2008043990A JP2008043990A JP2006223758A JP2006223758A JP2008043990A JP 2008043990 A JP2008043990 A JP 2008043990A JP 2006223758 A JP2006223758 A JP 2006223758A JP 2006223758 A JP2006223758 A JP 2006223758A JP 2008043990 A JP2008043990 A JP 2008043990A
- Authority
- JP
- Japan
- Prior art keywords
- wire
- welding
- amount
- mixed gas
- mass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Nonmetallic Welding Materials (AREA)
Abstract
Description
本発明は、Ar−CO2混合ガスシールドアーク溶接用銅めっきソリッドワイヤに関し、特に低電流域から遷移領域の溶接電流で長時間溶接する場合においても、スパッタ発生量が少なくワイヤ送給性が良好で、さらにコンタクトチップ(以下、チップという。)の摩耗が少なくアークの安定性が良いなど溶接作業性に優れたAr−CO2混合ガスシールドアーク溶接用銅めっきソリッドワイヤに関する。 The present invention relates to a copper-plated solid wire for Ar—CO 2 mixed gas shielded arc welding, and in particular, even when welding for a long time with a welding current from a low current region to a transition region, the spatter generation amount is small and the wire feedability is good. Further, the present invention relates to a copper-plated solid wire for Ar—CO 2 mixed gas shielded arc welding, which has excellent welding workability, such as less wear of contact tips (hereinafter referred to as tips) and good arc stability.
ガスシールドアーク溶接方法は、全姿勢溶接が可能で、信頼性の高い溶接継手が得られる。したがって、建築、橋梁、化工機を主体とする大型構造物や自動車等の輸送機器の鋼構造物製造に広く使用されている。シールドガスとしては、経済性と耐欠陥性からCO2ガスを使用する場合が多いが、CO2ガスを使用するとスパッタ発生量が多く、溶接箇所周囲の鋼板表面の清掃作業(タガネやグラインダー等によるスパッタの除去作業)や溶接トーチ先端のシールドノズルの清掃作業(スパッタの除去)が必要となる。 In the gas shielded arc welding method, all-position welding is possible, and a highly reliable welded joint can be obtained. Therefore, it is widely used in the manufacture of steel structures for transportation equipment such as large structures mainly composed of buildings, bridges, and chemical machinery and automobiles. The shielding gas, due in many cases to use the CO 2 gas from the economy and defect tolerance, the use of CO 2 gas amount spatter generation much, cleaning welding point around the surface of the steel sheet (chisel or grinder Sputter removal work) and cleaning work of the shield nozzle at the tip of the welding torch (spatter removal) are required.
したがって、特にロボットを用いて溶接する場合にスパッタの発生を抑制するために、Arに5〜25体積%のCO2ガスを混合した混合ガスを使用することが多い。この混合ガスを使用する場合は、高電流域では溶滴の移行形態がスプレー状となり、スパッタ発生量は極めて少ない。しかし、低電流域ではCO2ガスを用いた溶接の場合と同様にスパッタ発生量が多くなる。また、高電流域と低電流域の中間である遷移領域の溶接電流においても比較的スパッタ発生量が多い。 Therefore, in particular, when welding is performed using a robot, a mixed gas in which 5 to 25% by volume of CO 2 gas is mixed with Ar is often used in order to suppress generation of spatter. When this mixed gas is used, the droplet transfer form is sprayed in a high current region, and the amount of spatter generated is extremely small. However, in the low current region, the amount of spatter generated increases as in the case of welding using CO 2 gas. Also, a relatively large amount of spatter is generated in the welding current in the transition region that is intermediate between the high current region and the low current region.
そのため、低電流域でのパッタ発生量を抑制する技術として、例えば特開平9−99390号公報(特許文献1)や特開2004−136342号公報(特許文献2)にパルス電源を用いたAr−CO2混合ガスシールドアーク溶接用ワイヤの提案がある。
しかし、これらの技術では低電流域から遷移領域の溶接電流でのスパッタ発生量は少なくなるが、使用するパルス電源が非常に高価であり、一般の溶接電源による溶接でのスパッタ発生量が少ない溶接用ワイヤが求められている。
Therefore, as a technique for suppressing the amount of occurrence of a patch in a low current region, for example, Ar − using a pulse power source in Japanese Patent Application Laid-Open No. 9-99390 (Patent Document 1) and Japanese Patent Application Laid-Open No. 2004-136342 (Patent Document 2). There is a proposal of a wire for CO 2 mixed gas shielded arc welding.
However, with these technologies, the amount of spatter generated in the welding current from the low current region to the transition region is reduced. However, the pulse power source used is very expensive, and the amount of spatter generated by welding with a general welding power source is small. Wire is needed.
Ar−CO2混合ガスを用いてスパッタ発生量を抑制した技術として、例えば特開平8−132280号公報(特許文献3)や特開2000−246485号公報(特許文献4)にワイヤに微量のCa、Kを含有させる溶接用ワイヤの提案がある。
しかし、これらの技術は何れも高電流域での溶接、すなわち、溶滴の移行状態がスプレー状でのスパッタの低減を図ったものであって、低電流域での溶接においてはスパッタ抑制に十分ではない。
As a technique for suppressing the amount of spatter generated using an Ar—CO 2 mixed gas, for example, Japanese Patent Application Laid-Open No. 8-132280 (Patent Document 3) and Japanese Patent Application Laid-Open No. 2000-246485 (Patent Document 4) describe a trace amount of Ca. There is a proposal of a welding wire containing K.
However, both of these technologies are intended to reduce spatter when welding is performed in a high current range, that is, when the droplet transition state is in the form of a spray. is not.
また、ロボットを用いた場合の溶接作業は、ワイヤ供給装置の送給ローラにより、コンジットケーブルの内部に内包され螺旋状に形成されたコンジットチューブとそれにつながる溶接トーチのチップから連続的にワイヤを送り出しながらAr−CO2ガスの雰囲気でアーク溶解する方法で使用される。この場合、コンジットケーブルは溶接トーチの動きを容易にするために長尺でかつ軟質の物が用いられ、ワイヤ送給装置から溶接部までの距離の調整や狭隘部の溶接をするために上下あるいは左右に曲げたり、ループ状に巻きつけて使用されることが多い。 Also, when using a robot, welding work is performed by continuously feeding the wire from the conduit tube formed in a spiral shape inside the conduit cable and the tip of the welding torch connected by the feed roller of the wire feeder. However, it is used in a method of arc melting in an atmosphere of Ar—CO 2 gas. In this case, the conduit cable is long and soft in order to facilitate the movement of the welding torch, and is adjusted up and down or in order to adjust the distance from the wire feeder to the welded part and to weld the narrow part. It is often used by bending left and right or winding it in a loop.
このような状況で使用された場合、前述の溶接用ワイヤでは螺旋状のコンジットチューブ内の表面と接触摩擦によってワイヤ表面の潤滑剤およびワイヤ製造時ワイヤ表面に付着した銅粉や鉄粉がコンジットチューブ内に蓄積され送給抵抗が非常に大きくなり、アークが不安定になって、ついにはアーク切れするという問題が生じて満足できるものではない。 When used in such a situation, in the above-mentioned welding wire, the lubricant on the surface of the wire by contact friction with the surface in the spiral conduit tube and the copper powder or iron powder adhered to the wire surface during wire production are the conduit tube. It is not satisfactory because the feeding resistance is very large and the arc becomes unstable, the arc becomes unstable, and finally the arc breaks.
一方、最近ではワイヤ表面に銅めっきが施されていないワイヤについても種々検討されており、例えば、特開平11−104883号公報(特許文献5)や特開2004−1061号公報(特許文献6)には、銅めっき無しでスパッタ発生量を少なくした溶接用ワイヤの開示がある。しかし、コンジットチューブに銅めっきの蓄積はないが高電流で長時間溶接しているとチップ摩耗が激しくアークが不安定になるので頻繁にチップを交換する必要がある。
本発明は、Ar−CO2混合ガスシールドアーク溶接用銅めっきソリッドワイヤに関し、特に低電流域から遷移領域の溶接電流で長時間溶接する場合においても、スパッタ発生量が少なくワイヤ送給性が良好で、さらにチップの摩耗が少なくアークの安定性が良いなど溶接作業性に優れたAr−CO2混合ガスシールドアーク溶接用銅めっきソリッドワイヤを提供することを目的とする。 The present invention relates to a copper-plated solid wire for Ar—CO 2 mixed gas shielded arc welding, and in particular, even when welding for a long time with a welding current from a low current region to a transition region, the spatter generation amount is small and the wire feedability is good. Furthermore, an object of the present invention is to provide a copper-plated solid wire for Ar—CO 2 mixed gas shielded arc welding having excellent welding workability, such as less wear of the tip and good arc stability.
本発明の要旨は、Ar−CO2混合ガスシールドアーク溶接用銅めっきソリッドワイヤにおいて、ワイヤ成分としてC:0.02〜0.10質量%、Si:0.40〜0.95質量%、Mn:1.0〜1.95質量%、Ti:0.03〜0.15質量%を含有し、残部Feおよび不可避的不純物からなり、かつ、ワイヤ表面にワイヤ10kg当たり常温で液体の潤滑油を0.3〜1.5g有し、金属粉の付着量が0.25g以下、金属粉以外の固形分の付着量が0.10g以下であることを特徴とする。また、ワイヤ表面に二硫化モリブデンを0.005〜0.25g、リン脂質を0.008〜0.10gさらに有することも特徴とする。 The gist of the present invention is that, in a copper-plated solid wire for Ar—CO 2 mixed gas shielded arc welding, as wire components, C: 0.02 to 0.10% by mass, Si: 0.40 to 0.95% by mass, Mn : 1.0 to 1.95% by mass, Ti: 0.03 to 0.15% by mass, consisting of the balance Fe and inevitable impurities, and liquid lubricating oil at room temperature per 10 kg of wire on the wire surface 0.3 to 1.5 g, the adhesion amount of the metal powder is 0.25 g or less, and the adhesion amount of solids other than the metal powder is 0.10 g or less. Moreover, it is characterized by further having 0.005-0.25 g of molybdenum disulfide and 0.008-0.10 g of phospholipid on the wire surface.
本発明のAr−CO2混合ガスシールドアーク溶接用銅めっきソリッドワイヤによれば、特に低電流域から遷移領域の溶接電流で長時間溶接する場合においても、スパッタ発生量が少なくワイヤ送給性が良好で、さらにチップの摩耗が少なくアークの安定性が良いなど溶接作業性に優れた溶接が可能になる。 According to the copper-plated solid wire for Ar—CO 2 mixed gas shielded arc welding of the present invention, even when welding with a welding current from a low current region to a transition region for a long time, the spatter generation amount is small and the wire feedability is low. This makes it possible to perform welding with excellent welding workability, such as good wear resistance and low arc wear.
本発明者らは、前記課題を解決するために低電流域から遷移領域の溶接電流(例えば、ワイヤ径1.2mm、シールドガス:Ar−20%CO2の場合150〜280A程度)で、ワイヤ成分、ワイヤ表面に塗布する送給潤滑剤およびワイヤ表面状態について種々検討した。その結果、ワイヤ成分中C、Si、MnおよびTiの含有量を限定することによってアークの安定およびスパッタの発生を抑制し、ワイヤ表面に銅めっきおよび常温で液体である潤滑油を有し、金属粉および金属粉以外の固形分の付着量を少なくすることによって軟質で長尺のコンジットケーブルを使用して長時間溶接する場合においてもワイヤ送給性が良好で、チップ摩耗も極めて少なくなり安定したアークが得られる。さらに、ワイヤ表面の二硫化モリブデンおよびリン脂質を適量有することによって、ワイヤ送給性が良好で安定したアークが得られることを見出した。 In order to solve the above-mentioned problems, the present inventors have used a welding current from a low current region to a transition region (for example, a wire diameter of 1.2 mm, a shielding gas of about 150 to 280 A in the case of Ar-20% CO 2 ), and a wire Various investigations were made on the components, the feed lubricant applied to the wire surface, and the wire surface condition. As a result, by limiting the content of C, Si, Mn, and Ti in the wire component, the stability of the arc and the occurrence of spatter are suppressed, and the wire surface has copper plating and lubricating oil that is liquid at room temperature, By reducing the amount of solids other than powder and metal powder, the wire feedability is good and the chip wear is extremely reduced and stable even when welding for a long time using a long and soft conduit cable. An arc is obtained. Furthermore, it has been found that by having appropriate amounts of molybdenum disulfide and phospholipid on the surface of the wire, a stable arc can be obtained with good wire feedability.
ワイヤ成分中のCは、スパッタ発生量の抑制のために添加する。Cが0.02質量%(以下、%という。)未満であると表面張力が低下するのでスパッタ発生量が多くなる。一方、Cが0.10%を超えると表面張力が高くなりすぎるのとアークが強くなりすぎて大粒のスパッタが発生しやすくなる。 C in the wire component is added to suppress the amount of spatter generated. If C is less than 0.02% by mass (hereinafter referred to as “%”), the surface tension is lowered, so that the amount of spatter generated increases. On the other hand, when C exceeds 0.10%, if the surface tension becomes too high, the arc becomes too strong, and large spatter tends to occur.
Siは、アークの安定のために添加する。Siが0.40%未満であるとアークが不安定となる。0.95%を超えると表面張力が高くなりすぎてスパッタ発生量が多くなる。MnもSiと同様にアークの安定のために添加する。Mnが1.0%未満であるとアークが不安定となる。1.95%を超えると表面張力が高くなりすぎてスパッタ発生量が多くなる。 Si is added to stabilize the arc. When Si is less than 0.40%, the arc becomes unstable. If it exceeds 0.95%, the surface tension becomes too high and the amount of spatter generated increases. Mn is also added to stabilize the arc as with Si. If Mn is less than 1.0%, the arc becomes unstable. If it exceeds 1.95%, the surface tension becomes too high and the amount of spatter generated increases.
Tiは、特に低電流域の溶接電流で溶滴を小さくしてスパッタ発生を抑制する。Tiが0.03%未満であるとその効果がなく大粒のスパッタが多発する。一方、Tiが0.15%を超えると表面張力が高くなりすぎて逆にスパッタ発生量が多くなる。
なお、溶接金属の強度調整としてNi、Mo、Cr、Al、Zr、VおよびNbを微量添加できる。
Ti suppresses the generation of spatter by reducing the size of the droplets, particularly with a welding current in a low current range. If Ti is less than 0.03%, the effect is not obtained, and large spatters occur frequently. On the other hand, if Ti exceeds 0.15%, the surface tension becomes too high and the amount of spatter generated increases.
A small amount of Ni, Mo, Cr, Al, Zr, V and Nb can be added to adjust the strength of the weld metal.
ワイヤ表面の銅めっきは、コンジットチューブ内での摩擦抵抗を低減するとともにチップ先端での通電性を良好にしアークを安定させる。さらに、高電流の溶接条件で長時間溶接してもチップ摩耗が極めて少なく安定したアークを持続させることができる。銅めっきは通電性、潤滑性およびチップの耐摩耗性を向上させるとともに防錆性向上の効果も有する。めっき厚は0.3〜1.2μm程度が好ましい。 Copper plating on the wire surface reduces the frictional resistance in the conduit tube and improves the electrical conductivity at the tip of the tip to stabilize the arc. Furthermore, even if welding is performed for a long time under high current welding conditions, a stable arc can be sustained with very little tip wear. Copper plating improves the electrical conductivity, lubricity and wear resistance of the chip, and also has the effect of improving rust prevention. The plating thickness is preferably about 0.3 to 1.2 μm.
次に、ワイヤ表面に塗布する潤滑剤は、ワイヤ10kg当たり常温で液体である潤滑油を0.3〜1.5g(以下、g/10kgWという。)とする。常温で液体である潤滑油は、ワイヤ表面に皮膜を有し、ワイヤ送給時にワイヤ送給性を向上させる。潤滑油が0.3g/10kgW未満であると、コンジットチューブ内で送給抵抗が大きくなりワイヤ送給性が不良となる。逆に、1.5g/10kgWを超えると、送給ローラ部でワイヤがスリップしてアークが不安定になる。 Next, the lubricant applied to the wire surface is 0.3 to 1.5 g (hereinafter referred to as g / 10 kgW) of lubricating oil that is liquid at room temperature per 10 kg of wire. Lubricating oil that is liquid at room temperature has a film on the surface of the wire, and improves wire feedability during wire feed. When the lubricating oil is less than 0.3 g / 10 kgW, the feeding resistance increases in the conduit tube, and the wire feeding property becomes poor. On the other hand, if it exceeds 1.5 g / 10 kgW, the wire slips at the feeding roller portion and the arc becomes unstable.
潤滑油は、動植物油、鉱物油あるいは合成油の何れでもよい。動植物油としてはパーム油、菜種油、ひまし油、豚油、牛油、魚油等を、鉱物油としてはマシン油、タービン油、スピンドル油等を用いることができる。合成油としては炭化水素系、エステル系、ポリグリコール系、ポリフェノール系、シリコーン系、フロロカーボン系を用いることができる。 The lubricating oil may be animal or vegetable oil, mineral oil or synthetic oil. Palm oil, rapeseed oil, castor oil, pig oil, cow oil, fish oil, etc. can be used as animal and vegetable oils, and machine oil, turbine oil, spindle oil, etc. can be used as mineral oils. As the synthetic oil, hydrocarbon type, ester type, polyglycol type, polyphenol type, silicone type and fluorocarbon type can be used.
ワイヤ表面の銅めっきは、前述のようにチップ先端での通電性を良好にし、チップ摩耗が少なく、さらに防錆性向上という効果がある。しかし、ワイヤ表面への銅めっきはワイヤ素線径(2.5〜3.5mm程度)で施された後に仕上げ伸線で製品径まで縮径されるが、この過程で銅めっきが剥がれワイヤ表面に多量付着する。また、同時にワイヤ表層部の鉄も削られてワイヤ表面に付着する。これらワイヤ表面に付着した金属粉は、コンジットチューブ内に蓄積されて長時間溶接していると送給抵抗が非常に大きくなりアークが不安定となって、ついにはアーク切れが生じるようになる。しかし、ワイヤ表面の金属粉付着量が0.25g/10kgW以下であると、コンジットチューブ内への蓄積量が少なく長時間溶接しても送給抵抗を大きくすることがない。 As described above, copper plating on the wire surface has the effect of improving the electrical conductivity at the tip of the tip, reducing the tip wear, and improving the rust prevention. However, copper plating on the wire surface is performed with the wire diameter (about 2.5 to 3.5 mm) and then reduced to the product diameter by finish drawing, but in this process the copper plating is peeled off and the wire surface A large amount adheres to the surface. At the same time, the iron on the surface of the wire is also scraped off and adheres to the wire surface. When these metal powders adhering to the wire surface are accumulated in the conduit tube and welded for a long time, the feeding resistance becomes very large, the arc becomes unstable, and finally an arc breakage occurs. However, if the adhesion amount of the metal powder on the surface of the wire is 0.25 g / 10 kgW or less, the accumulation amount in the conduit tube is small and the feeding resistance is not increased even if welding is performed for a long time.
銅粉や鉄粉などの金属粉以外に、ワイヤ表面には残留した固形伸線潤滑剤や湿式伸線潤滑剤中の汚れ、ほこり等が付着してコンジットチューブ内に蓄積されて長時間溶接していると送給抵抗が大きくなりアークが不安定となる。しかし、金属粉以外の固形分(以下、固形不純物という。)の付着量が0.10g/10kgW以下であると、コンジットチューブ内への蓄積量が少なくなり、コンジットチューブが摩耗して交換するまで送給抵抗を大きくすることがない。 In addition to metal powder such as copper powder and iron powder, residual solid wire lubricant or dirt in the wet wire lubricant adheres to the wire surface and accumulates in the conduit tube and welds for a long time. If so, the feeding resistance increases and the arc becomes unstable. However, if the amount of solids other than metal powder (hereinafter referred to as solid impurities) is 0.10 g / 10 kgW or less, the amount accumulated in the conduit tube decreases, and the conduit tube is worn out and replaced. Does not increase the feeding resistance.
さらに、ワイヤ表面に二硫化モリブデンを有することによって、コンジットチューブ内で送給抵抗を抑制してワイヤ送給性をさらに良好にする。二硫化モリブデンが0.005g/10kgW未満であると、コンジットチューブ内で送給抵抗が大きくなりワイヤ送給性が不良となる。逆に、二硫化モリブデンが0.25g/10kgWを超えると、アークが不安定になってスパッタ発生量が多くなる。 Furthermore, by having molybdenum disulfide on the wire surface, the feeding resistance is suppressed in the conduit tube to further improve the wire feeding property. When the molybdenum disulfide is less than 0.005 g / 10 kgW, the feeding resistance increases in the conduit tube, and the wire feeding property becomes poor. Conversely, when molybdenum disulfide exceeds 0.25 g / 10 kgW, the arc becomes unstable and the amount of spatter generated increases.
なお、二硫化モリブデンはコンジットチューブとの接触により長時間溶接しているとコンジットチューブ内に少量蓄積されるが、この蓄積された二硫化モリブデンは送給抵抗を小さくする働きをする。また、二硫化モリブデンの粒径は1.0μm以下であることが送給抵抗を低減してワイヤ送給性を良好にするので好ましい。 When molybdenum disulfide is welded for a long time by contact with the conduit tube, a small amount of molybdenum disulfide accumulates in the conduit tube. This accumulated molybdenum disulfide serves to reduce the feeding resistance. Moreover, it is preferable that the particle size of molybdenum disulfide is 1.0 μm or less because the feeding resistance is reduced and the wire feeding property is improved.
また、リン脂質をワイヤ表面に有することによって、常温で液体である潤滑油と共存してワイヤ表面の二硫化モリブデンを均一に分散させる作用を有する。リン脂質が0.008g/10kgW未満であると、ワイヤ表面の二硫化モリブデンが均一に付着せず、コンジットチューブ内で送給抵抗が大きくなる部分がありワイヤ送給性が不良になる。逆に、リン脂質が0.10g/10kgWを超えると、スパッタ発生量が多くなる。 Moreover, by having a phospholipid on the wire surface, it has the effect | action which coexists with the lubricating oil which is liquid at normal temperature, and disperse | distributes molybdenum disulfide on the wire surface uniformly. When the phospholipid is less than 0.008 g / 10 kgW, molybdenum disulfide on the wire surface does not adhere uniformly, and there is a portion where the feeding resistance increases in the conduit tube, resulting in poor wire feeding performance. Conversely, when the phospholipid exceeds 0.10 g / 10 kgW, the amount of spatter generated increases.
本発明にいうリン脂質とは、レシチン(フォスファチジルコン)、フォスファチジルエタノールアミン、フォスファジルイニシトールなどのリン酸脂質を95%程度含有する粉末状のもの、リン酸脂質を約65%および大豆油などの植物油を35%程度含有するペースト状のものなどあり、いずれも使用することができ、中でも大豆油から得られるレシチンが好ましい。 The phospholipid referred to in the present invention is a powder containing about 95% of phospholipid such as lecithin (phosphatidylcon), phosphatidylethanolamine, phosphatidylinitol, about 65% of phospholipid and There are pastes containing about 35% vegetable oil such as soybean oil, and any of them can be used. Among them, lecithin obtained from soybean oil is preferable.
本発明のAr−CO2混合ガスシールドアーク溶接用銅めっきワイヤの製造方法は、ワイヤ原線を一次伸線したワイヤ素線を焼鈍してワイヤ表面にめっきを施したのち、製品径まで仕上げ伸線して、ワイヤ表面を例えば洗浄や機械的に浄化し、常温で液体である潤滑油または潤滑油と二硫化モリブデンおよびリン脂質をワイヤ表面に塗布してスプール巻きまたはペールパック入りワイヤとする。 The method for producing a copper-plated wire for Ar—CO 2 mixed gas shielded arc welding according to the present invention comprises annealing a wire strand obtained by primary drawing of a wire original wire and plating the surface of the wire, and then finish-drawing to the product diameter. For example, the wire surface is cleaned or mechanically purified, and lubricating oil or lubricating oil and molybdenum disulfide and phospholipid, which are liquid at room temperature, are applied to the surface of the wire to form a spool or pail-packed wire.
以下、本発明の効果を実施例により具体的に説明する。
表1に示すワイヤ径1.2mmの溶接用ワイヤの成分、ワイヤ表面状態および潤滑剤塗布量を変えたものを試作してスプール巻きワイヤとした。
Hereinafter, the effect of the present invention will be described in detail with reference to examples.
A spool-wound wire was manufactured by changing the components of the welding wire having a wire diameter of 1.2 mm shown in Table 1, the wire surface condition, and the amount of lubricant applied.
ワイヤ送給性評価指標のスリップ率SLは、SL=(Vr−Vw)/Vr×100で表される。また、送給ローラ部分に設けられたロードセル10によりワイヤ送給時にワイヤがコンジットチューブから受ける反力を送給抵抗Rとして検出した。溶接は試作ワイヤ毎に新しいコンジットチューブを用いて表2に示す条件No.1の溶接条件で100分溶接し、溶接開始後40分から溶接終了までの20分間スリップ率SLと送給抵抗Rを測定して平均値を求めた。スリップ率SLが10%以下で送給抵抗Rが6kgf以下の場合にワイヤ送給性良好と判定した。また、チップの摩耗量は、試作ワイヤ毎に新しいチップ(内径1.4mm)を用いて溶接終了後最も摩耗の大きい箇所の内径を測定した。チップ摩耗量の評価は、摩耗量が0.15mm以下を良好として評価した。
The slip rate SL of the wire feedability evaluation index is represented by SL = (Vr−Vw) / Vr × 100. Further, the reaction force that the wire receives from the conduit tube during wire feeding by the
本発明例であるワイヤNo.1〜9は、ワイヤ成分範囲が適正で銅めっきを有し、ワイヤ表面の潤滑油量が適正で金属粉量および固形不純物が少ないので、スリップ率SLおよび送給抵抗Rが低くワイヤ送給性が良好で、チップ摩耗量および低電流域から遷移領域の溶接電流でのスパッタ発生量も少なくアークが安定して溶接作業性が良好でコンジットチューブ内への蓄積量が少ないなど極めて満足な結果であった。 Wire Nos. 1 to 9, which are examples of the present invention, have an appropriate wire component range, have copper plating, an appropriate amount of lubricating oil on the wire surface, and a small amount of metal powder and solid impurities. Low resistance R, good wire feedability, less tip wear, less spatter generation at welding currents from low current region to transition region, stable arc, good welding workability, accumulated amount in conduit tube It was a very satisfactory result such as a small amount.
なお、ワイヤNo.1はワイヤ表面に二硫化モリブデンおよびリン脂質が付着していないので、ワイヤNo.2はリン脂質が付着していないので、いずれもワイヤ送給抵抗Rが若干高くなった。比較例中ワイヤNo.10は、ワイヤ成分のCが高いので大粒のスパッタが発生した。また、ワイヤ表面の二硫化モリブデンの付着量が少ないので送給抵抗Rも高くなった。 Since wire No. 1 had no molybdenum disulfide and phospholipid attached to the surface of the wire, wire No. 2 had no phospholipid attached, so that the wire feeding resistance R was slightly increased. In the comparative example, the wire No. 10 has a large spatter due to the high C of the wire component. Moreover, since the adhesion amount of molybdenum disulfide on the wire surface is small, the feeding resistance R is also increased.
ワイヤNo.11は、ワイヤ成分のCが低いのでスパッタ発生量が多かった。また、ワイヤ表面のリン脂質付着量が少ないので送給抵抗Rも高くなった。ワイヤNo.12は、ワイヤ成分のSiが高いのでスパッタ発生量が多かった。また、ワイヤ表面の潤滑油付着量が多いのでアークが不安定でスリップ率SLも高くなった。ワイヤNo.13は、ワイヤ成分のSiが低いのでアークが不安定であった。また、ワイヤ表面の二硫化モリブデンの付着量が多いのでスパッタ発生量も多くなった。 Wire No. 11 had a large amount of spatter due to the low C of the wire component. Further, since the amount of phospholipid attached to the wire surface was small, the feeding resistance R was also increased. The wire No. 12 had a large amount of spatter due to the high Si of the wire component. Further, since the amount of lubricant attached to the wire surface was large, the arc was unstable and the slip rate SL was also high. The wire No. 13 had an unstable arc because the wire component Si was low. In addition, the amount of sputter generation increased due to the large amount of molybdenum disulfide deposited on the wire surface.
ワイヤNo.14は、ワイヤ成分のMnが高いのでスパッタ発生量が多かった。また、ワイヤ表面の潤滑油付着量が少ないので送給抵抗Rも高くなった。ワイヤNo.15は、ワイヤ成分のMnが低いのでアークが不安定であった。また、ワイヤ表面のリン脂質付着量が多いのでスパッタ発生量も多くなった。ワイヤNo.16は、ワイヤ成分のTiが低いので大粒のスパッタ発生量が多かった。また、ワイヤ表面の金属粉付着量が多いのでコンジットチューブ内の蓄積量が多くなって送給抵抗Rが高くアークも不安定であった。 Wire No. 14 had a large amount of spatter due to its high Mn wire component. In addition, since the amount of lubricant attached to the wire surface is small, the feeding resistance R is also high. The wire No. 15 had an unstable arc because the wire component Mn was low. In addition, the amount of spatter generated increased due to the large amount of phospholipid adhering to the wire surface. The wire No. 16 had a large amount of spatter generated due to the low Ti of the wire component. Further, since the amount of metal powder adhering to the wire surface is large, the amount of accumulation in the conduit tube is large, the feed resistance R is high, and the arc is also unstable.
ワイヤNo.17は、ワイヤ成分のTiが多いのでスパッタ発生量が多かった。また、ワイヤ表面の固形不純物の付着量が多いのでコンジットチューブ内の蓄積量が多くなって送給抵抗Rが高くアークも不安定であった。ワイヤNo.18は、ワイヤ表面にめっきが施されていないのでチップ摩耗量が多くアークが不安定であった。 The wire No. 17 had a large amount of spatter due to a large amount of Ti as a wire component. Further, since the amount of solid impurities adhering to the wire surface is large, the amount of accumulation in the conduit tube is large, the feed resistance R is high, and the arc is also unstable. Since the wire No. 18 was not plated on the wire surface, the tip wear amount was large and the arc was unstable.
1 送給機
2 スプール巻きワイヤ
3 送給ローラ
4 コンジットケーブル
5 トーチ
6 チップ
7 鋼板
8 コンジットケーブルの屈曲部
9 ワイヤの実速度検出器
10 ロードセル
特許出願人 日鐵住金溶接工業株式会社
代理人 弁理士 椎 名 彊 他1
DESCRIPTION OF
Patent Applicant Nippon Steel & Sumikin Welding Industry Co., Ltd.
Attorney Attorney Shiina and
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006223758A JP2008043990A (en) | 2006-08-21 | 2006-08-21 | COPPER PLATED SOLID WIRE FOR Ar-CO2 MIXED GAS SHIELDED ARC WELDING |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006223758A JP2008043990A (en) | 2006-08-21 | 2006-08-21 | COPPER PLATED SOLID WIRE FOR Ar-CO2 MIXED GAS SHIELDED ARC WELDING |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008043990A true JP2008043990A (en) | 2008-02-28 |
Family
ID=39178221
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006223758A Pending JP2008043990A (en) | 2006-08-21 | 2006-08-21 | COPPER PLATED SOLID WIRE FOR Ar-CO2 MIXED GAS SHIELDED ARC WELDING |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008043990A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104787712A (en) * | 2015-03-12 | 2015-07-22 | 哈尔滨工业大学(威海) | Automatic ampoule bottle opening device |
EP3225349A4 (en) * | 2014-11-27 | 2018-05-30 | Baoshan Iron & Steel Co., Ltd. | Super high strength gas protection welding wire containing v and manufacturing method therefor |
CN115709351A (en) * | 2022-12-21 | 2023-02-24 | 天津大桥焊丝有限公司 | Solid welding wire for solving welding air holes of galvanized plate in automobile industry at 500MPa level |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006175452A (en) * | 2004-12-21 | 2006-07-06 | Nippon Steel & Sumikin Welding Co Ltd | COPPER-PLATED SOLID WIRE FOR Ar-CO2 MIXED GAS SHIELDED ARC WELDING |
-
2006
- 2006-08-21 JP JP2006223758A patent/JP2008043990A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006175452A (en) * | 2004-12-21 | 2006-07-06 | Nippon Steel & Sumikin Welding Co Ltd | COPPER-PLATED SOLID WIRE FOR Ar-CO2 MIXED GAS SHIELDED ARC WELDING |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3225349A4 (en) * | 2014-11-27 | 2018-05-30 | Baoshan Iron & Steel Co., Ltd. | Super high strength gas protection welding wire containing v and manufacturing method therefor |
CN104787712A (en) * | 2015-03-12 | 2015-07-22 | 哈尔滨工业大学(威海) | Automatic ampoule bottle opening device |
CN115709351A (en) * | 2022-12-21 | 2023-02-24 | 天津大桥焊丝有限公司 | Solid welding wire for solving welding air holes of galvanized plate in automobile industry at 500MPa level |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3206832B1 (en) | Systems and methods for welding mill scaled workpieces | |
JP6788550B2 (en) | Arc welding method and solid wire | |
EP3138657A1 (en) | Welding wires for welding zinc-coated workpieces | |
JP4034308B2 (en) | Copper-plated solid wire for Ar-CO2 mixed gas shielded arc welding | |
WO2017057194A1 (en) | High-current pulsed arc welding method and flux cored welding wire | |
JP2008043990A (en) | COPPER PLATED SOLID WIRE FOR Ar-CO2 MIXED GAS SHIELDED ARC WELDING | |
JP4440059B2 (en) | Copper plated wire for carbon dioxide shielded arc welding | |
JP4020903B2 (en) | Copper plated wire for carbon dioxide shielded arc welding | |
JP5038853B2 (en) | Solid wire for carbon dioxide shielded arc welding | |
JP5026002B2 (en) | Copper plated wire for gas shielded arc welding | |
JP5068483B2 (en) | Copper plated wire for gas shielded arc welding | |
JP4429864B2 (en) | Solid wire without plating for Ar-CO2 mixed gas shielded arc welding | |
JP2006315059A (en) | Copper-plated solid wire for arc welding | |
JP3853815B2 (en) | Flux-cored wire for gas shielded arc welding | |
JP2008006474A (en) | Copper plated wire for carbon acid gas shielded arc welding | |
JP3400716B2 (en) | Solid wire for gas shielded arc welding | |
JP2008018469A (en) | Copper-plating free solid wire assembly for gas-shielded arc welding | |
JPH09168889A (en) | Gas shielded arc welding wire | |
JP2006224172A (en) | Plating-less solid wire for gas shielded arc welding of thin plate | |
JP2006102799A (en) | Plating-free solid wire for carbon dioxide gas shielded arc welding | |
JP4018097B2 (en) | Solid wire without plating for carbon dioxide shielded arc welding | |
JP2008194716A (en) | Copper plated solid wire for gas shielded arc welding | |
JP2002283096A (en) | Steel wire for gas shielded arc welding | |
JP2002346787A (en) | Solid wire for pulse mag welding | |
JPH10193175A (en) | Oily lubricant for drawing welding wire, and steel wire for arc welding |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Effective date: 20080912 Free format text: JAPANESE INTERMEDIATE CODE: A621 |
|
A977 | Report on retrieval |
Effective date: 20110302 Free format text: JAPANESE INTERMEDIATE CODE: A971007 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110315 |
|
A521 | Written amendment |
Effective date: 20110512 Free format text: JAPANESE INTERMEDIATE CODE: A523 |
|
A02 | Decision of refusal |
Effective date: 20110802 Free format text: JAPANESE INTERMEDIATE CODE: A02 |