JP2007302507A - Method for producing superconducting thin film - Google Patents

Method for producing superconducting thin film Download PDF

Info

Publication number
JP2007302507A
JP2007302507A JP2006132120A JP2006132120A JP2007302507A JP 2007302507 A JP2007302507 A JP 2007302507A JP 2006132120 A JP2006132120 A JP 2006132120A JP 2006132120 A JP2006132120 A JP 2006132120A JP 2007302507 A JP2007302507 A JP 2007302507A
Authority
JP
Japan
Prior art keywords
thin film
seed material
superconducting thin
coating film
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006132120A
Other languages
Japanese (ja)
Inventor
Kunihiko Koyanagi
邦彦 小柳
Takashi Ebisawa
孝 海老沢
Hidehiko Otsu
英彦 大津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP2006132120A priority Critical patent/JP2007302507A/en
Publication of JP2007302507A publication Critical patent/JP2007302507A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that the main burning which is a crystallization step takes a long time in a coating pyrolysis method which is one of the methods for producing a superconducting thin film. <P>SOLUTION: In the coating pyrolysis method, a coating film 3 containing the constituent element of a superconductor is formed on the upper layer of a substrate 1. Further, a surface side seed material layer 4 is formed on the surface side of the coating film 3 to perform temporary burning and main burning. During the main burning, crystallization is performed towards the surface from the substrate 1 side, and crystallization is also performed towards the substrate side from the surface side seed material layer 4. As a result, the time required for crystallization is shortened by performing crystallization from both directions. Furthermore, it is desirable to form a buffer layer 2 between the substrate 1 and the coating film 3. The buffer layer 2 prevents the chemical reaction of the substrate 1 with the coating film 3 and functions as a seed for crystallization. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、移動通信体用基地局に用いられる超伝導体フィルター、或いは電力機器用限流器の導電体に用いられる超伝導体基板や大電流輸送用の超伝導線材などに使用される超伝導薄膜の製造方法に関するものである。   The present invention relates to a superconductor filter used for a base station for a mobile communication body, a superconductor substrate used for a conductor of a current limiter for electric power equipment, a superconducting wire for large current transport, and the like. The present invention relates to a method for manufacturing a conductive thin film.

超伝導材に関しては、1986年の高温酸化物系超伝導物質の発見以来、種々の用途開発が行われている。高温酸化物系超伝導物質は、従来の低温超伝導物質が、冷却のために液体He(4.2K)を要したのに比べて、液体N(77K)で冷却可能なため取り扱いが比較的容易であり、様々な用途が期待されている。
高温酸化物系超伝導物質の用途としては,バルク材、線材、薄膜等の形態のものがあるが、この内、薄膜の形態のものは移動通信体用基地局、無線局用基地局に用いられる超伝導体フィルター、電力機器用限流器に用いられる超伝導体基板、或いは大電流輸送用の超伝導線材等への適用が期待されている。
Regarding superconducting materials, various applications have been developed since the discovery of the high-temperature oxide superconducting material in 1986. The high temperature oxide superconductors, conventional low-temperature superconducting material is, compared to the required liquid the He (4.2 K) for cooling, to handle because it can cooled with liquid N 2 (77K) Comparison And various uses are expected.
Applications of high-temperature oxide-based superconducting materials include bulk materials, wires, and thin films. Among these, thin-film materials are used for mobile communication base stations and radio station base stations. It is expected to be applied to a superconductor filter, a superconductor substrate used in a current limiter for electric power equipment, or a superconducting wire for transporting a large current.

高温酸化物系超伝導薄膜の特性を示す最も重要な指標として、臨界電流密度Jc値がある。Jc値を高めることにより、高温での大電流輸送が可能となる。高Jc値を得るためには、高温酸化物系超伝導薄膜の支持体の上に高温酸化物系超伝導体の結晶をc軸方向にエピタキシャル成長させる必要がある。   A critical current density Jc value is the most important index showing the characteristics of the high-temperature oxide superconducting thin film. By increasing the Jc value, a large current can be transported at a high temperature. In order to obtain a high Jc value, it is necessary to epitaxially grow a crystal of the high-temperature oxide superconductor on the support of the high-temperature oxide superconductor thin film in the c-axis direction.

現在、商業化されている高温酸化物系超伝導薄膜の製造方法は、ドイツTHEVA社のThermal Co−evaporation法である(非特許文献1参照)。同法では、超伝導体としてYBaCu7−6(YBCO)を用いている。その製造手順を説明すると、初めにYBCO超伝導薄膜を成膜する基板をターンテーブルに取り付ける。基板は回転しながら、Thermocoaxheaterにより700℃に加熱される。また、チャンバー内は2×10−5mbarの高真空に保たれている。そして、YBCO超伝導薄膜の構成金属元素であるY、Ba、CuはそれぞれThermal boatに設置され、同boatは電気抵抗により加熱される。蒸発する構成金属元素の量はquartz crystal monitorにより測定され、目的とする薄膜組成が得られるように、Thermal boatの発熱量が調節される。YBCO超伝導薄膜を構成する酸素はPocketから導入される。Pocketと回転する基板とのクリアランスは極めて小さいので、Pocket内部の酸素圧を、チャンバー内圧力の250倍に保つことが可能である。本チャンバー内で、基板は回転しながら周期的に成膜領域を通過し、構成金属元素の単原子層が基板表面に生成する。次に酸素Pocketで単原子層は酸化され、YBCO超伝導薄膜が形成される。次の回転の際には、同薄膜の上に同様のプロセスを経てYBCO単分子層が重なる。以上の課程が繰り返されることにより、YBCOがc軸方向にエピタキシャル成長する。本製造法の問題点は、装置の機構が複雑であり、高真空を要する製造方法であるため超伝導薄膜の製造コストが高く、大面積薄膜の製造が難しい点である。 A method for producing a high-temperature oxide-based superconducting thin film that is currently commercialized is the Thermal Co-evaporation method of THEVA, Germany (see Non-Patent Document 1). In this method, YBa 2 Cu 3 O 7-6 (YBCO) is used as a superconductor. The manufacturing procedure will be described. First, a substrate on which a YBCO superconducting thin film is formed is attached to a turntable. The substrate is heated to 700 ° C. by a Thermocoaxheater while rotating. Further, the inside of the chamber is kept at a high vacuum of 2 × 10 −5 mbar. Then, Y, Ba, and Cu, which are constituent metal elements of the YBCO superconducting thin film, are respectively installed in the thermal boat, and the boat is heated by electric resistance. The amount of the constituent metal element that evaporates is measured by a quartz crystal monitor, and the amount of heat generated in the thermal boat is adjusted so that the intended thin film composition is obtained. Oxygen constituting the YBCO superconducting thin film is introduced from Pocket. Since the clearance between the Pocket and the rotating substrate is extremely small, the oxygen pressure inside the Pocket can be maintained at 250 times the pressure in the chamber. Within this chamber, the substrate periodically passes through the film formation region while rotating, and a monoatomic layer of the constituent metal elements is generated on the substrate surface. Next, the monoatomic layer is oxidized with oxygen pocket to form a YBCO superconducting thin film. In the next rotation, the YBCO monolayer overlaps the same thin film through the same process. By repeating the above process, YBCO grows epitaxially in the c-axis direction. The problems of this manufacturing method are that the mechanism of the apparatus is complicated and the manufacturing method requires a high vacuum, so that the manufacturing cost of the superconducting thin film is high and it is difficult to manufacture a large area thin film.

これらの問題点を解決するために現在、塗布熱分解法が開発されている(特許文献1参照)。同方法では、高温酸化物系超伝導体の構成金属元素の組成になる様に、各金属の化合物を溶媒に溶解し塗布溶液を調製する。次に塗布溶液を基板上に塗布した後に乾燥し、金属含有化合物の薄膜(塗布膜)を形成する。その後、塗布膜を加熱焼成し超伝導薄膜に変換する。この場合、加熱焼成条件は、金属含有化合物が複合金属酸化物を形成する条件であれば良く、一般には500〜1000℃である。金属含有化合物が有機化合物の場合、同成分は200〜500℃で熱分解または酸化され、複合金属酸化物の形成及び結晶化は500〜1000℃で行われる。加熱焼成時間は1〜72時間程度である。また、加熱焼成の雰囲気は空気、酸素、窒素、アルゴン等である。次に加熱焼成後、生成した複合金属酸化物薄膜を基板とともに室温まで徐冷すれば、超伝導薄膜が得られる。   In order to solve these problems, a coating pyrolysis method is currently being developed (see Patent Document 1). In this method, a coating solution is prepared by dissolving each metal compound in a solvent so that the composition of the constituent metal elements of the high-temperature oxide superconductor is obtained. Next, after apply | coating a coating solution on a board | substrate, it dries and forms the thin film (coating film) of a metal containing compound. Thereafter, the coating film is heated and baked to be converted into a superconducting thin film. In this case, the heating and firing conditions may be any conditions as long as the metal-containing compound forms a composite metal oxide, and is generally 500 to 1000 ° C. When the metal-containing compound is an organic compound, the same component is thermally decomposed or oxidized at 200 to 500 ° C., and the formation and crystallization of the composite metal oxide is performed at 500 to 1000 ° C. The baking time is about 1 to 72 hours. Moreover, the atmosphere of heat-firing is air, oxygen, nitrogen, argon, etc. Next, after heating and firing, the superconducting thin film can be obtained by slowly cooling the resulting composite metal oxide thin film together with the substrate to room temperature.

また、基板と超伝導薄膜の間にバッファ層を介在させることにより、超伝導体の結晶をc軸方向にエピタキシャル成長させ、高特性の超伝導薄膜を得る塗布熱分解法も開発されている(非特許文献2参照)。
この方法を図2に基づいて説明すると、基板10上に、シードとなるバッファ層11を形成し、その上層に前記した塗布溶液によって塗布膜12を設ける。この基板10を仮焼成することで、塗布膜12は分解されて、CO、CO、HOが生成されて放出され、構成金属元素が残って薄膜12aを形成する。この基板10を本焼成することで、薄膜12aが複合金属酸化物に変化し、さらにバッファ層11をシードとして前記複合金属酸化物の結晶化がされて超伝導薄膜13が得られる。
特開昭64−65003号公報 Werner Prusseit et al.,"Series production of large area YBa2Cu3O7-films for electronic-,microwave-,and electrical powerapplications",ISS',Japan,1999,17.-19.10.99. T Manabe et al.,"Two-dimensional large-size YBa2Cu3O7 films(30×10cm2)on CeO2-buffered sapphire by a coating pyrolysis process",Superconductor Science and Technology1,Japan,7(2004),P.354-357
In addition, a coating pyrolysis method has been developed in which a buffer layer is interposed between the substrate and the superconducting thin film to epitaxially grow a superconductor crystal in the c-axis direction to obtain a high-performance superconducting thin film (Non-Continued) Patent Document 2).
This method will be described with reference to FIG. 2. A buffer layer 11 serving as a seed is formed on a substrate 10, and a coating film 12 is provided on the upper layer by the coating solution described above. By pre-baking the substrate 10, the coating film 12 is decomposed, and CO, CO 2 and H 2 O are generated and released, and the constituent metal elements remain to form the thin film 12a. By baking this substrate 10, the thin film 12 a changes to a composite metal oxide, and the composite metal oxide is crystallized using the buffer layer 11 as a seed to obtain a superconducting thin film 13.
JP-A 64-65003 Werner Prusseit et al., “Series production of large area YBa2Cu3O7-films for electronic-, microwave-, and electrical powerapplications”, ISS ', Japan, 1999,17.-19.10.99. T Manabe et al., “Two-dimensional large-size YBa2Cu3O7 films (30 × 10cm2) on CeO2-buffered sapphire by a coating pyrolysis process”, Superconductor Science and Technology 1, Japan, 7 (2004), P.354-357

従来の塗布熱分解法は、以上のように構成されているので、Thermal Co−evaporation法とは異なり、装置の機構が簡素であり、高真空を必要としない大気圧下での製造方法である。そのため、超伝導薄膜の製造コストが低く、大面積薄膜の製造が容易である。しかしながら、本焼成に数時間と長時間を要するため、効率的な製造方法ではないという問題がある。   Since the conventional coating pyrolysis method is configured as described above, unlike the thermal co-evaporation method, the device mechanism is simple and the manufacturing method is performed under atmospheric pressure that does not require high vacuum. . Therefore, the manufacturing cost of the superconducting thin film is low, and the manufacturing of the large area thin film is easy. However, since this firing requires several hours and a long time, there is a problem that it is not an efficient manufacturing method.

本発明は、上記の様な従来の塗布熱分解法の課題を解決するために成されたものであり、本焼成に要する時間を短縮した効率的な超伝導薄膜の製造方法を提供することを目的としている。   The present invention has been made to solve the problems of the conventional coating pyrolysis method as described above, and provides an efficient method for producing a superconducting thin film in which the time required for the main baking is shortened. It is aimed.

すなわち、本発明の超伝導薄膜の製造方法のうち、請求項1記載の発明は、基材の上層に塗布膜を設け、その後、仮焼成を行った後に本焼成を行って前記塗布膜を超伝導薄膜にする塗布熱分解法において、前記仮焼成前に、基材上層に設けられた塗布膜表面側に表面側シード材層を設けておき、前記本焼成に際し、前記塗布膜を、前記基材側と前記表面側シード材層からそれぞれ結晶化させて超伝導薄膜を得ることを特徴とする。   That is, among the methods for producing a superconducting thin film of the present invention, the invention according to claim 1 is characterized in that a coating film is provided on an upper layer of a base material, and after that temporary firing is performed, then main firing is performed to superimpose the coating film. In the coating pyrolysis method for forming a conductive thin film, a surface-side seed material layer is provided on the surface side of the coating film provided on the upper layer of the base material before the preliminary baking, and the coating film is formed on the base layer during the main baking. A superconducting thin film is obtained by crystallization from the material side and the surface side seed material layer.

請求項2記載の超伝導薄膜の製造方法の発明は、請求項1記載の発明において、前記基材と塗布膜との間に、基材側シード材からなるバッファ層を介設することを特徴とする。   The invention of the method for producing a superconducting thin film according to claim 2 is characterized in that, in the invention according to claim 1, a buffer layer made of a seed material on the substrate side is interposed between the substrate and the coating film. And

請求項3記載の超伝導薄膜の製造方法の発明は、請求項1または2に記載の発明において、前記表面側シード材層のシード材は、本焼成によって得られる超伝導薄膜と同じ組成からなることを特徴とする。   According to a third aspect of the present invention, there is provided a method for producing a superconducting thin film, wherein the seed material of the surface-side seed material layer has the same composition as the superconducting thin film obtained by the main firing. It is characterized by that.

請求項4記載の超伝導薄膜の製造方法の発明は、請求項2記載の発明において、前記表面側シード材層のシード材と、前記基材側シード材とが同一材料からなることを特徴とする。   The invention of the method for producing a superconducting thin film according to claim 4 is characterized in that, in the invention according to claim 2, the seed material of the surface side seed material layer and the base material side seed material are made of the same material. To do.

請求項5記載の超伝導薄膜の製造方法の発明は、請求項1〜4のいずれかに記載の発明において、前記表面側シード材層は、面方向において本焼成時発生ガス分子のサイズよりも大きい隙間が分布していることを特徴とする。   The invention of the method for producing a superconducting thin film according to claim 5 is the invention according to any one of claims 1 to 4, wherein the surface-side seed material layer is smaller than the size of gas molecules generated during the main firing in the surface direction. Large gaps are distributed.

請求項6記載の超伝導薄膜の製造方法の発明は、請求項1〜5のいずれかに記載の発明において、前記表面側シード材層は、シード材粉末を前記塗布膜表面に塗布したものであることを特徴とする。   The superconducting thin film manufacturing method according to claim 6 is the invention according to any one of claims 1 to 5, wherein the surface-side seed material layer is obtained by applying a seed material powder to the surface of the coating film. It is characterized by being.

本発明によれば、基材の上層に塗布膜を設け、その塗布膜の表面側に表面側シード材層が設けられる。表面側シード材層が塗布によって形成される場合は、塗布に際し用いた溶媒を除去し、仮焼成が行われる。溶媒の除去と仮焼成とは、一連の加熱行程によって行われるものであってもよく、別の加熱行程によって行われるものであっても良い。   According to the present invention, the coating film is provided on the upper layer of the substrate, and the surface-side seed material layer is provided on the surface side of the coating film. When the surface-side seed material layer is formed by coating, the solvent used in the coating is removed and pre-baking is performed. The removal of the solvent and the pre-baking may be performed by a series of heating processes or may be performed by another heating process.

仮焼成において、塗布膜の構成金属元素の有機塩などが分解・酸化されCO、CO、HO等にガス化する。ガスは塗布膜、表面側シード材層から放散される。このため、表面側シード材層は、面方向において隙間が分布しているのが望ましい。隙間は点在するものでもよく、また隙間同士が連結されているものであってもよい。なお、結晶化用シード材が塗布膜表面に全く隙間なく設けられた場合、有機塩の分解ガスを塗布膜表面から除去することが難しくなる。上記隙間は、表面側シード材を粉末にして塗布膜の表面に適度な密度で塗布することによっても得られる。 In the pre-baking, organic salts of constituent metal elements of the coating film are decomposed and oxidized and gasified into CO, CO 2 , H 2 O and the like. The gas is released from the coating film and the surface-side seed material layer. For this reason, as for the surface side seed material layer, it is desirable for the clearance gap to be distributed in the surface direction. The gaps may be scattered, or the gaps may be connected. When the seed material for crystallization is provided on the surface of the coating film without any gap, it is difficult to remove the organic salt decomposition gas from the surface of the coating film. The gap can also be obtained by applying the surface side seed material as powder to the surface of the coating film at an appropriate density.

シード材粉末は、塗布した際の面方向において、円相当径で0.001〜1μmの大きさが望ましい。これは、0.001μm未満になると、粒子の規則性が乱れたり、酸素や水分子などの吸着ガスの影響により核生成サイトとしての機能が低下し、十分な核生成ができないからであり、1μmを越えると、これに連れて厚さが大きくなって、膜厚に対しての厚さの比率が大きくなり、表面の凹凸も大きくなるので特性低下を招くためである。また、シード材粉末の表面被覆率は、10〜95%が望ましい。これは、10%未満であると、核生成サイトとしては量的に不十分であり、95%を越えると塗布膜の構成金属元素の有機塩などが分解・酸化されて発生するCO、CO、HO、等のガスが抜けにくくなり、膜の剥離を起こす可能性があるためである。 The seed material powder preferably has a circle-equivalent diameter of 0.001 to 1 μm in the surface direction when applied. This is because when the particle size is less than 0.001 μm, the regularity of the particles is disturbed, or the function as a nucleation site is deteriorated due to the influence of adsorbed gas such as oxygen and water molecules, and sufficient nucleation cannot be performed. This is because the thickness increases with this, the ratio of the thickness to the film thickness increases, and the unevenness of the surface also increases, leading to deterioration in characteristics. The surface coverage of the seed material powder is desirably 10 to 95%. If it is less than 10%, it is insufficient in quantity as a nucleation site. If it exceeds 95%, organic salts of constituent metal elements of the coating film are decomposed and oxidized to generate CO, CO 2. This is because gas such as H 2 O is difficult to escape and may cause peeling of the film.

次工程である本焼成時には、基材側から塗布膜表面側の方向へ結晶化が進む。基材と塗布膜との間にバッファ層を介在させることでバッファ層をシードとしてc軸方向への結晶成長がなされる。同時に、塗布膜表面側の表面側シード材層からも結晶化が進む。これにより塗布膜全体を結晶化させるための時間が、基材側からのみ結晶化させるよりも大幅に短縮される。   During the main firing, which is the next step, crystallization proceeds from the substrate side toward the coating film surface side. By interposing the buffer layer between the substrate and the coating film, crystal growth in the c-axis direction is performed using the buffer layer as a seed. At the same time, crystallization proceeds from the surface-side seed material layer on the coating film surface side. Thereby, the time for crystallizing the whole coating film is significantly shortened compared with crystallizing only from the base material side.

以上のように、本発明では、基材の上層に塗布膜を設け、その後、仮焼成を行った後に本焼成を行って前記塗布膜を超伝導薄膜にする塗布熱分解法において、前記仮焼成前に、基材上層に設けられた塗布膜表面側に表面側シード材層を設けておき、前記本焼成に際し、前記塗布膜を、前記基材側と前記表面側シード材層からそれぞれ結晶化させて超伝導薄膜を得るので、結晶化を早期に完了することが可能である。これにより、本焼成に要する時間を短縮し効率的な超伝導薄膜の製造方法を提供することができる。   As described above, in the present invention, the provisional baking is performed in the coating pyrolysis method in which the coating film is provided on the upper layer of the substrate, and then the preliminary baking is performed and then the main baking is performed to make the coating film a superconductive thin film. Before, the surface side seed material layer is provided on the surface of the coating film provided on the upper layer of the base material, and the coating film is crystallized from the base material side and the surface side seed material layer, respectively, during the main baking. Since the superconducting thin film is obtained, crystallization can be completed at an early stage. Thereby, the time required for the main firing can be shortened and an efficient method for producing a superconducting thin film can be provided.

また、基材と塗布膜との間にバッファ層を介在させる場合、バッファ層をシードとする結晶は、ほぼc軸方向にエピタキシャル成長しているが、シード材粉末を塗布して表面側シード材層を形成する際には、表面側シード材層をシードとした結晶は多結晶体となる。この多結晶体の結晶粒界は、ピン止め点として作用し、得られる超伝導薄膜の臨界電流密度を増大させることが可能である。また、多結晶体に磁場を印可することにより、結晶のc軸配向性を高め、臨界電流密度を増大させることも可能である。   When a buffer layer is interposed between the base material and the coating film, the crystal using the buffer layer as a seed is epitaxially grown almost in the c-axis direction. When forming the crystal, the crystal using the surface-side seed material layer as a seed becomes a polycrystal. The crystal grain boundaries of this polycrystal act as pinning points and can increase the critical current density of the resulting superconducting thin film. In addition, by applying a magnetic field to the polycrystalline body, it is possible to increase the c-axis orientation of the crystal and increase the critical current density.

以下に、本発明の一実施形態を図1に基づいて説明する。
本発明は塗布熱分解法で形成されるいずれの高温酸化物系超伝導体の製造にも適用可能である。超伝導体の例として現在実用化が検討されているビスマス系酸化物BiSrCaCu20x(Bi−2212).BiSrCaCu30y(Bi−2223)、イットリウム系酸化物YBaCu7−6(YBCO)などが挙げられるが、本発明は、これら超伝導体の種別が限定されるものではない。本実施形態では、超伝導体としてYBCOを用いる場合について以下に説明する。
Below, one Embodiment of this invention is described based on FIG.
The present invention is applicable to the production of any high-temperature oxide superconductor formed by a coating pyrolysis method. Superconductors example as the current commercialized study has been bismuth oxide is Bi 2 Sr 2 CaCu 20x (Bi -2212). Bi 2 Sr 2 Ca 2 Cu 30y (Bi-2223), yttrium-based oxide YBa 2 Cu 3 O 7-6 (YBCO) and the like can be mentioned, but the present invention is limited in the types of these superconductors. is not. In this embodiment, the case where YBCO is used as a superconductor will be described below.

基材としては、各種の材料及び形状のものを使用できる。例えば材料としては銅、チタン、鉛、ステンレス等の金属やアルミナ、ジルコニア、チタニア等の金属酸化物、炭化ケイ素等のセラミックスなどが用いられる。また、形状としては曲面、平面のいずれも可能であり、例えば板状、棒状、コイル状、繊維状、不織布状、管状等の任意の形状が可能である。また、多孔質のものでも良い。   As the substrate, various materials and shapes can be used. For example, as a material, metals such as copper, titanium, lead, and stainless steel, metal oxides such as alumina, zirconia, and titania, ceramics such as silicon carbide, and the like are used. Further, the shape can be a curved surface or a flat surface, and for example, any shape such as a plate shape, a rod shape, a coil shape, a fiber shape, a nonwoven fabric shape, and a tubular shape is possible. Moreover, a porous thing may be sufficient.

本実施形態では、基材としてサファイア(α−Al)単結晶(R面)基板を用いるものとする。その理由としては、限流器応用超伝導薄膜の基板材料としては、熱伝導度や耐熱衝撃性が高く大面積化が可能なサファイアが最適と考えられているからである。
サファイア基板1は超伝導薄膜の支持体として機能する。また、電力機器用限流器の導電体として超伝導体基板に超伝導薄膜を使用する場合、限流器動作時に超伝導体に発生する多量の熱を冷却媒体に速やかに移動し、超伝導状態を回復する。そのためにも熱伝導度の高いサファイア基板が好ましい。
In this embodiment, a sapphire (α-Al 2 O 3 ) single crystal (R plane) substrate is used as the base material. The reason for this is that sapphire, which has a high thermal conductivity and thermal shock resistance and can be increased in area, is considered optimal as a substrate material for a current limiting device superconducting thin film.
The sapphire substrate 1 functions as a support for the superconducting thin film. In addition, when using a superconducting thin film on a superconductor substrate as a conductor for a current limiter for power equipment, a large amount of heat generated in the superconductor during the operation of the current limiter is quickly transferred to the cooling medium. Restore state. Therefore, a sapphire substrate with high thermal conductivity is preferable.

しかし、サファイアはYBCO超伝導体と化学反応を起こすだけではなく、結晶構造が異なり格子不整合性が大きいので、サファイア基板1上に直接YBCOをc軸方向にエピタキシャル成長させることは困難である。そのため、YBCOとサファイアとの中間の格子定数を有するセリアをバッファ層2としてサファイア基板1上に形成し、格子不整合性を緩和する。それと共に、化学反応も抑制する。本実施形態では,サファイア基板上に真空蒸着法によりセリアバッファ層2を100nm形成する。本バッファ層2はナノメータレベルで平坦な表面を有するので、バッファ層2上へYBCOをc軸方向へエピタキシャル成長することが可能である。なお、本発明としては、基板材質の選定によってはバッファ層を設けることなく超伝導薄膜の製造を行うことも可能である。バッファ層2の形成は、反応性真空蒸着法、スパッタリング法などにより行うことができる。ただし、本発明としては、バッファ層の形成方法が特に限定されるものではなく、その厚さも適宜の変更が可能である。   However, sapphire not only causes a chemical reaction with the YBCO superconductor, but also has a different crystal structure and a large lattice mismatch, so that it is difficult to epitaxially grow YBCO directly on the sapphire substrate 1 in the c-axis direction. Therefore, ceria having an intermediate lattice constant between YBCO and sapphire is formed on the sapphire substrate 1 as the buffer layer 2 to alleviate lattice mismatch. At the same time, it suppresses chemical reactions. In the present embodiment, the ceria buffer layer 2 is formed to 100 nm on the sapphire substrate by vacuum deposition. Since the buffer layer 2 has a flat surface at the nanometer level, YBCO can be epitaxially grown on the buffer layer 2 in the c-axis direction. In the present invention, it is possible to manufacture a superconducting thin film without providing a buffer layer depending on the selection of the substrate material. The buffer layer 2 can be formed by a reactive vacuum deposition method, a sputtering method, or the like. However, in the present invention, the method for forming the buffer layer is not particularly limited, and the thickness thereof can be appropriately changed.

次に、YBCO超伝導薄膜の構成金属元素Y、Ba、Cuの有機塩(アセチルアセトナト)を溶媒に溶かし塗布溶液とし、バッファ層2上に塗布する。なお、塗布溶液の溶質はアセチルアセトナトには限定されず、後続の焼成工程において酸化物を形成する化合物であれば良い。一般には、1000℃以下、特に200〜900℃で熱分解する様な化合物であれば良い。例えばアルコキシド、有機酸塩、無機酸塩、金属のハロゲン化物、水酸化物、酸化物等が挙げられる。具体的には、ナフテン酸、2−エチルヘキサン酸、カプリル酸、ステアリン酸、ラウリン酸、酢酸、プロピオン酸、シュウ酸、クエン酸、乳酸,フェノール、カテコール、安息香酸、サリチル酸、硝酸、炭酸、塩酸等の有機酸または無機酸の金属塩や、エタノール、プロパノール、ブタノール、エチレングリコール、グリセリン、2−ペンテン−4−オン−2−オール等のアルコールの金属アルコキシド等が例示される。   Next, an organic salt (acetylacetonate) of the constituent metal elements Y, Ba, and Cu of the YBCO superconducting thin film is dissolved in a solvent to form a coating solution, which is coated on the buffer layer 2. Note that the solute of the coating solution is not limited to acetylacetonate, and may be any compound that forms an oxide in the subsequent baking step. In general, any compound that thermally decomposes at 1000 ° C. or less, particularly 200 to 900 ° C. may be used. Examples thereof include alkoxides, organic acid salts, inorganic acid salts, metal halides, hydroxides, oxides and the like. Specifically, naphthenic acid, 2-ethylhexanoic acid, caprylic acid, stearic acid, lauric acid, acetic acid, propionic acid, oxalic acid, citric acid, lactic acid, phenol, catechol, benzoic acid, salicylic acid, nitric acid, carbonic acid, hydrochloric acid Examples thereof include metal salts of organic acids or inorganic acids such as, and metal alkoxides of alcohols such as ethanol, propanol, butanol, ethylene glycol, glycerin, and 2-penten-4-one-2-ol.

また、塗布溶液の溶媒としては上記の金属含有化合物を溶解しえるものであれば良く、下記の各種のものを単独または混合物の形で使用することができる。この様な溶媒としては、例えば、ヘキサン,オクタン、ベンゼン、トルエン、テトラリン等の炭化水素類、メタノール、エタノール、プロパノール、ブタノール、アミルアルコール等のアルコール類、アセトン,メチルエチルケトン,アセチルアセトン等のケトン類、ジブチルエーテル等のエーテル頬、アセトアルデヒド、ベンズアルデヒド等のアルデヒド類、ギ酸、酢酸、プロピオン酸、酪酸,カプリル酸,ラウリン酸、ステアリン酸、ナフテン酸、リノール酸、オレイン酸、シュウ酸、クエン酸、乳酸、フェノール、p−トルイル酸等の有機酸類、ブチルブチレート等のエステル類、ジメチルアミン、アニリン等のアミン類、N−メチルアセトアミド、フォルムアミド等のアミド類、ジメチルスルホキシド等の硫黄含有化合物、ピリジン、フルフラール等の複素環物質類等が挙げられる。その他に、硝酸水溶液、アンモニア水溶液や水等も挙げられる。本実施例では、ブタノール、酪酸、フルフラールを用いた。   The solvent for the coating solution is not particularly limited as long as it can dissolve the above metal-containing compound, and the following various types can be used alone or in the form of a mixture. Examples of such solvents include hydrocarbons such as hexane, octane, benzene, toluene, and tetralin, alcohols such as methanol, ethanol, propanol, butanol, and amyl alcohol, ketones such as acetone, methyl ethyl ketone, and acetylacetone, and diesters. Ether cheeks such as butyl ether, aldehydes such as acetaldehyde and benzaldehyde, formic acid, acetic acid, propionic acid, butyric acid, caprylic acid, lauric acid, stearic acid, naphthenic acid, linoleic acid, oleic acid, oxalic acid, citric acid, lactic acid, phenol , Organic acids such as p-toluic acid, esters such as butyl butyrate, amines such as dimethylamine and aniline, amides such as N-methylacetamide and formamide, sulfur-containing compounds such as dimethyl sulfoxide, pyridine Heterocyclic substances such as furfural and the like. In addition, nitric acid aqueous solution, ammonia aqueous solution, water and the like can be mentioned. In this example, butanol, butyric acid, and furfural were used.

塗布溶液中の各金属元素のモル比は、Y:Ba:Cu=1:2:3とする。また、塗布溶液の塗布は、例えばスピンコーティング、スクリーン印刷、浸漬法、スプレー法、刷毛塗り法等の通常の方法で行うことができる。本案実施例ではスピンコーティングを実施した。次に、空気中で加熱・乾燥することにより溶媒を除去し,塗布膜3とする。なお、溶媒の除去方法は加熱・乾燥に限定されず、例えば減圧・乾燥或いは加熱・乾燥との組み合わせでも良い。また、溶媒は完全に除去する必要は無く、幾分残存しても良い。   The molar ratio of each metal element in the coating solution is Y: Ba: Cu = 1: 2: 3. Moreover, application | coating of an application | coating solution can be performed by normal methods, such as spin coating, screen printing, a dipping method, a spray method, a brush coating method, for example. In the present example, spin coating was performed. Next, the solvent is removed by heating and drying in air to form a coating film 3. The method for removing the solvent is not limited to heating / drying, and may be a combination of reduced pressure / drying or heating / drying, for example. Further, the solvent does not need to be completely removed and may remain somewhat.

その後、塗布膜3の表面に結晶化用シード材の溶液を更に塗布する。シード材はYBCO超伝導体の微粉末である。微粉末は1ミクロンからサブミクロン程度のサイズであり、一個の粒子はほぼ単結晶に近い状態である。該微粉末は、シード材結晶を機械的に粉砕すること等によって得ることができる。好適なシード材粉末は、塗布した際の面方向において、0.001〜1μmの円相当径を有するのが望ましい。また、シード材溶液の塗布量は、シード材表面被覆率で10〜95%の範囲内とするのが望ましい。
次に適当な温度で加熱することによりシード材塗布物から溶媒を除去し、シード材を塗布膜表面に均一に担持させて表面側シード材層4を形成する。表面側シード材層4では、シード材粉末が適度な密度で配置されていることで、隙間4aが同程度の間隔で分布している。
Thereafter, a crystallization seed material solution is further applied to the surface of the coating film 3. The seed material is a fine powder of YBCO superconductor. The fine powder has a size of about 1 micron to submicron, and one particle is almost in a state of a single crystal. The fine powder can be obtained by mechanically pulverizing seed material crystals. A suitable seed material powder desirably has a circle-equivalent diameter of 0.001 to 1 μm in the surface direction when applied. Further, the seed material solution is preferably applied in a range of 10 to 95% in terms of the seed material surface coverage.
Next, the solvent is removed from the seed material coating by heating at an appropriate temperature, and the seed material is uniformly supported on the surface of the coating film to form the surface-side seed material layer 4. In the surface-side seed material layer 4, the seed material powder is arranged at an appropriate density, so that the gaps 4a are distributed at the same interval.

次に、上記基板1を、仮焼成として所定の速度で、例えば500[℃]に昇温し、所定時間大気中に保持する。仮焼成において、YBCO超伝導薄膜の構成金属元素Y、Ba、Cuの有機塩(アセチルアセトナト〉の分子内結合は熱分解によって切断され、C、Hはそれぞれ大気中の酸素により酸化されCO、CO、HOガスに転化する。これらのガスは、塗布膜3に担持された表面側シード材層4の微粉末シード材の隙間4aから、大気中に除去される。シード材が塗布膜3の表面を隙間なく覆っていると、上記ガスの除去が困難になり、仮焼成を実施できないおそれがある。仮焼成の結果、塗布膜3は、超伝導薄膜を構成する元素が残った薄膜3aとなる。 Next, the temperature of the substrate 1 is raised to, for example, 500 [° C.] at a predetermined speed as temporary baking, and is held in the atmosphere for a predetermined time. In the pre-baking, the intramolecular bonds of organic salts (acetylacetonato) of the constituent metal elements Y, Ba and Cu of the YBCO superconducting thin film are broken by thermal decomposition, and C and H are each oxidized by oxygen in the atmosphere to be CO, The gas is converted into CO 2 and H 2 O. These gases are removed into the atmosphere from the gap 4a of the fine powder seed material of the surface-side seed material layer 4 supported on the coating film 3. The seed material is applied. If the surface of the film 3 is covered without any gap, it is difficult to remove the gas, and pre-baking may not be performed, and as a result of the pre-baking, the coating film 3 has left the elements constituting the superconducting thin film. The thin film 3a is formed.

その後、基板1を室温まで徐冷し、不活性ガスArと酸素との混合ガスの流通下で、例えば750[℃]近辺で焼成する。本工程では、酸素分圧を精密に制御し、10Paから10Paへ二段階に切り替えるのが望ましい。本焼成を実施することにより、薄膜3a中に酸素が取り込まれて複合金属酸化物に転換されるとともに、セリアバッファ層2上でYBCO超伝導体の結晶がc軸方向にエピタキシャル成長する。この場合、結晶化は基板1上のバッファ層2をシードとして薄膜3a表面の方向へ進む。さらに本発明では、薄膜3a表面に担持された表面側シード材層4のシード材をシードとして、バッファ層2の方向へ向けて表面側から結晶化が進みYBCO超伝導薄膜5が得られる。以上のように、本焼成時に基板1上のバッファ層2をシードとして結晶化が進行すると同時に、薄膜3a表面上の表面側シード材層4からも対向するようにして結晶化が進行するので、結晶化は早期に完了する。また、超伝導薄膜5の表面側には、シード材層4のシード材をシードとして結晶化した多結晶体6aが生成され、シード材4aとともに、結晶粒界がピン止め作用を果たす効果もある。 Thereafter, the substrate 1 is gradually cooled to room temperature and fired, for example, in the vicinity of 750 [° C.] under the flow of a mixed gas of an inert gas Ar and oxygen. In this step, it is desirable to precisely control the oxygen partial pressure and switch from 10 Pa to 10 5 Pa in two stages. By performing the main baking, oxygen is taken into the thin film 3a and converted into a composite metal oxide, and a YBCO superconductor crystal is epitaxially grown on the ceria buffer layer 2 in the c-axis direction. In this case, crystallization proceeds in the direction of the surface of the thin film 3a using the buffer layer 2 on the substrate 1 as a seed. Furthermore, in the present invention, the seed material of the surface-side seed material layer 4 supported on the surface of the thin film 3a is used as a seed, and crystallization proceeds from the surface side toward the buffer layer 2 to obtain the YBCO superconducting thin film 5. As described above, crystallization proceeds with the buffer layer 2 on the substrate 1 as a seed at the time of main firing, and at the same time, crystallization proceeds so as to face the surface-side seed material layer 4 on the surface of the thin film 3a. Crystallization is completed early. Further, on the surface side of the superconducting thin film 5, a polycrystalline body 6a crystallized using the seed material of the seed material layer 4 as a seed is generated, and the crystal grain boundary has an effect of performing a pinning action together with the seed material 4a. .

なお、上記実施形態では、塗布膜の形成、表面側シード材層の形成、仮焼成、本焼成による超伝導薄膜の形成を行う一連の工程について説明をしたが、上記工程を繰り返し行うことで超伝導薄膜の厚肉化を図ることも可能であり、その場合、表面側シード材層の形成は、超伝導薄膜の形成毎に行ってもよく、最終の超伝導薄膜の形成に際してのみ塗布膜上に設けるようにしてもよい。   In the above embodiment, a series of steps for forming a coating film, forming a surface-side seed material layer, pre-baking, and forming a superconducting thin film by main baking has been described. It is also possible to increase the thickness of the conductive thin film. In this case, the surface-side seed material layer may be formed every time the superconducting thin film is formed, and only on the coating film when the final superconducting thin film is formed. You may make it provide in.

以上、本発明について上記実施形態に基づいて説明をしたが、本発明は上記説明の内容に限定をされるものではなく、本発明を逸脱しない範囲で当然に変更が可能である。   As mentioned above, although this invention was demonstrated based on the said embodiment, this invention is not limited to the content of the said description, Of course, it can change in the range which does not deviate from this invention.

以下、本発明の一実施例を比較例と比較しつつ説明する。
上記実施形態で説明した条件および工程に基づいてYBCO超伝導薄膜を製造した。なお、表面側シード材層に用いる粉末シード材は、円相当径で0.1μmに調整し、50%の表面被覆率で塗布膜表面に塗布した。製造の結果得られた超伝導薄膜の膜厚は0.25μmであり、本焼成に要する保持時間は1時間であった。また、得られた超伝導薄膜の臨界電流密度は1.2MA/cmであった。
Hereinafter, an embodiment of the present invention will be described in comparison with a comparative example.
A YBCO superconducting thin film was manufactured based on the conditions and steps described in the above embodiment. The powder seed material used for the surface-side seed material layer was adjusted to an equivalent circle diameter of 0.1 μm and applied to the coating film surface with a surface coverage of 50%. The thickness of the superconducting thin film obtained as a result of the production was 0.25 μm, and the holding time required for the main firing was 1 hour. Moreover, the critical current density of the obtained superconducting thin film was 1.2 MA / cm 2 .

(比較例)
比較例として、表面側シード材層を設けない以外は、上記実施形態と同様にして塗布熱分解法を実施した。
すなわち、基板、バッファ層、塗布膜は上記の実施形態と同じものを用いた。その後、実施例と同じ方法で仮焼成を行った。次に、本焼成も実施形態と同じ方法で行ったが、結晶化は、基板上のバッファ層をシードとして塗布膜表面の方向にのみ進行した。結晶化を完了するのに長時間を要し、本焼成に要した保持時間は実施例に比べて長く、2時間であった。また、得られた超伝導薄膜の膜厚は0.23μmであった。更に、臨界電流密度は0.8MA/cmであり、実施例に比べて低かった。
(Comparative example)
As a comparative example, the coating pyrolysis method was performed in the same manner as in the above embodiment except that the surface-side seed material layer was not provided.
That is, the same substrate, buffer layer, and coating film as those in the above embodiment were used. Then, temporary baking was performed by the same method as the Example. Next, the main firing was performed in the same manner as in the embodiment, but crystallization proceeded only in the direction of the coating film surface using the buffer layer on the substrate as a seed. It took a long time to complete the crystallization, and the holding time required for the main baking was longer than that of the example and was 2 hours. Moreover, the film thickness of the obtained superconducting thin film was 0.23 μm. Furthermore, the critical current density was 0.8 MA / cm 2 , which was lower than that of the example.

臨界電流密度に差異がある理由は以下の様に推定される。すなわち、バッファ層をシードとした結晶は、ほぼc軸方向にエピタキシャル成長しているが、表面側シード材をシードとした結晶は多結晶体である。そのため結晶粒界がピン止め点として作用し、臨界電流密度が増大したものと考えられる。   The reason for the difference in critical current density is estimated as follows. That is, the crystal using the buffer layer as a seed is epitaxially grown substantially in the c-axis direction, but the crystal using the surface-side seed material as a seed is a polycrystal. Therefore, it is considered that the grain boundary acts as a pinning point and the critical current density is increased.

本発明の一実施形態の製造方法を示す工程図である。It is process drawing which shows the manufacturing method of one Embodiment of this invention. 従来の製造方法を示す工程図である。It is process drawing which shows the conventional manufacturing method.

符号の説明Explanation of symbols

1 サファイヤ基板
2 バッファ層
3 塗布膜
4 表面側シード材層
5 YBCO超伝導薄膜
DESCRIPTION OF SYMBOLS 1 Sapphire substrate 2 Buffer layer 3 Coating film 4 Surface side seed material layer 5 YBCO superconducting thin film

Claims (6)

基材の上層に塗布膜を設け、その後、仮焼成を行った後に本焼成を行って前記塗布膜を超伝導薄膜にする塗布熱分解法において、前記仮焼成前に、基材上層に設けられた塗布膜表面側に表面側シード材層を設けておき、前記本焼成に際し、前記塗布膜を、前記基材側と前記表面側シード材層からそれぞれ結晶化させて超伝導薄膜を得ることを特徴とする超伝導薄膜の製造方法。   In the coating pyrolysis method in which a coating film is provided on the upper layer of the base material and then calcined and then subjected to main firing to make the coating film a superconducting thin film, it is provided on the base material upper layer before the temporary firing. A surface-side seed material layer is provided on the coating film surface side, and the superconducting thin film is obtained by crystallizing the coating film from the base material side and the surface-side seed material layer, respectively, during the main baking. A method for producing a superconducting thin film. 前記基材と塗布膜との間に、基材側シード材からなるバッファ層を介設することを特徴とする請求項1記載の超伝導薄膜の製造方法。   The method for producing a superconducting thin film according to claim 1, wherein a buffer layer made of a base material-side seed material is interposed between the base material and the coating film. 前記表面側シード材層のシード材は、本焼成によって得られる超伝導薄膜と同じ組成からなることを特徴とする請求項1または2に記載の超伝導薄膜の製造方法。   The seed material of the said surface side seed material layer consists of the same composition as the superconducting thin film obtained by this baking, The manufacturing method of the superconducting thin film of Claim 1 or 2 characterized by the above-mentioned. 前記表面側シード材層のシード材と、前記基材側シード材とが同一材料からなることを特徴とする請求項2記載の超伝導薄膜の製造方法。   The method for producing a superconducting thin film according to claim 2, wherein the seed material of the surface-side seed material layer and the base material-side seed material are made of the same material. 前記表面側シード材層は、面方向において本焼成時発生ガス分子のサイズよりも大きい隙間が分布していることを特徴とする請求項1〜4のいずれかに記載の超伝導薄膜の製造方法。   The method for producing a superconducting thin film according to any one of claims 1 to 4, wherein in the surface-side seed material layer, gaps larger than the size of gas molecules generated during main firing are distributed in the plane direction. . 前記表面側シード材層は、シード材粉末を前記塗布膜表面に塗布したものであることを特徴とする請求項1〜5のいずれかに記載の超伝導薄膜の製造方法。   The method for producing a superconducting thin film according to any one of claims 1 to 5, wherein the surface-side seed material layer is obtained by applying seed material powder to the surface of the coating film.
JP2006132120A 2006-05-11 2006-05-11 Method for producing superconducting thin film Pending JP2007302507A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006132120A JP2007302507A (en) 2006-05-11 2006-05-11 Method for producing superconducting thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006132120A JP2007302507A (en) 2006-05-11 2006-05-11 Method for producing superconducting thin film

Publications (1)

Publication Number Publication Date
JP2007302507A true JP2007302507A (en) 2007-11-22

Family

ID=38836772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006132120A Pending JP2007302507A (en) 2006-05-11 2006-05-11 Method for producing superconducting thin film

Country Status (1)

Country Link
JP (1) JP2007302507A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012161233A1 (en) * 2011-05-23 2012-11-29 古河電気工業株式会社 Oxide superconducting thin film
JP2013006759A (en) * 2011-05-23 2013-01-10 Furukawa Electric Co Ltd:The Oxide superconducting thin film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012161233A1 (en) * 2011-05-23 2012-11-29 古河電気工業株式会社 Oxide superconducting thin film
JP2013006759A (en) * 2011-05-23 2013-01-10 Furukawa Electric Co Ltd:The Oxide superconducting thin film

Similar Documents

Publication Publication Date Title
JP5014131B2 (en) Method for producing highly organized tape-like high-temperature superconductor
JP5057784B2 (en) Oxide film with nanodot flux and pinning center
EP2641887B1 (en) Oxide superconductor, oriented oxide thin film, and method for manufacturing oxide superconductor
JP3851948B2 (en) Superconductor manufacturing method
JP2011528316A (en) Compositions and methods for the production of rare earth metal-Ba2Cu3O7-δ thin films
JP4521693B2 (en) High temperature superconducting thick film member and manufacturing method thereof
JP4891505B2 (en) Methods and compositions for making multilayer bodies
Apetrii et al. YBCO thin films prepared by fluorine-free polymer-based chemical solution deposition
JP4433589B2 (en) High temperature superconducting thick film member and manufacturing method thereof
JP2007302507A (en) Method for producing superconducting thin film
JP5686437B2 (en) Oxide superconducting thin film wire and method for producing the same
JP5535453B2 (en) Coated conductor with simplified layer structure
JP4203606B2 (en) Oxide superconducting thick film composition and thick film tape-shaped oxide superconductor
CN1777963A (en) Metal base plate for oxide superconductive wire rod, oxide superconductive wire rod and process for producing the same
Cui et al. Effect of annealing time on the structure and properties of YBCO films by the TFA–MOD method
JP5415824B2 (en) Method for manufacturing a substrate with altered shape for coated conductor and coated conductor using said substrate
JPH059022A (en) Production of superconductor
Wang et al. High performance fluorine-free MOD YBa2Cu3O7-z film preparation by partial melting process
EP2509124A1 (en) Method for obtaining superconducting tapes from metal-organic solutions having low fluorine content
JP2008293976A (en) Metal substrate for superconductive thin film strip conductor
Cui et al. YBCO thin films prepared by fluorine-reduced metal–organic deposition using trifluoroacetates
Li et al. Sm-doped CeO2 single buffer layer for YBCO coated conductors by polymer assisted chemical solution deposition (PACSD) method
JP5273561B2 (en) Manufacturing method of superconducting film
JP5453627B2 (en) Manufacturing method of oxide superconductor film with reduced internal stress
JP2011253766A (en) Method of manufacturing oxide superconductor thin film