JP2006175452A - COPPER-PLATED SOLID WIRE FOR Ar-CO2 MIXED GAS SHIELDED ARC WELDING - Google Patents

COPPER-PLATED SOLID WIRE FOR Ar-CO2 MIXED GAS SHIELDED ARC WELDING Download PDF

Info

Publication number
JP2006175452A
JP2006175452A JP2004368702A JP2004368702A JP2006175452A JP 2006175452 A JP2006175452 A JP 2006175452A JP 2004368702 A JP2004368702 A JP 2004368702A JP 2004368702 A JP2004368702 A JP 2004368702A JP 2006175452 A JP2006175452 A JP 2006175452A
Authority
JP
Japan
Prior art keywords
wire
welding
copper
mixed gas
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004368702A
Other languages
Japanese (ja)
Other versions
JP4034308B2 (en
Inventor
Atsutada Motoe
敦忠 本江
Shinichiro Iwakiri
伸一郎 岩切
Yasushi Matsuiwa
泰志 松岩
Miki Tokawa
美樹 東川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Welding and Engineering Co Ltd
Original Assignee
Nippon Steel and Sumikin Welding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Welding Co Ltd filed Critical Nippon Steel and Sumikin Welding Co Ltd
Priority to JP2004368702A priority Critical patent/JP4034308B2/en
Publication of JP2006175452A publication Critical patent/JP2006175452A/en
Application granted granted Critical
Publication of JP4034308B2 publication Critical patent/JP4034308B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Arc Welding In General (AREA)
  • Nonmetallic Welding Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a copper-plated solid wire for Ar-CO<SB>2</SB>mixed gas shielded arc welding having excellent welding workability such as less spatter generation and excellent wire feedability, less wear of a tip and excellent arc stability even when performing the welding for a long time, in particular, from a low-current range to a transition range. <P>SOLUTION: In the copper-plated solid wire for Ar-CO<SB>2</SB>mixed gas shielded arc welding, the wire has a composition consisting of, by mass, 0.02-0.10% C, 0.40-0.95% Si, 1.0-1.95% Mn, and 0.03-0.15% Ti, and the balance Fe with inevitable impurities, and contains lubricant of 0.5-2.5 g in total consisting of lubricating oil containing 0.005-0.50 g molybdenum disulfide and 0.008-0.15 g phosphatide per 10 kg of the wire, and the balance lubricating oil which is liquid at normal temperature on the surface of the wire. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、Ar−CO2 混合ガスシールドアーク溶接用銅めっきソリッドワイヤに関し、特に低電流域から遷移領域の溶接電流で長時間溶接する場合においても、スパッタ発生量が少なくワイヤ送給性が良好で、さらにコンタクトチップ(以下、チップという。)の摩耗が少なくアークの安定性が良いなど溶接作業性に優れたAr−CO2 混合ガスシールドアーク溶接用銅めっきソリッドワイヤに関する。 The present invention relates to a copper-plated solid wire for Ar—CO 2 mixed gas shielded arc welding, and in particular, even when welding for a long time with a welding current from a low current region to a transition region, the spatter generation amount is small and the wire feedability is good. Further, the present invention relates to a copper-plated solid wire for Ar—CO 2 mixed gas shielded arc welding, which has excellent welding workability, such as less wear of contact tips (hereinafter referred to as tips) and good arc stability.

ガスシールドアーク溶接方法は、全姿勢溶接が可能で、信頼性の高い溶接継手が得られる。したがって、建築、橋梁、化工機を主体とする大型構造物や自動車等の輸送機器の鋼構造物製造に広く使用されている。シールドガスとしては、経済性と耐欠陥性からCO2 ガスを使用する場合が多いが、CO2 ガスを使用するとスパッタ発生量が多く、溶接箇所周囲の鋼板表面の清掃作業(タガネやグラインダー等によるスパッタの除去作業)や溶接トーチ先端のシールドノズルの清掃作業(スパッタの除去)が必要となる。 The gas shielded arc welding method enables all-position welding and provides a highly reliable welded joint. Therefore, it is widely used in the manufacture of steel structures for transportation equipment such as large structures mainly composed of buildings, bridges, and chemical machinery and automobiles. The shielding gas, due in many cases to use the CO 2 gas from the economy and defect tolerance, the use of CO 2 gas amount of occurrence of spatter many cleaning welding point around the surface of the steel sheet (chisel or grinder Sputter removal work) and cleaning work of the shield nozzle at the tip of the welding torch (spatter removal) are required.

したがって、特にロボットを用いて溶接する場合にスパッタの発生を抑制するためにArに5〜25体積%のCO2 ガスを混合した混合ガスを使用することが多い。この混合ガスを使用する場合は、高電流域では溶滴の移行形態がスプレー状となり、スパッタ発生量は極めて少ない。しかし、低電流域ではCO2 ガスを用いた溶接の場合と同様にスパッタ発生量が多くなる。また、高電流域と低電流域の中間である遷移領域の溶接電流においても比較的スパッタ発生量が多い。 Therefore, in particular, in the case of welding using a robot, a mixed gas in which 5 to 25% by volume of CO 2 gas is mixed with Ar is often used in order to suppress the generation of spatter. When this mixed gas is used, the droplet transfer form is sprayed in a high current region, and the amount of spatter generated is extremely small. However, in the low current region, the amount of spatter generated increases as in the case of welding using CO 2 gas. Also, a relatively large amount of spatter is generated in the welding current in the transition region that is intermediate between the high current region and the low current region.

そのため、低電流域でのパッタ発生量を抑制する技術として、例えば特開平9−99390号公報(特許文献1)や特開平10−305389号公報(特許文献2)にパルス電源を用いたAr−CO2 混合ガスシールドアーク溶接用ワイヤの提案がある。
しかし、これらの技術では低電流域から遷移領域の溶接電流でのスパッタ発生量は少なくなるが、使用するパルス電源が非常に高価であり、一般の溶接電源による溶接でのスパッタ発生量が少ない溶接用ワイヤが求められている。
Therefore, as a technique for suppressing the amount of occurrence of a patch in a low current region, for example, Ar − using a pulse power source in Japanese Patent Application Laid-Open No. 9-99390 (Patent Document 1) and Japanese Patent Application Laid-Open No. 10-305389 (Patent Document 2). There is a proposal of a wire for CO 2 mixed gas shielded arc welding.
However, with these technologies, the amount of spatter generated in the welding current from the low current region to the transition region is reduced. However, the pulse power source used is very expensive, and the amount of spatter generated by welding with a general welding power source is small. Wire is needed.

Ar−CO2 混合ガスを用いてスパッタ発生量を抑制した技術として、例えば特開平8−132280号公報(特許文献3)や特開2000−246485号公報(特許文献4)にワイヤに微量のCa、Kを含有させる溶接用ワイヤの提案がある。
しかし、これらの技術は何れも高電流域での溶接、すなわち、溶滴の移行状態がスプレー状でのスパッタの低減を図ったものであって、低電流域での溶接においてはスパッタ抑制に十分ではない。
As a technique for suppressing the amount of spatter generated using an Ar—CO 2 mixed gas, for example, Japanese Patent Application Laid-Open No. 8-132280 (Patent Document 3) and Japanese Patent Application Laid-Open No. 2000-246485 (Patent Document 4) describe a trace amount of Ca. There is a proposal of a welding wire containing K.
However, both of these technologies are intended to reduce spatter when welding is performed in a high current range, that is, when the droplet transition state is in the form of a spray. is not.

また、ロボットを用いた場合の溶接作業は、ワイヤ供給装置の送給ローラにより、コンジットケーブルの内部に内包され螺旋状に形成されたコンジットチューブとそれにつながる溶接トーチのチップから連続的にワイヤを送り出しながらAr−CO2 ガスの雰囲気でアーク溶解する方法で使用される。この場合、コンジットケーブルは溶接トーチの動きを容易にするために長尺でかつ軟質の物が用いられ、ワイヤ送給装置から溶接部までの距離の調整や狭隘部の溶接をするために上下あるいは左右に曲げたり、ループ状に巻きつけて使用されることが多い。このような状況で使用された場合、前述の溶接用ワイヤでは螺旋状のコンジットチューブ内の表面と接触摩擦部が増えて送給抵抗が増し、ワイヤを円滑に送給することが困難となる。 Also, when using a robot, welding work is performed by continuously feeding the wire from the conduit tube formed in a spiral shape inside the conduit cable and the tip of the welding torch connected by the feed roller of the wire feeder. However, it is used in a method of arc melting in an atmosphere of Ar—CO 2 gas. In this case, the conduit cable is long and soft in order to facilitate the movement of the welding torch, and is adjusted up and down or in order to adjust the distance from the wire feeder to the welded part and to weld the narrow part. It is often used by bending left and right or winding it in a loop. When used in such a situation, the above-described welding wire increases the surface of the spiral conduit tube and the contact friction portion, increases the feeding resistance, and makes it difficult to feed the wire smoothly.

一方、最近ではワイヤ表面に銅めっきが施されていないワイヤについても種々検討されており、例えば特開平9−263679号公報(特許文献5)や特開2004−1061号公報(特許文献6)には、銅めっき無しでスパッタ発生量を少なくした溶接用ワイヤの開示がある。しかし、これらの技術では長時間溶接しているとチップ摩耗が激しくアークが不安定になるので頻繁にチップを交換する必要がある。   On the other hand, recently, various studies have been made on wires in which the copper surface is not plated with copper. For example, in Japanese Patent Laid-Open No. 9-263679 (Patent Document 5) and Japanese Patent Laid-Open No. 2004-1061 (Patent Document 6). Discloses a welding wire in which the amount of spatter generated is reduced without copper plating. However, in these techniques, if the welding is carried out for a long time, the tip wear becomes severe and the arc becomes unstable, so it is necessary to frequently replace the tip.

特開平9−99390号公報JP-A-9-99390 特開平10−305389号公報JP-A-10-305389 特開平8−132280号公報JP-A-8-132280 特開2000−246485号公報JP 2000-246485 A 特開平9−263679号公報JP-A-9-263679 特開2004−1061号公報JP 2004-1061 A

本発明は、Ar−CO2 混合ガスシールドアーク溶接用銅めっきソリッドワイヤに関し、特に低電流域から遷移領域の溶接電流で長時間溶接する場合においても、スパッタ発生量が少なくワイヤ送給性が良好で、さらにチップの摩耗が少なくアークの安定性が良いなど溶接作業性に優れたAr−CO2 混合ガスシールドアーク溶接用銅めっきソリッドワイヤを提供することを目的とする。 The present invention relates to a copper-plated solid wire for Ar—CO 2 mixed gas shielded arc welding, and in particular, even when welding for a long time with a welding current from a low current region to a transition region, the spatter generation amount is small and the wire feedability is good. Furthermore, an object of the present invention is to provide a copper-plated solid wire for Ar—CO 2 mixed gas shielded arc welding having excellent welding workability, such as less wear of the tip and good arc stability.

本発明の要旨は、Ar−CO2 混合ガスシールドアーク溶接用銅めっきソリッドワイヤにおいて、ワイヤ成分として、質量%で、C:0.02〜0.10%、Si:0.40〜0.95%、Mn:1.0〜1.95%、Ti:0.03〜0.15%を含有し、残部Feおよび不可避的不純物からなり、かつ、ワイヤ表面にワイヤ10kg当たり二硫化モリブデンを0.005〜0.50g、リン脂質を0.008〜0.15g含み残部は常温で液体の潤滑油からなる潤滑剤を合計で0.5〜2.5g有することを特徴とする。 The gist of the present invention is that, in a copper-plated solid wire for Ar—CO 2 mixed gas shielded arc welding, as a wire component, by mass%, C: 0.02 to 0.10%, Si: 0.40 to 0.95 %, Mn: 1.0 to 1.95%, Ti: 0.03 to 0.15%, the balance being Fe and inevitable impurities, and molybdenum disulfide per 10 kg of wire on the wire surface in an amount of 0.1%. 005 to 0.50 g, 0.008 to 0.15 g of phospholipid, and the balance is characterized by having a total of 0.5 to 2.5 g of a lubricant composed of lubricating oil that is liquid at room temperature.

また、ワイヤ表面長手方向に対して30°方向を測定した表面粗さの算術平均粗さRaが0.04〜0.12μmであることを特徴とする。
さらに、ワイヤ表面潤滑剤にワイヤ10kg当たりKを0.004〜0.25g含有することも特徴とするAr−CO2 混合ガスシールドアーク溶接用銅めっきソリッドワイヤにある。
Further, the arithmetic average roughness Ra of the surface roughness measured in the direction of 30 ° with respect to the longitudinal direction of the wire surface is 0.04 to 0.12 μm.
Further, the present invention is the copper-plated solid wire for Ar—CO 2 mixed gas shielded arc welding characterized in that the wire surface lubricant contains 0.004 to 0.25 g of K per 10 kg of wire.

本発明のAr−CO2 混合ガスシールドアーク溶接用銅めっきソリッドワイヤによれば、特に低電流域から遷移領域の溶接電流で長時間溶接する場合においても、スパッタ発生量が少なくワイヤ送給性が良好で、さらにチップの摩耗が少なくアークの安定性が良いなど溶接作業性に優れた溶接が可能になる。 According to the copper-plated solid wire for Ar—CO 2 mixed gas shielded arc welding of the present invention, even when welding with a welding current from a low current region to a transition region for a long time, the spatter generation amount is small and the wire feedability is low. This makes it possible to perform welding with excellent welding workability, such as good wear resistance and low arc wear.

本発明者らは、前記課題を解決するために低電流域から遷移領域の溶接電流(例えば、ワイヤ径1.2mm、シールドガス:Ar−20%CO2 の場合150〜280A程度)で、ワイヤ成分、ワイヤ表面に塗布する送給潤滑剤およびワイヤ表面状態について種々検討した。その結果、ワイヤ成分中C、Si、MnおよびTiの含有量を限定することによってアークの安定およびスパッタの発生を抑制し、潤滑剤中にKを適量含有することによって、溶滴が微粒になり極めてアークが安定する。 In order to solve the above-mentioned problems, the present inventors have used a welding current from a low current region to a transition region (for example, a wire diameter of 1.2 mm, a shielding gas of about 150 to 280 A in the case of Ar-20% CO 2 ), and a wire Various investigations were made on the components, the feed lubricant applied to the wire surface, and the wire surface condition. As a result, by limiting the content of C, Si, Mn and Ti in the wire component, the stability of the arc and the occurrence of spatter are suppressed, and by containing an appropriate amount of K in the lubricant, the droplets become fine particles. The arc is extremely stable.

また、ワイヤ表面に二硫化モリブデン、リン脂質および常温で液体である潤滑油を適量塗布するとともにワイヤ表面粗さを限定することによって、軟質で長尺のコンジットケーブルを使用して低電流域から遷移領域の溶接電流で長時間溶接する場合においてもスパッタ発生量が少なく、ワイヤ送給性が良好で、チップ摩耗も極めて少なくなり安定したアークが得られることを見出した。   In addition, by applying appropriate amount of molybdenum disulfide, phospholipid and lubricating oil that is liquid at room temperature to the wire surface and limiting the wire surface roughness, transition from low current range using a soft and long conduit cable It has been found that even when welding is performed for a long time with the welding current in the region, the amount of spatter is small, the wire feedability is good, the tip wear is extremely small, and a stable arc can be obtained.

ワイヤ成分中のCは、スパッタ発生量の抑制のために添加する。Cが0.02質量%(以下、%という。)未満であるとスパッタ発生量が多くなる。一方、Cが0.10%を超えると大粒のスパッタ発生量が多くなる。
Siは、アークの安定のために添加する。Siが0.40%未満であるとアークが不安定となる。0.95%を超えるとスパッタ発生量が多くなる。
C in the wire component is added to suppress the amount of spatter generated. When C is less than 0.02 mass% (hereinafter referred to as “%”), the amount of spatter generated increases. On the other hand, when C exceeds 0.10%, a large amount of spatter is generated.
Si is added to stabilize the arc. When Si is less than 0.40%, the arc becomes unstable. If it exceeds 0.95%, the amount of spatter generated increases.

MnもSiと同様にアークの安定のために添加する。Mnが1.0%未満であるとアークが不安定となる。1.95%を超えるとスパッタ発生量が多くなる。
Tiは、特に低電流域の溶接電流で溶滴を小さくしてスパッタ発生を抑制する。Tiが0.03%未満であるとその効果がなく大粒のスパッタが多発する。一方、Tiが0.15%を超えると逆にスパッタ発生量が多くなる。
なお、溶接金属の強度調整としてNi、Mo、Cr、Al、Zr、VおよびNbを微量添加できる。
Mn is also added to stabilize the arc as with Si. If Mn is less than 1.0%, the arc becomes unstable. If it exceeds 1.95%, the amount of spatter generated increases.
Ti suppresses the generation of spatter by reducing the size of the droplets, particularly with a welding current in a low current range. If Ti is less than 0.03%, the effect is not obtained, and large spatters occur frequently. On the other hand, if Ti exceeds 0.15%, the amount of spatter generated increases.
A small amount of Ni, Mo, Cr, Al, Zr, V and Nb can be added to adjust the strength of the weld metal.

ワイヤ表面に塗布する潤滑剤は、ワイヤ10kg当たり二硫化モリブデンを0.005〜0.50g、リン脂質を0.008〜0.15g含み残部は常温で液体である潤滑油からなる潤滑剤を合計で0.5〜2.5g(以下、g/10kgWという。)とする。
二硫化モリブデンは、コンジットチューブ内で送給抵抗を抑制してワイヤ送給性を良好にするとともに、チップ内壁とワイヤ表面の摩擦抵抗を下げてチップの摩耗を少なくする。二硫化モリブデンが0.005g/10kgW未満であると、コンジットチューブ内で送給抵抗が大きくなりワイヤ送給性が不良となるとともに、チップの摩耗量が多くなってアークが不安定になる。逆に、二硫化モリブデンが0.50g/10kgWを超えると、アークが不安定になってスパッタ発生量が多くなる。なお、二硫化モリブデンの粒径は1.0μm以下であることが送給抵抗を低減してワイヤ送給性を良好にするので好ましい。
Lubricant applied to the surface of the wire is a total of lubricants made of lubricating oil containing 0.005 to 0.50 g of molybdenum disulfide and 0.008 to 0.15 g of phospholipid per 10 kg of wire, and the balance being liquid at room temperature. 0.5 to 2.5 g (hereinafter referred to as g / 10 kgW).
Molybdenum disulfide suppresses the feeding resistance in the conduit tube to improve the wire feeding property, and reduces the friction resistance between the tip inner wall and the wire surface to reduce the wear of the tip. If the molybdenum disulfide is less than 0.005 g / 10 kgW, the feeding resistance is increased in the conduit tube, the wire feeding performance becomes poor, the wear amount of the tip is increased, and the arc becomes unstable. Conversely, if molybdenum disulfide exceeds 0.50 g / 10 kgW, the arc becomes unstable and the amount of spatter generated increases. In addition, it is preferable that the particle diameter of molybdenum disulfide is 1.0 μm or less because the feeding resistance is reduced and the wire feeding property is improved.

リン脂質は、後述する常温で液体である潤滑油と共存することによりワイヤ表面の二硫化モリブデンを均一に分散させる作用を有する。リン脂質が0.008g/10kgW未満であると、ワイヤ表面の二硫化モリブデンが均一に付着せず、コンジットチューブ内で送給抵抗が大きくなる部分がありワイヤ送給性が不良になるとともに、チップの摩耗量が多くなってアークが不安定になる。逆に、リン脂質が0.15g/10kgWを超えると、スパッタ発生量が多くなる。   The phospholipid has an action of uniformly dispersing molybdenum disulfide on the surface of the wire by coexisting with a lubricating oil that is liquid at room temperature to be described later. When the phospholipid is less than 0.008 g / 10 kgW, molybdenum disulfide on the surface of the wire does not adhere uniformly, and there is a portion where the feeding resistance increases in the conduit tube, resulting in poor wire feeding performance and chip. As the amount of wear increases, the arc becomes unstable. Conversely, if the phospholipid exceeds 0.15 g / 10 kgW, the amount of spatter generated increases.

本発明にいうリン脂質とは、レシチン(フォスファチジルコン)、フォスファチジルエタノールアミン、フォスファジルイニシトールなどのリン脂質を主成分とするものを意味し、例えば、大豆や卵黄などから得られるリン酸脂質を95%程度含有する粉末状のもの、リン脂質を約65%および大豆油などの植物油を35%程度含有するペースト状のものなどあり、いずれも使用することができ、中でも大豆油から得られるレシチンが好ましい。   The phospholipid referred to in the present invention means a substance mainly composed of a phospholipid such as lecithin (phosphatidylcon), phosphatidylethanolamine, phosphazinynicitol, and, for example, phospholipid obtained from soybean, egg yolk, and the like. There are powdery products containing about 95% of acid lipids, pastes containing about 65% of phospholipids and about 35% of vegetable oils such as soybean oil, and any of these can be used. The resulting lecithin is preferred.

潤滑剤中の常温で液体である潤滑油は、ワイヤ表面に皮膜を有し、ワイヤ送給時に二硫化モリブデンの潤滑作用を補完しワイヤ送給性を向上させる。潤滑油は、動植物油、鉱物油あるいは合成油の何れでもよい。動植物油としてはパーム油、菜種油、ひまし油、豚油、牛油、魚油等を、鉱物油としてはマシン油、タービン油、スピンドル油等を用いることができる。合成油としては炭化水素系、エステル系、ポリグリコール系、ポリフェノール系、シリコーン系、フロロカーボン系を用いることができる。潤滑油中にはさらに潤滑性能を向上させるため、各種の脂肪酸をはじめとする油性剤やりん系、ハロゲン系、イオウ系の極圧添加剤を加えても良く、また、潤滑油の酸化を防ぐための添加剤(酸化防止剤)を加えてもよい。   Lubricating oil, which is liquid at room temperature in the lubricant, has a coating on the wire surface, complements the lubricating action of molybdenum disulfide during wire feeding, and improves wire feeding properties. The lubricating oil may be animal or vegetable oil, mineral oil or synthetic oil. Palm oil, rapeseed oil, castor oil, pig oil, cow oil, fish oil, etc. can be used as animal and vegetable oils, and machine oil, turbine oil, spindle oil, etc. can be used as mineral oils. As the synthetic oil, hydrocarbon type, ester type, polyglycol type, polyphenol type, silicone type and fluorocarbon type can be used. In order to further improve the lubrication performance, lubricating agents such as various fatty acids and phosphorus, halogen, and sulfur extreme pressure additives may be added to the lubricating oil, and the oxidation of the lubricating oil is prevented. Additives (antioxidants) may be added.

ワイヤ表面に含む潤滑剤は、前記二硫化モリブデン、レシチンおよび常温で液体である潤滑油の合計で0.5〜2.5g/10kgWとする。潤滑剤の合計量が0.5g/10kgW未満であると、コンジットチューブ内で送給抵抗が大きくなりワイヤ送給性が不良となるとともに、チップの摩耗量が多くなってアークが不安定になる。逆に、2.5g/10kgWを超えると、送給ローラ部でワイヤがスリップしてアークが不安定になる。   The lubricant contained on the wire surface is 0.5 to 2.5 g / 10 kgW in total of the molybdenum disulfide, lecithin, and lubricating oil that is liquid at room temperature. If the total amount of the lubricant is less than 0.5 g / 10 kgW, the feeding resistance increases in the conduit tube, the wire feeding performance becomes poor, and the amount of wear of the tip increases and the arc becomes unstable. . On the other hand, if it exceeds 2.5 g / 10 kgW, the wire slips at the feeding roller portion, and the arc becomes unstable.

ワイヤ表面の銅めっきは、コンジットチューブ内での摩擦抵抗を低減するとともにチップ先端での通電性を良好にしアークを安定させる。さらに、長時間溶接してもチップ摩耗が極めて少なく安定したアークを持続させることができる。しかし、JIS B0601−1994で規定されるワイヤ表面長手方向に対して30°方向を測定した表面粗さの算出平均粗さRaが0.12μmを超えると、コンジットチューブ内の摩擦によって送給抵抗が大きくなり、ワイヤ送給性が悪くなってアークが不安定になる。   Copper plating on the wire surface reduces the frictional resistance in the conduit tube and improves the electrical conductivity at the tip of the tip to stabilize the arc. Furthermore, even when welding for a long time, the tip wear is extremely small and a stable arc can be maintained. However, when the calculated average roughness Ra of the surface roughness measured in the direction of 30 ° with respect to the longitudinal direction of the wire surface defined in JIS B0601-1994 exceeds 0.12 μm, the feeding resistance is caused by friction in the conduit tube. It becomes larger, the wire feedability becomes worse, and the arc becomes unstable.

また、チップ内壁とワイヤ表面の摩擦抵抗によって長時間溶接しているとチップの摩耗量が多くなってアークが不安定となる。銅めっきは通電性、潤滑性およびチップの耐摩耗性を向上させるとともに防錆性向上の効果も有する。めっき厚は0.3〜1.2μm程度が好ましい。また、ワイヤ表面長手方向に対して30°方向を測定した表面粗さの算出平均粗さRaが0.04μm未満であると、ワイヤ送給装置の送給ローラ部でワイヤがスリップしてアークが不安定になる。   Further, if welding is performed for a long time due to the frictional resistance between the inner wall of the tip and the wire surface, the amount of wear of the tip increases and the arc becomes unstable. Copper plating improves the electrical conductivity, lubricity and wear resistance of the chip, and also has the effect of improving rust prevention. The plating thickness is preferably about 0.3 to 1.2 μm. Further, if the calculated average roughness Ra of the surface roughness measured in the direction of 30 ° with respect to the longitudinal direction of the wire surface is less than 0.04 μm, the wire slips at the feeding roller portion of the wire feeding device and the arc is generated. It becomes unstable.

さらに、ワイヤ表面潤滑剤にKを0.004〜0.25g/10kgW含むことによって、溶滴が微粒になり極めてアークが安定する。ワイヤ表面潤滑剤のKが0.004g/10kgW未満では効果が発揮できず、0.25g/10kgWを超えると、スパッタ発生量が多くなる。
本発明の炭酸ガスシールドアーク溶接用銅めっきソリッドワイヤは、ワイヤ原線を一時伸線したワイヤ素線のワイヤ表面に銅めっきを施し、湿式孔ダイス伸線で縮径して縮径率をコントロールして目的のワイヤ表面粗さとし、仕上げ伸線または仕上げ伸線後に前記送給潤滑剤をワイヤ表面に塗布して製造する。
Further, when K is included in the wire surface lubricant by 0.004 to 0.25 g / 10 kgW, the droplets become fine and the arc is extremely stable. If the K of the wire surface lubricant is less than 0.004 g / 10 kgW, the effect cannot be exhibited, and if it exceeds 0.25 g / 10 kgW, the amount of spatter generated increases.
The copper-plated solid wire for carbon dioxide shielded arc welding of the present invention controls the diameter reduction rate by applying copper plating to the wire surface of the wire element wire that has been temporarily drawn and then reducing the diameter by wet hole die drawing. Then, the target wire surface roughness is set, and the drawn lubricant is applied to the wire surface after finishing drawing or after finishing drawing.

以下、本発明の効果を実施例により具体的に説明する。
表1に示すワイヤ径1.2mmの溶接用ワイヤの成分、ワイヤ表面状態および潤滑剤塗布量を変えたものを試作してスプール巻きワイヤとした。
Hereinafter, the effect of the present invention will be specifically described with reference to examples.
A spool-wound wire was manufactured by changing the components of the welding wire having a wire diameter of 1.2 mm shown in Table 1, the wire surface condition, and the amount of lubricant applied.

Figure 2006175452
Figure 2006175452

各試作ワイヤにつきワイヤ送給性、チップ摩耗量、アーク状態およびスパッタ発生量を調査した。ワイヤ送給性、チップ摩耗量およびアーク状態の評価は、図1に示す装置を用いて行った。図1において送給機1にセットされたスプール巻きワイヤ2は、送給ローラ3により引き出され、コンジットケーブル4に内包されたコンジットチューブを経てその先端のトーチ5からチップ6まで送給される。そしてチップ6と鋼板7との間でビードオンプレート溶接を行う。コンジットケーブル4は6m長さで、送給抵抗を与えるために150mm径のループを2つ形成した屈曲8を設けた。送給機1には送給ローラの周速度Vr(設定ワイヤ速度)の検知器(図示せず)およびワイヤの実速度Vw検出器9を備えている。   For each prototype wire, wire feedability, tip wear, arc condition and spatter generation were investigated. The wire feedability, tip wear amount, and arc state were evaluated using the apparatus shown in FIG. In FIG. 1, the spool winding wire 2 set in the feeder 1 is pulled out by the feeding roller 3 and fed from the torch 5 at the tip thereof to the chip 6 through the conduit tube included in the conduit cable 4. Then, bead-on-plate welding is performed between the tip 6 and the steel plate 7. The conduit cable 4 was 6 m long and provided with a bend 8 formed with two 150 mm diameter loops to give a feeding resistance. The feeder 1 is provided with a detector (not shown) for the peripheral speed Vr (set wire speed) of the feed roller and an actual wire speed Vw detector 9.

ワイヤ送給性評価指標のスリップ率SLは、SL=(Vr−Vw)/Vr×100で表される。また、送給ローラ部分に設けられたロードセル10によりワイヤ送給時にワイヤがコンジットチューブから受ける反力を送給抵抗Rとして検出した。溶接は試作ワイヤ毎に新しいコンジットチューブを用いて表2に示す条件No.1の溶接条件で45分溶接し、溶接開始後15分から溶接終了までの30分間スリップ率SLと送給抵抗Rを測定して平均値を求めた。スリップ率SLが10%以下で送給抵抗Rが6kgf以下の場合にワイヤ送給性良好と判定した。また、チップの摩耗量は、試作ワイヤ毎に新しいチップ(内径1.4mm)を用いて溶接終了後最も摩耗の大きい箇所の内径を測定した。チップ摩耗量の評価は、摩耗量が0.05mm以下を良好として評価した。   The slip rate SL of the wire feedability evaluation index is represented by SL = (Vr−Vw) / Vr × 100. Further, the reaction force that the wire receives from the conduit tube during wire feeding by the load cell 10 provided in the feeding roller portion was detected as the feeding resistance R. For welding, use a new conduit tube for each prototype wire and check the condition No. shown in Table 2. The welding was performed for 45 minutes under the welding conditions of 1 and the average value was obtained by measuring the slip rate SL and the feeding resistance R for 30 minutes from the start of welding to the end of welding for 15 minutes. When the slip rate SL was 10% or less and the feed resistance R was 6 kgf or less, it was determined that the wire feedability was good. Further, the wear amount of the tip was measured by using a new tip (inner diameter: 1.4 mm) for each prototype wire and measuring the inner diameter of the portion with the greatest wear after welding. The chip wear amount was evaluated as good when the wear amount was 0.05 mm or less.

Figure 2006175452
Figure 2006175452

スパッタ発生量は、上記ワイヤ送給性およびチップ摩耗性の試験終了後、コンジットチューブおよびチップを交換せずに銅製の捕集箱を用いて、ビードオンプレート溶接により表2に示す条件No.1およびNo.2の溶接条件で5回溶接(1回の溶接時間1.5min)して捕集したスパッタを1分間の発生量に換算した。スパッタ発生量は0.5g/min以下でアークが安定して作業性が良好である。それらの結果を表3にまとめて示す。   The amount of spatter generated was determined under the condition No. 1 shown in Table 2 by bead-on-plate welding using a copper collection box without replacing the conduit tube and tip after the wire feedability test and tip wear test were completed. And the spatter collected by welding five times under the welding conditions of No. 2 (one welding time of 1.5 min) was converted into the amount of generation per minute. The amount of spatter generated is 0.5 g / min or less, and the arc is stable and the workability is good. The results are summarized in Table 3.

Figure 2006175452
Figure 2006175452

表1および表3中、ワイヤNo.1〜9が本発明例、ワイヤNo.10〜18が比較例である。本発明例である試験No.1〜9は、ワイヤ成分範囲が適正で、ワイヤ表面の潤滑剤である二硫化モリブデン、リン脂質、Kの付着量および潤滑油を含む潤滑剤の合計量とワイヤ表面長手方向に対して30°方向を測定した算術平均粗さRaが適正であるので、スリップ率SLおよび送給抵抗Rが低くワイヤ送給性が良好で、チップ摩耗量および低電流域から遷移領域の溶接電流でのスパッタ発生量も少なくアークが安定して溶接作業性が良好であるなど極めて満足な結果であった。   In Tables 1 and 3, wires No. 1 to 9 are examples of the present invention, and wires No. 10 to 18 are comparative examples. Test Nos. 1 to 9, which are examples of the present invention, have an appropriate wire component range, molybdenum disulfide that is a lubricant on the wire surface, phospholipid, adhesion amount of K, and the total amount of lubricant including lubricant and wire. Arithmetic average roughness Ra measured in the direction of 30 ° with respect to the longitudinal direction of the surface is appropriate, so the slip rate SL and feed resistance R are low, the wire feedability is good, the tip wear amount and the transition from the low current range The amount of spatter generated by the welding current in the region was small, the arc was stable, and the welding workability was good.

比較例中ワイヤNo.10は、ワイヤ成分のCが低いのでスパッタ発生量が多かった。また、Siが低いのでアークが不安定であった。さらに、ワイヤ表面長手方向に対して30°方向を測定した表面粗さの算出平均粗さRaが低いのでスリップ率SLが高くワイヤ送給性も不良であった。
ワイヤNo.11は、ワイヤ成分のCが高いので大粒のスパッタが発生した。また、Mnが低いのでアークが不安定であった。
In the comparative example, the wire No. 10 had a large amount of spatter due to the low C of the wire component. Moreover, since Si was low, the arc was unstable. Further, since the calculated average roughness Ra of the surface roughness measured in the direction of 30 ° with respect to the longitudinal direction of the wire surface is low, the slip ratio SL is high and the wire feedability is also poor.
Since wire No. 11 has a high C of the wire component, large-scale sputtering occurred. Moreover, since Mn was low, the arc was unstable.

ワイヤNo.12は、ワイヤ成分のSiが高いのでスパッタ発生量が多かった。また、ワイヤ表面長手方向に対して30°方向を測定した表面粗さの算出平均粗さRaが高いので送給抵抗Rが大きくワイヤ送給性が不良となり、チップの摩耗量も多くなってアークが不安定になった。
ワイヤNo.13は、ワイヤ成分のMnが高いのでスパッタ発生量が多かった。また、ワイヤ表面潤滑剤中のKが少ないのでややアークが不安定となった。
The wire No. 12 had a large amount of spatter due to the high Si of the wire component. In addition, since the calculated average roughness Ra of the surface roughness measured in the direction of 30 ° with respect to the longitudinal direction of the wire surface is high, the feeding resistance R is large, the wire feeding performance is poor, and the wear amount of the tip is increased, resulting in an arc. Became unstable.
The wire No. 13 had a large amount of spatter due to the high Mn of the wire component. Moreover, since K in the wire surface lubricant was small, the arc was somewhat unstable.

ワイヤNo.14は、ワイヤ成分のTiが高いのでスパッタ発生量が多かった。また、ワイヤ表面潤滑剤の二硫化モリブデンが少ないので送給抵抗Rが大きくワイヤ送給性が不良となり、チップの摩耗量も多くなってアークが不安定になった。
ワイヤNo.15は、ワイヤ成分のTiが低いので大粒のスパッタ発生量が多かった。また、ワイヤ表面潤滑剤のリン脂質(レシチン)が少ないので送給抵抗Rが大きくワイヤ送給性が不良となり、チップの摩耗量も多くなってアークが不安定になった。
Wire No. 14 had a large amount of spatter due to its high Ti wire component. Further, since the wire surface lubricant molybdenum disulfide is small, the feeding resistance R is large, the wire feeding performance is poor, the wear amount of the tip is increased, and the arc becomes unstable.
The wire No. 15 had a large amount of spatter generated due to the low Ti of the wire component. Further, since the wire surface lubricant has a small amount of phospholipid (lecithin), the feeding resistance R is large, the wire feeding performance is poor, the wear amount of the tip is increased, and the arc becomes unstable.

ワイヤNo.16は、ワイヤ表面潤滑剤の二硫化モリブデンが多いのでアークが不安定でスパッタ発生量も多くなった。また、ワイヤ表面潤滑剤の合計量が少ないので送給抵抗Rが大きくワイヤ送給性が不良でチップ摩耗量も多くなってアークも不安定になった。
ワイヤNo.17は、ワイヤ表面潤滑剤のリン脂質(レシチン)が多いのでスパッタ発生量が多くなった。また、ワイヤ表面に銅めっきが施されていないので送給抵抗Rが大きくワイヤ送給性が不良でチップ摩耗量も多くなってアークも不安定になった。
ワイヤNo.18は、ワイヤ表面潤滑剤の合計量が多いのでスリップ率SLが高くワイヤ送給性も不良であった。また、ワイヤ表面潤滑剤中のKが多いのでスパッタ発生量が多かった。
Wire No. 16 had a large amount of molybdenum surface disulfide, molybdenum disulfide, so that the arc was unstable and the amount of spatter was increased. Further, since the total amount of the wire surface lubricant is small, the feeding resistance R is large, the wire feeding property is poor, the tip wear amount is increased, and the arc becomes unstable.
In wire No. 17, the amount of spatter generated increased because of the large amount of phospholipid (lecithin) as the wire surface lubricant. Further, since the copper surface was not plated with copper, the feed resistance R was large, the wire feedability was poor, the tip wear amount was increased, and the arc became unstable.
Since the total amount of the wire surface lubricant was large, the wire No. 18 had a high slip rate SL and poor wire feedability. Moreover, since there was much K in a wire surface lubricant, there was much spatter generation amount.

本発明の実施例におけるワイヤ送給試験の装置を示す図面である。It is drawing which shows the apparatus of the wire feeding test in the Example of this invention.

符号の説明Explanation of symbols

1 送給機
2 スプール巻きワイヤ
3 送給ローラ
4 コンジットケーブル
5 トーチ
6 チップ
7 鋼板
8 コンジットケーブルの屈曲部
9 ワイヤの実速度検出器
10 ロードセル


特許出願人 日鐵住金溶接工業株式会社
代理人 弁理士 椎 名 彊 他1


DESCRIPTION OF SYMBOLS 1 Feeder 2 Spool winding wire 3 Feed roller 4 Conduit cable 5 Torch 6 Tip 7 Steel plate 8 Bending part of conduit cable 9 Wire actual speed detector 10 Load cell


Patent Applicant Nippon Steel & Sumikin Welding Industry Co., Ltd.
Attorney Attorney Shiina and others 1


Claims (3)

Ar−CO2 混合ガスシールドアーク溶接用銅めっきソリッドワイヤにおいて、ワイヤ成分として、質量%で、0.02〜0.10%、Si:0.40〜0.95%、Mn:1.0〜1.95%、Ti:0.03〜0.15%を含有し、残部Feおよび不可避的不純物からなり、かつ、ワイヤ表面にワイヤ10kg当たり二硫化モリブデンを0.005〜0.50g、リン脂質を0.008〜0.15g含み残部は常温で液体の潤滑油からなる潤滑剤を合計で0.5〜2.5g有することを特徴とするAr−CO2 混合ガスシールドアーク溶接用銅めっきソリッドワイヤ。 In the copper-plated solid wire for Ar—CO 2 mixed gas shielded arc welding, the wire component is 0.02 to 0.10% by mass, Si: 0.40 to 0.95%, Mn: 1.0 to 1.95%, Ti: 0.03 to 0.15%, consisting of the balance Fe and inevitable impurities, and 0.005 to 0.50 g of molybdenum disulfide per 10 kg of wire on the wire surface, phospholipid 0.008 to 0.15 g, and the balance has a total of 0.5 to 2.5 g of a lubricant composed of a lubricating oil that is liquid at room temperature. Ar-CO 2 mixed gas shielded copper-plated solid for arc welding Wire. ワイヤ表面長手方向に対して30°方向を測定した表面粗さの算術平均粗さRaが0.04〜0.12μmであることを特徴とする請求項1記載のAr−CO2 混合ガスシールドアーク溶接用銅めっきソリッドワイヤ。 2. The Ar—CO 2 mixed gas shielded arc according to claim 1, wherein the arithmetic average roughness Ra of the surface roughness measured in the direction of 30 ° with respect to the longitudinal direction of the wire surface is 0.04 to 0.12 μm. Copper plated solid wire for welding. ワイヤ表面潤滑剤にワイヤ10kg当たりKを0.004〜0.25g含有することを特徴とする請求項1または2記載のAr−CO2 混合ガスシールドアーク溶接用銅めっきソリッドワイヤ。 According to claim 1 or 2 Ar-CO 2 mixed gas shielded arc welding copper plating solid wire according to, characterized in that 0.004~0.25g containing wire 10kg per K on the wire surface lubricants.
JP2004368702A 2004-12-21 2004-12-21 Copper-plated solid wire for Ar-CO2 mixed gas shielded arc welding Expired - Fee Related JP4034308B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004368702A JP4034308B2 (en) 2004-12-21 2004-12-21 Copper-plated solid wire for Ar-CO2 mixed gas shielded arc welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004368702A JP4034308B2 (en) 2004-12-21 2004-12-21 Copper-plated solid wire for Ar-CO2 mixed gas shielded arc welding

Publications (2)

Publication Number Publication Date
JP2006175452A true JP2006175452A (en) 2006-07-06
JP4034308B2 JP4034308B2 (en) 2008-01-16

Family

ID=36730041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004368702A Expired - Fee Related JP4034308B2 (en) 2004-12-21 2004-12-21 Copper-plated solid wire for Ar-CO2 mixed gas shielded arc welding

Country Status (1)

Country Link
JP (1) JP4034308B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008043990A (en) * 2006-08-21 2008-02-28 Nippon Steel & Sumikin Welding Co Ltd COPPER PLATED SOLID WIRE FOR Ar-CO2 MIXED GAS SHIELDED ARC WELDING
JP2008194716A (en) * 2007-02-13 2008-08-28 Nippon Steel & Sumikin Welding Co Ltd Copper plated solid wire for gas shielded arc welding
JP2010125490A (en) * 2008-11-28 2010-06-10 Hitachi-Ge Nuclear Energy Ltd Welding method of i-shaped joint, the i-shaped weld joint, and welding structure using the same
JP2010167425A (en) * 2009-01-21 2010-08-05 Hitachi-Ge Nuclear Energy Ltd Welding method of vertical t-shaped joint, vertical t-shaped weld joint, and welded structure using the same
US8901455B2 (en) 2008-06-18 2014-12-02 Lincoln Global, Inc. Welding wire for submerged arc welding
US8952295B2 (en) 2008-06-18 2015-02-10 Lincoln Global, Inc. Welding wire with perovskite coating
JP5706028B1 (en) * 2014-07-24 2015-04-22 興市 野村 Welding wire lubricant, welding wire lubricant application method, and welding wire lubricant evaluation method
KR101579925B1 (en) * 2014-11-19 2015-12-29 현대종합금속 주식회사 Plated solid wire for metal active gas welding
CN114340837A (en) * 2019-09-17 2022-04-12 株式会社神户制钢所 Wire for gas shielded arc welding

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008043990A (en) * 2006-08-21 2008-02-28 Nippon Steel & Sumikin Welding Co Ltd COPPER PLATED SOLID WIRE FOR Ar-CO2 MIXED GAS SHIELDED ARC WELDING
JP2008194716A (en) * 2007-02-13 2008-08-28 Nippon Steel & Sumikin Welding Co Ltd Copper plated solid wire for gas shielded arc welding
US8901455B2 (en) 2008-06-18 2014-12-02 Lincoln Global, Inc. Welding wire for submerged arc welding
US8952295B2 (en) 2008-06-18 2015-02-10 Lincoln Global, Inc. Welding wire with perovskite coating
JP2010125490A (en) * 2008-11-28 2010-06-10 Hitachi-Ge Nuclear Energy Ltd Welding method of i-shaped joint, the i-shaped weld joint, and welding structure using the same
JP2010167425A (en) * 2009-01-21 2010-08-05 Hitachi-Ge Nuclear Energy Ltd Welding method of vertical t-shaped joint, vertical t-shaped weld joint, and welded structure using the same
JP5706028B1 (en) * 2014-07-24 2015-04-22 興市 野村 Welding wire lubricant, welding wire lubricant application method, and welding wire lubricant evaluation method
KR101579925B1 (en) * 2014-11-19 2015-12-29 현대종합금속 주식회사 Plated solid wire for metal active gas welding
CN114340837A (en) * 2019-09-17 2022-04-12 株式会社神户制钢所 Wire for gas shielded arc welding

Also Published As

Publication number Publication date
JP4034308B2 (en) 2008-01-16

Similar Documents

Publication Publication Date Title
EP2552640B1 (en) Feeding lubricant for cored welding electrode, cored welding electrode and gmaw process
JP4034308B2 (en) Copper-plated solid wire for Ar-CO2 mixed gas shielded arc welding
JP4440059B2 (en) Copper plated wire for carbon dioxide shielded arc welding
JP4020903B2 (en) Copper plated wire for carbon dioxide shielded arc welding
JP2008043990A (en) COPPER PLATED SOLID WIRE FOR Ar-CO2 MIXED GAS SHIELDED ARC WELDING
JP4429864B2 (en) Solid wire without plating for Ar-CO2 mixed gas shielded arc welding
JP3876182B2 (en) Gas shielded arc welding wire
JP3853815B2 (en) Flux-cored wire for gas shielded arc welding
JP2005074490A (en) Non-plated steel wire for gas-shielded arc welding
JP5068483B2 (en) Copper plated wire for gas shielded arc welding
JP2006102799A (en) Plating-free solid wire for carbon dioxide gas shielded arc welding
JP5026002B2 (en) Copper plated wire for gas shielded arc welding
JP2006224172A (en) Plating-less solid wire for gas shielded arc welding of thin plate
JP4018097B2 (en) Solid wire without plating for carbon dioxide shielded arc welding
JP2008006474A (en) Copper plated wire for carbon acid gas shielded arc welding
JP2008194716A (en) Copper plated solid wire for gas shielded arc welding
JP4429890B2 (en) Copper-plated flux-cored wire for gas shielded arc welding
JP4429863B2 (en) Flux-cored copper-plated wire for gas shielded arc welding
JP5290007B2 (en) Gas shielded arc welding wire
JP5160301B2 (en) Gas shielded arc welding wire
JP5172746B2 (en) Flux-cored wire for gas shielded arc welding
JPH10193175A (en) Oily lubricant for drawing welding wire, and steel wire for arc welding
JP5064960B2 (en) Unplated steel wire for gas shielded arc welding
JP2002219595A (en) Welding wire
JP5160274B2 (en) Gas shielded arc welding wire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070918

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071023

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071024

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees