JP2012010530A - 多端子型電力変換装置と電力システムならびにその制御プログラム - Google Patents

多端子型電力変換装置と電力システムならびにその制御プログラム Download PDF

Info

Publication number
JP2012010530A
JP2012010530A JP2010145715A JP2010145715A JP2012010530A JP 2012010530 A JP2012010530 A JP 2012010530A JP 2010145715 A JP2010145715 A JP 2010145715A JP 2010145715 A JP2010145715 A JP 2010145715A JP 2012010530 A JP2012010530 A JP 2012010530A
Authority
JP
Japan
Prior art keywords
power
terminal
electric power
converter
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010145715A
Other languages
English (en)
Other versions
JP2012010530A5 (ja
JP5612920B2 (ja
Inventor
Rikiya Abe
力也 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2009208744A priority Critical patent/JP4783453B2/ja
Priority to JP2010145715A priority patent/JP5612920B2/ja
Application filed by Individual filed Critical Individual
Priority to CN201080040094.5A priority patent/CN102484369B/zh
Priority to CA2773994A priority patent/CA2773994A1/en
Priority to PCT/JP2010/005563 priority patent/WO2011030558A1/ja
Priority to EP10815158.0A priority patent/EP2477297A4/en
Priority to AU2010293719A priority patent/AU2010293719C1/en
Priority to US13/395,407 priority patent/US9013902B2/en
Priority to JP2011111814A priority patent/JP5249382B2/ja
Publication of JP2012010530A publication Critical patent/JP2012010530A/ja
Priority to IN2382DEN2012 priority patent/IN2012DN02382A/en
Publication of JP2012010530A5 publication Critical patent/JP2012010530A5/ja
Priority to JP2014181674A priority patent/JP2014241721A/ja
Priority claimed from JP2014181674A external-priority patent/JP2014241721A/ja
Application granted granted Critical
Publication of JP5612920B2 publication Critical patent/JP5612920B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • Y02E40/72
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/60Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/123Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving renewable energy sources

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Inverter Devices (AREA)

Abstract

【課題】大量の自然エネルギー電源の変動により、系統が不安定になり、連鎖停電を起こす可能性が大きくなることを抑制する。そのため、電力系統を細分化し、その間で非同期電力融通できる装置を開発し、インターネットのように、複数のルートを通じて電力を目的地との間で融通する。
【解決手段】電力を双方向に変換できる電力用半導体素子構成を複数接続し、電力を分配供給する多端子型電力変換装置を考案し、細分化した電力系統の非同期接続を行うことで、連載停電を抑制する。情報処理用アドレスを付加することにより電力をインターネットのように目的の電力系統に融通する。これにより電力変換関連情報と取引関連情報を関連付け、電力取引やその派生商品の取引ができるようになる。
【選択図】図8

Description

本発明は、変動の大きい再生可能エネルギーを大量に系統導入した際に、系統動揺の波及や連鎖停電を防止するために必要となる、系統間の多端子電力変換装置とそれらを多数系統内に設置して構成する電力システムならびにその電力システムを制御するプログラムに関するものである。
近年、気候変動問題ならびに化石燃料高騰の影響を受け、風力発電・太陽光発電などに代表される再生可能エネルギー電源の導入が加速している。日本政府は、2020年には2,800万kW、2030年には5,300万kWの太陽光発電を導入する目標を立てている。これは、現在の日本の最大電力1億8千万kWの25%にも相当する。
この大きさの電源が、天候により出力変動すれば、周波数維持が困難となる。従って政府は2009年7月の「低炭素電力供給システムに関する研究会報告書」において,現状の電力系統のままでは,太陽光発電は一定規模の出力抑制を採用しても,2020年度時点で1,300万kW程度(約7%)しか導入できないと報告している。
米国では、各州で異なるものの今後10−20年で、量として10−30%の導入を計画しており、周波数維持のために送電線容量を増強する計画がスマートグリッド推進の中で検討されている。
欧州でも、各国で導入計画は異なるものの、EU指令として2020年までに20%の再生可能エネルギー量の導入を目指しているが、周波数維持のための電力潮流変動増加が見込まれており、欧州全体の電力網を強化する計画が検討されている。
しかし、最近の大停電の例をみると、2003年8月14日の米国北東部の連鎖大停電はオハイオ州の操作ミスと警報装置不具合から始まり、2003年9月28日のイタリア全土大停電は樹木倒壊による高圧線事故から始まり、2006年のドイツ、フランス、スペイン等8カ国にもまたがる連鎖大停電は、ドイツの送電線の計画停止に端を発するものであった。
この連鎖停電のメカニズムは、電力系統が巨大な同期系統となっているため、どこか1か所で電力潮流を流せない事故が起こると、その潮流が予期せぬ系統の負担になり、負担に耐え切れなくなるとその系統が停止し、さらにそれにより他の系統に電力潮流の負担が及ぶという図式で、雪だるま式に停電個所が広がっていくというものになっている。
すなわち、電力系統の送電容量を増大し、連系を強化すればするほど、小さな事故や小さな送電線容量低下が、より広範囲なエリアの連鎖大停電を引き起こす可能性が高まることになる。
これを防止するために、デンマークでは電力系統を電圧階級ごとに区分して「セル」という単位に分け、その中で変動を吸収するようにする案が提案された。しかし、制御系の工夫だけでは、実際に事故が起こると連鎖の普及スピードに追い付けない上、協調制御がうまくいかないと健全な系統を停電させてしまう危険性もはらんでいる。
米国では、東部、西部、南部の系統を分離して、その間を多数の超高圧送電線で連系し、送電線の途中にAC/DC/AC電力変換器を置いて、電力を非同期に融通する案が浮上しているが、東部一つとっても欧州と同程度の大きさがあり、その中で起こる連鎖大停電を防ぐことはできない。
仮に米国や欧州をそれぞれ数百の電力系統に分離し、自分の電力系統と周辺の複数の電力系統との間で非同期に電力を融通しあえる複数系統間電力変換器を置くことができれば、事故が起こっても停電は事故を起こした電力系統にとどめることができ、連鎖停電を未然に防止することができる。
複数系統間電力変換器を多用すれば、多数の電力ルートが作られるので、停電事故を起こした系統を切り離しても、それ以外の多くの系統から少しずつ電力を融通してもらえるので、自系統も周辺系統も健全性を維持することができる。
自系統が持ちこたえれば、雪だるま式に停電が連鎖して行くことが防止できる。電力変換器はゲートブロック制御を使用するので通常の遮断器より高速に電力を遮断できるので、事故の影響による電力動揺を小さく抑えることもできる。
複数系統間電力変換器があれば、周辺の電力系統との接続に既存の送電線を使うことができる。これにより通常50%以下にとどまっている送電線の設備利用率が飛躍的に高まる。また無効電力も自由に融通でき電圧調整が可能になる。
しかし、このような多端子型の電力変換装置は存在していなかった。
その理由は、従来の電力系統が同期系統を拡大していくことで負荷変動を平均化し、系統安定化を図る方向にあり、再生可能エネルギーのような巨大な発電変動を考慮する必要がなかったことにある。
従来技術の中で、大量の不安定電源を同期系統に接続される際の問題の対策としては、以下のようないくつかの提案がなされている。それらは大別すると次の3つの方法に分類される。
第一の従来方法は、電力基幹系統を強化する方法である。これは高圧連系線の強化や、交流/直流/交流変換を行うBTB型ループコントローラの設置、周波数変換所の容量増大、北海道本州直流連系線の容量増大などを図り、バックアップ電源としてのガスタービン発電や可変速水力発電設備などの増大により再生可能エネルギー電源の変動に備えるものである。この方法にかかわるものとしては以下の特許文献1、2がある。
第二の従来方法は、分散電源の出力抑制ならびに需要抑制である。出力抑制については太陽光発電や風力発電は電力会社からの信号で出力を抑制する回路の義務化が検討されている。この方法にかかわるものとしては以下の特許文献3、4がある。
第三の従来方法は、複数の電力系統間や基幹系統との間で電力の融通を行う方法である。再生可能エネルギーのような不安定電源を大量に導入された複数の電力系統を何らかの形の電力融通装置で接続し、相互に電力を融通する方法である。この方法には以下の特許文献5、6、7、8がある。
また、電力と通信の融合に関して以下の特許文献9がある。
特開平11−146560号公報
特開平11−98694号公報
特開2008−182859号公報
特開2007−189840号公報
特開2003−324850号公報
特開2007−89250号公報
国際公開2004−073136号公報
特許3934518号公報
特開2003−152756号公報
第一の従来手法は、基幹系統の強化を目的とするものであるが、例えば、特許文献1では複数の制御対象とする地域系統を制御実行時刻における系統状況に応じて各地域系統間を接続している開閉器の入り切り操作を用いて、自由に対象系統範囲を変更することにより電力系統の安定度を高めるとしている。しかし、各地域系統の元は同じ同期系統であり、単に系統の定数の変化に合わせて潮流の流れ方を変える提案に過ぎない。この方法では同期化力を持たない再生可能エネルギー電源が増大した時の解決にはならない。
また、特許文献2では、複数の電力系統においてBTB型の電力変換器で連系した電力連系系統における電力融通指令装置について提案している。明細書によれば、複数電力系統の電力連系で、電力系統毎に需要と供給をすべて測定し、その需要不均衡情報をすべてセンターに集めてあらかじめ定められた分担に従って電力を配分するという提案になっている。
特許文献2の実施例では、北海道・本州直流連系のような2系統間における電力融通方法としては、実現可能であるが、対象となる電力系統の数やその中の需要家数や太陽光発電設備などが急速に増加し、電力系統構成が急速に変化、増加していく電力システムにおいては、複数電力系統のすべての需要と供給を電力系統毎に常時把握する中央制御システムを維持することは極めて困難な課題となる。
第二の従来手法は、出力や需要の抑制であるが、例えば、特許文献3では蓄電装置の最大出力能力および充電容量を超える風力発電装置の出力電力変動分を抑制する風力発電システムが提案されている。また特許文献4では、系統の状態を常に監視し、必要な時には発電機遮断と発電機出力の抑制を組み合わせることで、よりきめ細かい抑制を図ることが提案されている。需要側の抑制については、近年スマートグリッドやスマートメーターというような表現で米国を中心に開発が進んでいる。これらの方法は、発電もしくは需要の抑制技術であり、いずれも再生可能エネルギー電源を大量に導入するという目的を達成するための技術ではない。
第三の従来手法では、複数の電力系統間や基幹系統との間で電力の融通を行う手法が提案されている。
例えば、特許文献5では、「送配電線網を介して電力を相互に融通するとともに、通信網を介して相互に各種情報をやり取りすることにより電力の融通を制御する電力需給調整システム」を提案している。しかし、基本的に従来型の同期系統の中で系統の切り分けをこまめに行う方法であって、再生可能エネルギー電源を大量に導入するという目的を達成するための技術とはいえない。
特許文献6では、ループコントローラを使用して系統の切り分けや接続の最適化について提案しているが、やはり同期系統につながった配電網の切り分けをこまめに行う方法である。
これらの方法では、基本的にすべての電力需要家が基幹電力系統に依存しているため、再生可能エネルギー電源の増大が同期化力を弱めてしまうという課題には答えていない。
特許文献7では、「電力機器と電力需給制御機器とを備えた電力需給家の複数が相互接続されてなる電力システムにおいて、相互に電力融通を行う電力システム」を提案しているが、抽象的な概念になっていて電気回路的に以下のような欠陥がある。
まず、複数の需要家をつなぐ連系線路が、「分枝状電力需給線路、数珠つなぎ状電力需給線路、放射状電力需給線路、網状電力需給線路またはこれらを組み合わせた電力需給線路」となっているが、こういった接続は、電気的には複雑な潮流問題を内包すると同時に、短絡容量が大きくなるため、遮断器容量の増大や保護システムの複雑化を招くことになる。また、これを直流連系線路で行うという提案もなされているが、これは直流連系線の短絡容量を著しく増大させ、直流遮断器の設置や線路の分断など連系線設計の難度が高い。
また、この提案では、1本の線路に複数の需給家が電力制御機器を通じてつながっているが、需給家と需給家の間で電力を融通するには、2つの電力制御機器を通過するため、回路が冗長となっており、損失も大きくなる。
さらに、1本の連系線路上で複数の需給家が過不足なく電力を融通しあうには、いずれかの需給家が電圧源となり、連系線路の電圧を維持し、電力を供給する立場の需給家はこの電圧に合わせて電流を供給し、電力をもらう立場の需給家はこの電圧に合わせて電流をもらうことになる。この制御に時間遅れが発生すると、このような小さな系統では電圧源が大きくふらつき、この連系線路に接続している需給家すべてに動揺を与える。この系統の需給は、通信を介して行われるので信頼度は通信に依存することになる。このような電気回路構成は、現実味がない。
特許文献8では、複数の離島などを想定した直流多端子送電に電力貯蔵装置を加えた提案を行っている。しかし、現実の直流多端子送電は限定的である。これは、複数の端子間での電力の総和をゼロに制御するの効果的手段が開発されていないことに起因している。実際に稼働している地点はわずか3端子の例であるイタリアのSACOIプロジェクト(200kV、200MW、3端子)とアメリカのQuebec−New Englandプロジェクト(450V、2,000MW、3端子)に限られその後の計画はない。後者は5端子で計画されたが、制御性の課題などにより3端子に計画縮小した上、双方向の電力融通はそのうちの1端子だけになった。
本特許文献によれば、電力貯蔵装置を取り込むことにより、複数の直流多端子で安定に運転できると主張している。しかしながら、本方式には次のような根本的な欠陥が内包されている。まず、直流送電線の距離長が長くなるため、直流ケーブルや接続部などでの事故確率が高まる。直流遮断器などを分岐点に多数配置しないと、直流部で事故が起きたときの電路切り分けができず、全系統停電になる。また、電力貯蔵装置を含めた全端子間の電力総和ゼロ制御は、通信回線で担保されなければならず、制御の信頼性が通信信頼性に依存することになる。これらの課題は電力貯蔵のあるなしにかかわらないが、電力貯蔵があるとさらに複雑になるため、4端子以上の直流送電の実現は実質上不可能であった。
以上のように、先行技術文献には再生可能エネルギーの大量導入を可能にする為の電力システムについて、直截的な例が見当たらない。先行技術文献を参考にして想定し得るのは、現在の基幹電力系統を、再生可能エネルギー電源と分散電源と需要で構成される多数の電力系統に分割し、電力貯蔵装置を導入して独自に需給バランスをとって周波数と電圧を安定させ(電力系統の自立と呼ぶ)、その上で、BTBやループコントローラのような連系装置(以下BTB型連系装置と呼ぶ)で相互にネットワーク連系線で接続する方法までである。
しかし、BTB型連系装置による電力ネットワークには以下のような課題がある。
まず、電力融通制御装置面においては、
第1に、BTB型連系装置では連系する電力系統の数の2乗に比例するオーダーの連系装置が必要となる。
第2に、その間で協調制御をおこなう必要があるが、これは変換器数の増大のみならず、設置時期やメーカーの異なる装置間での協調制御という困難な課題を生み出す。
第3に、複数の電力系統を連続して電力融通する場合、電力が通過するだけの電力系統では電力変換が2度行われ、変換損失が大きくなるという問題がある。
第4に、電力母線に故障が発生すると、その電力系統を経由する電力融通ルートはすべて停止し、健全な電力系統にまで波及するという問題がある。
また、通信システム面においては、
第1に、複数の電力系統間で電力融通を行うためには、ネットワークのルートが増えるにつれ、通信システムも複雑化し、高額な初期投資と保守費用が必要となる。
第2に、信頼度を維持しなければならない通信ルートや通信機器が膨大になり、改造や新増設と対応が困難になる。
第3に、任意の電力機器から別の電力系統内の任意の電力機器に電力を融通するという新しいコンセプトを実現することは、従来の通信方法では、設備対応の困難さや初期投資の大きさ、保守コストの増大といった課題がある。
さらに、制御システム面においては、
第1に、このような電力融通を行う際、従来の方法では、中央指令装置が必要であり、中央に情報を集める手段と、その通信回路、さらに指令を発信する手段が必要である。
第2に、電源系統の信頼性の重要さに鑑み、二重化などの措置が必要である。
第3に、分散した複数の電力系統システムが常に再編され増大していくような新しい電力システムにおいては、このような従来の方法では膨大な設備投資と間断のない保守対応が発生し、ネットワーク管理者の負担が膨大になる。
この他、複数電力系統間で電力融通を行う場合、すべての電力系統から融通可能な有効・無効電力の大きさや量、時間、電力価格の情報を得て、電力ルートの制限を加味して、融通すべきルート選定、複数ルートの組み合わせを決定し、各融通装置に通達し実行させる必要がある。
電力網と通信網の複合した概念については、特許文献9に家庭やビル内における電力線と通信回路の融合した例が示されているものの、これはコンセントを使ったインターネット回線の概念であり、電力融通制御に関する概念は含まれていない。
以上のことから、再生可能エネルギーを大量導入するためには、個々の電力系統の中で再生可能エネルギーと他の電源・負荷および電力貯蔵装置等の電力機器の需給をバランスさせて自立させ、過不足が生じる部分について、基幹電力系統も含め、他の電力系統と非同期に接続して電力を融通し合える効率的な連系装置を開発する必要があり、さらにそれら電力機器の制御、全体をコントロールする効率的で柔軟な制御システム、その通信基盤となる通信システム、最適な電力融通アルゴリズムの開発等の課題を解決し総合的な電力システムを構築する必要がある。
上述のような背景から、本発明で解決しようとする課題は、既存の電力系統を細分化して生みだした複数の電力系統に対して、同時に電力を分配融通する複数電力系統間電力変換器であるところの「多端子型電力変換装置」及びその多端子型電力変換装置を複数連系して、時刻同期をとりつつ、電力を遠方の電力系統に融通するシステムを提供することにある。
その制御方法として、各変換器や多端子電力変換システム全体に対して、アドレスを付加し、インターネットプロトコルに準じた分散型情報処理を行うことにより、電力を送るルートを、インターネットメールを送るようにルーティングしたり、送電元の情報(発電ソース、発電量、価格、時間、経由地、損失等)を、記録し、保存して電力取引を行ったりすることができる電力システムを提供することにある。
多端子型制御装置の電力変換器を、交換したり、修理したりする際に、全装置を停電せずに、残りの電力変換器を運転継続できるような手段を提供することにある。
多端子型電力変換装置自身に、電力の供給あるいは吸収手段を持たせ、母線電圧維持機能を持たす手段を提供することにある。
多端子型電力変換装置の各ユニットが引き出し可能なキャビネットに内蔵され、複数のキャビネットが一つのキュービクルに内蔵された構造を持ち、キャビネットを引き出すことによってユニットの入出力端子と共通母線端子が、キュービクル内の入出力端子側接続部と共通母線接続部から切り離すことができるように規格化して、プラグアンドプレイのような脱着認識を行うことができるようにすることにより、電力機器のアドホックな拡張が可能になり、保守活動の容易さを生みだすことを可能にする多端子型電力変換装置を提供することにある。
既存の送電線を使用して、多端子型電力変換装置を接続し、電力融通を行い、送電ルートを多様化する電力システムを提供することにある。
既存の送電線を使用して、多端子型電力変換装置を送電線の各回線に独立に接続し、送電ルートを多様化し、送電線利用率を向上する電力システムを提供することにある。
複数の多端子型電力変換装置の運転モードを協調して変えることにより、電力ルートの制限や変換器容量の制限に応じた送電や電力融通を行う電力システムを提供することにある。
有効電力のみならず、無効電力も供給し、電圧維持を行う電力システムを提供することにある。
電気の特徴は、発電と消費が常に同時同量であり、変動の大きい消費に合わせて発電を増減しないと周波数が維持できなくなる。ここに変動の大きい自然エネルギー電源が大量に導入されると、発電側も変動が大きくなり、全体として同時同量を維持することが困難になる。そのため、送電支障が起こりやすくなり、いったん起こると連鎖的に支障が拡大していく傾向がある。課題は、同期系統を、多端子型電力変換装置により、分断し、非同期連系することによって、細分化された電力系統を多数作って、事故による連鎖停電の可能性を少なくする電力システムを手供することにある。
複数の多端子型電力変換装置間で、協調して電力を送るためには、電力変換器の起動・増出力率・運転値・減出力率・停止のタイミングを一致させる必要がある。これを、時刻同期を達成するという。
時刻同期を達成する方法にはおおむね次の3つの方法が考えられる。
(1)高速通信回線で時刻同期をとる。
(2)GPSや電波時計など外部の時計データを元に該当電力変換器の制御回路の時刻を合わせる。
(3)電力回路を流れる電流波形や、電力回路に印加される電圧波形を使って同期をとる。
(1)の方法は、通信回線が遮断されたり、他の通信の影響で実効速度が遅くなったりする可能性があり、信頼性の低い方法と考えざるを得ない。通信回線の遅れ分を補正する手順が必要であり、その信頼性は十分とはいえない。
(2)の方法は、GPSや電波時計のデータが取得できなかった場合、信頼性が落ちる。またデータ取得は連続ではなく、通常間欠的に行われるため、取得と取得の間は、自己の持つ時計機能で時刻を判定する必要がある。このため、やはり信頼性が高いとは言えない。インターネットの世界では、Network Time Protcol(NTP)が知られている手順であるが、通信回線の遅れ分を補正して同期をとっており、その誤差の信頼性は十分とはいえない。
(3)の方法は、電力回路を流れる電流も電圧も光と同じ速度で伝搬しているので、時刻のずれは基本的に考えなくてもよく、優れた方法であるといえる。しかし、この電流波形や電圧波形(以下、電気波形と呼ぶ)の伝達しうる情報量は小さく、電力変換の開始時刻、終了時刻、電力変換の大きさ、価格、発電ソース、電力送電元、経由地等の情報を十分に伝えきれない。
(3)の方法において、電力回路を流れる電流波形や、電圧波形を特殊な形にしたり、組み合わせたりすることによりに情報量を増大することは可能である。しかし、情報量を多くすると、伝送距離が短くなるという欠点を有する。
課題は、以上の時刻同期の問題を解決した電力システムを提供することにある。
電気には、色がないと言われ、電気を識別することは従来不可能であった。しかし、識別が可能になれば、電力の取引や付加価値の取引が可能になる。
課題は、電気の識別を行い、その記録を一元管理できるようにすることである。
ソフトウェアにおいても、電力関連装置および機器においては、個々の装置および機器に対応した個別のソフトを開発するのが通例であった。
課題は、すべての電力機器に共通のソフトウェアとし常に最新のものになるような電力システムを提供することにある。
請求項1に係る発明は、この課題を解決するためになされたものであって、電力を双方向に変換できる電力用半導体素子から構成される3つ以上の単位電力変換ユニットにおいて、前記単位電力変換ユニットの共通母線端子を共通母線に接続し、外部端子を外部回路に接続し、前記外部回路から入力された電力が、前記単位電力変換ユニットを介して変換され、共通母線を通じて逆変換されて外部端子を介して電力を分配供給する多端子型電力変換装置が基本的な構成である。
請求項2に係る発明は、装置全体と各入出力端子のそれぞれに情報処理用アドレスを有し、通信端局により外部および相互のデータ通信を行い、中央演算処理装置により電力用半導体素子のゲート制御を行い、記憶装置により電力変換関連情報と取引関連情報を関連付けて記録することを特徴とする請求項1に記載の多端子型電力変換装置である。
請求項3に係る発明は任意の入出力端子同士の同期をとった上で、その間をバイパス接続できる回路を有する、請求項1または請求項2のいずれか1項に記載の多端子型電力変換装置である。
請求項4に係る発明は、電力貯蔵装置を共通母線に接続して電力を供給したり、電力を吸収したり、母線電圧を維持したりすることを特徴とする請求項1から請求項3のいずれか1項に記載の多端子型電力変換装置である。
請求項5に係る発明は、各ユニットが引き出し可能なキャビネットに内蔵され、複数のキャビネットが一つのキュービクルに内蔵された構造を持ち、キャビネットを引き出すことによって、ユニットを無電圧状態とすることができることを特徴とする請求項1から請求項4のいずれか1項に記載の多端子型電力変換装置である。
請求項6に係る発明は、請求項1から請求項5のいずれか1項に記載の多端子型電力変換装置の入出力端子を複数の電力系統に接続して電力融通を行うことを特徴とする電力システムである。
請求項7に係る発明は、偶数回線数を持ち並列に運用されている送電線の各回線に対し前記多端子型電力変換装置の入出力端子が独立に接続し、回線ごとに独立の電力融通運用を行うことを特徴とする請求項6に記載の電力システムである。
請求項8に係る発明は、送電線の変電所引き込み部のそれぞれに前記多端子型電力変換装置を設置し、装置間相互に情報通信を行い、同じ送電回線を使用して、
複数電力系統に異なる電力を同時に送電する重畳型電力送電、
または異なる電力系統に異なる電力を時間的に分割して送るタイムシェアリング送電、
または複数の異なる送電回路を使用して一つの電力系統に異なる電力を同時に送る複数ルート送電、
または逆方向の電力送電要求を組み合わせて送電量を圧縮もしくは相殺する電力圧縮融通、
または、電力貯蔵装置を介在することにより実際の電力送電を伴わない仮想電力取引、
を行う制御を特徴とする請求項6または請求項7に記載の電力システムである。
請求項9に係る発明は、送電線の変電所引き込み部に設置された複数の前記多端子型電力変換装置が、相互に情報通信を行い、複数変電所に異なる無効電力を供給することにより、送電線各部の電圧を制御することを特徴とする
請求項6から請求項8のいずれか1項に記載の電力システムである。
請求項10に係る発明は送電線の変電所引き込み部や母線に前記多端子型電力変換装置を複数設置し非同期連系することにより、特定の地域の電力を周辺の地域と非同期分離し、電力系統間の電気事故連鎖を防止することを特徴とする請求項6から請求項9のいずれか1項に記載の電力システムである。
請求項11に係る発明は、電力線路上を伝搬する時刻同期用電気波形と、
前記時刻同期用電気波形の持つ意味を伝送する時刻同期用電子情報との
両者を組み合わせることにより複数の前記多端子型電力変換装置間での時刻同期をとることを特徴とする
請求項6から請求項10のいずれか1項に記載の電力システである。
請求項12に係る発明は、前記時刻同期用電気波形が、電流波形であることを特徴とする請求項11に記載の電力システムである。
請求項13に係る発明は、前記時刻同期用電気波形が、電圧波形であることを特徴とする請求項11に記載の電力システムである。
請求項14に係る発明は、前記時刻同期用電気波形と前記時刻同期用電子情報とを組み合わせて、
送電または受電した電力量を、他の電力量と区別して記録することを特徴とする
請求項11から請求項13のいずれか1項に記載の電力システムである。
請求項15に係る発明は、送電線、電力変換器、および電力貯蔵装置で発生する電力損失を合わせて記録し、
電力取引の際に基準となる電力量を一元化することを特徴とする請求項14に記載の電力システムである。
請求項16に係る発明は、請求項6から請求項15のいずれか1項に記載の電力システムを制御するためのプログラムである。
請求項17に係る発明は、請求項1から請求項5のいずれか1項に記載の多端子型電力変換装置に共通して搭載される基本オペレーティングシステムを備えた請求項16に記載のプログラムである。
本発明による効果は請求項ごとに以下のとおりである。
請求項1に係る発明による効果は、以下のとおりである。
まず、多端子型のAC−DC変換器群を、ACs−DC−ACs(sは複数のAC端子を示す)と表す。このシステム構成が、変電所構内に一体型のシステムとして設置されるため、複数の変換器の直流電圧、電流、制御角などの運転状況の把握や、集中的な制御や保護が容易になる。全変換器を一括で起動停止したり、個々に起動・停止したり、変換器間で電力の過不足が生じないようにする協調制御方式、電力の流れが反転する際に協調して制御する潮流反転方式、故障や事故が起きた時に全体を集中保護するシステムなどが一か所で集中管理できるという利点がある。
また、新たな送電線や、直流連系線を設置することなく、既存の交流送電線に多端子型電力変換装置の外部端子を直接接続することで、隣接する複数の電力系統に対し、電圧、周波数、位相が異なる場合でも、任意の大きさの有効電力を能動的に、1つの系統から複数の系統へ同時に送受したり、複数の系統から複数の系統に送受したりできるようになる。
さらに、電力用半導体素子を使用することにより、従来の遮断器に比べて電力の遮断速度が飛躍的に速まる。これにより、太陽光発電や風力発電が電力需要の大部分を賄うような状況になった場合でも、電力系統を細分化し、電力系統間の接続部に本発明の多端子型電力変換装置を使用することにより、連鎖大停電を引き起こす可能性を小さくすることができる。
請求項2に係る発明による効果は、以下のとおりである。
まず、多端子型電力変換装置の各入力端子を、中央演算処理装置で統合制御できることにより、接続先の電力系統間の電力融通を統合管理できることにある。
また、別な電力系統間に設置された多端子型電力変換装置との間でも通信回線を通じて、協調制御を行うことができ、多数の電力系統から構成される電力ネットワーク制御を分散型協調制御することができるようになることである。
さらに、情報処理用アドレスに、動的アドレス付加方式を用いていれば、多端子型電力変換装置の起動・停止・更新・新増設・廃止などの変化に対し、通信制御部が自動認識を行うことにより、自動的に新しいIPアドレスを付加してくれるのでネットワーク技術者の負担が軽減される。他方、静的アドレス付加方式を用いていれば、多端子型電力変換装置の起動・停止・更新・新増設・廃止などの変化に対し、通信制御部が自動認識を行うこと機器の運転状況が把握しやすくなる。各方式の採用により、電力ネットワーク構成の変更や増大に対し柔軟に対応できるようになる。
このほか、二つの電力系統間で電力融通取引が発生したとき、その電力変換関連情報と取引関連情報を関連付けて記録することにより、一つの電力融通行為を他の電力融通行為と明示的に区別することが可能になる。
請求項3に係る発明による効果は、以下のとおりである。
まず、多端子型電力変換装置の任意の二つの入出力端子がそれぞれ接続している二つの電力系統間で同期をとることができた場合、その入出力端子間を直接接続することで、電力変換部分をバイパスすることができ、電力変換損失を削減することができる。
また、停止した電力変換部分を無電圧化して修理や更新を行うことができる。
さらに、同期系統と非同期系統を簡単に切り替えることができるようになり、複数の電力系統の電力ルーティングネットワーク構成を柔軟に変更し、より最適な構成としていくことができる。
請求項4に係る発明による効果は、以下のとおりである。
まず、多端子型電力変換装置の入出力端子の接続先電力系統に事故があって、その端子を緊急停止した場合、接続された電力貯蔵装置が共通母線に必要な電力を供給・吸収することで、共通母線電圧を安定化し、電気的変動を他の入出力端子を及ぼさないようにすることが可能になる。
また、多端子型電力変換装置の共通母線が直流の場合、電力貯蔵装置が一般的に、充電量が少なくなると端子電圧が下がり、充電量が多くなると端子電圧が上がる特性を持っているため、電力貯蔵装置の直流電圧と共通母線の直流電圧が一致するように設計しておくことにより、自動的に電力貯蔵装置の充電状態を一定の値に保つことができる。
さらに、多端子型電力変換装置の共通母線が直流の場合、電力貯蔵装置により母線電圧を維持するように設計することができ、入出力制御端子の制御を共通母線電圧制御と有効電力制御に区別したり、端子ごとに切り替えたりする必要がなくなり、すべて有効電力制御とすることができる。
請求項5に係る発明による効果は、以下のとおりである。
多端子型電力変換装置全体が多数の引き出し可能なキャビネット群で構成される一体型キュービクル構成となっている場合、
まず、入出力端子を停止し、キャビネットを引き出すことにより、引き出した回路を無電圧とすることができ、電気的な作業安全確保をはかることができる。
また、キャビネットを引き出すことにより、点検・ロック・交換などに必要な作業スペースを確保することができ、物理的な作業安全確保をはかることができる。
さらに、引き出すことにより、情報ネットワークも切断されるように設計されている場合は、他の多端子型電力変換器に当該回路が使用不能になったことを、自動的に伝えることができる。
請求項6に係る発明による効果は、以下のとおりである。
まず、多端子型電力変換装置の入出力端子を既存の電力系統に導入していくことによって得られる効果については以下のとおりである。
第1に、巨大化した同期電力系統を、一気に改変するのではなく、本発明の多端子型電力変換装置を段階的に導入し、部分的に非同期接続に代えていくことにより、無理なく細分型電力システムに移行して行ける。
第2に、その際に新たな送電線や、直流連系線を多数建設する必要がなく、既設の交流送電線を利用できる上、後述するようにその稼働率を飛躍的に上げることができる。
第3に、これらにより、細分化した電力系統内の変動をその中で抑制して他の系統に影響を与えないようにできるうえ、必要に応じて、複数の電力系統から計画的電力供給を受けることができる。
第4に、いずれかの電力系統で事故が起きても、その影響が連鎖的に拡大し、広域停電に発展するメカニズムを本発明の多端子型電力変換装置で遮断することができる。
これらにより、大量の再生可能エネルギー電源を導入し、化石燃料依存から脱却するための電力システムの基礎を構築することができる。
また、多端子型電力変換装置と各入出力端子に情報処理用アドレスを有することによって得られる効果については以下のとおりである。
第1に、電力取引要求を、インターネットメールのようにやり取りできるため、中央市場型に限らず、インターネットで実現されているオークション、媒介取引、個別取引などの電力取引が可能になる。
第2に、多端子型電力変換装置により複数の電力系統を経由しながら電力を能動的に、送電元から受電先へ送り届けることができる。
第3に、電力取引要求と融通電力に関する情報は、経由した多端子型電力変換装置の記憶装置に関連付けて記録され、電力損失の把握など含め、電力市場取引の基礎データとすることが可能になる。
第4に、複数の電力取引を組み合わせ、送電量を圧縮する電力圧縮融通や、時間要素と発電要素を電力貯蔵装置でシフト制御することにより、実際に電力を融通しない仮想取引や、他の価値を付加した証書取引、天候予想などを組み合わせた先物取引、これらを組み合わせたデリバティブなどの電力派生型金融商品を生み出すことができる。
さらに、電力ネットワークの発達していない発展途上国において、多端子型電力変換装置を導入していく効果は以下のとおりである。
第1に、発展途上国では、すでに地域単位で、電圧も周波数も異なる分散型電力系統が成立しているので、近隣の電力系統との間に短距離の送電線を設置して多端子型電力変換装置の入出力端子を介して接続すれば相互に非同期な電力融通を開始することができる。
第2に、非同期接続であれば、必要に応じて増設して行くことができ、地域単位の電力系統規模の成長度合いに見合った非同期融通設備の段階的構築が可能になる。
第3に、他の電力系統からの融通ルートが増加するにつれ、自電力系統での電圧・周波数調整のための供給予備電源設備を過剰に保有しなくて済むようになる。
第4に、以上のような発展方法により、発展途上国においては、大規模発電所と長距離送電線による従来型の電源開発ではなく、分散型電力系統の非同期連系ネットワークが構築され、太陽光発電や風力発電のような自然エネルギーを大量導入しても、大規模連鎖停電を起こさない信頼性の高い電力システムを構築できる。
請求項7に係る発明による効果は、以下のとおりである。
通常、送電線は2回線で1組とされ、1回線が遮断された時でも100%の電力が送電できるように、それぞれの送電線が100%定格となっている。従って2回線運用時は、それぞれ50%運用となり、設備利用率は最大50%となる。しかも、同期系統では送電線のインピーダンスの分布により、電力潮流が一義的に定まってしまう。これをここでは受動的電力潮流と呼ぶ。送電線の定格容量は、長期見通しにおける電力潮流分布で想定される受動的な最大潮流をもとに設計するため、定格を満たす潮流が流れることはまれであり、年間を通じた設備の平均稼働率は50%を大幅に下回る。一方、電力変換装置は、能動的に必要な大きさと方向の電力潮流を流すことができる。
したがって、本発明の多端子型電力変換装置の入出力端子を2回線送電線のそれぞれの回線に独立に接続することにより、以下の効果が見込める。
まず、多端子型電力変換装置の入出力端子は独立にかつ能動的に目的とする大きさの電力を送電線に送り込むことができるので設備利用率をそれぞれ最大100%まで上げることができる。
また、独立接続箇所ごとに2回線の入力ができるので、別ルートからそれぞれ100%ずつ、合わせて200%の電力を受け取ることが可能になる。
さらに、電力変換器により能動的に電力を送り込めるので年間を通じた2回線送電設備の平均稼働率を最大200%まで上げることが可能となる。
請求項8に係る発明による効果は、以下のとおりである。
第1に、重畳型電力送電の発明の効果は、他の電力系統に送る電力に上乗せして他の電力系統を経由して目的の変電所に電力を送ることができることにより、目的の電力系統までの直通の送電ルートがなくても必要な電力を送ることができる。
第2に、タイムシェアリング送電の発明による効果は、個々の電力系統に送る電力の総和が電力変換器の容量の大きさに制限される重畳型電力送電に比べて、タイムシェアリング送電の場合には一つ一つの電力を電力変換器の最大定格容量まで大きくすることができる。
第3に、複数ルート送電の発明による効果は、同期系統の場合にはループ電流や横流が発生し、送電ネットワークのインピーダンスによってきまる受動的な電力配分になってしまうのに対し、本発明の多端子型電力変換装置を用いれば、多数の系統から一つの電力系統に送られる電力がそれぞれ非同期であるので、お互いに干渉せずにすべてを受け取ることができ、能動的に電力を送りこめる。
第4に、電力圧縮融通の発明は、複数の電力系統間における多数の電力融通要求の時間的制約や大きさの制約を調整することにより、実際の電力変換量を圧縮することができる。これにより電力システム全体の電力変換ならびに電力融通に伴う電力損失を小さくすることができる。
第5に、仮想電力取引の発明は、電力変換装置を使用することにより、送電線が接続していない電力系統間や、あるいは送電線が接続していても実際の送電を行わない方法で電力を融通できる。これにより証書取引、先物取引やこれらを組み合わせた派生金融商品を生み出すことができる。
請求項9に係る発明による効果は、以下のとおりである。
まず、通常の同期系統では発電機とは別に専用の無効電力供給装置が必要であったが、本発明の多端子型電力変換装置は、一つの装置で有効電力と無効電力の双方を供給することできる。
また、通常の同期系統では、複数のコンデンサーを段階的に投入する無効電力供給装置が主流であったが、本発明の多端子型電力変換装置は、無段階の無効電力供給装置として機能し、系統の電圧維持を精度よく行うことができる。
さらに、本発明の多端子型電力変換装置は、有効電力と無効電力の大きさと方向を、独立に、自在に、供給することができ、電力システムの安定化を図ることができる。
請求項10に係る発明による効果は、以下のとおりである。
まず、巨大な同期系統を多端子型電力変換装置で非同期に分離するので、小さな送電事故を起点とする連鎖型大規模停電を抑制することができる。
また、変動の多い自然エネルギー電源による電圧変動、周波数変動に起因する部分的系統停止を起点とする連鎖型大規模停電を抑制することができる。
さらに、連鎖型大規模停電を抑制できるために自然エネルギー導入量を拡大することができ、よって化石燃料依存度を低減し、温室効果ガスの削減に寄与することができる。
請求項11に係る発明による効果は、以下のとおりである。
第1に、あらかじめ時刻同期用電子情報で、後ほど送られてくる時刻同期用電気波形の持つ意味を伝えておくことにより、該当電気波形を検出した際の動作の準備をしておくための時間的余裕を確保することができる。
第2に、複数の多端子型電力変換器に、協調した時刻同期用電子情報を伝えておくことにより、複数の電力変換器の電力変換動作を同期させて行うことができるため、複数の多端子型電力変換器を経由して電力を遠方に融通することができる。
第3に、電気波形と電子情報の組み合わせによることにより、電気波形はシンプルなものでよくなり、使用可能な電気波形とその実現方法の自由度が高まる。
第4に、電気波形と電子情報の組み合わせによることにより、電子情報の時間的制約が小さくなり、使用可能なデータ回線や通信手段の自由度が高まる。
第5に、電気波形と電子情報の組み合わせによることにより、送電線などの電気回路の健全性を、電子情報で知ることができ、逆に電子情報回路の健全性を電気波形で知ることができ、回路と情報の健全性自己診断が自動化できる。
第6に、電気波形と電子情報の双方とも手法の自由度が高まるため、通信事業者や電力変換器メーカーの事業参入機会が拡大し健全な競争が生まれる。
請求項12に係る発明による効果は、以下のとおりである。
まず、時刻同期用電気波形が電流の場合、多端子型電力変換装置の電力変換器そのもので作り出すことができ、大きさ、位相、タイミングを組み合わせて多様な電気波形を作ることができる。
また、電気波形信号授受の段階で、電力変換器とその制御システムの動作確認を行うことになるので、異常を速やかに検出し、事故を未然に防ぐことができる。
さらに、制御システムを含む電力変換器の電力変換用設備が、そのまま電気波形作成設備を兼ねるため、追加設備が不要となり経済性が高い。
請求項13に係る発明による効果は、以下のとおりである。
第1に、時刻同期用電気波形が電圧の場合、電流リアクトルやACフィルターなどをバイパスする回路を追加すれば、多端子型電力変換装置の電力変換器そのもので作り出すことができる。
第2に、電力変換器で作られた電圧情報は、数kHzから十数kHzの周波数を持ち、電流による電気波形に比べて、情報量を多くすることができる。
第3に、電力変換器以外の設備で時刻同期用電気波形を作る場合は、送電線に電圧波形を付加する装置を追加すれば、より情報量の多い電気波形とすることができる。
第4に、電力変換器以外の設備で時刻同期用電気波形を作る場合は、時刻同期用電子情報も同じ送電線を使うことができ、電子情報用通信路を新たに設置する必要がなくなる。
第5に、送電線が高電圧であるため、電子情報のセキュリティが高まる。
電力変換器以外の設備が電力線搬送通信設備の場合は、送電線に高周波電圧波形を乗せて作成する場合は、設備と制御を共通化できるメリットがある。電力線搬送方式の場合、通信路と電線路を物理的に同じものにすることができ、新しい電線路ができても新たな通信路を施設する必要がなくなるうえ、線路の健全性の確認が自動的に行えるなどのメリットもある。
請求項14に係る発明による効果は、以下のとおりである。
まず、あらゆるユーザーや事業者が、電力の売買に関して銀行通帳のような取引簿や複式簿記のような仕訳を通じ、他の電力取引と区別して、電力の取引を記録することができるようになる。
また、この記録可能性により、電力を識別することができるようになるため、電力そのものの価値に加え、風力発電や太陽光発電、石油火力、原子力など発電ソースの違い、発電事業者の違い、貯蔵事業者の違いから生まれる付加的な価値を有するようになる。
さらに、CO価値、RPS価値、グリーン電力価値、など政策的につくられる価値も有するようになる。
その他に、これらの電力価値、付加的価値、政策的価値に加え、それらの価値から派生するデリバティブ商品、天候や風況予想と組み合わせた保険商品も価値を生み出し、それらの取引市場が生まれる可能性がある。
請求項15に係る発明による効果は、以下のとおりである。
まず、電力量を正確に測定するためのハードウェア市場が生まれ、それを収集し、電力損失を加味して一元管理する認定するソフトウェア市場が生まれる。
また、多様な電力取引を決済し、電力損失を最小化して利益につなげるようなサービスを提供する組織とそのビジネスが生まれる。これは、金融における銀行機能のような形態になる。
さらに、電力取引の市場に加えて、その付加価値を分離して取引する市場が生まれる。これは金融における証券機能のような形態になる。
請求項16に係る発明による効果は、以下のとおりである。
まず、多端子型電力変換装置全体システムを制御するプログラムは、従来のような一品生産主義にとってかわり、標準化が行われ、学習効果を得て、より優れた製品に成長していくことにより、大きな経済効果が生まれる。
また、多端子型電力変換装置の入出力端子、電力変換回路、制御回路、通信回路、計測回路、保護回路のドライバーソフトウェアが開発されることにより、異なる製品でも多端子型電力変換装置に組み込むことができるようになり、多数の事業者の事業参入機会が拡大する。
さらに、複数の多端子型電力変換装置を連系協調して制御するプログラムは、連鎖停電事故防止のようなハード面から、電力取引のようなソフト面まで幅広い内容を取り扱うものとなり、すそ野の広い産業を生み出す。
請求項17に係る発明による効果は、以下のとおりである。
まず、電力システムを制御するプログラムが、多くの事業者が開発することによって、ばらばらなものになりがちであるのに対し、基本オペレーティングシステムを共通にすることにより、全体システムを同じ思想を持って制御できるようになる。
また、基本オペレーティングシステムとドライバーの組み合わせにより、電力用機器から家電製品まで幅広い産業に共通の最低限のオペレーションプロトコルが一元管理できる基盤ができる。
さらに、通信システムを通じて、基本オペレーティングシステムとドライバーのバージョンアップを図り、つねに最新の技術を取り込める仕組みを構築できる。
多端子型電力変換装置の構成を示したものである。(実施例1、2) 事故時保護システムと切り替え手順を示したものである。(実施例1) 接続先電力系統の状態による機器操作システムの操作手順を示したものである。(実施例1) 通信制御システムのLAN/WAN構成を示したものである。(実施例1) 多端子型電力変換装置の簡易図と詳細図の関係を示したものである。(実施例3) バイパス回路と電力貯蔵装置接続回路の構成を示したものである。(実施例3、4) 多端子型電力変換装置の引き出し構成を示したものである。(実施例5) 多端子型電力変換装置の電力系統接続構成を示したものである。(実施例6、7、10) 既設送電線の独立運用方法について示したものである。(実施例7) 既設送電線の独立運用方法について示したものである。(実施例7) 重畳型電力送電について示したものである。(実施例8) タイムシェアリング送電について示したものである。(実施例8) 複数ルート送電について示したものである。(実施例8) 仮想取引融通について示したものである。(実施例8) 仮想取引融通について示したものである。(実施例8) 仮想取引融通について示したものである。(実施例8) 通常の電力系統と電力変換による電力融通の違いを示したものである。(実施例9) 電力変換による電力融通の原理を示したものである。(実施例9) 時刻同期方法の原理を示したものである。(実施例11) 電力取引簿の一例を示したものである。(実施例12) 電力の融通実態を融通パーツに分解した例である。(実施例12)
本実施例は、請求項1に係る発明の実施例について説明する。
図1は、多端子型電力変換装置1の構造を図示したものである。多端子型電力変換装置には遮断器8、断路器9、自励式電力変換器10で構成されるA入出力端子201と遮断器8、断路器9で構成されるB入出力端子202がある。まず、図1では電力線搬送通信端局13を使用した例を示しているが、外部データネットワークを使用する場合は不要となる。電圧・電流・電力測定器16は、電圧・電流により電力を計算するタイプのものと専用の電力測定器を設置するタイプのものとある。また、同測定器16は直流母線に設置するものと、交流側に設置するものとがあり、それぞれタイプが異なる。この測定値は電力の取引にも使用することが可能である。さらに、取引用に別途専用の電力計を用意することも可能である。この電力の記録は専用の記録装置161に保存され、電力取引に使用される。
図1では、共通母線が直流のものを例示しているが、共通母線を交流にする場合もある。マトリックスコンバーターやトライアック等の電力変換回路を用いる形態もある。直流電圧安定化用キャパシター17は並列型共通母線18が直流の場合に使用される。
図1のA入出力端子201の構成は、回路を切断できる機械式断路器9と、必要な遮断容量を持つ遮断器8と、自励式双方向電力変換器10からなり、B入出力端子202の構成は、回路を切断できる機械式断路器9と、必要な遮断容量を持つ遮断器8とだけでなる。多端子型電力変換装置1にはA・B入出力端子の両方があるものと、A入出力端子だけのものと、B入出力端子だけのものの3種類がある。
A入出力端子のうち、少なくとも一つが、その多端子型電力変換装置の設置されている電力系統に接続され、その電力系統の電力を直流に順変換したのち、残りのA入出力端子が接続先の電力系統の電圧・位相・周波数に同期させて電力を逆変換して送出したり、あるいは逆に複数のA入出力端子が電力を順変換して、その電力系統に逆変換して電力を送り込んだりできる。A入出力端子間での流入する電力と送出する電力の総和がゼロとなるよう制御することを特徴としている。
共通直流母線18に、電力貯蔵装置や二次電池を接続することは可能である。このときは、直流母線の入出力電力総和ゼロ制御に、電力貯蔵装置や二次電池の充放電制御を組み込めばよい。電力貯蔵装置や二次電池をA入出力端子の接続先側に置き、A入出力端子の変換器制御で充放電を行くこともできる。
B入出力端子は、連系電線路を介して接続される先の電力系統に設置される、別の多端子型電力変換装置のA入出力端子と対をなす入出力端子である。
一つの多端子型電力変換装置のA入出力端子を複数、自系統に接続すれば自系統が授受する電力容量を増大することができる。
複数の多端子型電力変換装置のA入出力端子をひとつずつ、自系統に接続すれば、自系統が授受する電力容量を増大するとともに接続先電力系統もの増やすことができる。
A入出力端子の自励式電力変換器の順変換側は直流母線で並列接続され、電圧維持のためのコンデンサーを有しており、同電力変換器の逆変換側は接続先が交流電力系統の場合は交流リアクトルもしくは交流変圧器と必要な交流フィルターを有し、接続先が直流電力系統の場合は平滑用コンデンサーを有する。
図1に示すように電力制御システムとして、各A入出力端子の直流電圧・交流電圧・有効電力・無効電力・電流・位相同期・PWMゲート制御からなる端子制御システムと、起動・停止・各入出力端子受送電電力設定ならびに全電力協調制御からなる共通制御システムと、からなる電力制御システムを具備することができる。
多端子型電力変換装置1の各端子は容量の異同を問わない。同一容量であればより制御定数など統一でき、電力分配の制約もないため効率的である。電力の送受については全端子に等しく電力を分配したり、異なる電力を配分したり、連系電線路の使用状況を見ながらタイムシェアリングして間欠的に送ることもできる。
電力取引システムとして、各A入出力端子の電力計16の値と電力融通プロファイルデータとを電力量の取引に使用できるように記録する電力取引用記録装置161を具備することができる。電力量計は、後述するソフトウェアで電力変換器を動作させて、随時自動校正を行うことができる構造となっている。電力量の計測には、制御用に使用する電圧・電流測定デバイスを流用したり、そのデータを用いて計算することもできる。
このように電力変換器を組み合わせ、直流電圧を維持するユニットと電力を制御するユニットを組み合わせ、すべての電力の出入りを、システム内に設置する中央演算処理装置によって統括制御することにより、複数の電力系統に対し、電力を融通分配する多端子型電力変換システムが構築できる。
図2(A)は、事故時保護システムを例示している。以下のようなものを持ち、必要最小限の回路の遮断を行うことによって、最大限の電力融通ルートを確保する電力融通ルート保護回路を具備することが可能である。
図2(A−1)入出力端子過電流保護回路:各入出力端子において個々の設定電流以上に電流が流れた時に、A入出力端子においてはゲートブロックと遮断器開操作、B入出力端子においては遮断器開操作を行う入出力端子保護回路。
図2(A−2)直流母線保護回路:各A入出力端子の直流部に直流電流計を設置し全端子電流総和がゼロでなくなった時に、時限を以て全電力変換器のゲートブロックを行う電力変換器直流母線保護回路。
図2(A−3)多端子型電力変換装置保護回路:電力系統の接続する各入出力端子受電部に電力計を設置し全端子電力総和がゼロでなくなった時に、時限を以て入出力端子全遮断器を開操作する多端子型電力変換装置保護回路。
図2(B−1)、図2(B-2)は、事故時の入出力端子切り替えを例示している。図2(B−1)のように1番上の端子から2番目の端子に電力融通を行っているとき、図2(B-2)のように、一番上の端子が、過電流などを含む事故を起こした時、速やかにこの回路の電力変換器のゲートブロックをかけて電力を停止し、4番目の端子から2番目の端子に電力を供給するように切り替えることができる。さらに、事故のあった入出力端子だけを遮断器8や断路器9で切り離し、他の入出力端子で電力融通を継続することが可能である。事故のあった入出力端子も、復旧次第、運転再開が可能なシステムとなっている。ゲートブロックだけで異常が復旧する場合には、不要な遮断を行わずに初期状態に戻すことが可能である。
図2(A−4)に示すように、制御方法は、入出力端子から流入する電力と流出する電力の総和がゼロになるようにする。これには、直流電圧維持ユニットを除くほかのユニットが、要求を受けた電力を入出力し、電力の過不足部分を直流電圧維持ユニットが補う方式がもっとも一般的である。
また、後述するように電力貯蔵装置を直流母線に接続する場合は、すべてのユニットが要求を受けた電力を入出力し、電力の過不足部分を電力貯蔵装置が補いつつ、直流電圧も維持する制御方式とすることができる。
図3に示すように、機器操作システムとして、入出力端子同期投入時に断路器9を閉じ操作し、接続先の電圧・周波数・位相を測定し、接続先が電圧を有するとき(自立)は、電力変換器10の電圧・周波数・位相を同期させてから遮断器8を閉じる並列同期投入操作(系統連系運転モード)を行い(図3(A))、接続先が無電圧の時には、接続先定格に準拠した電圧・周波数を前記電力変換器10で作成してから、遮断器8を閉じ、接続先に電源を供給する自立運転投入操作回路(自立運転モード)を行う(図3(B))機器操作システムを具備することができる。
本実施例では、請求項2に係る発明の実施例について説明する。
まず図4に基づいて、本発明の通信システムの構成を説明する。多端子型電力変換装置のA入出力端子、B入出力端子に設置され通信端局(データターミナルエンド:DTE)は、電力に関わる情報を取得し、CPUに伝えるとともに、外部データ通信路もしくは電力線搬送通信路をデータ通信路として外部との信号の授受をおこなう。外部データ通信路としてはて、光ケーブル・LANケーブル・メタルケーブル・無線・同軸ケーブルを使用することが可能である。
図4は、多端子型電力変換装置本体とその入出力端子に通信用アドレスを与えてWANを構成し、電力系統内の電気機器の出力を制御するために付加される電力機器制御端末装置にも通信用アドレスを与えてLANを構成し、その両者を接続し、通信を統合するシステムを例示している。これによって、異電力系統電力機器間や、複数電力系統間での通信が可能になり、多端子型電力変換装置の入出力端子に電力融通に関する制御指示を与えることが可能になる電力システムが構築できる。
WANの中に、入出力端子固有のMACアドレス、割り当てられたIPアドレス、サブネットマスク、デフォルトゲートウェイを記述したアドレステーブルを保有するアドレスサーバーを置き、LANの中に、電力機器制御端末装置固有のMACアドレス、割り当てられたIPアドレス、サブネットマスク、デフォルトゲートウェイを記述したアドレステーブルを保有するアドレスサーバーを置けば、TCP/IP通信プロトコルを使用して、多端子型非同期連系装置入出力端子および電力機器制御端末装置の間で通信することを特徴とする電力ネットワークシステムが構築できる。
通信路として電力線搬送通信を用いる場合、連系電線路や電力ケーブルを通信信号の伝送路としてWAN/LANが構築されるので、これにより、通信が可能なルートが電力を送れるルートと物理的に一致する。電線路が断線したり、関連設備を停止したりすると、通信回路も解放されたり停止したりするので、その回路に通信信号は流れない。これにより、複雑な状態確認などなしに、電力システムの最新状態が把握できる。66kV系の送電線では、すでに192kbpsのデジタル式電力線搬送が実用化されている。後述する電力融通信号の情報量は、すべての交信に数キロビット程度しか必要ないため、上記帯域は十分な速度といえる。
多端子型電力変換装置は、インターネットのルーターのように、多端子型電力変換システム相互に情報を交換し、隣接する多端子型電力変換システムやその入出力端子のアドレスを常に把握することができ、必要な電力をバケツリレーのように電力変換しながら遠方の電力系統に送っていくことができ、そのために必要なルーティング情報を常に把握しておくことができる。
これは、従来の電力融通のメカニズムが、中央給電指令所のような共通のセンターにすべての情報を集め、そこからすべての指令が出てくる方式に比べると、分散制御方式とでもいうべきもので大きく異なる概念であり、本発明はそれを実現する具体的手段を提案している。
また、本発明の多端子型電力変換システムは、変電所構内の一区画に隣接して配置されるものとなり、その制御に必要な情報は中央演算処理装置により電力用半導体素子のゲート制御を行い、記憶装置により電力変換関連情報と取引関連情報を関連付けてデジタル記録することを特徴としている。
本実施例では、請求項3に係る発明の実施例について説明する。
図5は、図1で表現した電力変換回路の単純図示化を説明したものである。黒字の三角形でAC/DC変換回路を表す。三角形の頂部がDC側を表し、三角形の底辺がAC側を表す。
図6(A)は、4端子の多端子型電力変換装置を示しているが、端子数はこれに限るものではない。
図6(A)では、4端子のうちの任意の2端子を接続するすべての箇所に遮断器と断路器のバイパス回路を設置した例を示しているが、バイパス回路の形態はこれに限るものではない。
本実施例では請求項4に係る発明の実施例について説明する。
図6(B)に、多端子型電力変換装置において、共通母線が直流である場合、電力貯蔵装置を共通母線に直結した例図6(B−1)と、電力貯蔵装置をDC/DCコンバータを経由して接続した例図6(B−2)について示している。
これらにより共通母線に必要な電力を供給したり、過剰な電力を吸収したりすることができる。
多端子型電力変換器装置は、次のような制御方式を用いることができる。電力貯蔵装置を持たない場合は、入出力端子のいずれかが、共通直流母線の直流電圧維持を行い、他の端子が有効電力制御を行い、総和に過不足名生ずる部分を、直流電圧維持を行っている入出力端子が補う方法が一般的である。
電力貯蔵装置を共通母線に接続する場合、直流電圧維持が電力貯蔵装置によって行われるので、すべての入出力端子が有効電力制御を行うことができる。過不足が生じた部分は電力貯蔵装置が補うことになる。
この場合、電力貯蔵装置の充電量を正確に把握しておかないと過充電・過放電が起こる可能性があるため、充電量測定システムが重要になる。
電力貯蔵装置が二次電池である場合、電池の充電量(SOC)の変化により直流電圧が変化するものが多い。この場合、直流共通母線に接続するには(B−2)のケースとして直流母線の電圧を維持する必要がある。
電力貯蔵装置が二次電池である場合、電池の充電量(SOC)の変化により直流電圧があまり変化しないものもある。この場合、直流共通母線に接続するには(B−1)のケースとして直流母線に直結させることができる。
本実施例では請求項5に係る発明の実施例について説明する。
図7は、多端子型電力変換装置において、各ユニットが引き出し可能なキャビネットに内蔵され、複数のキャビネットが一つのキュービクルに内蔵された構造を持ち、キャビネットを引き出すことによってユニットの入出力端子と共通母線端子が、キュービクル内の入出力端子側接続部と共通母線接続部から切り離すことができる例を示している。このような構造を規格化して、プラグアンドプレイのような脱着認識を行うことができるようにすることにより、電力機器のアドホックな拡張が可能になり、保守活動の容易さを生みだすことを可能にする電力システムを提供できる。
図7では、上から4番目の入出力端子が多端子型電力変換装置1から引き出されている状態を示す。
各入出力端子や電力貯蔵装置ユニットは、差し込み端子で共通母線に接続されている。この構造は、電力系統のメタルクラッドスイッチギアなどで通常使われているものと同じである。
引き出すにあたって、電力変換素子をゲートブロックし、遮断器を開操作して、断路器を開き、電気的衝撃が発生しない状態となってから引き出し可能となるようなインターロック構造が組み込まれている。
断路器は、引き出すことで断路することを兼ねる構造としてもよい。遮断器はゲートブロックで代用することも可能であり、その場合図中の断路器9と遮断器8は不要とすることもできる。
電力貯蔵装置の回路も同様に引き出し可能とすることができる。この場合、コンデンサーなどの付属部品が充電されていることがあるため、無電圧を確認して引き出し可能となるインターロック機構が組み込まれている。
本実施例では請求項6に係る発明の実施例について説明する。
図8は、本発明の多端子型電力変換装置が、当該装置の入出力端子を複数の電力系統に接続して電力融通を行う様子を図示したものである。図8では、5つの電力系統にすべての組み合わせルートを介して接続する図となっているが、すべてが必要であるわけでもなく、ルート一つに対して電力変換素子が一組である必要もない。
図8では、電力変換器のあるA入出力端子201と電力変換器のないB入出力端子202が、対になっているが、これも必ずしもその必要性はない。
電力変換器は系統連係運転も自立運転も可能であるので、このような電力システムにおいて、いずれかの電力系統が全停電に陥った時に、復旧用の電圧源として提供することができる。電力系統内の電源をこの電圧源に系統連系させる形で復旧を進めていくことで事故復旧が容易になる。この際の電源ルートは、本電力システムにおいては複数あるので、事故時の復旧操作に有利である。
何らかの理由により電力系統が、他の電力系統と分離された時、その電力系統の発電と消費がほぼ等しいと、その電力系統が単独で運転継続する単独運転という現象が起きる可能性がある。仮に単独運転になった時でも、後述する時刻同期用電気波形を常時検出していれば、それが検出できなくなったときを持って単独運転になったと判断することが可能である。
これは上流から下流へ電力を流す同期系統の際に上流が停電しているのにもかかわらず、下流に電圧があって、作業員が気付かずに感電する事故があることから問題になる現象である。
本発明が提案する電力システムでは、電力供給ルートが複数あるので、単独運転になりにくく、各電力系統が同期していなくても電力を融通できる非同期連系となっているので、上流にも下流にも電圧がある。作業安全は無電圧確認という原則で実施すればよい。
本実施例では請求項7に係る発明の実施例について説明する。
図9は、偶数回線数を持ち並列に運用されている送電線の各回線に対し多端子型電力変換装置の入出力端子が独立に接続し、回線ごとに独立の電力融通運用を行う例を示したものである。
通常の同期系統における送電線で、6,000ボルトを超える特別高圧系では、2回線で送電されているのが一般的である。送電鉄塔の両側に1回線ずつ設置されて同じ目的地まで敷設されている。送電線の容量を100%とすると、両回線とも50%ずつ負担する並列運用がなされている。しかし、定格容量は、事故時などに片回線のみになった時を想定して、それぞれ100%容量となっている。従って通常送電線利用率は50%以下になる。
図9(A)は、A、B、Cの三つの電力系統に電力を送電している例を示している。この例では、簡単のためにAからCに100%の電力が送電され、2回線ある送電線はともに50%で並列運用されている例になっている。
図9(B)は、本発明の電力システムにおける送電線各回線の独立運用の事例である。送電線2回線のうち上部に描かれているルートは、電力系統Aから電力系統Cへ100%容量で電力を送電することが可能になっている。送電線2回線のうち下部に描かれているルートは、まず電力系統Aから電力系統Bへ100%容量で電力を送電することが可能になっている。電力系統Bから電力系統Cに対してもやはり100%容量で電力を送電することが可能になっている。各電力変換器はその送電容量に見合った定格となっている。
仮に、電力系統Aからそれぞれの送電ルートに100%ずつ送電しているとした場合に、上部ルートが停止した場合、電力系統Cが電力不足となるが、電力系統Bが出力を増加させて電力系統Cへのルートで100%をバックアップすることができる。
同様に、仮に、下部ルートが停止した場合、電力系統Bが電力不足となるが、電力系統Cが出力を増加させて電力系統Bへのルートで100%をバックアップすることができる。
いずれの場合も、バックアップする電力系統の負担は大きいが、二次電池などの普及により短時間のバックアップは現行技術でも十分可能である。この方法は送電線の増強に比べて、可能性が高い。
図10は、4回線の送電線の場合を図示したものである。送電線の両側に6本ずつ電線が通っているものが、この例である。通常は、2回線ずつ行き先が異なることが多いが、そのうち共通のルートを通っている部分について図示したものである。
図10では、電力系統Aから4回戦の送電ルートが電力系統B、C、D、E、Fを経由して行く例を示した。この例では、回線が各送電鉄塔から、各電力系統に引き込まれるところで直接接続しているところを切り離しもしくは遮断器9を設置して開放運用しており、送電線の両端を多端子型電力変換装置に引き込んでいる。多端子型電力変換装置の中では、入出力端子毎に非同期に独立運用がなされている。
回線1では、図10から明らかなように電力系統A−B間、電力系統B−C間、電力系統C−D間、電力系統D−E間、電力系統E−F間、電力系統F−回線1の接続先の電力系統間、の電力融通ルートができたことになる。
回線2では、図10から明らかなように電力系統A−C間、電力系統C−E間、電力系統E−回線2の接続先の電力系統間、の電力融通ルートができたことになる。
回線3では、図10から明らかなように電力系統A−D間、電力系統D−回線3の接続先の電力系統間、の電力融通ルートができたことになる。
回線4では、図10から明らかなように電力系統A−F間、電力系統F−回線4の接続先の電力系統間、の電力融通ルートができたことになる。
電力融通ルートの作り方は、上記の例に限ったものではなく、ケースバイケースによって検討されるべきものである。
これにより作られた電力融通ルートは、非同期連系であるため、任意の大きさの有効電力・無効電力を送ることも受けることもできるルートとなり、電力系統にその余力があれば、送電線の定格容量一杯まで使うことができる。
事故時の変動は、電力変換器の高速なゲートブロックにより、電力系統に与える影響を少なくすることができる。電力の過不足については、電力貯蔵装置などのバックアップが必要となる場合もあるが、送電線の増強より容易な設備投資となる。
このような工夫で得られた電力融通ルートは、図8の電力融通ルートに類似の電力ネットワークを構成する。
本実施例では請求項8に係る発明の実施例について説明する。
この中で、重畳型電力送電、タイムシェアリング送電、複数ルート送電、電力圧縮融通、仮想取引融通の5つの電力融通方法を可能にする電力システムについて考案している。
図11は、多端子型電力変換装置を送電線の変電所引き込み部のそれぞれに設置し、装置間相互に情報通信を行い、同じ送電回線を使用して、複数変電所に異なる電力を同時に送電する重畳型電力送電について説明している。電力系統1、2、3があり、その間にそれぞれ変換器12と変換器23がある。変換器12が単位時間当たりW1とW2の電力を電力系統2に対して送り出し、同じタイミングで変換器23が単位時間当たりW2の電力を電力系統2から電力系統3に向かって送りこむと、電力系統2には差し引きW1の電力が送りこまれたことになる。変換器12と変換器23に、それぞれW1+W2とW2の電力を送りこむよう指示した行き先情報ヘッダーが信号として送られることにより、このような電力融通が可能となる。
図12は、異なる変電所に異なる電力を時間的に分割して送るタイムシェアリング送電について説明している。図8と同様の電力系統と電力変換器を有しているが、変換器12にはまず、単位時間当たりW1の電力を送り出すよう指示した行き先情報ヘッダーが来て、W1を電力系統2に送りだす。このとき変換器23は稼働していないので電力系統3には電力は融通されていない。次いで、電力系統3に単位時間当たりW2の電力を送る行き先情報ヘッダーが変換器12と変換器23の両方に指示を与え、両方の変換器を同時にW2の大きさで稼働させる。これにより電力系統1から電力系統3にW2が送られる。このとき電力系統2は電力が通過するだけである。このようにして、時間を区切って電力を異なる目的に融通することができる。
この方式の利点は、変換器の最大出力で電力を異なる目的地に時間を区切って送れるところにある。これは、通信で言うところのパケットの概念に類似しており、パケット電力ということができる。変換器の最大出力で一定時間の電力量を一単位として取り扱うことができる。これをデジタル電力と呼ぶこともできる。
図13は、複数の異なる送電回路を使用して一つの変電所に異なる電力を同時に送る複数ルート送電について説明している。図11、12と同様に電力系統1、2、3の間に電力変換器12と電力変換器23があるが、それに加えて電力系統1と3との間にも送電ルートがありその間に変換器13がある。この例では、電力変換器12と23の両方にW1の電力を送るよう情報を与え、同時に変換器13には、W2の電力を送るように情報を与える。これらにより、電力系統3には、W1+W2の電力が電力系統1から異なるルートを経由して送られる。
図14は、逆方向の電力送電要求を組み合わせて送電量を圧縮もしくは相殺することで電力変換及び送電ロスを減少させる電力圧縮融通について説明している。図の例では、#1から#4の電力系統に#5を経由してW1(kW)が送られ、#7から#1の電力系統に#5を経由してW1(kW)が送られている。この場合、図から明らかなように#1と#5の間では、W1と−W1の電力が流れることになり、これは相殺されるので#1と#5の電力変換器は稼働しなくてもよいことになる。これにより、電力変換ロスと送電ロスが軽減される。
このような電力融通計画を積極的に組み合わせることによりロスを最小化することができる。各電力系統に電力貯蔵装置があれば、時間をずらしたり出力の大きさを合わせたりして調整することができる。電力エネルギーに、発電ソースのような情報が付加されることにより、このような逆方向の電力取引が発生する場合がある。ある電力系統で、風力発電の電力を必要とし、風力発電を有する電力系統が逆に安価な化石燃料由来の電力を必要とする例など、これに限らず逆方向の取引が発生する場合がある。
図15は、電力貯蔵装置を使った場合の、送電線がつながっていない電力系統間での電力の仮想取引融通について説明している。
図15では電力系統Aと電力系統Bがあり、連系線が接続されていない。電力系統Aは太陽光発電PVのみを持ち、電力系統Bはディーゼル発電DGのみを持つ。それぞれに設置された、電力貯蔵装置(A)と電力貯蔵装置(B)の中の電力貯蔵量が、t0からt2の順番で行われる仮想的電力取引により、電力系統Aの顧客にDG電力を、電力系統Bの顧客にPV電力を販売できる例について説明する。
時刻t0において、電力貯蔵装置AとBはそれぞれPV由来の電力と、DG由来の電力で充電されている。
時刻t1で、電力貯蔵装置間でDGとPVを同量仮想交換する。この取引は債券のような形や、手形や証書や現金決済などの手段を伴うことが望ましい。
時刻t2で、電力系統A内ではDG電力を、電力系統B内ではPV電力を販売することができる。これにより実際に電力が送電されなくても、仮想取引融通を行うことができる。
時刻t1で、DGとPVを同量取引する場合、電力量として同量とする考え方もあれば、金額として同額とする考え方もある。また、同量とせずに差分を別な形で取引することもできる。債権を先物取引したり、デリバティブ商品を作ったりすることもできる。
図16は、両電力系統ともPVとDGと電力貯蔵を持っている場合の仮想取引融通について説明する。
時刻t2までは、上述と同じである。時刻t3では、それぞれDGとPVを持っているのでそれを発電して其々の電力貯蔵装置を充電する。時刻t4で電力系統AのDGと電力系統BのPVを再度仮想交換すれば、時刻t0の状態と同じに戻り、かつそれぞれの顧客に異なる系統の電気を販売することができる。
本実施例では請求項9に係る発明の実施例について説明する。
はじめに、従来型の交流同期系統での電力融通と、本発明の基本原理である電力変換による電力融通との差異について説明する。
図17(A)が従来型の交流同期系統で4つの電力系統(ノード20と呼ぶ)を6つの連系電線路(リンク21と呼ぶ)で結んだものである。連系電線路には線路インダクタンスLのリアクトル成分19がある。図17(B)は、本発明の交流非同期系統で、同様に4つのノードを、多端子型非同期連系装置のA入出力端子とB入出力端子を介して6つのリンクで結んだものである。簡単のために図中には交流フィルターや接続用リアクトルもしくは変圧器を省略してある。
図17(A)の回路網の初期状態は、電圧V、位相0、周波数ω/2πで同期している。この状態からノードcに電力を送るためには、ノードcの電圧を下げるか、位相をθだけ遅らすか、いずれかの方法をとる。通常電圧を下げると、その電力系統内の電力機器に悪影響が出るので位相を遅らす方法をとる。ノードcの位相をθだけ遅らせると、隣接するa、b、dすべてのノードとの間に位相差θが生じる。これにより流れる電流はIdc、Iac、Ibcとなり、これらは同じ大きさの電流となる。電圧が同じなので流入する電力も同じになる。すなわち電力を3つのノードから受け取ることになる。これは、位相を変えずに電圧Vを変えても同じことである。すなわち、交流同期系統では、一つのノードが電力授受を行う際に、必ず隣接するノードに影響を与えてしまうことがわかる。
図17(B)の回路網の初期状態は、電圧Vの大きさは4つのノード間で等しいが、周波数はそれぞれ、ωa/2π、ωb/2π、ωc/2π、ωd/2πと異なっており、同期していない。最初はすべての双方向電力変換器10が停止している状態(黒色の三角形の状態)とする。この状態から、ノードcに電力を送るために、ここではノードaに接続している電力変換器とノードcに接続している電力変換器を動作(白抜きの三角形の状態)させる。これで、図示されているように、ノードaとノードcを結ぶ電力変換器だけが運転しており、他の電力変換器はすべて停止している状態となる。従って、リンクacの間でだけ電力が融通され、他のノードbとノードdは全く影響を受けない。
このときの電圧・電流ベクトルの状態を、図18(A)と(B)にそれぞれ図示した。 図18(A)は、図17(A)に対応した交流同期系統の場合である。ノードa、b、c、dが同じ電圧Vであり、ノードcについてのみ位相をθだけ遅らした時のベクトル図を示している。このとき、リンクac、bc、dc間の線路リアクトル(L)の両端に電圧差ΔVが発生し、ΔV/ωLの大きさの電流I(=Iac=Ibc=Idc)が、ΔVの位相に90度遅れて流れる。図18(A)では、各ベクトルの電圧Vが等しいので、電圧ベクトルの作る三角形は二等辺三角形になり、電流位相はθ/2になる。
I=ΔV/jωL=(V−V・ejθ)/jωL
となり、ノードcに流入する複素電力は、ノードa、b、dの3方向から同じ大きさのI
が流れ込むので以下の通りとなる。
P+jQ=V・3・I (ただし、IはIの共役複素数)
=V・3・V(1−e−jθ)/(−jωL)
=3・(V/ωL)・j(e−jθ−1)
=3・(V/ωL)・sinθ+j・3・(V/ωL)・(cosθ-1)
一方、図18(B)は、図17(B)に対応した交流非同期系統の場合である。ノードaの電力は電力変換器で直流に順変換される。ついでノードcの周波数ωc/2πに同期した交流Vinvに逆変換される。ノードcの複素電圧Vcの大きさをVとし、位相を0としたとき、電力変換器に与えるPWM信号により、複素電圧Vinvは任意の値をとることができる。Vinvの大きさをVxとし、Vcとの位相差をφとしてVcと同期させれば、VinvとVcの間にある変圧器またはリアクトルのリアクタンスの大きさをL
とすると、その両端にΔVの電圧差が発生する。すなわち、Vinv=Vx・e(jωct+φ)、Vc=V・ejωct、ΔV=Vc−Vinvとすれば、
リアクトルLを流れる電流Iは、
I=ΔV/jωL= (V−Vx・e)/ jωL
また、授受できる電力は、
P+jQ=V・I
=V・(V−Vx・e)/(−jωL)
=V・Vx・sinφ/ωL+j・(V−V・Vx・cosφ) /ωL
となる。
以上により、複素電圧Vinvの電圧の大きさVxと、VinvとVcとの位相差φが、任意に作れるので、有効電力と無効電力の授受の大きさ・方向が任意に設計できる。
一般的な同期系統では、発電機が作り出す有効電力と無効電力とには一定の関係があり、お互いに独立して作り出すことはできない。従って、発電機で有効電力を作り周波数を調整するのとは別に、系統にコンデンサー設備を入れて無効電力を作り出すことにより電圧調整を行っている。それに対し、本発明の多端子型電力変換装置は一つの入出力端子で、有効電力と無効電力の両方を任意の大きさで同時に供給できる。
本実施例では請求項10に係る発明の実施例について説明する。
図8を使って説明する。既存の電気系統が図のように#1から#5の電力系統に細分化されている例と考えた場合、その連系部分の多端子型電力変換装置は図8に示すような接続になる。仮に#2電力系統に事故が起こり、停電した場合、#1電力系統は、#1と#2電力系統を接続している電力変換器が、高速に停電を検出して#2電力系統側の電力変換器を停止する。これにより#1電力系統側の電力変換器と#1から#3、#4、#5電力系統に接続している電力変換器も運転継続できる。
#2電力系統が、事故を起こした場合に、#3、#4、#5電力系統は、#2電力系統側に設置された多端子型電力変換装置が高速に停止するため、事故の影響をほとんど受けなくて済む。#2電力系統を経由して他の系統に融通されていた電力は、速やかに他のルートを使った融通に変更される。
本実施例では請求項11、12、13にかかわる実施例について説明する。
これらの発明は、複数の電力系統間に配置された複数の電力変換器において、電力変換器が作り出した電力線路上を伝搬する時刻同期用電気波形と、その電気波形の持つ意味を伝送する時刻同期用電子情報との両者を組み合わせることにより複数電力変換器間の時刻同期をとることを特徴とする時刻同期情報伝達ネットワークシステムである。
この発明により、電力線上に現れる電気波形の持つ比較的少ない情報と、その意味を説明する多量の電子情報とを組み合わせて、複数の電力変換器を同時に同じ大きさで動作させたり、停止させたり、途中で大きさを変更させたりすることが可能になる。
図19は電力系統1、2、3の間で、変換器12と変換器23を同じタイミングで同じ大きさで駆動させることにより、電力系統2には電力を送りこまずに、あるいは電力を受け取らずに、電力系統1から電力系統3に電力を送ることができることを示している。これを時刻同期させるという。
このように、電圧波形に乗せられる情報量は限られているので、少ない情報の持つ意味を、別の外部データ通信路を経由して、あらかじめ送信しておくことにより電力変換器の動作準備を行っておく方法が考えられる。これが本発明の言うところの時刻同期用電気波形と時刻同期用電子情報の組み合わせで時刻同期をとる方法である。
図19では、電圧波形に信号を乗せているが、電圧波形のピークはノイズが多いので、信号を乗せるタイミングを電圧がゼロになるゼロクロスにすることもできる。また、電圧波形に電力線搬送通信信号を乗せることもできる。電圧波形に信号を乗せる代わりに、電流波形に信号をのせることもできる。信号を電力変換器そのものに信号を作らせることもできる。
時刻同期用電気波形は一つとは限らず、いくつかの電気波形の組み合わせとしてそれに意味を持たせることもできる。組み合わせを使えば、時刻同期用電気波形だけで時刻同期をとることもできる。たとえば2つ以上の電気波形を用いて駆動開始の一定サイクル前に予告信号を発生させて準備を行うことや、間隔をあけるサイクル数を変化させてカウントダウン信号とすることによって駆動開始のタイミングを合わせることなどができる。
また、時刻同期用電子情報として、GPS時刻情報を使用したり、電波時計信号を使ったりして、多端子型電力連系装置の時計を同期させて、時刻同期を図る方法もある。この場合時刻同期用電気波形は不要となる。
請求項11に係る発明では、電力変換器が作り出した電力線路上を伝搬する時刻同期用電気波形と、その電気波形の持つ意味を伝送する時刻同期用電子情報との両者を組み合わせることにより複数電力変換器間の時刻同期をとることを特徴としており、以下のような手順で時刻同期をとることができる。
たとえば、送電元の電力変換器において独特の電圧波形、電流波形、有効電力波形、無効電力波形、これらの大きさの変化、位相の変化、位相ベクトルの変化、空間ベクトル軌跡の変化、およびそれらを組み合わせた開始・終了予告信号やスタート・ストップ信号(これらを総称して電気波形プロファイルと呼ぶ)を作って電力回路に送りこむことを、あらかじめ別の情報ルートにより同期させる電力変換器に情報として伝えておく。
情報を受け取った電力変換器は、これらの電気波形プロファイルを、時刻同期用電気波形として速やかに検出できるように検出回路構成やソフトウェア設定を行い、それによって電力変換を同期させる準備を行う。
予定された時刻付近で電力線路にあらかじめ伝えられた予告信号の電気波形プロファイルが検出されると、電力変換器は電力変換に必要な準備を開始し、予告信号からあらかじめ定めた回数の電圧のゼロクロッシングサイクル後に電力変換を開始するなどの方法で複数の電力変換器の時刻同期をとることができる。
また、確認のためにあらかじめ時刻同期用電子情報で定めた直前信号を検出したら、その検出確認直後に電力変換を開始するなどのアルゴリズムを持つこともできる。
電力変換中に、あらかじめ時刻同期用電子情報で定めた電気波形プロファイルを送出して、電力変換の大きさをあらかじめ定めた出力変化率に基づいて増減することもできる。
電力変換の停止に当たっても、電力変換中にあらかじめあらかじめ時刻同期用電子情報で定めた電気波形プロファイルを検出したら、一定ゼロクロッシングサイクル後に一定変化率で電力変換の大きさを小さくしていき、停止信号の検出を持って停止することができる。
あらかじめ、どのような手続きと電気波形プロファイルを使用するかを、時刻同期用電子情報として伝送しておくことにより、電気波形プロファイルを単純なものとしてノイズの影響を小さくすることができる。
このように、光のスピードで伝達できるが情報量の少ない電気波形プロファイルと、別ルートで送る情報量の豊富な時刻同期用電子情報とを組み合わせることにより、離れた場所にある複数の電力変換器の時刻同期をとることが可能となる。電力線搬送通信(PLC)を用いる場合は、電気波形と情報が同一のルートを通過するので、ルートの物理的健全性の確認も併せて行うことができるメリットがある。
請求項12に係る発明は、請求項11に記載の電力システムにおける時刻同期用電気波形が、電流波形を基本とするものであることを特徴とするものである。
BTB型電力変換器は、片方の電力変換器で交流を整流し、直流を作り、ついでもう片方の電力変換器で直流部電圧を、1秒間に数千から数万回オンオフしてその時間間隔を変化させることにより平均して正弦波電圧を作りだす。
この電圧と直列リアクトルを挟んで接続される電力系統との間で周波数を同期させ、若干の位相差を付けることにより、目的の電流を送り込んだり、引き込んだりすることができる。
電力変換器の出力回路にはリアクトルや平滑用のコンデンサーが使われていることが一般的であるので、前述した電圧波形、電流波形、有効電力波形、無効電力波形、これらの大きさの変化、位相ベクトルの変化、空間ベクトル軌跡の変化、およびそれらを組み合わせた開始・終了予告信号やスタート・ストップ信号等の電気波形プロファイルを電気回路に送りこむ場合、電気回路そのものの工夫が必要である場合が多い。しかし、電流波形は、リアクトルの平滑作用のために変化速度は遅くなるが、電力変換器のデジタルシグナルプロセッサーへの信号の工夫だけで実現することができ、特別な電気回路の工夫が不要であるため経済的な手法であるといえる。
電流波形を基本として電流の位相を測定してその位相シフトを検出する方法や3相電流の空間ベクトルの相対位相変化などを組み合わせることにより、より高速で情報量の比較的多い電気波形プロファイルとすることができる。
請求項13に係る発明は、請求項11に記載の電力システムにおいて、時刻同期用電子情報が、電力線路上を伝搬する電力線搬送通信信号であることを特徴とするものである。
時刻同期用電子情報が、時刻同期用電気波形が伝搬される電力線路と同じ線路の上を送信される電力線搬送方式を採用すると、電力線路の断線や接地など物理的障害により、電子情報が送れない場合は返信もないため、電力線路の不具合が容易に発見できる。
時刻同期用電子情報に限らず、時刻同期用電気波形として電力線搬送信号を使用し、電圧のゼロクロスのタイミングに挿入して時刻同期用電気波形プロファイルの代替とすることができる。
本実施例では請求項14、15に係る発明の実施例について説明する。
図20は電力取引を、記述した取引簿の例である。この中で実際の取引には、電力変換や送電に伴う電力損失が発生するため、それを記録する欄が設けられていることが特徴である。またこの取引簿は、仮想取引も記述できる。仮想取引の場合は、入力側と出力側双方に対記載を行うことが特徴であり、現金収入・支出の代わりに債権や手形、証書のような記録を行うことが特徴である。
このような記録方法をとることにより、あらゆるユーザーや事業者が、電力の売買に関して銀行通帳のような取引簿や複式簿記のような仕訳を通じ、電力の取引を記録し、他の電力取引と区別することができるようになる。
この記録は、取引日時、取引量、発電エネルギー源、発電事業者、貯蔵事業者、価格、電力損失、CO価値、RPS価値、グリーン電力価値、など多彩な情報を有する電力として管理される。これにより情報と電力が融合し、電力を識別することができるようになる。
この記録は、第三者公的機関で認定され、取引され決済される。この第三者機関の役割は、金融における銀行のようなものとなる。
図21は、電力量の変化を、最小単位の電力融通パーツに分解した例である。
このパーツは、3種類あり、出力のみのパーツ、入力のみのパーツ、入出力を持ち損失を有するパーツ(融通パーツと呼ぶ)である。
図21では、電力系統1から、出力が出るところを、出力パーツで表し、変換器での損失を融通パーツで表し、送電線での損失を融通パーツで表し、電力系統2への入力を入力パーツで表している。
これらのパーツ表記により、ある電力融通ルートでの電力融通は、単純なパーツの和で表されるので、複数の電力融通が重なり合うケースにおける損失の分担もパーツに分離することで容易に表記できる。
本実施例では請求項16、17に係る発明の実施例について説明する。
まず、多端子型電力変換装置全体システムを制御するプログラムは、入出力端子、電力変換回路、制御回路、通信回路、計測回路、保護回路、記録回路及びさらに詳細な回路のドライバーソフトウェアを認識し、異なるハードウェアであっても多端子型電力変換装置の回路として機能させることができる。
また、複数の多端子型電力変換装置同士でも、連系協調して制御する必要があるため、本発明のプログラムは、連鎖停電事故防止のようなハード面から、電力取引のようなソフト面まで幅広い内容を取り扱う基本オペレーティングシステムを備えたものとなる。
さらに、共通の基本オペレーティングシステムを持つことにより、全体システムを同じ思想を持って制御できるようになる上、外部通信回線を通じて、全装置に対してソフトウェアのバージョンアップを行ったり、バグを修正したり、することが遠隔から分散型に処理できる。
これらにより、最低限のオペレーションプロトコルが一元管理できる基盤ができる。
多端子型電力変換装置用の基本オペレーティングシステムは、すべての装置に共通で搭載されるものとして開発される。
まず、これは、多数の多端子型電力変換装置が連系して協調動作する「電力システム」の共通のソフトウェアとなる。
また、適宜リモートバージョンアップすることにより経済性と利便性上の課題も解決するプログラムを提供するものとなる。
さらに、電力取引の基本となる、電力量計の校正と異常検出手続きは、基本オペレーティングシステムの根幹アルゴリズムとなる。
そのほか、電力損失最小化アルゴリズムも基本オペレーティングシステムの根幹となる。
1 多端子型電力変換装置
3 電力系統
4 電力機器単独系統
5 基幹電力系統
6 電力母線
7 連系電線路
8 遮断器
9 断路器
10 双方向電力変換器
11 電力線搬送バイパス付変圧器
12 電力機器制御端末装置
13 電力線搬送通信端局
14 IPアドレス
15 BTB型電力変換器
16 電圧・電流・電力・電力量測定器
17 キャパシター
18 共通直流母線
19 リアクトル
20 電力系統ノード
21 電力系統リンク
22 送電線
61 発電装置
62 電力貯蔵装置
101 運転状態双方向電力変換器
102 停止状態双方向電力変換器
161 電力取引用記録装置
201 A入出力端子
202 B入出力端子
203 共通直流母線

Claims (17)

  1. 電力を双方向に変換できる電力用半導体素子から構成される3つ以上の単位電力変換ユニットにおいて、
    前記単位電力変換ユニットの共通母線端子を共通母線に接続し、
    外部端子を外部回路に接続し、
    前記外部回路から入力された電力が、前記単位電力変換ユニットを介して変換され、共通母線を通じて逆変換されて外部端子を介して電力を分配供給する多端子型電力変換装置。
  2. 装置全体と各入出力端子のそれぞれに情報処理用アドレスを有し、
    通信端局により外部および相互のデータ通信を行い、
    中央演算処理装置により電力用半導体素子のゲート制御を行い、
    記憶装置により電力変換関連情報と取引関連情報を関連付けて記録することを特徴とする請求項1に記載の多端子型電力変換装置。
  3. 任意の入出力端子同士の同期をとった上で、その間をバイパス接続できる回路を有する、
    請求項1または請求項2のいずれか1項に記載の多端子型電力変換装置。
  4. 電力貯蔵装置を共通母線に接続して電力を供給したり、電力を吸収したり、母線電圧を維持したりすることを特徴とする
    請求項1から請求項3のいずれか1項に記載の多端子型電力変換装置。
  5. 各ユニットが引き出し可能なキャビネットに内蔵され、複数のキャビネットが一つのキュービクルに内蔵された構造を持ち、
    キャビネットを引き出すことによって、ユニットを無電圧状態とすることができることを特徴とする
    請求項1から請求項4のいずれか1項に記載の多端子型電力変換装置。
  6. 請求項1から請求項5のいずれか1項に記載の多端子型電力変換装置の入出力端子を
    複数の電力系統に接続して電力融通を行うことを特徴とする電力システム。
  7. 偶数回線数を持ち並列に運用されている送電線の各回線に対し前記多端子型電力変換装置の入出力端子が独立に接続し、
    回線ごとに独立の電力融通運用を行うことを特徴とする請求項6に記載の電力システム。
  8. 送電線の変電所引き込み部のそれぞれに前記多端子型電力変換装置を設置し、装置間相互に情報通信を行い、同じ送電回線を使用して、
    複数電力系統に異なる電力を同時に送電する重畳型電力送電、
    または異なる電力系統に異なる電力を時間的に分割して送るタイムシェアリング送電、
    または複数の異なる送電回路を使用して一つの電力系統に異なる電力を同時に送る複数ルート送電、
    または逆方向の電力送電要求を組み合わせて送電量を圧縮もしくは相殺する電力圧縮融通、
    または、電力貯蔵装置を介在することにより実際の電力送電を伴わない仮想電力取引、
    を行う制御を特徴とする請求項6または請求項7に記載の電力システム。
  9. 送電線の変電所引き込み部に設置された複数の前記多端子型電力変換装置が、相互に情報通信を行い、
    複数変電所に異なる無効電力を供給することにより、送電線各部の電圧を制御することを特徴とする
    請求項6から請求項8のいずれか1項に記載の電力システム。
  10. 送電線の変電所引き込み部や母線に前記多端子型電力変換装置を複数設置し非同期連系することにより、
    特定の地域の電力を周辺の地域と非同期分離し、
    電力系統間の電気事故連鎖を防止することを特徴とする請求項6から請求項9のいずれか1項に記載の電力システム。
  11. 電力線路上を伝搬する時刻同期用電気波形と、
    前記時刻同期用電気波形の持つ意味を伝送する時刻同期用電子情報との
    両者を組み合わせることにより複数の前記多端子型電力変換装置間での時刻同期をとることを特徴とする
    請求項6から請求項10のいずれか1項に記載の電力システム。
  12. 前記時刻同期用電気波形が、電流波形であることを特徴とする請求項11に記載の電力システム。
  13. 前記時刻同期用電気波形が、電圧波形であることを特徴とする請求項11に記載の電力システム。
  14. 前記時刻同期用電気波形と前記時刻同期用電子情報とを組み合わせて、
    送電または受電した電力量を、他の電力量と区別して記録することを特徴とする
    請求項11から請求項13のいずれか1項に記載の電力システム。
  15. 送電線、電力変換器、および電力貯蔵装置で発生する電力損失を合わせて記録し、
    電力取引の際に基準となる電力量を一元化することを特徴とする請求項14に記載の電力システム。
  16. 請求項6から請求項15のいずれか1項に記載の電力システムを制御するためのプログラム。
  17. 請求項1から請求項5のいずれか1項に記載の多端子型電力変換装置に共通して搭載される
    基本オペレーティングシステムを備えた請求項16に記載のプログラム。
JP2010145715A 2009-09-10 2010-06-27 多端子型電力変換装置と電力システムならびにその制御プログラム Expired - Fee Related JP5612920B2 (ja)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP2009208744A JP4783453B2 (ja) 2009-09-10 2009-09-10 多端子型非同期連系装置、電力機器制御端末装置と電力ネットワークシステムおよびその制御方法
JP2010145715A JP5612920B2 (ja) 2010-06-27 2010-06-27 多端子型電力変換装置と電力システムならびにその制御プログラム
US13/395,407 US9013902B2 (en) 2009-09-10 2010-09-10 Multi-terminal power conversion device, multi-terminal power transfer device, and power network system
PCT/JP2010/005563 WO2011030558A1 (ja) 2009-09-10 2010-09-10 多端子型電力変換装置、多端子型電力授受装置及び電力ネットワークシステム
EP10815158.0A EP2477297A4 (en) 2009-09-10 2010-09-10 POWER CONVERSION DEVICE WITH MULTIPLE CONNECTIONS, POWER TRANSMISSION DEVICE WITH MULTIPLE CONNECTIONS AND ELECTRICITY NETWORK SYSTEM
AU2010293719A AU2010293719C1 (en) 2009-09-10 2010-09-10 Multi-terminal power conversion device, multi-terminal power transfer device, and power network system
CN201080040094.5A CN102484369B (zh) 2009-09-10 2010-09-10 多端子型电力变换装置、多端子型电力受给装置以及电力网络系统
CA2773994A CA2773994A1 (en) 2009-09-10 2010-09-10 Multi-terminal power conversion device, multi-terminal power transfer device, and power network system
JP2011111814A JP5249382B2 (ja) 2009-09-10 2011-05-18 多端子型非同期連系装置、電力機器制御端末装置と電力ネットワークシステムおよびその制御方法
IN2382DEN2012 IN2012DN02382A (ja) 2009-09-10 2012-03-20
JP2014181674A JP2014241721A (ja) 2010-06-27 2014-09-05 多端子型電力変換装置と電力システムならびにその制御プログラム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010145715A JP5612920B2 (ja) 2010-06-27 2010-06-27 多端子型電力変換装置と電力システムならびにその制御プログラム
JP2014181674A JP2014241721A (ja) 2010-06-27 2014-09-05 多端子型電力変換装置と電力システムならびにその制御プログラム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2014181674A Division JP2014241721A (ja) 2010-06-27 2014-09-05 多端子型電力変換装置と電力システムならびにその制御プログラム

Publications (3)

Publication Number Publication Date
JP2012010530A true JP2012010530A (ja) 2012-01-12
JP2012010530A5 JP2012010530A5 (ja) 2013-10-17
JP5612920B2 JP5612920B2 (ja) 2014-10-22

Family

ID=61156896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010145715A Expired - Fee Related JP5612920B2 (ja) 2009-09-10 2010-06-27 多端子型電力変換装置と電力システムならびにその制御プログラム

Country Status (1)

Country Link
JP (1) JP5612920B2 (ja)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013168419A1 (ja) * 2012-05-10 2013-11-14 国立大学法人東京工業大学 情報処理システムおよびエネルギー情報の記録装置
JP2014057438A (ja) * 2012-09-12 2014-03-27 Rikiya Abe 電力託送システム
JP2014079089A (ja) * 2012-10-10 2014-05-01 Rikiya Abe デジタルグリッドルータの制御方法
JP2014117015A (ja) * 2012-12-06 2014-06-26 Univ Of Tokyo 多端子型電力変換装置
WO2014115557A1 (ja) * 2013-01-28 2014-07-31 日本電気株式会社 電力ルータとその運転制御方法、電力ネットワークシステム、プログラムが格納された非一時的なコンピュータ可読媒体
WO2014115569A1 (ja) * 2013-01-28 2014-07-31 日本電気株式会社 電力ルータとその運転制御方法、電力ネットワークシステム、プログラムが格納された非一時的なコンピュータ可読媒体
JP2014241721A (ja) * 2010-06-27 2014-12-25 国立大学法人 東京大学 多端子型電力変換装置と電力システムならびにその制御プログラム
WO2015025375A1 (ja) * 2013-08-21 2015-02-26 株式会社日立製作所 資源取引支援システム及び方法
WO2015033493A1 (ja) * 2013-09-05 2015-03-12 国立大学法人東京大学 電力供給装置、電力供給システム、および電力供給方法
JP2015515244A (ja) * 2012-03-02 2015-05-21 ローパ ディベロップメント ゲーエムベーハー ネットワーク基盤構成要素、複数のネットワーク基盤構成要素を有するネットワークシステム、およびネットワークシステムの使用
WO2015107593A1 (ja) * 2014-01-15 2015-07-23 日本電気株式会社 電力ルータとその制御方法、コンピュータ可読媒体、及び、電力ネットワークシステム
CN104977474A (zh) * 2014-04-14 2015-10-14 Ls产电株式会社 用于测量高压直流电的损耗的系统
JP2016226279A (ja) * 2015-05-29 2016-12-28 国立大学法人 東京大学 電力変換器、電力ネットワークシステムおよびその制御方法
JP2017527240A (ja) * 2015-07-29 2017-09-14 インチョン ユニバーシティ インダストリー アカデミック コーポレーション ファウンデーションIncheon University Industry Academic Cooperation Foundation マイクログリッドのマルチ周波数の制御システムおよび方法
JP2017175918A (ja) * 2012-10-19 2017-09-28 国立大学法人 東京大学 電力ルータ、電力ネットワークシステム、電力融通方法、および電力ルータの運転制御プログラム
JP2018014837A (ja) * 2016-07-21 2018-01-25 株式会社日立製作所 多端子直流送電システム
CN108199376A (zh) * 2018-02-02 2018-06-22 珠海格力电器股份有限公司 能源互联网系统、能源路由转换设备和能量控制方法
US10027248B2 (en) 2016-06-14 2018-07-17 Panasonic Intellectual Property Management Co., Ltd. Electric power conversion circuit including switches and reactors, and electric power conversion device including electric power conversion circuit and control circuit
JP2020502982A (ja) * 2016-12-19 2020-01-23 エレクトリシテ・ドゥ・フランス 配電網のユーザエンティティ間の電気エネルギーの伝送
JP2020145921A (ja) * 2016-09-14 2020-09-10 サード イクエーション リミテッドThird Equation LTD 配電ネットワークおよび処理方法
JP2021010210A (ja) * 2019-06-28 2021-01-28 古河電気工業株式会社 電力ネットワークシステム
JPWO2021090411A1 (ja) * 2019-11-06 2021-05-14
US11356035B2 (en) 2015-11-06 2022-06-07 Panasonic Intellectual Property Management Co., Ltd. Power transmitting apparatus for code modulation and power receiving apparatus for code demodulation
US11984725B2 (en) 2019-09-11 2024-05-14 Hitachi Energy Ltd Flexible interconnection device and method for controlling a flexible interconnection device

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109983650A (zh) 2016-11-08 2019-07-05 松下知识产权经营株式会社 电力传输系统
US11038373B2 (en) 2016-12-09 2021-06-15 Panasonic Intellectual Property Management Co., Ltd. Power transmission system including power transmitter apparatus, power receiver apparatus, or power transmitter and receiver apparatus easily attachable and detachable to/from transmission path
WO2018128109A1 (ja) 2017-01-06 2018-07-12 パナソニックIpマネジメント株式会社 電力伝送システム
JP7033714B2 (ja) 2017-03-03 2022-03-11 パナソニックIpマネジメント株式会社 電力伝送システム
US11201472B2 (en) 2017-03-03 2021-12-14 Panasonic Intellectual Property Management Co., Ltd. Power transmission system capable of preventing power transmission efficiency from degrading due to frequency mismatch and loss of synchronization
US11038355B2 (en) 2017-03-03 2021-06-15 Panasonic Intellectual Property Management Co., Ltd. Power transmission system preventing power transmission efficiency from degrading due to delay, and capable of reducing effects of high frequency noise
JP7002052B2 (ja) 2017-03-03 2022-02-04 パナソニックIpマネジメント株式会社 電力伝送システム

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1198694A (ja) * 1997-09-19 1999-04-09 Hitachi Ltd 電力連系融通指令装置
JP2005223986A (ja) * 2004-02-04 2005-08-18 Toshiba Corp 電力系統の連系システムと電力制御方法
JP2006129585A (ja) * 2004-10-27 2006-05-18 Hitachi Ltd 直流配電システムの制御装置及び変換器制御装置
JP3934518B2 (ja) * 2002-09-25 2007-06-20 東芝三菱電機産業システム株式会社 電力需給システム
JP2007166746A (ja) * 2005-12-12 2007-06-28 Aisin Seiki Co Ltd 分散型電源システム
JP2008061355A (ja) * 2006-08-30 2008-03-13 Toshiba Corp 電力系統の連系システム
JP2008104269A (ja) * 2006-10-18 2008-05-01 Toho Gas Co Ltd マイクログリッドの需給管理システム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1198694A (ja) * 1997-09-19 1999-04-09 Hitachi Ltd 電力連系融通指令装置
JP3934518B2 (ja) * 2002-09-25 2007-06-20 東芝三菱電機産業システム株式会社 電力需給システム
JP2005223986A (ja) * 2004-02-04 2005-08-18 Toshiba Corp 電力系統の連系システムと電力制御方法
JP2006129585A (ja) * 2004-10-27 2006-05-18 Hitachi Ltd 直流配電システムの制御装置及び変換器制御装置
JP2007166746A (ja) * 2005-12-12 2007-06-28 Aisin Seiki Co Ltd 分散型電源システム
JP2008061355A (ja) * 2006-08-30 2008-03-13 Toshiba Corp 電力系統の連系システム
JP2008104269A (ja) * 2006-10-18 2008-05-01 Toho Gas Co Ltd マイクログリッドの需給管理システム

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014241721A (ja) * 2010-06-27 2014-12-25 国立大学法人 東京大学 多端子型電力変換装置と電力システムならびにその制御プログラム
JP2015515244A (ja) * 2012-03-02 2015-05-21 ローパ ディベロップメント ゲーエムベーハー ネットワーク基盤構成要素、複数のネットワーク基盤構成要素を有するネットワークシステム、およびネットワークシステムの使用
WO2013168419A1 (ja) * 2012-05-10 2013-11-14 国立大学法人東京工業大学 情報処理システムおよびエネルギー情報の記録装置
JPWO2013168419A1 (ja) * 2012-05-10 2016-01-07 国立大学法人東京工業大学 情報処理システムおよび記録装置
US10121120B2 (en) 2012-05-10 2018-11-06 Japan Science And Technology Agency Information processing system and recording device
JP2014057438A (ja) * 2012-09-12 2014-03-27 Rikiya Abe 電力託送システム
JP2014079089A (ja) * 2012-10-10 2014-05-01 Rikiya Abe デジタルグリッドルータの制御方法
JP2017175918A (ja) * 2012-10-19 2017-09-28 国立大学法人 東京大学 電力ルータ、電力ネットワークシステム、電力融通方法、および電力ルータの運転制御プログラム
JP2014117015A (ja) * 2012-12-06 2014-06-26 Univ Of Tokyo 多端子型電力変換装置
WO2014115557A1 (ja) * 2013-01-28 2014-07-31 日本電気株式会社 電力ルータとその運転制御方法、電力ネットワークシステム、プログラムが格納された非一時的なコンピュータ可読媒体
US10199926B2 (en) 2013-01-28 2019-02-05 Nec Corporation Power router and operation control method thereof, power network system, and non-transitory computer readable media storing program
WO2014115569A1 (ja) * 2013-01-28 2014-07-31 日本電気株式会社 電力ルータとその運転制御方法、電力ネットワークシステム、プログラムが格納された非一時的なコンピュータ可読媒体
JPWO2014115569A1 (ja) * 2013-01-28 2017-01-26 阿部 力也 電力ルータとその運転制御方法及びプログラム、電力ネットワークシステム、管理装置の制御プログラム
WO2015025375A1 (ja) * 2013-08-21 2015-02-26 株式会社日立製作所 資源取引支援システム及び方法
WO2015033493A1 (ja) * 2013-09-05 2015-03-12 国立大学法人東京大学 電力供給装置、電力供給システム、および電力供給方法
WO2015107593A1 (ja) * 2014-01-15 2015-07-23 日本電気株式会社 電力ルータとその制御方法、コンピュータ可読媒体、及び、電力ネットワークシステム
US9733278B2 (en) 2014-04-14 2017-08-15 Lsis Co., Ltd. System for measuring loss of HVDC
JP2015203702A (ja) * 2014-04-14 2015-11-16 エルエス産電株式会社Lsis Co., Ltd. Hvdcの損傷測定システム
CN104977474A (zh) * 2014-04-14 2015-10-14 Ls产电株式会社 用于测量高压直流电的损耗的系统
JP2016226279A (ja) * 2015-05-29 2016-12-28 国立大学法人 東京大学 電力変換器、電力ネットワークシステムおよびその制御方法
JP2017527240A (ja) * 2015-07-29 2017-09-14 インチョン ユニバーシティ インダストリー アカデミック コーポレーション ファウンデーションIncheon University Industry Academic Cooperation Foundation マイクログリッドのマルチ周波数の制御システムおよび方法
US11356035B2 (en) 2015-11-06 2022-06-07 Panasonic Intellectual Property Management Co., Ltd. Power transmitting apparatus for code modulation and power receiving apparatus for code demodulation
US10027248B2 (en) 2016-06-14 2018-07-17 Panasonic Intellectual Property Management Co., Ltd. Electric power conversion circuit including switches and reactors, and electric power conversion device including electric power conversion circuit and control circuit
JP2018014837A (ja) * 2016-07-21 2018-01-25 株式会社日立製作所 多端子直流送電システム
JP2020145921A (ja) * 2016-09-14 2020-09-10 サード イクエーション リミテッドThird Equation LTD 配電ネットワークおよび処理方法
JP2020502982A (ja) * 2016-12-19 2020-01-23 エレクトリシテ・ドゥ・フランス 配電網のユーザエンティティ間の電気エネルギーの伝送
CN108199376A (zh) * 2018-02-02 2018-06-22 珠海格力电器股份有限公司 能源互联网系统、能源路由转换设备和能量控制方法
CN108199376B (zh) * 2018-02-02 2024-03-26 珠海格力电器股份有限公司 能源互联网系统、能源路由转换设备和能量控制方法
JP2021010210A (ja) * 2019-06-28 2021-01-28 古河電気工業株式会社 電力ネットワークシステム
JP7288356B2 (ja) 2019-06-28 2023-06-07 古河電気工業株式会社 電力ネットワークシステム
US11984725B2 (en) 2019-09-11 2024-05-14 Hitachi Energy Ltd Flexible interconnection device and method for controlling a flexible interconnection device
JP7522826B2 (ja) 2019-09-11 2024-07-25 ヒタチ・エナジー・リミテッド フレキシブル相互接続デバイスおよびフレキシブル相互接続デバイスを制御する方法
JPWO2021090411A1 (ja) * 2019-11-06 2021-05-14
WO2021090411A1 (ja) * 2019-11-06 2021-05-14 日本電信電話株式会社 制御装置、特定装置、制御方法、特定方法及びプログラム
JP7327503B2 (ja) 2019-11-06 2023-08-16 日本電信電話株式会社 制御装置、特定装置、制御方法、特定方法及びプログラム

Also Published As

Publication number Publication date
JP5612920B2 (ja) 2014-10-22

Similar Documents

Publication Publication Date Title
JP5612920B2 (ja) 多端子型電力変換装置と電力システムならびにその制御プログラム
WO2011030558A1 (ja) 多端子型電力変換装置、多端子型電力授受装置及び電力ネットワークシステム
JP5612718B2 (ja) 多端子型非同期連系装置、電力機器制御端末装置と電力ネットワークシステムおよびその制御方法
Brearley et al. A review on issues and approaches for microgrid protection
Emmanuel et al. Evolution of dispatchable photovoltaic system integration with the electric power network for smart grid applications: A review
Alegria et al. CERTS microgrid demonstration with large-scale energy storage and renewable generation
Venkata et al. Microgrid protection: Advancing the state of the art
JP6863564B2 (ja) 電力変換器、電力ネットワークシステムおよびその制御方法
JP2014241721A (ja) 多端子型電力変換装置と電力システムならびにその制御プログラム
JP2007060826A (ja) 電力貯蔵装置の運用システム
Kang et al. Interconnection, integration, and interactive impact analysis of microgrids and distribution systems
Wang et al. From distribution feeder to microgrid: An insight on opportunities and challenges
Häger et al. ICOEUR project results on improving observability and flexibility of large scale transmission systems
Raza et al. SAARC super smart grid: Navigating the future-unleashing the power of an energy-efficient integration of renewable energy resources in the saarc region
Inamdar et al. On benefits and challenges of nested microgrids
Rahmann et al. The role of smart grids in the low carbon emission problem
AU2014202377B2 (en) Multi-terminal power conversion device, multi-terminal power transfer device, and power network system
Gouveia et al. Microgrid Demonstration Projects and Pilot Sites
Akhmatov Experience with voltage control from large offshore windfarms: the Danish case
Bilakanti et al. A novel approach for bump-less connection of microgrids with the grid
Deowan et al. Design and analysis of IoT-based adaptive microgrid system including renewable energy sources for decentralized zones
Gómez-Aleixandre et al. Design and Control of a Hybrid 48v/375v/400Vac AC/DC Microgrid
Shrivastava et al. Black start experience for gas based power plant in Indian grid
Johnson et al. Power grid architecture
Hatziargyriou Microgrids-The future of small grids

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130627

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130627

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20130627

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20130627

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130828

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20140311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140520

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20140613

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140613

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140812

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140905

R150 Certificate of patent or registration of utility model

Ref document number: 5612920

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees