JP2012009965A - Oscillation circuit operation state detecting circuit - Google Patents

Oscillation circuit operation state detecting circuit Download PDF

Info

Publication number
JP2012009965A
JP2012009965A JP2010142125A JP2010142125A JP2012009965A JP 2012009965 A JP2012009965 A JP 2012009965A JP 2010142125 A JP2010142125 A JP 2010142125A JP 2010142125 A JP2010142125 A JP 2010142125A JP 2012009965 A JP2012009965 A JP 2012009965A
Authority
JP
Japan
Prior art keywords
transistors
circuit
power supply
node
transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010142125A
Other languages
Japanese (ja)
Inventor
Kazufumi Naganuma
和文 永沼
Takeshi Inagaki
武 稲垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Japan Radio Co Ltd
Original Assignee
New Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Japan Radio Co Ltd filed Critical New Japan Radio Co Ltd
Priority to JP2010142125A priority Critical patent/JP2012009965A/en
Publication of JP2012009965A publication Critical patent/JP2012009965A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Manipulation Of Pulses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an oscillation circuit operation state detecting circuit for detecting an operation state of an oscillation circuit in a short time.SOLUTION: Between a power supply terminal of VDD and a power supply terminal of VSS, transistors MP1 and MN1 having a node N1 as a common connection point are connected in series and transistors MP2 and MN2 having a node N2 as a common connection point are connected in series. A capacity C1 is connected between the nodes N1 and N2. An input side of an NOR1 is connected to the nodes N1 and N2. A power source I1 is connected to the transistors MP1 and MN1 in series, and a power source I2 is connected to the transistors MP2 and MN2 in series. An OFF-resistance of the transistors MN1 and MN2 is made to be lower than that of the transistors MP1 and MP2. The oscillation circuit operation state detecting circuit turns on the transistors MN1 and MN2 and turns off the transistors MP2 and MN1 when an oscillation clock signal of an oscillation circuit is at a first logic level, and vice versa at a second logic level.

Description

本発明は、発振回路の発振状態を検出する発振回路動作状態検出回路に関する。   The present invention relates to an oscillation circuit operation state detection circuit that detects an oscillation state of an oscillation circuit.

電子機器のクロック信号源として、一般に水晶振動子を用いた発振回路が用いられている。発振回路にて安定なクロック信号が生成されない限りは、電子機器を正常に動作させることができないため、特許文献1に記載のように、発振回路の他に発振状態を監視する付加回路が用いられている。携帯端末などのように、バッテリを電源とする小型の電子機器では、必要なときにのみ電源が投入される間欠動作を実施することにより、低消費電力化が行われる。間欠動作では、頻繁に電源のON/OFFが行われるため、電源ONから機器が安定して使用できる状態となるまでの起動時間は、出来るだけ短くする必要がある。   As a clock signal source for electronic equipment, an oscillation circuit using a crystal resonator is generally used. As long as a stable clock signal is not generated in the oscillation circuit, the electronic device cannot be operated normally. Therefore, as described in Patent Document 1, an additional circuit for monitoring the oscillation state is used in addition to the oscillation circuit. ing. In a small electronic device using a battery as a power source such as a portable terminal, power consumption is reduced by performing an intermittent operation in which the power is turned on only when necessary. In the intermittent operation, the power supply is frequently turned on / off, so the startup time from when the power supply is turned on to when the device can be used stably is required to be as short as possible.

ところで、殆どの電子機器において、電源投入時に最初に起動が必要なのはクロック信号源であり、このために、必要な精度に応じてセラミック振動子や水晶振動子などで構成する様々な発振回路が用いられる。ところが、どのような発振回路においても、電源投入直後は安定な発振出力が得られないため、安定な発振出力が得られるまでの時間(発振起動時間)は、電子機器を待機状態にしておく必要がある。一般に、電子機器の待機状態は、遅延付きのリセット回路や、生成したクロック信号を一定数カウントする方法などで作られる。   By the way, in most electronic devices, it is the clock signal source that needs to be activated first when the power is turned on. For this purpose, various oscillation circuits composed of ceramic resonators and crystal resonators are used according to the required accuracy. It is done. However, in any oscillation circuit, a stable oscillation output cannot be obtained immediately after the power is turned on. Therefore, it is necessary to keep the electronic device in a standby state until a stable oscillation output is obtained (oscillation start time). There is. Generally, a standby state of an electronic device is created by a delay reset circuit, a method of counting a certain number of generated clock signals, or the like.

特開平2−32413号公報JP-A-2-32413

この場合、発振回路を構成する素子のバラツキ、周囲温度、電源電圧などの環境条件により、発振起動時間が変動しても動作を補償しなければならないため、待機状態は常にワーストケースである最も長い時間に設定される。このため、発振起動時間が比較的短くなる条件下でも、設定時間までは待機状態でいる必要があり、待機状態では動作に寄与しない電力が消費されてしまう。   In this case, the standby state is always the worst case because the operation must be compensated for even if the oscillation start-up time fluctuates due to environmental conditions such as variations in elements constituting the oscillation circuit, ambient temperature, and power supply voltage. Set to time. For this reason, even under conditions where the oscillation startup time is relatively short, it is necessary to be in a standby state until the set time, and power that does not contribute to operation is consumed in the standby state.

本発明の目的は、上記問題点を解消した発振回路動作状態検出回路を提供することにある。   An object of the present invention is to provide an oscillation circuit operation state detection circuit that solves the above-mentioned problems.

上記目的を達成するために、請求項1にかかる発明は、高電位電源端子と低電位電源端子の間に、第1のトランジスタが前記高電位電源端子側となり第2のトランジスタが前記低電位電源端子側となるように、第1のノードを共通接続点として直列接続された前記第1および第2のトランジスタと、前記高電位電源端子と前記低電位電源端子の間に、第3のトランジスタが前記高電位電源端子側となり第4のトランジスタが前記低電位電源端子側となるように、第2のノードを共通接続点として直列接続された前記第3および第4のトランジスタと、前記第1のノードと前記第2のノードとの間に接続された容量と、前記第1のノードと前記第2のノードの電位が入力するゲート回路と、前記第1および第2のトランジスタに直列接続された第1の電流源と、前記第3および第4のトランジスタに直列接続された第2の電流源とを備え、前記第2および前記第4のトランジスタのOFF抵抗を前記第1および第3のトランジスタのOFF抵抗よりも小さな値に設定し、且つ前記ゲート回路に論理和回路又は論理和否定回路を使用し、発振回路の発振クロック信号が第1の論理のとき、前記第1および第4のトランジスタをONさせると共に前記第2および第3のトランジスタをOFFさせ、第2の論理のとき、前記第1および第4のトランジスタをOFFさせると共に前記第2および第3のトランジスタをONさせるようにしたことを特徴とする。
請求項2にかかる発明は、高電位電源端子と低電位電源端子の間に、第1のトランジスタが前記高電位電源端子側となり第2のトランジスタが前記低電位電源端子側となるように、第1のノードを共通接続点として直列接続された前記第1および第2のトランジスタと、前記高電位電源端子と前記低電位電源端子の間に、第3のトランジスタが前記高電位電源端子側となり第4のトランジスタが前記低電位電源端子側となるように、第2のノードを共通接続点として直列接続された前記第3および第4のトランジスタと、前記第1のノードと前記第2のノードとの間に接続された容量と、前記第1のノードと前記第2のノードの電位が入力するゲート回路と、前記第1および第2のトランジスタに直列接続された第1の電流源と、前記第3および第4のトランジスタに直列接続された第2の電流源とを備え、前記第1および前記第3のトランジスタのOFF抵抗を前記第2および第4のトランジスタのOFF抵抗よりも小さな値に設定し、且つ前記ゲート回路に論理積回路又は論理積否定回路を使用し、発振回路の発振クロック信号が第1の論理のとき、前記第1および第4のトランジスタをONさせると共に前記第2および第3のトランジスタをOFFさせ、第2の論理のとき、前記第1および第4のトランジスタをOFFさせると共に前記第2および第3のトランジスタをONさせるようにしたことを特徴とする。
In order to achieve the above object, according to a first aspect of the present invention, the first transistor is on the high potential power terminal side and the second transistor is between the high potential power terminal and the low potential power terminal. A third transistor is connected between the first and second transistors connected in series with the first node as a common connection point so as to be on the terminal side, and between the high potential power supply terminal and the low potential power supply terminal. The third and fourth transistors connected in series with a second node as a common connection point so as to be on the high potential power supply terminal side and the fourth transistor on the low potential power supply terminal side; A capacitor connected between a node and the second node, a gate circuit to which the potentials of the first node and the second node are input, and the first and second transistors connected in series 1 current source and a second current source connected in series to the third and fourth transistors, and the OFF resistances of the second and fourth transistors are the same as those of the first and third transistors. When the gate circuit is set to a value smaller than the OFF resistance, and a logical sum circuit or a logical sum negation circuit is used for the gate circuit, and the oscillation clock signal of the oscillation circuit is the first logic, the first and fourth transistors are The second and third transistors are turned off and the second and third transistors are turned off, and the first and fourth transistors are turned off and the second and third transistors are turned on in the second logic. Features.
According to the second aspect of the present invention, the first transistor is on the high potential power terminal side and the second transistor is on the low potential power terminal side between the high potential power terminal and the low potential power terminal. A third transistor on the high-potential power supply terminal side between the first and second transistors connected in series with one node as a common connection point, and between the high-potential power supply terminal and the low-potential power supply terminal The third and fourth transistors connected in series with the second node as a common connection point so that the four transistors are on the low potential power supply terminal side, the first node, and the second node; A capacitor connected between the gate, a gate circuit to which the potentials of the first node and the second node are input, a first current source connected in series to the first and second transistors, 3rd And a second current source connected in series to the fourth transistor, and the OFF resistances of the first and third transistors are set to be smaller than the OFF resistances of the second and fourth transistors. When the gate circuit uses an AND circuit or an AND circuit and the oscillation clock signal of the oscillation circuit is the first logic, the first and fourth transistors are turned on and the second and third transistors are turned on. In the second logic, the first and fourth transistors are turned off and the second and third transistors are turned on.

本発明の発振回路動作状態検出回路によれば、実際に発生するクロック信号によって動作させて発振回路の起動検出を行うので、電子機器の起動時に安定なクロック信号が生成されるまでの待機時間を必要最小限に短縮でき、電子機器の低消費電力化を実現できる。また、クロック信号が停止したときには直ちに発振回路の動作状態の検出が行われなくなるので、発振回路の動作停止も検出できる。   According to the oscillation circuit operation state detection circuit of the present invention, since the activation of the oscillation circuit is detected by being operated by the actually generated clock signal, the waiting time until a stable clock signal is generated at the time of activation of the electronic device is reduced. It can be shortened to the minimum necessary, and low power consumption of electronic devices can be realized. Further, since the operation state of the oscillation circuit is not detected immediately when the clock signal is stopped, the operation stop of the oscillation circuit can also be detected.

本発明の第1の実施例の発振回路動作状態検出回路の回路図である。1 is a circuit diagram of an oscillation circuit operation state detection circuit according to a first embodiment of the present invention. 本発明の第2の実施例の発振回路動作状態検出回路の回路図である。It is a circuit diagram of the oscillation circuit operation state detection circuit of the 2nd Example of this invention. 本発明の第3の実施例の発振回路動作状態検出回路の回路図である。FIG. 6 is a circuit diagram of an oscillation circuit operation state detection circuit according to a third embodiment of the present invention. 図1〜図4の発振回路動作状態検出回路の動作波形図である。FIG. 5 is an operation waveform diagram of the oscillation circuit operation state detection circuit of FIGS.

<第1の実施例>
図1に、本発明の第1の実施例の発振回路動作状態検出回路10を示す。発振回路動作状態検出回路10は、電位VDDの電源端子と電位VSSの電源端子(接地端子)の間にノードN1を共通接続点として直列接続されたPMOSトランジスタMP1およびNMOSトランジスタMN1と、電位VDDの電源端子と電位VSSの電源端子の間にノードN2を共通接続点として直列接続されたPMOSトランジスタMP2およびNMOSトランジスタMN2と、ノードN1,N2の間に接続された容量C1と、ノードN1,N2の電位が入力する論理和否定回路NOR1と、トランジスタMP1,MN1に直列接続された電流源I1と、トランジスタMP2,MN2に直列接続された電流源I2とを備える。
<First embodiment>
FIG. 1 shows an oscillation circuit operation state detection circuit 10 according to the first embodiment of the present invention. The oscillation circuit operating state detection circuit 10 includes a PMOS transistor MP1 and an NMOS transistor MN1 connected in series between a power supply terminal having a potential VDD and a power supply terminal (grounding terminal) having a potential VSS, with the node N1 as a common connection point, and a potential VDD. A PMOS transistor MP2 and an NMOS transistor MN2 connected in series between the power supply terminal and the power supply terminal of the potential VSS with the node N2 as a common connection point, a capacitor C1 connected between the nodes N1 and N2, and the nodes N1 and N2 An OR circuit NOR1 to which a potential is input, a current source I1 connected in series to the transistors MP1 and MN1, and a current source I2 connected in series to the transistors MP2 and MN2 are provided.

トランジスタMP1,MN1のゲートは非反転入力端子INに接続され、トランジスタMP2,MN2のゲートは反転入力端子INBに接続される。非反転入力端子INには発振回路(図示せず)の発振クロック信号が、反転入力端子INBには同発振回路の発振クロック信号の反転信号が入力する。論理和否定回路NOR1は、2つの入力信号が共に入力閾値電圧を超えない場合に出力はハイレベルとなり、入力信号のいずれか一方または双方が入力閾値電圧を超える場合に出力はローレベルとなる。OUTは発振回路動作状態の検出結果を出力する出力端子OUTである。電位VSS側のトランジスタMN1,MN2のOFF抵抗は、電位VDD側のトランジスタMP1,MP2のOFF抵抗よりも小さな値に設定されている。   The gates of the transistors MP1 and MN1 are connected to the non-inverting input terminal IN, and the gates of the transistors MP2 and MN2 are connected to the inverting input terminal INB. An oscillation clock signal of an oscillation circuit (not shown) is input to the non-inverting input terminal IN, and an inverted signal of the oscillation clock signal of the oscillation circuit is input to the inverting input terminal INB. The logical OR circuit NOR1 outputs a high level when both of the two input signals do not exceed the input threshold voltage, and the output becomes a low level when one or both of the input signals exceed the input threshold voltage. OUT is an output terminal OUT that outputs the detection result of the operating state of the oscillation circuit. The OFF resistances of the transistors MN1 and MN2 on the potential VSS side are set to be smaller than the OFF resistances of the transistors MP1 and MP2 on the potential VDD side.

さて、図4の時刻t0では、発振回路は停止しており、非反転入力端子INにハイレベル、反転入力端子INBにローレベルの信号が入力されているとすると、トランジスタMN1,MP2はON状態、トランジスタMP1,MN2はOFF状態となる。この時、電流源I2からトランジスタMP2を経由して容量C1へ電荷が充電されてノードN2の電位が上昇し、ノードN1はトランジスタMN1を経由し、容量C1の電荷が放電され電位VSSとなる。よって、ノードN2の電位が論理和否定回路NOR1の入力閾値電圧を超えるため、出力端子OUTはローレベルとなる。   At time t0 in FIG. 4, when the oscillation circuit is stopped and a high level signal is input to the non-inverting input terminal IN and a low level signal is input to the inverting input terminal INB, the transistors MN1 and MP2 are in the ON state. The transistors MP1 and MN2 are turned off. At this time, a charge is charged from the current source I2 to the capacitor C1 via the transistor MP2 to increase the potential of the node N2, and the node N1 is discharged to the potential C1 via the transistor MN1 to become the potential VSS. Therefore, since the potential of the node N2 exceeds the input threshold voltage of the logical sum negation circuit NOR1, the output terminal OUT is at a low level.

一方、発振回路の停止状態で、上記と逆に、非反転入力端子INにローレベル、反転入力端子INBにハイレベルの信号が入力されている場合は、各トランジスタのON/OFF状態が逆転し、電流源I1からトランジスタMP1を経由して容量C1へ電荷が充電されてノードN1の電位が上昇し、ノードN2はトランジスタMN2を経由し、容量C1の電荷が放電され電位VSSとなる。よって、ノードN1の電位が論理和否定回路NOR1の入力閾値電圧を超えるため、出力端子OUTは同様にローレベルとなる。   On the other hand, when the oscillation circuit is stopped and a low level signal is input to the non-inverting input terminal IN and a high level signal is input to the inverting input terminal INB, the ON / OFF state of each transistor is reversed. Charge is charged from the current source I1 to the capacitor C1 via the transistor MP1 and the potential of the node N1 rises, and the node N2 is discharged via the transistor MN2 to discharge the charge of the capacitor C1 to the potential VSS. Therefore, since the potential of the node N1 exceeds the input threshold voltage of the logical sum negation circuit NOR1, the output terminal OUT is similarly at a low level.

以上により、発振回路が停止している場合には、その停止状態の如何にかかわらず、発振回路動作状態検出回路10の出力端子OUTは常にローレベルとなる。   As described above, when the oscillation circuit is stopped, the output terminal OUT of the oscillation circuit operation state detection circuit 10 is always at the low level regardless of the stop state.

次に、図4の時刻t1では、発振回路は発振を開始し、非反転入力端子IN及び反転入力端子INBに、互いに反転した論理のクロック信号が入力される。この時、各MOSトランジスタのON/OFF状態が交互に入れ替わり、時刻t0で説明した容量C1への充放電がクロック信号の周期で繰り返される。   Next, at time t1 in FIG. 4, the oscillation circuit starts oscillating, and logic clock signals that are inverted to each other are input to the non-inverting input terminal IN and the inverting input terminal INB. At this time, the ON / OFF states of the MOS transistors are alternately switched, and charging / discharging of the capacitor C1 described at time t0 is repeated in the cycle of the clock signal.

トランジスタMN1,MN2のOFF抵抗は、トランジスタMP1,MP2のOFF抵抗よりも小さな値に設定されているので、容量C1の充放電が交互に行われる時は、容量C1への蓄積電荷によるノードN1,N2の平均電位は、トランジスタMN1,MN2のOFF抵抗が小さければ小さいほど、共に電位VSSに限りなく近ずき、論理和否定回路NOR1の入力閾値電圧を超えることはなく、発振回路動作状態検出回路10の出力端子OUTはハイレベルとなる。なお、電流源I1,I2の電流値は、同一が好ましいが、多少の違いはあっても良い。   Since the OFF resistances of the transistors MN1 and MN2 are set to be smaller than the OFF resistances of the transistors MP1 and MP2, when the capacitor C1 is alternately charged and discharged, the nodes N1 and N1 due to the accumulated charges in the capacitor C1 are used. As the OFF resistance of the transistors MN1 and MN2 is smaller, the average potential of N2 is as close as possible to the potential VSS and does not exceed the input threshold voltage of the logical sum negation circuit NOR1, and the oscillation circuit operation state detection circuit The ten output terminals OUT are at a high level. The current values of the current sources I1 and I2 are preferably the same, but there may be some differences.

なお、ノードN1,N2の電位は必ずしも電位VSSに近づける必要はなく、論理和否定回路NOR1の入力閾値電圧よりも低い電圧となるように充放電の時定数を決めれば良い。また、論理和否定回路NOR1の代わりに、論理回路ORを用いても良い。   Note that the potentials of the nodes N1 and N2 are not necessarily close to the potential VSS, and the charge / discharge time constant may be determined so as to be lower than the input threshold voltage of the logical sum negation circuit NOR1. Further, instead of the logical sum negation circuit NOR1, a logical circuit OR may be used.

次に、図4の時刻t2では、発振回路は再度停止し、非反転入力端子IN及び反転入力端子INBは、ハイレベル又はローレベルの信号となる。この時も、時刻t0と同様に、ノードN1,N2の一方の電位が上昇し、論理和否定回路NOR1の入力闇値電圧を超えるので、発振回路動作状態検出回路10の出力端子OUTはローレベルとなり、発振回路が動作停止したことを検出できる。   Next, at time t2 in FIG. 4, the oscillation circuit stops again, and the non-inverting input terminal IN and the inverting input terminal INB become high-level or low-level signals. At this time, similarly to the time t0, the potential of one of the nodes N1 and N2 rises and exceeds the input dark value voltage of the logical sum negation circuit NOR1, so that the output terminal OUT of the oscillation circuit operation state detection circuit 10 is at the low level. Thus, it can be detected that the oscillation circuit has stopped operating.

以上の動作により、発振回路を構成する素子のバラツキ、周囲温度、電源電圧などの環境条件により発振起動時間が変化しても、発振回路の動作状態に連動して確実に発振起動を検出できるため、従来のように待機状態を設定する必要はない。また、発振回路の動作停止状態も検出できる。   With the above operation, even if the oscillation startup time changes due to environmental conditions such as variations in the elements that make up the oscillation circuit, ambient temperature, and power supply voltage, oscillation startup can be reliably detected in conjunction with the operating state of the oscillation circuit. There is no need to set the standby state as in the prior art. Further, the operation stop state of the oscillation circuit can be detected.

<第2の実施例>
図2に、本発明における第2の実施例の発振回路動作状態検出回路20を示す。本実施例は、第1の実施例におけるPMOSトランジスタMP1,MP2をNMOSトランジスタMN3,MN4に置き換え、それぞれのゲート端子を反転入力端子INB、非反転入力端子INに接続したものである。この場合は、電位VSS側のトランジスタMN1,MN2のOFF抵抗を、電位VDD側のトランジスタMN3,MN4のOFF抵抗よりも小さな値に設定する。
<Second embodiment>
FIG. 2 shows an oscillation circuit operation state detection circuit 20 according to the second embodiment of the present invention. In this embodiment, the PMOS transistors MP1 and MP2 in the first embodiment are replaced with NMOS transistors MN3 and MN4, and the respective gate terminals are connected to the inverting input terminal INB and the non-inverting input terminal IN. In this case, the OFF resistances of the transistors MN1 and MN2 on the potential VSS side are set to a value smaller than the OFF resistances of the transistors MN3 and MN4 on the potential VDD side.

一般に、MOSトランジスタの閾値電圧は、製造バラツキ、周囲温度、電源電圧などの環境条件によって変化する。また、半導体集積回路において、回路を、PMOSトランジスタ又はNMOSトランジスタのみで構成した場合には、各MOSトランジスタの閾値電圧の変化は同一方向で相対的となり、回路動作への影響は少ない。   In general, the threshold voltage of a MOS transistor varies depending on environmental conditions such as manufacturing variations, ambient temperature, and power supply voltage. Further, in a semiconductor integrated circuit, when the circuit is composed of only a PMOS transistor or an NMOS transistor, the change in threshold voltage of each MOS transistor becomes relative in the same direction, and the influence on the circuit operation is small.

よって、本実施例の発振回路動作状態検出回路20は、PMOSトランジスタ及びNMOSトランジスタを混載した第1の実施例の発振回路動作状態検出回路10と比較して、製造バラツキ、周囲温度、電源電圧などの環境条件に対して、より安定な動作を実現できる。   Therefore, the oscillation circuit operation state detection circuit 20 of this embodiment is different from the oscillation circuit operation state detection circuit 10 of the first embodiment in which the PMOS transistor and the NMOS transistor are mixedly mounted, manufacturing variation, ambient temperature, power supply voltage, etc. More stable operation can be realized with respect to environmental conditions.

なお、第2の実施例では、NMOSトランジスタのみで構成しているが、PMOSトランジスタのみの構成も可能であり、同様な効果が得られる。この場合も、電位VSS側のトランジスタのOFF抵抗を、電位VDD側のトランジスタのOFF抵抗よりも小さな値に設定する。   In the second embodiment, only the NMOS transistor is used. However, only the PMOS transistor can be used, and the same effect can be obtained. Also in this case, the OFF resistance of the transistor on the potential VSS side is set to a value smaller than the OFF resistance of the transistor on the potential VDD side.

<第3の実施例>
図3に、本発明における第3の実施例の発振回路動作状態検出回路30を示す。本実施例は、図2に示した第2の実施例において、ノードN1,N2と論理和否定回路NOR1の入力側と間に、低域通過フィルタLPF1,LPF2を挿入したものである。
<Third embodiment>
FIG. 3 shows an oscillation circuit operation state detection circuit 30 according to a third embodiment of the present invention. In this embodiment, low pass filters LPF1 and LPF2 are inserted between the nodes N1 and N2 and the input side of the logical sum negation circuit NOR1 in the second embodiment shown in FIG.

第2の実施形態において、図4の時刻t1から時刻t2の期間、すなわち発振回路からクロック信号が供給されている期間は、ノードN1,N2は容量C1の充放電に伴う電位変動が生じる。特に図4の時刻t1直後のノードN1は、電位変動を伴いながらハイレベルからローレベルへと遷移する。この遷移が論理和否定回路NOR1の入力閾値電圧近辺となる時には、電位変動により論理和否定回路NOR1の出力論理が振動する場合がある。 In the second embodiment, during the period from the time t1 to the time t2 in FIG. 4, that is, the period when the clock signal is supplied from the oscillation circuit, the nodes N1 and N2 undergo potential fluctuations due to charging / discharging of the capacitor C1. In particular, the node N1 immediately after time t1 in FIG. 4 transitions from a high level to a low level with potential fluctuation. When this transition is near the input threshold voltage of the logical sum negation circuit NOR1, the output logic of the logical sum negation circuit NOR1 may vibrate due to potential fluctuation.

そこで、本実施例では、ノードN1,N2と論理和否定回路NOR1の間に低域通過フィルタLPF1,LPF2を挿入して、その変動を除去する。これにより、論理和否定回路NOR1の入力閾値電圧付近での不安定な動作を回避することができる。   Therefore, in this embodiment, the low-pass filters LPF1 and LPF2 are inserted between the nodes N1 and N2 and the logical sum negation circuit NOR1 to remove the fluctuations. Thereby, an unstable operation near the input threshold voltage of the logical sum negation circuit NOR1 can be avoided.

<第4の実施例>
なお、第1〜第3の実施例において、電位VDD側のトランジスタ(MP1,MP2、あるいはMN3,MN4)のOFF抵抗を、電位VSS側のトランジスタ(MN1,MN2)のOFF抵抗よりも小さな値に設定すれば、容量C1への蓄積電荷によるノードN1,N2の平均電位は、電位VDD側のトランジスタのOFF抵抗が小さければ小さいほど、共に電位VDDに限りなく上昇する。この場合には、論理和否定回路NOR1の代わりに、論理積(AND)回路あるいは論理積否定(NAND)回路を用いることで、第1〜第3の実施例と同様に発振回路の動作状態を検出することができる。
<Fourth embodiment>
In the first to third embodiments, the OFF resistance of the transistor on the potential VDD side (MP1, MP2, or MN3, MN4) is set smaller than the OFF resistance of the transistor on the potential VSS side (MN1, MN2). If set, the average potential of the nodes N1 and N2 due to the charge accumulated in the capacitor C1 rises as much as the potential VDD as the OFF resistance of the transistor on the potential VDD side is smaller. In this case, by using a logical product (AND) circuit or a logical product negation (NAND) circuit instead of the logical sum negation circuit NOR1, the operating state of the oscillation circuit can be changed in the same manner as in the first to third embodiments. Can be detected.

10,20,30:発振回路動作状態検出回路
I1,I2:電流源
MP1,MP2:PMOSトランジスタ
MN1〜MN4:NMOSトランジスタ
C1:容量
NOR1:論理和否定回路
N1,N2:ノード IN:非反転入力端子 INB:反転入力端子 OUT:出力端子 LPF1,LPF2:低域通過フィルタ
10, 20, 30: Oscillator circuit operation state detection circuit I1, I2: Current sources MP1, MP2: PMOS transistors MN1 to MN4: NMOS transistors C1: Capacitance NOR1: Logical sum negation circuit N1, N2: Node IN: Non-inverting input terminal INB: Inverting input terminal OUT: Output terminal LPF1, LPF2: Low-pass filter

Claims (2)

高電位電源端子と低電位電源端子の間に、第1のトランジスタが前記高電位電源端子側となり第2のトランジスタが前記低電位電源端子側となるように、第1のノードを共通接続点として直列接続された前記第1および第2のトランジスタと、前記高電位電源端子と前記低電位電源端子の間に、第3のトランジスタが前記高電位電源端子側となり第4のトランジスタが前記低電位電源端子側となるように、第2のノードを共通接続点として直列接続された前記第3および第4のトランジスタと、前記第1のノードと前記第2のノードとの間に接続された容量と、前記第1のノードと前記第2のノードの電位が入力するゲート回路と、前記第1および第2のトランジスタに直列接続された第1の電流源と、前記第3および第4のトランジスタに直列接続された第2の電流源とを備え、
前記第2および前記第4のトランジスタのOFF抵抗を前記第1および第3のトランジスタのOFF抵抗よりも小さな値に設定し、且つ前記ゲート回路に論理和回路又は論理和否定回路を使用し、
発振回路の発振クロック信号が第1の論理のとき、前記第1および第4のトランジスタをONさせると共に前記第2および第3のトランジスタをOFFさせ、第2の論理のとき、前記第1および第4のトランジスタをOFFさせると共に前記第2および第3のトランジスタをONさせるようにしたことを特徴とする発振回路動作状態検出回路。
Using the first node as a common connection point between the high potential power supply terminal and the low potential power supply terminal so that the first transistor is on the high potential power supply terminal side and the second transistor is on the low potential power supply terminal side. Between the first and second transistors connected in series, and between the high potential power supply terminal and the low potential power supply terminal, a third transistor is on the high potential power supply terminal side, and a fourth transistor is the low potential power supply. The third and fourth transistors connected in series with the second node as a common connection point so as to be on the terminal side, and a capacitor connected between the first node and the second node; A gate circuit to which the potentials of the first node and the second node are input, a first current source connected in series to the first and second transistors, and the third and fourth transistors. And a second current source columns connected,
The OFF resistance of the second and fourth transistors is set to a value smaller than the OFF resistance of the first and third transistors, and an OR circuit or an OR circuit is used for the gate circuit,
When the oscillation clock signal of the oscillation circuit is at the first logic, the first and fourth transistors are turned on and the second and third transistors are turned off. When the oscillation clock signal is at the second logic, the first and second transistors are turned on. 4. An oscillation circuit operating state detection circuit characterized in that the fourth transistor is turned off and the second and third transistors are turned on.
高電位電源端子と低電位電源端子の間に、第1のトランジスタが前記高電位電源端子側となり第2のトランジスタが前記低電位電源端子側となるように、第1のノードを共通接続点として直列接続された前記第1および第2のトランジスタと、前記高電位電源端子と前記低電位電源端子の間に、第3のトランジスタが前記高電位電源端子側となり第4のトランジスタが前記低電位電源端子側となるように、第2のノードを共通接続点として直列接続された前記第3および第4のトランジスタと、前記第1のノードと前記第2のノードとの間に接続された容量と、前記第1のノードと前記第2のノードの電位が入力するゲート回路と、前記第1および第2のトランジスタに直列接続された第1の電流源と、前記第3および第4のトランジスタに直列接続された第2の電流源とを備え、
前記第1および前記第3のトランジスタのOFF抵抗を前記第2および第4のトランジスタのOFF抵抗よりも小さな値に設定し、且つ前記ゲート回路に論理積回路又は論理積否定回路を使用し、
発振回路の発振クロック信号が第1の論理のとき、前記第1および第4のトランジスタをONさせると共に前記第2および第3のトランジスタをOFFさせ、第2の論理のとき、前記第1および第4のトランジスタをOFFさせると共に前記第2および第3のトランジスタをONさせるようにしたことを特徴とする発振回路動作状態検出回路。
Using the first node as a common connection point between the high potential power supply terminal and the low potential power supply terminal so that the first transistor is on the high potential power supply terminal side and the second transistor is on the low potential power supply terminal side. Between the first and second transistors connected in series, and between the high potential power supply terminal and the low potential power supply terminal, a third transistor is on the high potential power supply terminal side, and a fourth transistor is the low potential power supply. The third and fourth transistors connected in series with the second node as a common connection point so as to be on the terminal side, and a capacitor connected between the first node and the second node; A gate circuit to which the potentials of the first node and the second node are input, a first current source connected in series to the first and second transistors, and the third and fourth transistors. And a second current source columns connected,
The OFF resistance of the first and third transistors is set to a value smaller than the OFF resistance of the second and fourth transistors, and an AND circuit or an AND circuit is used for the gate circuit;
When the oscillation clock signal of the oscillation circuit is at the first logic, the first and fourth transistors are turned on and the second and third transistors are turned off. When the oscillation clock signal is at the second logic, the first and second transistors are turned on. 4. An oscillation circuit operating state detection circuit characterized in that the fourth transistor is turned off and the second and third transistors are turned on.
JP2010142125A 2010-06-23 2010-06-23 Oscillation circuit operation state detecting circuit Withdrawn JP2012009965A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010142125A JP2012009965A (en) 2010-06-23 2010-06-23 Oscillation circuit operation state detecting circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010142125A JP2012009965A (en) 2010-06-23 2010-06-23 Oscillation circuit operation state detecting circuit

Publications (1)

Publication Number Publication Date
JP2012009965A true JP2012009965A (en) 2012-01-12

Family

ID=45540047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010142125A Withdrawn JP2012009965A (en) 2010-06-23 2010-06-23 Oscillation circuit operation state detecting circuit

Country Status (1)

Country Link
JP (1) JP2012009965A (en)

Similar Documents

Publication Publication Date Title
US7057427B2 (en) Power on reset circuit
US20080122548A1 (en) Oscillator using schmitt trigger circuit
US8232847B2 (en) Oscillation circuit
JP6385208B2 (en) Crystal oscillation circuit and electronic clock
US20100277231A1 (en) filtering on current mode daisy chain inputs
CN103368500A (en) Oscillator circuit used for generating clock signal
JP5048355B2 (en) Oscillator circuit
JP2011034545A (en) Voltage regulator circuit
JP2012009965A (en) Oscillation circuit operation state detecting circuit
JP6788850B2 (en) Comparator and oscillator circuit using the comparator
JP2008092271A (en) Delay circuit
US9030246B2 (en) Semiconductor device
JP2012105007A (en) Power-on reset circuit
JP2003283307A (en) Cr oscillation circuit
JP2017208636A (en) Power-on reset circuit
JP4829724B2 (en) Oscillator circuit
JP2011024064A (en) Power-on reset circuit, module including the same, and electronic device
JP2006074210A (en) Reset circuit of semiconductor integrated circuit device
KR100630977B1 (en) Power on reset circuit
JP2011124849A (en) Oscillator and oscillation apparatus
JP5971604B2 (en) Voltage detection circuit
US8072274B2 (en) Oscillation circuit
JP2017118323A (en) Oscillation circuit
JP2010212934A (en) Semiconductor device
JP5536633B2 (en) Edge detection circuit

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130903