JP2012003983A - Manufacturing method of oxide superconducting thin film wire rod - Google Patents

Manufacturing method of oxide superconducting thin film wire rod Download PDF

Info

Publication number
JP2012003983A
JP2012003983A JP2010138436A JP2010138436A JP2012003983A JP 2012003983 A JP2012003983 A JP 2012003983A JP 2010138436 A JP2010138436 A JP 2010138436A JP 2010138436 A JP2010138436 A JP 2010138436A JP 2012003983 A JP2012003983 A JP 2012003983A
Authority
JP
Japan
Prior art keywords
thin film
oxide superconducting
superconducting thin
heat treatment
film wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010138436A
Other languages
Japanese (ja)
Inventor
Kei Hanafusa
慶 花房
Takashi Yamaguchi
高史 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2010138436A priority Critical patent/JP2012003983A/en
Publication of JP2012003983A publication Critical patent/JP2012003983A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of a long oxide superconducting thin film wire rod with steady superconducting characteristics by an MOD method capable of forming an oxide superconducting thin film with uniform characteristics from one end to the other end.SOLUTION: A manufacturing method of an oxide superconducting thin film wire rod by forming an oxide superconducting thin film by a coating thermal decomposition method with an atmosphere furnace using a metal organic compound as a raw material comprises: a coating film making step in which a coating film is made by coating on an oriented metallic substrate with the solution of the metal organic compound; a calcination heat treatment step in which a calcined film is made by thermal decomposition and removal of an organic constituent contained in the metal organic compound of the coating film; and a sintering heat treatment step in which the oxide superconducting thin film is made by crystallization of the calcined film. In the calcination heat treatment step, heating is applied in the atmosphere furnace in which an oxidation catalyst is disposed at an exhaust port.

Description

本発明は、酸化物超電導薄膜線材の製造方法に関し、詳しくは、塗布熱分解法における仮焼熱処理方法に着目した酸化物超電導薄膜線材の製造方法に関する。   The present invention relates to a method for manufacturing an oxide superconducting thin film wire, and more particularly to a method for manufacturing an oxide superconducting thin film wire focusing on a calcining heat treatment method in a coating pyrolysis method.

液体窒素の温度で超電導性を有する高温超電導体の発見以来、ケーブル、限流器、マグネットなどの電力機器への応用を目指した高温超電導線材の開発が活発に行われている。中でも、酸化物超電導体を薄膜化した酸化物超電導薄膜線材が注目されている。   Since the discovery of high-temperature superconductors that have superconductivity at the temperature of liquid nitrogen, development of high-temperature superconducting wires aimed at application to power devices such as cables, current limiters, and magnets has been actively conducted. Among them, an oxide superconducting thin film wire obtained by thinning an oxide superconductor has attracted attention.

酸化物超電導薄膜線材の製造方法の1つに、塗布熱分解法(Metal Organic Deposition、略称:MOD法)がある(特許文献1)。この方法は、金属有機化合物溶液を基板に塗布して塗布膜を作製した後(塗布膜作製工程)、金属有機化合物を例えば500℃付近で熱処理(仮焼)して金属有機化合物の有機成分を熱分解させ(仮焼熱処理工程)、得られた熱分解物(MOD仮焼膜)をさらに高温(例えば800℃付近)で熱処理(本焼)すること(本焼熱処理工程)により、結晶化を行って、例えばREBaCu7−X(RE:希土類元素)で表される酸化物超電導体からなる酸化物超電導薄膜を製造するものであり、主に真空中で製造される気相法(蒸着法、スパッタ法、パルスレーザ蒸着法等)に比較して製造設備が簡単で済み、また大面積や複雑な形状への対応が容易である等の特徴を有している。 One method for producing an oxide superconducting thin film wire is a coating pyrolysis method (Metal Organic Deposition, abbreviated as MOD method) (Patent Document 1). In this method, a metal organic compound solution is applied to a substrate to prepare a coating film (coating film manufacturing process), and then the metal organic compound is heat-treated (calcined) at, for example, around 500 ° C. to remove the organic component of the metal organic compound. Crystallization is achieved by thermally decomposing (calcination heat treatment step) and heat-treating (main firing) the obtained pyrolyzate (MOD calcined film) at a higher temperature (for example, around 800 ° C.) (main heat treatment step). To produce an oxide superconducting thin film made of an oxide superconductor represented by, for example, REBa 2 Cu 3 O 7-X (RE: rare earth element), and is a vapor phase method mainly produced in vacuum Compared with (evaporation method, sputtering method, pulsed laser deposition method, etc.), the manufacturing facility is simple, and it is easy to cope with a large area and a complicated shape.

特開2007−165153号公報JP 2007-165153 A

しかしながら、従来のMOD法を用いて長尺の酸化物超電導薄膜線材を製造した場合、酸化物超電導薄膜線材の始端から終端まで均一な特性の酸化物超電導薄膜が形成されず、超電導特性にバラツキが生じることがあり、問題となっていた。   However, when a long oxide superconducting thin film wire is manufactured using the conventional MOD method, an oxide superconducting thin film having uniform characteristics from the beginning to the end of the oxide superconducting thin film wire is not formed, and the superconducting characteristics vary. It may have occurred and was a problem.

そこで本発明は、MOD法を用いた長尺の酸化物超電導薄膜線材の製造において、始端から終端まで特性の均一な特性の酸化物超電導薄膜を形成することができ、長尺で安定した超電導特性を有する酸化物超電導薄膜線材を製造することができる酸化物超電導薄膜線材の製造方法を提供することを課題とする。   Therefore, the present invention is capable of forming an oxide superconducting thin film having uniform characteristics from the start to the end in the production of a long oxide superconducting thin film wire using the MOD method. It is an object of the present invention to provide a method for producing an oxide superconducting thin film wire capable of producing an oxide superconducting thin film wire having the following.

本発明者は、鋭意検討の結果、以下に示す請求項の発明により上記課題が解決できることを見出し、本発明を完成するに至った。以下、各請求項の発明について説明する。   As a result of intensive studies, the present inventor has found that the above-mentioned problems can be solved by the inventions of the following claims, and has completed the present invention. Hereinafter, the invention of each claim will be described.

請求項1に記載の発明は、
金属有機化合物を原料とし、雰囲気炉を用いて塗布熱分解法により、酸化物超電導薄膜を形成して、酸化物超電導薄膜線材を製造する酸化物超電導薄膜線材の製造方法であって、
配向金属基板上に前記金属有機化合物の溶液を塗布して塗布膜を作製する塗布膜作製工程と、
前記塗布膜の前記金属有機化合物に含有される有機成分を熱分解、除去して、仮焼膜を作製する仮焼熱処理工程と、
前記仮焼膜を結晶化させて、酸化物超電導薄膜を作製する本焼熱処理工程と
を備えており、
前記仮焼熱処理工程が、排気口に酸化触媒が配置された雰囲気炉内で加熱を行う熱処理工程である
ことを特徴とする酸化物超電導薄膜線材の製造方法である。
The invention described in claim 1
Using a metal organic compound as a raw material, an oxide superconducting thin film wire is produced by forming an oxide superconducting thin film by a coating pyrolysis method using an atmospheric furnace, and a method for producing an oxide superconducting thin film wire,
A coating film production step of producing a coating film by applying a solution of the metal organic compound on an oriented metal substrate;
A calcining heat treatment step for producing a calcined film by thermally decomposing and removing an organic component contained in the metal organic compound of the coating film;
A calcination heat treatment step of crystallizing the calcined film to produce an oxide superconducting thin film,
The method for producing an oxide superconducting thin film wire, wherein the calcining heat treatment step is a heat treatment step of heating in an atmosphere furnace in which an oxidation catalyst is disposed at an exhaust port.

本発明者は、長尺の酸化物超電導薄膜線材において超電導特性のバラツキが生じる原因につき、種々の実験と検討を行った。その結果、従来のMOD法においては、仮焼熱処理工程に問題があることが分かった。   The present inventor has conducted various experiments and studies on the cause of variation in superconducting characteristics in a long oxide superconducting thin film wire. As a result, it has been found that the conventional MOD method has a problem in the calcination heat treatment step.

これを図2を用いて説明する。図2は、従来のMOD法における仮焼熱処理工程の概要を示す図である。図2に示すように、表面に原料溶液の塗布膜が作製された長尺の配向金属基板1が、矢印10に示すように、雰囲気炉2(電気炉)に長手方向に挿通され、所定の速度で搬送されている。雰囲気炉2内は、ガス導入口8より導入された窒素および酸素の混合ガス4の雰囲気下、仮焼熱処理温度(約500℃)に加熱されているため、塗布膜中の溶剤や金属有機化合物に含有される有機成分が、炉内で揮散、熱分解して、塗布膜から脱離する。脱離した溶剤や有機成分は熱によりガス(水HOや二酸化炭素CO)に分解されて、矢印7に示すように、排気口3へ送られ、排気口3から矢印9に示すように、外部へ排出される。 This will be described with reference to FIG. FIG. 2 is a diagram showing an outline of a calcination heat treatment step in the conventional MOD method. As shown in FIG. 2, a long oriented metal substrate 1 having a coating film of a raw material solution formed on the surface thereof is inserted in an atmosphere furnace 2 (electric furnace) in the longitudinal direction as indicated by an arrow 10, Transported at speed. Since the atmosphere furnace 2 is heated to a calcining heat treatment temperature (about 500 ° C.) in an atmosphere of a mixed gas 4 of nitrogen and oxygen introduced from the gas inlet 8, the solvent and the metal organic compound in the coating film The organic component contained in is volatilized and thermally decomposed in the furnace and desorbed from the coating film. The desorbed solvent and organic components are decomposed into gas (water H 2 O and carbon dioxide CO 2 ) by heat and sent to the exhaust port 3 as indicated by an arrow 7, and from the exhaust port 3 as indicated by an arrow 9. To the outside.

しかし、このとき、脱離した溶剤や有機成分の一部が分解されず、堆積物6として排気口3の接続部に付着、堆積することがあり、その程度によっては、排気口3を詰まらせる恐れがある。この結果、雰囲気炉2内の雰囲気が汚染され雰囲気状態が変化するため、形成される仮焼膜の特性が変化して、均一な特性の仮焼膜の形成が困難となる。   However, at this time, a part of the desorbed solvent or organic component is not decomposed and may be deposited and deposited as a deposit 6 on the connection portion of the exhaust port 3. Depending on the degree, the exhaust port 3 is clogged. There is a fear. As a result, since the atmosphere in the atmosphere furnace 2 is contaminated and the atmosphere state changes, the characteristics of the calcined film to be formed change, and it becomes difficult to form a calcined film with uniform characteristics.

また、堆積物6が排気口3から配向金属基板1の上に落下して付着する恐れがあり、均一な特性の仮焼膜の形成に悪影響を与える。   In addition, the deposit 6 may drop and adhere to the oriented metal substrate 1 from the exhaust port 3, which adversely affects the formation of a calcined film having uniform characteristics.

このため、堆積物6に汚染された部分を清掃する必要があり、生産性の低下を招く。   For this reason, it is necessary to clean the part contaminated by the deposit 6, resulting in a decrease in productivity.

そして、このような仮焼膜を用いて、本焼熱処理を行った場合、均一な特性の酸化物超電導薄膜を形成することができず、超電導特性にバラツキが生じる。   And when this calcination heat treatment is performed using such a calcined film, an oxide superconducting thin film having uniform characteristics cannot be formed, and the superconducting characteristics vary.

そこで、本請求項の発明においては、排気口に酸化触媒が配置された雰囲気炉を用いて仮焼熱処理を行っている。このため、脱離した溶剤や有機成分が完全に酸化分解されて水や二酸化炭素となるため、排気口3を詰まらせることがなく、雰囲気炉2内の雰囲気が汚染されない。また、堆積物が配向金属基板上に落下することもない。この結果、安定した雰囲気で仮焼熱処理を行うことができ、始端から終端まで長尺に亘って均一な特性の仮焼膜が形成され、その後の本焼熱処理において、始端から終端まで均一な特性の酸化物超電導薄膜が形成される。また、堆積物の除去作業や雰囲気炉内に発生した汚染部の清掃が不要となるため、生産性が向上する。   Therefore, in the invention of this claim, the calcination heat treatment is performed using an atmospheric furnace in which an oxidation catalyst is disposed at the exhaust port. For this reason, the desorbed solvent and organic components are completely oxidized and decomposed into water and carbon dioxide, so that the exhaust port 3 is not clogged and the atmosphere in the atmosphere furnace 2 is not polluted. Moreover, the deposit does not fall on the oriented metal substrate. As a result, the calcining heat treatment can be performed in a stable atmosphere, and a calcined film having uniform characteristics is formed over a long length from the start end to the end, and in the subsequent main annealing heat treatment, uniform characteristics from the start end to the end. An oxide superconducting thin film is formed. Moreover, productivity is improved because it is not necessary to remove deposits and to clean contaminated parts generated in the atmosphere furnace.

請求項2に記載の発明は、
前記酸化触媒が、白金触媒であることを特徴とする請求項1に記載の酸化物超電導薄膜線材の製造方法である。
The invention described in claim 2
The method for producing an oxide superconducting thin film wire according to claim 1, wherein the oxidation catalyst is a platinum catalyst.

酸化触媒としては、仮焼熱処理の温度範囲で効果的に脱離した溶剤や有機成分を酸化分解できる触媒であれば、特に限定されず、具体的には、白金触媒、パラジウム触媒、マンガン触媒などを挙げることができる。これらの内でも、白金触媒は、耐熱性や触媒活性に優れているため好ましい。   The oxidation catalyst is not particularly limited as long as it is a catalyst capable of oxidatively decomposing a solvent and organic components that are effectively desorbed in the temperature range of the calcining heat treatment. Can be mentioned. Among these, a platinum catalyst is preferable because it is excellent in heat resistance and catalytic activity.

請求項3に記載の発明は、
前記酸化物超電導薄膜線材が、YBaCu7−X酸化物超電導薄膜線材であることを特徴とする請求項1または請求項2に記載の酸化物超電導薄膜線材の製造方法である。
The invention according to claim 3
3. The method for producing an oxide superconducting thin film wire according to claim 1, wherein the oxide superconducting thin film wire is a YBa 2 Cu 3 O 7-X oxide superconducting thin film wire. 4.

YBaCu7−X酸化物超電導薄膜線材の製造において、上記した効果が顕著に発揮される。 In the production of a YBa 2 Cu 3 O 7-X oxide superconducting thin film wire, the above-described effects are remarkably exhibited.

本発明によれば、MOD法を用いた長尺の酸化物超電導薄膜線材の製造において、始端から終端まで均一な特性の酸化物超電導薄膜を形成することができ、長尺で安定した超電導特性を有する酸化物超電導薄膜線材を製造することができる。   According to the present invention, in the production of a long oxide superconducting thin film wire using the MOD method, it is possible to form an oxide superconducting thin film having uniform characteristics from the start to the end, and to provide a long and stable superconducting characteristic. An oxide superconducting thin film wire can be produced.

本発明の実施の形態の酸化物超電導薄膜線材の製造方法における仮焼熱処理工程の概要を示す図である。It is a figure which shows the outline | summary of the calcination heat treatment process in the manufacturing method of the oxide superconducting thin film wire of embodiment of this invention. 従来のMOD法における仮焼熱処理工程の概要を示す図である。It is a figure which shows the outline | summary of the calcination heat treatment process in the conventional MOD method.

以下、本発明を実施の形態に基づいて説明する。   Hereinafter, the present invention will be described based on embodiments.

1.酸化物超電導薄膜線材の製造方法
(1)酸化物超電導薄膜線材の製造方法に用いられる雰囲気炉
図1は、本発明の実施の形態の酸化物超電導薄膜線材の製造方法における仮焼熱処理工程の概要を示す図である。図1に示すように、表面に金属有機化合物からなる原料溶液の塗布膜が作製された長尺の配向金属基板1が、矢印10に示すように、雰囲気炉2(電気炉)に長手方向に挿通され、所定の速度で搬送されている。
1. Manufacturing Method of Oxide Superconducting Thin Film Wire (1) Atmospheric Furnace Used in Manufacturing Method of Oxide Superconducting Thin Film Wire FIG. 1 is an outline of a calcination heat treatment step in the manufacturing method of an oxide superconducting thin film wire according to an embodiment of the present invention. FIG. As shown in FIG. 1, a long oriented metal substrate 1 having a coating film of a raw material solution made of a metal organic compound on its surface is placed longitudinally in an atmosphere furnace 2 (electric furnace) as indicated by an arrow 10. It is inserted and transported at a predetermined speed.

雰囲気炉2は、直径10〜20cm、長さ4mの円筒形であり、SUS製で筒状の排気口3と、ガス導入口8とを備えている。本実施の形態では、さらに排気口3の入口付近に白金触媒5(白金坦持フィルター)を配置している。そして、ガス導入口8より導入される窒素および酸素の混合ガス4の雰囲気下、配向金属基板1を熱処理温度(約500℃)に加熱する。   The atmosphere furnace 2 has a cylindrical shape with a diameter of 10 to 20 cm and a length of 4 m, and includes a cylindrical exhaust port 3 and a gas inlet port 8 made of SUS. In the present embodiment, a platinum catalyst 5 (platinum carrying filter) is further arranged near the inlet of the exhaust port 3. The oriented metal substrate 1 is heated to a heat treatment temperature (about 500 ° C.) in an atmosphere of a mixed gas 4 of nitrogen and oxygen introduced from the gas inlet 8.

このとき脱離した溶剤や有機成分が分解された分解ガスや、分解しきれなかった溶剤や有機成分が、矢印7に示すように、排気口3へ送られるが、この分解しきれなかった溶剤や有機成分も、排気口3の接続部に付着、堆積することなく、白金触媒5により、完全に酸化分解されて、水や二酸化炭素となり、前記した分解ガスと共に、排気口3を経由して矢印9に示すように、外部へ排出される。   At this time, the desorbed solvent and the decomposed gas obtained by decomposing the organic components, and the solvent and organic components that cannot be decomposed are sent to the exhaust port 3 as shown by the arrow 7. And organic components are not completely deposited and deposited on the connection part of the exhaust port 3, but are completely oxidized and decomposed by the platinum catalyst 5 into water and carbon dioxide. As shown by the arrow 9, it is discharged to the outside.

これにより、雰囲気炉2内の雰囲気が汚染されることなく、また、堆積物が配向金属基板上に落下することもなく、始端から終端まで長尺に亘って均一な特性の仮焼膜が形成される。そして、この仮焼膜を本焼熱処理することにより、始端から終端まで均一な特性の酸化物超電導薄膜が形成され、超電導特性にバラツキがない長尺の酸化物超電導薄膜線材を得ることができる。   As a result, the atmosphere in the atmosphere furnace 2 is not polluted, and deposits do not fall on the oriented metal substrate, so that a calcined film having uniform characteristics can be formed from the start to the end. Is done. Then, by subjecting the calcined film to a main annealing heat treatment, an oxide superconducting thin film having uniform characteristics from the start to the end is formed, and a long oxide superconducting thin film wire having no variation in superconducting characteristics can be obtained.

2.実施例
(1)MOD溶液の作製
Y、Ba、Cuの各アセチルアセトナート塩から出発してY:Ba:Cu=1:2:3の比率(モル比)で合成し、アルコールを溶媒としたMOD溶液を作製した。なおMOD溶液のY3+、Ba2+、Cu2+を合わせた総カチオン濃度を1mol/Lとした。
2. Example (1) Preparation of MOD Solution Starting from each acetylacetonate salt of Y, Ba, and Cu, synthesis was performed at a ratio (molar ratio) of Y: Ba: Cu = 1: 2: 3, and alcohol was used as a solvent. A MOD solution was prepared. The total cation concentration of Y 3+ , Ba 2+ and Cu 2+ in the MOD solution was 1 mol / L.

(2)塗布膜の作製
厚さ100μm×幅3cm×長さ200mの配向金属基板の表面上に、順にCeO、YSZ、CeOの中間層(総厚:1〜2μm)を設けることにより、配向金属基板を作製した。この配向金属基板の上にMOD溶液を塗布した後、乾燥させて、厚さ1.8μmの塗布膜を作製した。
(2) Production of coating film By providing an intermediate layer (total thickness: 1 to 2 μm) of CeO 2 , YSZ and CeO 2 in order on the surface of an oriented metal substrate having a thickness of 100 μm × width 3 cm × length 200 m, An oriented metal substrate was produced. A MOD solution was applied on the oriented metal substrate and then dried to prepare a coating film having a thickness of 1.8 μm.

(3)仮焼熱処理
直径20cm、長さ4mの円筒形であり、SUS製の筒状排気口と、ガス導入口とを備えた雰囲気炉を用い、雰囲気炉内に、NとOの混合ガス(N:O=3:1)を供給しながら、500℃で2時間加熱し、厚さ0.4μmの仮焼膜を作製した。なお、排気口には、外径3mm、長さ100mmの白金触媒を配置し、雰囲気炉の排気口から排出される排気ガス量は、10L/minに設定した。
(3) Calcining heat treatment A cylindrical shape having a diameter of 20 cm and a length of 4 m, and using an atmosphere furnace provided with a SUS cylindrical exhaust port and a gas inlet, N 2 and O 2 are contained in the atmosphere furnace. While supplying a mixed gas (N 2 : O 2 = 3: 1), the mixture was heated at 500 ° C. for 2 hours to produce a calcined film having a thickness of 0.4 μm. Note that a platinum catalyst having an outer diameter of 3 mm and a length of 100 mm was disposed at the exhaust port, and the amount of exhaust gas discharged from the exhaust port of the atmosphere furnace was set to 10 L / min.

(4)本焼熱処理
作製された仮焼膜を、さらに、800℃で1.5時間加熱し、厚さ300nmのYBaCu7−δ酸化物超電導薄膜を作製し、長尺の酸化物超電導薄膜線材を得た。
(4) Main calcination heat treatment The produced calcined film was further heated at 800 ° C. for 1.5 hours to produce a Y 1 Ba 2 Cu 3 O 7-δ oxide superconducting thin film having a thickness of 300 nm. An oxide superconducting thin film wire was obtained.

(比較例)
雰囲気炉に酸化触媒を配置しない他は、実施例と同様にして、長尺の酸化物超電導薄膜線材を得た。
(Comparative example)
A long oxide superconducting thin film wire was obtained in the same manner as in the example except that the oxidation catalyst was not disposed in the atmospheric furnace.

(雰囲気炉内および仮焼膜の観察)
実施例、比較例において、仮焼膜の形成が完了した後、雰囲気炉内を観察して異常の有無を確認すると共に、作製された仮焼膜の状態を観察した。
(Observation in atmosphere furnace and calcined film)
In the examples and comparative examples, after the formation of the calcined film was completed, the inside of the atmosphere furnace was observed to confirm the presence or absence of abnormality, and the state of the produced calcined film was observed.

その結果、実施例の場合には、排気口の周辺部を含め、雰囲気炉内に異常は認められず、均一な仮焼膜が形成されていた。これに対して、比較例の場合には、排気口の周辺部に堆積物の付着し、排気口を狭めていることが確認された。その後、この堆積物を分析したところ、原料溶液から脱離した有機成分であることが分った。また、仮焼膜の表面にも所々異常が見られ、均一とは言えなかった。   As a result, in the case of the example, no abnormality was observed in the atmosphere furnace including the periphery of the exhaust port, and a uniform calcined film was formed. On the other hand, in the case of the comparative example, it was confirmed that deposits adhered to the periphery of the exhaust port and the exhaust port was narrowed. Then, when this deposit was analyzed, it was found to be an organic component desorbed from the raw material solution. Also, abnormalities were observed in some places on the surface of the calcined film, which was not uniform.

以上により、雰囲気炉に白金触媒を配置した効果が確認された。   As described above, the effect of arranging the platinum catalyst in the atmosphere furnace was confirmed.

(Icの測定)
得られた各酸化物超電導薄膜線材のIcを測定したところ、比較例の場合には10A/cm、実施例の場合には60A/cmであり、比較例の場合に比べ、優れた超電導特性の酸化物超電導薄膜線材が得られることが分かった。
(Measurement of Ic)
When Ic of each obtained oxide superconducting thin film wire was measured, it was 10 A / cm in the case of the comparative example, and 60 A / cm in the case of the example, which was superior in superconducting characteristics as compared with the case of the comparative example. It was found that an oxide superconducting thin film wire can be obtained.

以上、本発明を実施の形態に基づき説明したが、本発明は上記の実施の形態に限定されるものではない。本発明と同一および均等の範囲内において、上記の実施の形態に対して種々の変更を加えることが可能である。   As mentioned above, although this invention was demonstrated based on embodiment, this invention is not limited to said embodiment. Various modifications can be made to the above-described embodiment within the same and equivalent scope as the present invention.

1 配向金属基板
2 雰囲気炉
3 排気口
4 混合ガス
5 白金触媒
6 堆積物
7 有機成分等の流れを示す矢印
8 ガス導入口
9 二酸化炭素等の排気方向を示す矢印
10 配向金属基板の搬送方向を示す矢印
DESCRIPTION OF SYMBOLS 1 Oriented metal substrate 2 Atmosphere furnace 3 Exhaust port 4 Mixed gas 5 Platinum catalyst 6 Deposit 7 Arrow which shows flow of organic components, etc. 8 Gas inlet 9 Arrow which shows the exhaust direction of carbon dioxide etc. 10 The conveyance direction of oriented metal substrate Showing arrow

Claims (3)

金属有機化合物を原料とし、雰囲気炉を用いて塗布熱分解法により、酸化物超電導薄膜を形成して、酸化物超電導薄膜線材を製造する酸化物超電導薄膜線材の製造方法であって、
配向金属基板上に前記金属有機化合物の溶液を塗布して塗布膜を作製する塗布膜作製工程と、
前記塗布膜の前記金属有機化合物に含有される有機成分を熱分解、除去して、仮焼膜を作製する仮焼熱処理工程と、
前記仮焼膜を結晶化させて、酸化物超電導薄膜を作製する本焼熱処理工程と
を備えており、
前記仮焼熱処理工程が、排気口に酸化触媒が配置された雰囲気炉内で加熱を行う熱処理工程である
ことを特徴とする酸化物超電導薄膜線材の製造方法。
Using a metal organic compound as a raw material, an oxide superconducting thin film wire is produced by forming an oxide superconducting thin film by a coating pyrolysis method using an atmospheric furnace, and a method for producing an oxide superconducting thin film wire,
A coating film production step of producing a coating film by applying a solution of the metal organic compound on an oriented metal substrate;
A calcining heat treatment step for producing a calcined film by thermally decomposing and removing an organic component contained in the metal organic compound of the coating film;
A calcination heat treatment step of crystallizing the calcined film to produce an oxide superconducting thin film,
The method for producing an oxide superconducting thin film wire, wherein the calcining heat treatment step is a heat treatment step of heating in an atmosphere furnace in which an oxidation catalyst is disposed at an exhaust port.
前記酸化触媒が、白金触媒であることを特徴とする請求項1に記載の酸化物超電導薄膜線材の製造方法。   The method for producing an oxide superconducting thin film wire according to claim 1, wherein the oxidation catalyst is a platinum catalyst. 前記酸化物超電導薄膜線材が、YBaCu7−X酸化物超電導薄膜線材であることを特徴とする請求項1または請求項2に記載の酸化物超電導薄膜線材の製造方法。 3. The method for producing an oxide superconducting thin film wire according to claim 1, wherein the oxide superconducting thin film wire is a YBa 2 Cu 3 O 7-X oxide superconducting thin film wire.
JP2010138436A 2010-06-17 2010-06-17 Manufacturing method of oxide superconducting thin film wire rod Pending JP2012003983A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010138436A JP2012003983A (en) 2010-06-17 2010-06-17 Manufacturing method of oxide superconducting thin film wire rod

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010138436A JP2012003983A (en) 2010-06-17 2010-06-17 Manufacturing method of oxide superconducting thin film wire rod

Publications (1)

Publication Number Publication Date
JP2012003983A true JP2012003983A (en) 2012-01-05

Family

ID=45535751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010138436A Pending JP2012003983A (en) 2010-06-17 2010-06-17 Manufacturing method of oxide superconducting thin film wire rod

Country Status (1)

Country Link
JP (1) JP2012003983A (en)

Similar Documents

Publication Publication Date Title
JP5219109B2 (en) Manufacturing method of superconducting material
JP5445982B2 (en) Rare earth superconducting film forming solution and method for producing the same
JP5838596B2 (en) Superconducting thin film material and manufacturing method thereof
JP5736603B2 (en) REBCO oxide superconducting thin film and manufacturing method thereof
JP4729766B2 (en) Method for producing superconducting oxide material
JP2013235766A (en) Oxide superconducting thin film and method for manufacturing the same
TWI509635B (en) Method for manufacturing tape-shaped oxide superconductor wire and thermal processing device
JP2012003983A (en) Manufacturing method of oxide superconducting thin film wire rod
JP5556410B2 (en) Method for manufacturing oxide superconducting thin film
JP5505867B2 (en) Method for manufacturing oxide superconducting thin film
TWI517184B (en) Method for manufacturing tape-shaped oxide superconductor wire and thermal processing device
JP5096974B2 (en) RE-Ba-Cu-O-based superconducting tape wire manufacturing method and plasma processing apparatus used therefor
JP2011253766A (en) Method of manufacturing oxide superconductor thin film
JP6359937B2 (en) RE oxide superconducting wire manufacturing method
JP5453627B2 (en) Manufacturing method of oxide superconductor film with reduced internal stress
JP5721144B2 (en) Superconducting multilayer structure thin film
JP2012221922A (en) Raw material solution for formation of oxide superconducting thin film layer, oxide superconducting thin film layer, and oxide superconducting thin film wire material
JP2007302507A (en) Method for producing superconducting thin film
JP2011253768A (en) Method of manufacturing oxide superconductor thin film
JP2015141830A (en) Method of producing tape-like oxide superconductive wire rod
JP2012003961A (en) Manufacturing method of oxide superconducting thin film
JP2014167941A (en) Manufacturing method of oxide superconducting thin film
JPH06216420A (en) Manufacture of oxide superconducting thin-film
JP2013025892A (en) Manufacturing method of tape-like oxide superconductive wire material and heat treatment apparatus
JP2012003962A (en) Manufacturing method of oxide superconducting thin film