JP2011530874A - 無線通信のための共有の時間・周波数自動利得制御 - Google Patents

無線通信のための共有の時間・周波数自動利得制御 Download PDF

Info

Publication number
JP2011530874A
JP2011530874A JP2011522147A JP2011522147A JP2011530874A JP 2011530874 A JP2011530874 A JP 2011530874A JP 2011522147 A JP2011522147 A JP 2011522147A JP 2011522147 A JP2011522147 A JP 2011522147A JP 2011530874 A JP2011530874 A JP 2011530874A
Authority
JP
Japan
Prior art keywords
saturation
gain
fft
detected
setpoint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011522147A
Other languages
English (en)
Other versions
JP5453427B2 (ja
Inventor
リミニ、ロベルト
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qualcomm Inc
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of JP2011530874A publication Critical patent/JP2011530874A/ja
Application granted granted Critical
Publication of JP5453427B2 publication Critical patent/JP5453427B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers without distortion of the input signal
    • H03G3/20Automatic control
    • H03G3/30Automatic control in amplifiers having semiconductor devices
    • H03G3/3052Automatic control in amplifiers having semiconductor devices in bandpass amplifiers (H.F. or I.F.) or in frequency-changers used in a (super)heterodyne receiver
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers without distortion of the input signal
    • H03G3/20Automatic control
    • H03G3/30Automatic control in amplifiers having semiconductor devices

Abstract

1つの受信機により共有の時間・周波数自動利得制御(AGC)を行うための複数の技術が記載されている。1つの観点において、該受信機は、複数の周波数領域記号を得るために高速フーリエ変換(FFT)を用いて複数の時間領域サンプルを変換でき、該複数の周波数領域記号の飽和を検出することができる。該受信機は、飽和が検出されるか否かに基づいて利得を調節でき、該FFTに先立って該利得を適用することができる。1つの設計では、該受信機は、飽和が検出されない場合はセットポイントとして公称値を使用でき、また、飽和が検出される場合は該セットポイントを下げることができる。該受信機は該セットポイントに基づいて該利得を調節することができ、それは該複数の時間領域サンプルの平均電力を決定することができる。別の設計においては、該受信機は利得オフセットに基づいて該利得を決定でき、飽和が検出されるか否かに基づいて該利得オフセットを変えることができる。両設計に関して、該受信機は該利得を、該FFTの前のアナログ信号及び、または複数のデジタル・サンプルに適用することができる。
【選択図】図4

Description

関連出願
本願は、ここにおいて参考文献とされ、その権利が譲渡された仮米国特許出願第61/086,189号(2008年8月5日出願、表題「周波数領域ベースの無線システムのための共有の時間・周波数自動利得制御メカニズム」)に基づき優先権を主張している。
本願は一般に通信に関し、具体的には無線通信のために自動利得制御(AGC)を行うための技術に関する。
無線通信システムにおいて、送信機は典型的に、データを処理し(たとえば、符号化し、変調し)、送信にさらに適した無線周波数(RF)変調された信号を生成する。その後、送信機は無線チャネルを介して該RF変調された信号を受信機に送信する。該無線チャネルは、チャネル応答を用いて該送信された信号を歪ませ(distort)、該信号を雑音及び干渉でさらに劣化させる。
受信機は該送信された信号を受信し、ベースバンド信号を得るために該受信された信号を調整し(conditions)、複数のサンプルを得るために該ベースバンド信号をデジタル化し、該送信機によって送られた該データを回復するために該複数のサンプルを処理する。該受信された信号のレベルは、シャドーイング(shadowing)及びフェージング(fading)のような様々なチャネル伝播現象により広範囲にわたって変化し得る。したがって、該受信機は典型的に、該受信機の中の様々な回路ブロックの飽和を回避するためにAGCを行なう。回路ブロックの入力が最大入力信号レベルを越えるか、あるいは該回路ブロックの出力が最大出力信号レベルを越えるとき、飽和が発生し得る。飽和は、性能を劣化させ得る複数の歪み成分(distortion components)に帰着することができる。したがって、良好な性能を得るためのやり方でAGCを行なうことが望ましい。
無線通信システム中の受信機によって共有の時間・周波数AGCを行なうための複数の技術がここに記載されている。該受信機は、ユーザ装置(UE)、基地局等の一部であることができる。該受信機は、周波数領域に時間領域信号を変換するために高速フーリエ変換(FFT)を行なう前に、時間領域信号上でAGCを行なうことができる。時間領域信号は、複数の信号レベルの許容可能な範囲内にあることができるが、しかし該FFTの出力は飽和し(saturate)得る。例えば、時間領域信号のエネルギのすべてあるいは大部分が多数の副搬送波(subcarrier)の中の1あるいは少数の副搬送波に集中される場合に、これはそうであることができる。
1つの観点において、該受信機は飽和を検出するためにFFTの出力をモニターすることができ、飽和が検出されるとき、AGCの動作を調節することができる。1つの設計においては、該受信機は、複数の周波数領域記号(symbols)を得るためにFFTを用いて複数の時間領域サンプルを変換することができる。該受信機は該複数の周波数領域記号の飽和を検出することができ、飽和が検出されるか否かに基づいて該FFTに先立って適用される利得を調節することができる。1つの設計では、該受信機はデジタルAGC(DAGC)を行うことができ、また、複数の時間領域サンプルを得るために利得を用いてアナログ・デジタル変換器(ADC)からの複数のデジタル・サンプルを基準化する(scale)ことができる。別の設計において、該受信機はアナログAGCを行うことができ、該ADCに先立ってアナログ信号に該利得を適用することができる。該受信機はまた、アナログAGCとDAGCの結合(combination)を行なうことができる。
DAGCの1つのデザインにおいて、該受信機は、飽和が検出されない場合はセットポイント(setpoint)として公称値(nominal value)を使用し、飽和が検出される場合は該セットポイントを下げることができる。該セットポイントは、該FFTに提供される複数の時間領域サンプルの平均電力を決定することができる。該受信機は該複数の時間領域サンプルの電力を測定し、該測定された電力と該セットポイントとの間の誤差を決定し、該利得を得るために該誤差をフィルタリングする(filter)ことができる。該受信機は、飽和が検出されない場合には該フィルタリングのために公称帯域幅を使用することができ、該利得をより迅速に変更するために飽和が検出される場合は該帯域幅を増加させることができる。
DAGCの別の設計においては、該受信機は複数の時間領域サンプルの電力を測定し、該セットポイント及び該測定された電力に基づいて初期利得を決定し、飽和が検出されるか否かに基づいて利得オフセットを決定し、該初期利得及び該利得オフセットに基づいて利得を決定することができる。該受信機は、飽和が検出されない場合に該利得オフセットを公称値(たとえば、0)に設定することができ、あるいは飽和が検出される場合に該利得を下げるために負の値に設定することができる。
以下、該開示の様々な観点及び特徴をさらに詳細に説明する。
図1はUEと基地局のブロック図を示す。 図2はOFDM変調器及びOFDM復調器を示す。 図3はSC−FDMA変調器及びSC−FDMA復調器を示す。 図4は共有の時間・周波数AGCを用いる受信機を示す。 図5は共有の時間・周波数AGCを用いる別の受信機を示す。 図6は共有の時間・周波数AGCを行なうプロセスを示す。 図7は共有の時間・周波数AGCを行なうための装置を示す。
ここに記載された複数の技術は、セルラー(cellular)システム、放送システム、無線ローカル・エリア・ネットワーク(WLAN)システム等のような、様々な無線通信システムに使用されることができる。「システム」及び「ネットワーク」という用語はしばしば交換可能に使用される。セルラーシステムは、符号分割多元接続(CDMA)システム、時分割多元接続(TDMA)システム、周波数分割多元接続(FDMA)システム、直交周波数分割多元接続(OFDMA)システム、単一キャリア(Single-Carrier)FDMA(SC−FDMA)システム等であることができる。OFDMAシステムは、進化型(Evolved) ユニバーサル地上無線アクセス(Universal Terrestrial Radio Access )(E−UTRA)、ウルトラ・モバイル・ブロードバンド(Ultra Mobile Broadband)(UMB)、IEEE 802.16(WiMAX)、IEEE 802.20、フラッシュOFDM(登録商標))等のような、無線テクノロジーインプリメントする(implement)ことができる。E−UTRAはユニバーサル・モバイル・テレコミュニケーション・システム(Universal Mobile Telecommunication System)(UMTS)の一部である。3GPPのロング・ターム・エボリューション(Long Term Evolution)(LTE)及びLTEアドバンスド(LTE-Advanced)(LTE−A)は、ダウンリンク上でOFDMAを、及びアップリンク上でSC−FDMAを使用する、E−UTRAを使用するUMTSの新しいリリース(releases)である。E−UTRA、UMTS、LTE及びLTE−Aは「第3世代パートナーシップ・プロジェクト(3rd Generation Partnership Project)」(3GPP)という名の団体からの文献に記載されている。UMBは、「第3世代パートナーシップ・プロジェクト2」(3GPP2)という名の団体からの文献に記載されている。放送システムは、メディアフロー(MediaFLO)(登録商標)システム、ハンドヘルド(Handhelds)向けデジタル・ビデオ放送(DVB−H)システム、地上テレビ放送用の統合サービス・デジタル放送(Integrated Services Digital Broadcasting for Terrestrial Television Broadcasting)(ISDB−T)システム等であることができる。WLANシステムはIEEE 802.11(Wi−Fi)システム等であることができる。ここに記載された複数の技術は上述された複数のシステム及び無線テクノロジー、並びに他の複数のシステム及び無線テクノロジーに使用され得る。
一般に、該複数の技術はマルチプル(multiple)副搬送波と共に複数のシステムのために使用されることができる。マルチプル副搬送波は、直交周波数分割多重化(OFDM)、単一キャリア周波数分割多重化(SC−FDM)、あるいは他のある変調技術を用いて得られることができる。OFDM及びSC−FDMは、該システム帯域幅をマルチプル(NFFTの)直交副搬送波に分割し、それは一般的にトーン(tones)、ビン(bins)等とも呼ばれる。各副搬送波はデータで変調されることができる。一般に、複数の変調記号はOFDMについては周波数領域で送られ、SC−FDMでは時間領域で送られる。隣接した副搬送波間の間隔は固定されることができ、また、複数の副搬送波の総数(NFFT)は該システム帯域幅に依存し得る。例えば、NFFTは、1.25、2.5、5、10あるいは20MHzのシステム帯域幅に関して128、256、512、1024あるいは2048にそれぞれ等しいことができる。OFDMは、LTE、UMB、WLAN、IEEE 802.16、IEEE 802.11a/g、フラッシュOFDM(登録商標)、メディアフロー(登録商標)、DVB−H、ISDB−T等のような様々な無線テクノロジーで使用される。SC−FDMはLTEのような複数の無線テクノロジーで使用される。
図1は、LTEシステムあるいは他のあるシステムであることができる無線システムにおける基地局110及びUE 150の設計のブロック図を示す。基地局は複数のUEと通信するステーション(station)であることができ、また、ノードB、進化型ノードB(eNB)、アクセス・ポイント等と呼ばれることができる。UEは移動局、端末、アクセス端末、加入者ユニット、ステーション等とも呼ばれることができる。UEはセルラーホン(cellular phone)、パーソナル・デジタル・アシスタント(personal digital assistant)(PDA)、無線モデム、無線通信デバイス、ハンドヘルド・デバイス、ラップトップ・コンピュータ、コードレスホン(cordless phone)、無線ローカル・ループ(WLL)ステーション等であることができる。
基地局110では、送信プロセッサ122はデータをデータ・ソース120から受取り、制御情報をコントローラ/プロセッサ130から受取ることができる。送信プロセッサ122は該データ及び制御情報を処理し(例えば、符号化し、記号マップし)、複数のデータ記号及び複数の制御記号を得ることができる。送信プロセッサ122はまた複数のパイロット記号を生成することができ、該パイロット記号を該複数のデータ記号及び該制御記号と多重化することができる。OFDM変調器(MOD)124は該多重化された複数の記号に関してOFDM変調を行ない、複数の時間領域出力サンプルを提供することができる。送信機ユニット(TMTR)126は、該複数の出力サンプルを調整し(例えば、アナログに変換し、フィルタリングし、増幅し、アップコンバートし)、ダウンリンク(downlink)信号を生成することができ、それはアンテナ128を介して送信されることができる。
UE 150では、アンテナ160は基地局110からダウンリンク信号を受信し、受信機ユニット(RCVR)162に受信された信号を提供することができる。受信機ユニット162は該受信された信号を処理し(例えば、フィルタリングし、増幅し、ダウンコンバートし、またはデジタル化し)、複数の入力サンプルを提供することができる。OFDM復調器(DEMOD)164は該複数の入力サンプルに関してOFDM復調を行ない、複数の受信された記号を提供することができる。受信プロセッサ166は該複数の受信された記号を処理し(例えば、検出し、復調し、復号し)、データ・シンク(sink)168へUE 150のために復号されたデータを提供し、コントローラ/プロセッサ170へ復号された制御情報を提供することができる。
アップリンクにおいては、UE 150における送信プロセッサ182はデータ・ソース180からデータを受取り、コントローラ/プロセッサ170から制御情報を受取ることができる。データ及び制御情報は送信プロセッサ182によって処理され(例えば、符号化され、記号マップされ)、SC−FDMA変調器184によって変調され、送信機ユニット186によってさらに調整されて、アップリンク信号を生成し、それはアンテナ160を介して送信されることができる。基地局110においては、UE 150からの該アップリンク信号はアンテナ128によって受信されることができ、受信機ユニット142によって調整され、SC−FDMA復調器144によって復調され、受信プロセッサ146によって復号されることができる。受信プロセッサ146は復号されたデータをデータ・シンク148へ提供し、復号された制御情報をコントローラ/プロセッサ130へ提供することができる。
コントローラ/プロセッサ130及び170は、基地局110及びUE 150における該動作をそれぞれ指示することができる。メモリ132及び172は基地局110及びUE 150のためにプログラム・コード及びデータをそれぞれ格納することができる。スケジューラ134はダウンリンク及び/またはアップリンク上のデータ送信のために複数のUEをスケジュールすることができ、該スケジュールされた複数のUEに複数のリソースを割り当てることができる。
図1は、LTEで指定されているように、OFDMがあるリンク(例えば、ダウンリンク)に使用されることができ、SC−FDMAが他のリンク(例えば、アップリンク)に使用されることができる設計を示す。一般に、OFDMは1つのリンクまたは両方のリンクに使用されることができ、あるいは無線システムのいずれのリンクにも使用されないことができる。同様に、SC−FDMAは1つのリンクまたは両方のリンクに使用されることができ、あるいはいずれのリンクにも使用されないことができる。
図2は、図1の中のOFDM変調器124及びOFDM復調器164の設計のブロック図を示す。OFDM変調器124内において、記号・副搬送波マッパ(symbol-to-subcarrier mapper)214は、送信プロセッサ122から複数の出力記号を受取り、送信に使用された複数の副搬送波に該複数の出力記号をマップし、0の信号値を備えた複数のゼロ記号を残りの複数の副搬送波にマップすることができる。逆高速フーリエ変換(IFFT)ユニット216は、1つのOFDM記号期間(period)におけるNFFTの合計副搬送波のNFFTの記号を受取り、NFFTポイントIFFTを用いて時間領域へ該NFFTの記号を変換し、NFFTの時間領域出力サンプルを含む有用な部分を提供することができる。ここにおける説明では、用語「IFFT」は、時間領域から周波数領域へデータを変換することができる任意の関数を総称的に指している。各出力サンプルは、1つのサンプル期間で送られる複素値であることができる。巡回プレフィックス(cyclic prefix)挿入ユニット218は、該有用な部分の最後の複数のNCPの出力サンプルをコピーし、NFFT+NCPの出力サンプルを含むOFDM記号を形成するために該有用な部分の該フロント(front)へ該コピーされた複数のサンプルを追加する(append)ことができる。繰り返される部分は、巡回プレフィックスあるいはガード・インターバル(guard interval)と呼ばれることができ、NCPは巡回プレフィックス長である。巡回プレフィックスは周波数選択フェージングによって引き起こされたシンボル間干渉(ISI)を除去しようとする(combat)ために使用され、それは該システム帯域幅にわたって変化する周波数応答である。送信機ユニット126は1つのOFDM記号期間(または単に1つの記号期間)において該OFDM記号を処理及び送信することができ、それはNFFT+NCPのサンプル期間をカバーすることができる。
受信機ユニット162は受信された信号を処理し、OFDM復調器164に複数の入力サンプルを供給することができる。OFDM復調器164内において、巡回プレフィックス削除ユニット232は1つのOFDM記号期間にNFFT+NCPの入力サンプルを獲得し、該巡回プレフィックスのNCPの入力サンプルを削除し、NFFTの入力サンプルを提供し得る。高速フーリエ変換(FFT)ユニット234はNFFTポイントFFTを用いて周波数領域へNFFTの入力サンプルを変換し、NFFTの合計副搬送波のためにNFFTの受信された記号を提供することができる。ここにおける説明では、用語「FFT」は、周波数領域から時間領域へデータを変換することができる任意の関数を総称的に指している。記号・副搬送波デマッパ(demapper)236はNFFTの受信された信号を獲得し、送信に使用された副搬送波からの複数の受信された記号を、受信プロセッサ166に提供し、残りの複数の受信された記号を廃棄する(discard)ことができる。
図3は、図1の中のSC−FDMA変調器184及びSC−FDMA復調器144の設計のブロック図を示す。SC−FDMA変調器184内において、FFTユニット312は1つのSC−FDMA記号期間に送られるNの出力記号を受取って、該Nの出力記号を該周波数領域に変換し、Nの周波数領域記号を提供することができる。記号・副搬送波マッパ314は送信に使用されたNの副搬送波にNの周波数領域記号をマップし、複数のゼロ記号を残りの複数の副搬送波にマップし、NFFTの出力記号を提供し得る。IFFTユニット316は、時間領域へNFFTの出力記号を変換し、NFFTの出力サンプルを含む有用な部分を提供し得る。巡回プレフィックス挿入ユニット318は該有用な部分に巡回プレフィックスを追加し、NFFT+NCPの出力サンプルを含むSC−FDMA記号を提供することができる。
SC−FDMA復調器144内では、巡回プレフィックス削除ユニット332は、1つのSC−FDMA記号期間におけるNFFT+NCPの入力サンプルを獲得し、該巡回プレフィックスに関してNCPの入力サンプルを削除し、NFFTの入力サンプルを提供することができる。FFTユニット334はNFFTの入力サンプルを周波数領域へ変換し、NFFTの合計副搬送波にNFFTの受信された記号を供給することができる。記号・副搬送波デマッパ336は送信のために使用されたNの副搬送波からのNの周波数領域記号を提供し、残る周波数領域記号を廃棄することができる。IFFTユニット338はNの周波数領域記号を時間領域に変換し、さらなる処理のために受信プロセッサ146にNの受信された記号を提供することができる。
基地局110及びUE 150は各々、望まれる信号レベルで複数のサンプルを獲得して該受信機の中の複数の回路ブロックの飽和を回避するためにその受信機においてAGCを行うことができる。「飽和」及び「クリッピング(clipping)」という用語はしばしば交換可能に使用される。AGCは、該受信機の設計のような種々のファクタ(factors)に依存した様々なやり方で行われることができる。AGCはアナログAGC及び/またはデジタルAGC(DAGC)を備えることができる。アナログAGCはADCより前のAGCを指し、信号レベルにおいて大きな複数の変化(variations)を生じさせ得る経路損失減衰及び、ある程度までは、フェージング変動(fading fluctuation)を補償するために使用され得る。DAGCは該ADCの後のAGCを指し、アナログAGCによって訂正されていない信号レベルにおける複数の変化を補償するために使用されることができる。
アナログAGC及び/またはDAGCを行なうべきかどうかは、該ADCの能力に依存し得る。例えば、該ADCは広いダイナミック・レンジ(例えば、16ビットまでのダイナミック・レンジ)を有し、受信された信号レベルにおける広い複数の変化に適応することができる。この場合、アナログAGCを省き、受信されたベースバンド信号を該ADCに直接的に供給することが可能であり得る。該ADCはその後、その広いダイナミック・レンジ内の複数の値を複数のサンプルに与えることができる。該ADCは「無防備に(unprotected)」しておかれることができるが、後続する受信プロセッサまたはモデムの該入力における信号レベルは、該ADC及び該受信機において受信された信号レベルにかかわらず一定の(constant)電力レベル要求を満たすために適切に基準化されなければならない。DAGCは該受信プロセッサの該入力において一定の平均電力レベルを確保するために使用されることができ、シャドーイングにより生成された大規模な遅い複数のフェージング変動を補償することができる。
図4は、OFDMベースまたはSC−FDMAベースの送信のための受信機400の設計のブロック図を示す。受信機400は、図1中の基地局110における受信機ユニット142及びSC−FDMA復調器144の一部分、あるいはUE 150における受信機ユニット162及びOFDM復調器164の一部分を含むことができる。
受信機400内においては、ADC 410は受信されたベースバンド信号をデジタル化し、該受信されたベースバンド信号の該信号レベルに依存する広範囲の複数の値を有する複数のADCサンプルを提供することができる。DAGCユニット420は該複数のADCサンプルを基準化し、複数の基準化されたサンプルを提供し得る。サンプル及びビット選択ユニット440は、受取られたSC−FDMA記号あるいは受取られたOFDM記号の巡回プレフィックスを削除することができる。選択ユニット440はまた、それらの値に基づいた、該複数の基準化されたサンプル中の複数のビットの適切な部分集合(subset)を抽出し、FFTユニット450の複数のビットの該選択された部分集合を備える複数の入力サンプルを提供することができる。FFTユニット450は周波数領域へ該複数の入力サンプルを変換し、NFFTの合計副搬送波に周波数領域記号を提供することができる。FFTユニット450は、図2中のFFTユニット234あるいは図3中のFFTユニット334に対応し得る。
DAGCユニット420は、FFTユニット450の全(full)ダイナミック・レンジを利用するために適切な信号範囲内で基準化された複数のサンプルを提供することができる。DAGCユニット420の利得(あるいは該DAGC利得)は、該複数の入力サンプルを備える時間領域信号のクリッピングなしに正しいビット幅選択を確実にするためにセットポイントに基づいて調節されることができる。しかしながら、時間領域信号が飽和閾値(saturation threshold)よりかなり下である場合でも、1またはそれより多くの副搬送波に関するFFTユニット450からの1またはそれより多くの周波数領域記号は該FFTユニットの最大値に飽和し得る。
FFTユニット450からの複数の周波数領域記号は、たとえFFTユニット450に提供される複数の時間領域入力サンプルが飽和されてはならない場合でも、飽和し得る。この現象は、時間領域DAGCによって時間領域で信号を基準化すること及び該信号エネルギをFFTによって周波数領域において射影すること(projecting)における固有の矛盾(discrepancy)のせいであり得る。この現象は、OFDM記号あるいはSC−FDMA記号のエネルギのすべてあるいは大部分が1あるいは少数の副搬送波に集中されるときに生じ得る。この現象は、様々な動作シナリオで発生し得る。例えば、LTEにおけるアップリンクでは、少数の副搬送波だけが1つの与えられたUEに割り当てられることができ、少数のUEだけが存在し得る。この場合、該UEに割り当てられた該少数の副搬送波の電力スペクトル密度(PSD)は、時間領域及び周波数領域の両方における合計エネルギ保存(conservation)の結果として大きいものになり得る。これらの高電力スペクトル成分は、該FFTユニットの有限のダイナミック・レンジを飽和させることができ、それはその後、厳しい信号歪みを生成し得る。
時間領域における飽和を伴わない周波数領域における飽和の問題は、適切な電力バックオフ(power back-off)によって該DAGC利得を減少させることにより終始対処され得る。より低いDAGC利得は時間領域信号レベルを低下させ、それはその後、対応する量まで該複数の周波数領域記号の信号レベルを低下させる。しかしながら、該DAGC利得を減少させることは、量子化雑音のダイナミック・レンジを犠牲にする(trade off)。さらに、該DAGC利得を減少させることは、該FFTユニットの該ダイナミック・レンジを効果的に減少させて該FFT出力においてより高い雑音フロア(noise floor)を導入し、それは該受信機の最大信号対雑音比(SNR)、及びその結果として該受信機によってサポートされるピーク・データ・レートを低下させ得る。したがって、周波数領域における潜在的な飽和を除去しようとするために該DAGC利得を終始減少させることは、飽和が存在しない多くの時間、性能を劣化させ得る。
1つの観点においては、共有の時間・周波数AGCは、飽和が生じるとき及び場合に、周波数領域における飽和を除去しようとするために行なわれることができる。該FFTユニットの該出力は、飽和を検出するために監視されることができる。飽和が検出されるとき、周波数領域における飽和について該DAGCユニットに通知するために、フィードバック情報は該FFT出力から提供されることができる。その後、該DAGCユニットは、該フィードバック情報を受取ると、適切な訂正動作(corrective action)を行なう(例えば、該DAGC利得を減少させる)ことができる。
図4は、共有の時間・周波数AGCのためのDAGCユニット420の設計のブロック図を示す。DAGCユニット420内において、乗算器424は各ADCサンプルに該DAGC利得を掛け、対応した基準化されたサンプルを提供することができる。電力計算ユニット426は各基準化されたサンプルの電力を、P=I2 +Q2 として計算することができ、ここで、Iは該サンプルの同相分であり、Qは該サンプルの直交成分であり、Pは該サンプルの該電力である。「電力」及び「エネルギ」という用語はしばしば交換可能に使用される。ユニット426は多数の基準化されたサンプルにわたって電力を平均し、各測定期間において測定された電力を提供することができる。加算器428は、セットポイント調節ユニット432によって提供された調節されたセットポイントから該測定された電力を引くことができ、そしてループ・フィルタ430に誤差を提供することができる。ループ・フィルタ430は加算器428からの該誤差をフィルタリングし、乗算器424に該DAGC利得を提供することができる。ループ・フィルタ430は、該測定された電力が該調節されたセットポイントを越える場合は該DAGC利得を減少させることができ、該測定された電力が該調節されたセットポイントより低い場合は該DAGC利得を増加させることができる。ループ・フィルタ430はまた該DAGC利得のためにフィルタリングを提供し得る。
乗算器424、電力計算ユニット426、加算器428、及びループ・フィルタ430は、FFTユニット450より前の、時間領域において動作するDAGCループを形成する。該DAGCループは、該複数の基準化されたサンプルの平均電力がユニット432により提供される該調整されたセットポイントと一致するように該DAGC利得を調節する。
周波数領域における飽和を除去しようとするために、飽和検出器460はFFTユニット450から複数の周波数領域記号を受取ることができ、下記のように飽和を検出することができる。飽和検出器460は、飽和が検出されているか否かを示すことができる飽和インジケータを提供することができる。1つの設計では、該飽和インジケータは、無飽和を示す第1の値(例えば、「0」)に、あるいは該FFT出力の飽和を示す第2の値(例えば、「1」)に設定され得る単一のビットを備えることができる。別の設計では、該飽和インジケータは、飽和が検出されるか否か、あるいは検出された飽和のシビアリティ(severity)を示すことのできるマルチプル・ビットを備えることができる。例えば、該飽和インジケータは、無飽和を示す第1の値(例えば、「0」)、軽度の(mild)飽和を示す第2の値(例えば、「1」)、中度の(moderate)飽和を示す第3の値(例えば、「2」)、あるいは極度の(severe)飽和を示す第4の値(例えば、「3」)に設定され得る。様々な訂正動作は飽和の様々なレベルに関して行なわれることができる。
図4に示されている設計では、セットポイント調節ユニット432は、公称セットポイント及び飽和検出器460からの飽和インジケータを受取ることができる。該公称セットポイントは、該アンテナ・コネクタで該受取られた電力レベルにかかわらず、FFTユニット450の全ダイナミック・レンジを利用するように選択されることができる。1つの設計においては、ユニット432は調節されたセットポイントを提供することができ、それは以下のように設定され得る:
飽和がない場合、調節されたセットポイント=公称セットポイント
飽和がある場合、調節されたセットポイント=公称セットポイント−Δ
式(1)
ここで、Δは、飽和が検出されるときのセットポイントの減少の量である。該セットポイント及びΔは、式(1)において、例えばデシベル(dB)の、複数の対数ユニットで与えられる。
1つの設計において、Δは、単一のビットの飽和インジケータが飽和を示す値(例えば、「1」)に設定されるときに選択され得る単一の値であることができる。たとえば、Δは、6dBに等しいことが可能であり、そしてそれは、飽和が検出されるときに4倍だけ減少される複数の入力サンプルの電力に帰着し得る。他の複数の値もまたΔとして使用できる。別の設計においては、Δはマルチプルの(multiple)可能な値のうちの1つであることができ、それはマルチ・ビット飽和インジケータによって選択されることができる。例えば、Δは極度の飽和に関してより大きい値(例えば、6dB)に等しく、あるいは軽度の飽和に関してはより小さい値(例えば、3dB)に等しいことができる。
式(1)に示された設計では、飽和が検出されるとき、より小さい調節されたセットポイントが使用され得る。該より小さい調節されたセットポイントは、結果的に、より小さいDAGC利得に帰着することができ、そしてそれは、乗算器424からの該複数の基準化されたサンプルの信号レベルを下げることができる。より小さい調節されたセットポイントは、FFT出力における飽和が回避または軽減される(mitigated)ことができるように、選択されることができる。
図4に示されるように、飽和が検出されるとき、該より小さい調節されたセットポイントは加算器428からのより大きい誤差になり得る。該より大きい誤差は、該より小さいDAGC利得を得るためにループ・フィルタ430によってフィルタリングされ得る。ループ・フィルタ430による該フィルタリングは、検出された飽和のせいで該セットポイントが調節される時間から該DAGC利得が望まれる値に減少される時間までの遅延の原因になり得る。1つの設計においては、ループ帯域幅調節ユニット434はまた該飽和インジケータを受取ることができ、飽和が検出されるとき、ループ・フィルタ430の該ループ帯域幅を(例えば、ループ・フィルタ430に関する時定数を減少させることにより)増加させてもよい。より広いループ帯域幅は該DAGC応答時間を減少させ、したがって該飽和シナリオから迅速に出るために該望まれるDAGC利得を得ることにおける該遅延を減少させることができる。一般に、次第に広くなるループ帯域幅は結果的に、次第に短くなる遅延をもたらすことができる。該ループ帯域幅は該望まれる遅延を得るために適切な量だけ増加され得る。例えば、該巡回プレフィックス長より短くなるように該遅延を減少することが望ましい。これは、該次のOFDM記号あるいはSC−FDMA記号に先立って該望まれるDAGC利得が獲得され得ることを確実にすることができる。
該セットポイントは、飽和が検出される場合に減少され得る。より小さい調節されたセットポイントは、飽和がもはや検出されなくなるまで使用されることができ、その時公称セットポイントが使用されることができる。該ループ帯域幅は、飽和が検出されるときに増加され得る。飽和が検出されている間に、より広いループ帯域幅が使用され得る。その代わりに、該セットポイントが変更される時は必ず、該より広いループ帯域幅は所定の時間持続期間中に使用されることができる。
図5は、共有の時間・周波数AGCのための別のDAGCユニット422を備えた受信機402の設計のブロック図を示す。DAGCユニット422内においては、乗算器424は各ADCサンプルに該DAGC利得を掛け、対応した基準化されたサンプルを提供することができる。電力計算ユニット426は各基準化されたサンプルの電力を計算し、多数の基準化されたサンプルにわたって該電力を平均し、各測定期間において測定された電力を提供することができる。加算器428は、セットポイントから該測定された電力を引き、ループ・フィルタ430に誤差を提供することができる。ループ・フィルタ430は加算器428からの該誤差をフィルタリングし、初期DAGC利得を乗算器438に提供することができる。
周波数領域における飽和を除去しようとするために、飽和検出器460はFFTユニット450から複数の周波数領域記号を受取り、飽和を検出し、検出された飽和を示す飽和インジケータを提供することができる。DAGC利得調節ユニット436は該飽和インジケータを受取り、該飽和インジケータに基づいてDAGC利得オフセットを決定することができる。乗算器438はループ・フィルタ430からの該初期DAGC利得に、ユニット436からの該DAGC利得オフセットを掛けることができ、乗算器424に該DAGC利得を供給することができる。
1つの設計においては、ユニット436は以下のように該DAGC利得オフセットを設定することができる:
飽和がない場合、DAGC利得オフセット=0
飽和がある場合、DAGC利得オフセット=−δ
式(2)
ここで、δは、飽和が検出されるときのDAGC利得の減少の量である。
1つの設計において、δは、単一のビットの飽和インジケータが飽和を示す値(例えば、「1」)に設定されるときに選択され得る単一の値(例えば、0.5)であることができる。別の設計においては、δはマルチプルの可能な値のうちの1つであることができ、それはマルチ・ビット飽和インジケータによって選択されることができる。例えば、δは極度の飽和に関してより小さい値(例えば、0.5)であり、あるいは軽度の飽和に関してはより大きい値(例えば、0.75)であることができる。
式(2)に示された設計では、飽和が検出されるとき、負のDAGC利得オフセットが使用され得る。該負のDAGC利得オフセットは、結果的に、より小さいDAGC利得に帰着することができ、そしてそれは、乗算器424からの該複数の基準化されたサンプルの信号レベルを下げることができる。該DAGC利得オフセットは、FFT出力における飽和が回避または軽減されることができるように選択され得る。図5に示されるように、飽和が検出されるとき、該より小さいDAGC利得は迅速に得られることができる。何故ならそれは、該DAGC利得オフセットがループ・フィルタ430の後に適用されるからである。該より小さいDAGC利得は、飽和がもはや検出されなくなるまで使用されることができ、その時該DAGC利得オフセットはゼロに設定されることができる。
図4及び5は、該DAGC利得が線形ユニットで更新され得る設計を示している。別の設計においては、該DAGC利得は対数ユニット(例えば、dB)で更新されることができる。この設計においては、線形・ログコンバータ(linear-to-log converter)は電力計算ユニット426と加算器428との間に配置されることができ、また、ログ・線形(log-to-linear)コンバータは図4では乗算器424とループ・フィルタ430との間に、あるいは図5においては乗算器424と438の間に配置されることができる。乗算器438はその後、加算器と置換され得る。
図4及び5に示されている設計において、周波数領域からのフィードバック情報を時間領域において動作するDAGCユニットに提供するために、余分なフィードバックループが使用され得る。該余分なフィードバックループはFFT出力に配置されることができ、複数の高電力スペクトル成分(例えば、ある定まった閾値より上の)を検出し、及び該時間領域DAGCユニットに検出された飽和を通知するという目的にかなうということができる。該DAGCユニットは、飽和が検出されていることに気づいてきたときに、FFT出力で可能な飽和を除去しようとするために該DAGC利得及び、またはセットポイントを即座に減少させることができる。
図4及び5における飽和検出器460は、周波数領域における飽和を様々なやり方で検出することができる。1つの設計において、飽和検出器460はシステム帯域幅に関連のあるFFT出力で該電力スペクトル密度を監視することができる。飽和は様々な基準に基づいて宣言され得る。1つの設計では、特定の数の副搬送波の各々の電力がある与えられた閾値を越える場合、飽和は宣言され得る。別の設計では、特定の数の副搬送波の各々の中の周波数領域記号の少なくとも1つの最上位ビット(MSB)が1に設定される場合、飽和は宣言されることができる。例えば、「1」に設定されている1つのMSBは、最大電力の50%を越える電力を検出するために使用されることができ、「1」に設定されている2つのMSBは、最大電力の75%を越える電力を検出するために使用されることができ、「1」に設定されている3つのMSBは、最大電力の87.5%を越える電力を検出するために使用されることができる。一般に、飽和は、ある閾値を越える大きい信号レベルを備えた任意の数の副搬送波に基づいて宣言され得る。さらに、ある信号レベルを、大きいと定量化する(quantify)ために任意の適切な閾値を使用することができる。異なるレベルの飽和は、大きい信号レベルを備えた異なる数の副搬送波及び/または異なる閾値を用いて定義され得る。例えば、少なくともN1の副搬送波がTH1の閾値を越える信号レベルを有する場合、軽度の飽和が宣言されることができ、少なくともN2の副搬送波がTH2の閾値を越える信号レベルを有する場合、中度の飽和が宣言されることができ、少なくともN3の副搬送波がTH3の閾値を越える信号レベルを有する場合、極度の飽和が宣言されることができ、ここで、N1<N2<N3であり、及び/または、TH1<TH2<TH3である。飽和及び飽和の様々なレベルは他の複数のやり方で検出されることかできる。
該DAGC利得を減少させるためにいずれのメカニズムが使用されるかにかかわらず、該FFT出力からの該フィードバック情報は、時間領域からのDAGCだけを、共有の時間・周波数AGCに変換する。これは、無線システムで遭遇し得る広範囲の動作シナリオにわたってロバストな(robust)性能を提供し得る。
時間領域から周波数領域へ複数の入力サンプルのブロックを変換した後、飽和は周波数領域において検出され得る。1つの設計において、飽和が検出される場合には、これらの周波数領域記号はたとえ飽和されても、該複数の周波数領域記号は後続する処理のために受信プロセッサに提供されることができる。別の設計では、飽和が検出される場合、該複数の周波数領域記号は廃棄され得る。データ・パケットは、マルチプルOFDM記号あるいはマルチプルSC−FDMA記号で送られることができる。該データ・パケットは、後続する複数のOFDM記号あるいは複数のSC−FDMA記号から、複数の周波数領域記号に基づいて回復されることができ、それは該DAGC利得の減少のために飽和を経験していない。さらに別の設計においては、(例えば、閾値を越える電力を用いて)飽和される複数の周波数領域記号だけが廃棄されることができ、残りの複数の周波数領域記号は後続する処理のために提供されることができる。さらに別の設計では、複数の入力サンプルの該ブロックは、より低いDAGC利得を用いて該DAGCユニットによって再度基準化されることができ、該複数の再度基準化されたサンプルは該FFTユニットに再度適用されることができる。飽和が検出される場合、複数の入力サンプルの該ブロック及び/または該対応する複数の周波数領域記号はまた別のやり方で処理される。
上述された設計においては、該DAGC利得は該周波数領域における飽和の検出に基づいて調節されることができる。該DAGC利得は、該FFTのために複数の時間領域入力サンプルを得るために該ADCからの複数のサンプルに適用されることができる。別の設計では、アナログ利得は周波数領域における飽和の検出に基づいて調節されることができる。該アナログ利得は該ADCに先立って適用され得る。例えば、該ADCより前の、1またはそれより多くの可変利得増幅器(VGAs)の該利得は該アナログ利得によって調節され得る。一般に、該DAGC利得及び/またはアナログ利得は飽和の検出に基づいて調節され得る。該アナログ利得はADCの前に適用されることができ、該DAGC利得は該ADCの後に適用されることができる。
ここに記載された複数の技術は、複数のサンプルが受信機において周波数領域へ変換されるOFDMベースの、及びSC−FDMAベースのシステム用の該受信機中での動的信号基準化のロバストネス(robustness)及び精度(accuracy)を改善することができる。該複数の技術は、(i)該DAGCと該FFT出力を相互接続する簡単なフィードバックループ、及び(ii)あまり複雑でない(of modest complexity)少数の追加の回路ブロックを用いてインプリメントされる(implemented)ことができる。
図6は、無線通信のためにAGCを行なうプロセス600の設計を示す。プロセス600は受信機によって行なわれることができ、それは、UE、基地局、あるいは他のあるエンティティ(entity)の一部であり得る。該受信機は、複数の周波数領域記号を得るためにFFTを用いて複数の時間領域サンプルを変換することができる(ブロック612)。該FFTは、時間領域から周波数領域にデータをコンバートすることができる任意の変換を備えることができる。複数の周波数領域記号はOFDM記号、SC−FDMA記号等用のものであることができる。該受信機は、該FFTからの複数の周波数領域記号の飽和を検出することができる(ブロック614)。該受信機は、飽和が検出されるか否かに基づいて利得を調節することができ、そして該FFTの前に該利得を適用することができる(ブロック616)。図6に示されている1つの設計において、該受信機は複数の時間領域サンプルを得るために該利得を用いてADCからの複数のデジタル・サンプルを基準化することができる(ブロック618)。図6には示されていない別の設計において、該受信機は該ADCより前にアナログ信号に該利得を適用することができる。
ブロック616の1つの設計において、該受信機は該FFTの前にインプリメントされるDAGCを用いて該利得を調節することができる。該受信機は、飽和が検出されるとき、該DAGCによる該利得の調節を変えることができる。飽和が検出されるか否かを示すフィードバック情報は、該FFTの該出力から該DAGCに提供されることができ、該DAGCによる該利得の調節を変えるために使用され得る。
図4に示されている該DAGCの1つの設計において、受信機は、飽和が検出されない場合は公称値をセットポイントとして使用することができ、飽和が検出される場合には該セットポイントを下げることができる。該受信機は該複数の時間領域サンプルの電力を測定することができ、該セットポイント及び該測定された電力に基づいて利得を決定することができる。該受信機は該測定された電力と該セットポイントとの間の誤差を決定し、該利得を得るために該誤差をフィルタリングする(例えばループ・フィルタを用いて)ことができる。該受信機は、飽和が検出されない場合には該フィルタリングのために公称帯域幅を使用することができ、飽和が検出される場合は該帯域幅を増加させることができる。1つの設計では、受信機は、飽和が検出される場合には、該セットポイントを所定の量だけ減少させることができる。別の設計においては、該受信機は該セットポイントを、該飽和のシビアリティに基づいて決定される可変量(variable amount)だけ、減少させることができる。
図5に示されたDAGCの別の設計において、該受信機は該複数の時間領域サンプルの電力を測定することができ、該セットポイントと該測定された電力に基づいて初期利得(initial gain)を決定することができる。受信機は、飽和が検出されるか否かに基づいて利得オフセットを決定することができる。該受信機はその後、該初期利得及び該利得オフセットに基づいて利得を決定し得る。
ブロック614の1つの設計では、特定の数の周波数領域記号が閾値を越える電力を有する場合、該受信機は飽和を宣言することができる。別の設計では、該受信機はFFTからの複数の周波数領域記号のうちの少なくとも1つのMSBに基づいて飽和を宣言することができる。該受信機は、飽和が検出されるか否かを示す飽和インジケータを生成することができ、該飽和インジケータを該DAGCに提供し得る。1つの設計においては、該飽和インジケータは、無飽和を示す第1の値に、あるいは飽和を示す第2の値に設定され得る単一のビットを備えることができる。別の設計では、該飽和インジケータは、マルチプルの飽和レベルのうちの1つあるいは無飽和を示すことができる。この設計では、該受信機は該利得を様々な飽和レベルの様々な量だけ調節することができる。
図7は、無線通信のためのAGCを行なう装置700の設計を示す。装置700は、複数の周波数領域記号を得るためにFFTを用いて複数の時間領域サンプルを変換するためのモジュール712と、該FFTからの複数の周波数領域記号の飽和を検出するためのモジュール714と、及び飽和が検出されるか否かに基づいて該FFTの前に適用される利得を調節するためのモジュール716とを含む。図7に示されている1つの設計において、該装置は、複数の時間領域サンプルを得るために該利得を用いてADCからの複数のデジタル・サンプルを基準化するためのモジュール718をさらに含むことができる。図7に示されていない別の設計においては、該装置は、該ADCの前にアナログ信号に該利得を適用するためのモジュールをさらに含むことができる。図7中の複数のモジュールは、図1の中の複数のプロセッサ及び複数のモジュールのうちの任意のものによってインプリメントされ得る。
図7中の複数のモジュールは、複数のプロセッサ、複数のエレクトロニクス・デバイス、複数のハードウェア・デバイス、複数のエレクトロニクス・コンポーネント、複数の論理回路、複数のメモリ、複数のソフトウェア・コード、複数のファームウェア・コード等、あるいはその任意の組合せを備えることができる。
当業者は、複数の信号及び情報が様々なテクノロジーまたは技術の任意のものを使用して表わされることができることを理解するであろう。例えば、上記の説明の全体にわたって参照され得るデータ、複数の命令、複数のコマンド、情報、複数の信号、複数のビット、複数の記号、及び複数のチップは、複数の電圧、複数の電流、複数の電磁波、複数の磁気フィールドまたは粒子、複数の光学フィールドまたは粒子、あるいはその任意の組合せで表わされることができる。
当業者は、ここに開示されたものに関連して記載された種々の例示的な論理ブロック、モジュール、回路、及びアルゴリズム・ステップが電子ハードウェア、コンピュータ・ソフトウェア、あるいは両方の複数の組合せとしてインプリメントされ得ることをさらに認識するであろう。ハードウェアとソフトウェアのこの互換性(interchangeability)を明らかに示すために、様々な実例となるコンポーネント、ブロック、モジュール、回路、およびステップは、それらの機能性の点で上記において一般に説明されている。このような機能性がハードウェアとしてインプリメントされるか、またはソフトウェアとしてインプリメントされるかは、システム全体に課された複数の設計制約及び特定の用途に依存する。当業者は、各特定の用途に関して様々なやり方で該記載された機能性をインプリメントすることができるが、しかしこのようなインプリメンテーション(implementation)の決定は、本願の開示の技術的範囲からの逸脱を引き起こすものとして解釈されるべきでない。
ここに開示されたものに関連して記載された様々な例示的な論理ブロック、モジュール、および回路は、ここに記載された複数の機能を行うように設計された汎用プロセッサ、デジタル信号プロセッサ(DSP)、特定用途向け集積回路(ASIC)、フィールド・プログラム可能なゲート・アレイ(FPGA)あるいは他のプログラム可能な論理装置、デイスクリート(discrete)・ゲートまたはトランジスタ論理回路(transistor logic)、複数のデイスクリート・ハードウェア・コンポーネント、あるいはその任意の組合せを用いてインプリメントされ、あるいは行なわれることができる。汎用プロセッサはマイクロプロセッサであることができるが、しかし、別の実施形態においては、該プロセッサは任意のコンベンショナル・プロセッサ(conventional processor)、コントローラ、マイクロコントローラ、あるいは状態機械であることができる。プロセッサはまた、例えば、DSPコアに関連した1またはそれより多くのマイクロプロセッサ、複数のマイクロプロセッサ、1つのマイクロプロセッサと1つのDSPの組合せ等の、複数の計算デバイスの組合せ、あるいは任意の他のこのような構成としてインプリメントされ得る。
ここに開示されたものに関連して記載された1つの方法またはアルゴリズムの複数のステップは、ハードウェアにおいて、プロセッサによって実行されるソフトウェア・モジュールにおいて、あるいは該2者の組合せで直接具体化されることができる。ソフトウェア・モジュールは、RAMメモリ、フラッシュ・メモリ、ROMメモリ、EPROMメモリ、EEPROMメモリ、複数のレジスタ、ハードディスク、取外し可能ディスク、CD−ROM、あるいは技術的に知られている任意の他の形態の記憶媒体において存在し得る。典型的な記憶媒体は、プロセッサが該記憶媒体から情報を読取り、及び該記憶媒体に情報を書込むことができるように、該プロセッサに結合される。別の実施形態においては、該記憶媒体は該プロセッサに内蔵されていることができる。該プロセッサと該記憶媒体はASIC中に存在し得る。該ASICはユーザ端末中に存在し得る。別の実施形態では、該プロセッサと該記憶媒体は、ユーザ端末中の複数のディスクリート(discrete)なコンポーネントとして存在し得る。
1またはそれより多くの典型的な設計においては、記載された複数の機能は、ハードウェア、ソフトウェア、ファームウェア、あるいはその任意の組合せでインプリメントされることができる。ソフトウェアでインプリメントされる場合、該複数の機能は、コンピュータ可読媒体上の1またはそれより多くの命令またはコードとして格納または送信されることができる。コンピュータ可読媒体は、ある場所から別の場所へのコンピュータ プログラムの転送を容易にする任意の媒体を含む通信媒体とコンピュータ記憶媒体の両者を含む。記憶媒体は、汎用または専用コンピュータによりアクセスされ得る任意の入手可能な媒体であることができる。限定ではなく、例示すると、このようなコンピュータ可読媒体は、RAM、ROM、EEPROM、CD−ROMまたは他の光ディスク記憶装置(disk storage) 、磁気ディスク記憶装置または任意の他の複数の磁気記憶デバイス、あるいは汎用または専用コンピュータもしくは汎用または専用プロセッサによってアクセスされ得る及び複数のデータ構造または複数の命令の形態で望まれるプログラム・コード手段を伝送または格納するために使用され得る任意の他の媒体、を備えることができる。さらに、いずれの接続もコンピュータ可読媒体と適切に呼ばれる。例えば、同軸ケーブル、光ファイバ・ケーブル、撚線対、デジタル加入者線(DSL)、または赤外線、無線、及びマイクロ波のような複数の無線イクノロジーを使用して、ソフトウェアがウェブサイト、サーバ、または他の遠隔発信元(source)から送信される場合、該同軸ケーブル、光ファイバ・ケーブル、撚線対、DSL、または赤外線、無線、及びマイクロ波のような複数の無線テクノロジーは、媒体の定義に含まれる。ここで使用されているディスク(disk) 及びディスク(disc)は、コンパクト ディスク(CD)、レーザ ディスク、光ディスク、デジタル多用途(versatile)ディスク(DVD)、フロッピー(登録商標)ディスク及びブルーレイディスク(登録商標)を含み、ここで、複数のディスク(disks)は通常データを磁気的に再生し、一方複数のディスク(discs)はレーザを用いてデータを光学的に再生する。上記のものの複数の組合せもまた、コンピュータ可読媒体の技術的範囲内に含まれるべきである。
該開示の先の説明は、当業者が該開示を作成または使用することを可能にするために提供されている。該開示への様々な修正は当業者に容易に明白になり、また、ここに規定されている複数の一般的な原理は、該開示の技術的範囲を逸脱せずに、他の複数の変形に適用され得る。したがって、該開示は、ここに説明されている複数の例及び設計に限定されるものではなく、ここに開示されている複数の原理及び複数の新しい特徴と一致する非常に広い技術的範囲を与えられている。

Claims (31)

  1. 下記を備える、無線通信のために自動利得制御(AGC)を行う方法、
    複数の周波数領域記号を得るために高速フーリエ変換(FFT)を用いて複数の時間領域サンプルを変換すること、
    前記FFTからの前記複数の周波数領域記号の飽和を検出すること、及び
    飽和が検出されるか否かに基づいて前記FFTの前に適用される利得を調節すること。
  2. 下記をさらに備える、請求項1記載の方法、
    複数の時間領域サンプルを得るために前記利得を用いてアナログ・デジタル変換器(ADC)からの複数のデジタル・サンプルを基準化すること。
  3. 下記をさらに備える、請求項1記載の方法、
    前記アナログ・デジタル変換器(ADC)に先立ってアナログ信号に前記利得を適用すること。
  4. 前記利得を前記調節することは下記を備える、請求項1記載の方法、
    前記FFTの前にインプリメントされるデジタルAGC(DAGC)を用いて前記利得を調節すること、
    飽和が検出されるとき、前記DAGCによる前記利得の調節を変えること。
  5. 下記をさらに備える、請求項1記載の方法、
    前記FFTの出力からのフィードバック情報を前記DAGCへ提供すること、前記フィードバック情報は、飽和が検出されるか否かを示す。
  6. 前記利得を調節することは、下記を備える、請求項1記載の方法、
    前記複数の時間領域サンプルの電力を測定すること、
    飽和が検出される場合にはセットポイントを減少させること、前記セットポイントは前記複数の時間領域サンプルの平均電力を決定する、及び
    前記測定された電力と前記セットポイントに基づいて前記利得を決定すること。
  7. 前記セットポイントを減少させることは、飽和が検出される場合には所定の量だけ前記セットポイントを減少させることを備える、請求項6記載の方法、
  8. 前記セットポイントを減少させることは、前記飽和のシビアリティに基づいて決定される可変量だけ前記セットポイントを減少させることを備える、請求項6記載の方法、
  9. 前記利得を決定することは、下記を備える、請求項6記載の方法、
    前記セットポイントと前記測定された電力との間の誤差を決定すること、
    前記利得を得るために前記誤差をフィルタリングすること、
    飽和が検出される場合は前記フィルタリングの帯域幅を増加させること。
  10. 前記利得を調節することは、下記を備える、請求項1記載の方法、
    前記複数の時間領域サンプルの電力を測定すること、
    前記測定された電力とセットポイントに基づいて初期利得を決定すること、
    飽和が検出されるか否かに基づいて利得オフセットを決定すること、
    前記利得オフセット及び前記初期利得に基づいて前記利得を決定すること。
  11. 飽和を検出することは、特定の数の周波数領域記号が閾値を越える電力を有する場合に飽和を宣言することを備える、請求項1記載の方法。
  12. 飽和を検出することは、前記複数の周波数領域記号の少なくとも1つの最上位ビットに基づいて飽和を検出することを備える、請求項1記載の方法。
  13. 下記をさらに備える、請求項1記載の方法、
    飽和が検出されるか否かを示す飽和インジケータを生成すること、前記飽和インジケータは前記利得を調節するために使用される。
  14. 前記飽和インジケータは、無飽和を示す第1の値あるいは飽和を示す第2の値に設定される単一のビットを備える、請求項13記載の方法。
  15. 前記飽和インジケータは、マルチプルの飽和レベルのうちの1つあるいは無飽和を示し、ここにおいて前記利得は様々な飽和レベルの様々な量だけ調節される、請求項13記載の方法。
  16. 前記複数の周波数領域記号は、直交周波数分割多重化(OFDM)記号または単一キャリア周波数分割多元接続(SC−FDMA)記号のためのものである、請求項1記載の方法。
  17. 下記を備える、無線通信のために自動利得制御(AGC)を行うための装置、
    複数の周波数領域記号を得るために高速フーリエ変換(FFT)を用いて複数の時間領域サンプルを変換するための手段、
    前記FFTからの前記複数の周波数領域記号の飽和を検出するための手段、及び
    飽和が検出されるか否かに基づいて前記FFTの前に適用される利得を調節するための手段。
  18. 下記をさらに備える、請求項17記載の装置、
    複数の時間領域サンプルを得るために前記利得を用いてアナログ・デジタル変換器(ADC)からの複数のデジタル・サンプルを基準化するための手段。
  19. 前記利得を調節するための手段は下記を備える、請求項17記載の装置、
    前記FFTの前にインプリメントされるデジタルAGC(DAGC)を用いて前記利得を調節するための手段、
    飽和が検出されるとき、前記DAGCによる前記利得の調節を変えるための手段。
  20. 前記利得を調節するための手段は下記を備える、請求項17記載の装置、
    前記複数の時間領域サンプルの電力を測定するための手段、
    飽和が検出される場合にはセットポイントを減少させるための手段、前記セットポイントは前記複数の時間領域サンプルの平均電力を決定する、及び
    前記測定された電力と前記セットポイントに基づいて前記利得を決定するための手段。
  21. 前記利得を決定するための手段は下記を備える、請求項20記載の装置、
    前記セットポイントと前記測定された電力との間の誤差を決定するための手段、
    前記利得を得るために前記誤差をフィルタリングするための手段、
    飽和が検出される場合は前記フィルタリングの帯域幅を増加させるための手段。
  22. 前記利得を調節するための手段は、下記を備える、請求項17記載の装置、
    前記複数の時間領域サンプルの電力を測定するための手段、
    前記測定された電力とセットポイントに基づいて初期利得を決定するための手段、
    飽和が検出されるか否かに基づいて利得オフセットを決定するための手段、
    前記利得オフセット及び前記初期利得に基づいて前記利得を決定するための手段。
  23. 飽和を検出するための手段は、特定の数の周波数領域記号が閾値を越える電力を有する場合に飽和を宣言するための手段を備える、請求項17記載の装置。
  24. 下記を備える、無線通信のために自動利得制御(AGC)を行うための装置、
    複数の周波数領域記号を得るために高速フーリエ変換(FFT)を用いて複数の時間領域サンプルを変換し、前記FFTからの前記複数の周波数領域記号の飽和を検出し、飽和が検出されるか否かに基づいて前記FFTの前に適用される利得を調節するように構成された少なくとも1つのプロセッサ。
  25. 前記少なくとも1つのプロセッサは、複数の時間領域サンプルを得るために前記利得を用いてアナログ・デジタル変換器(ADC)からの複数のデジタル・サンプルを基準化するように構成される、請求項24記載の装置。
  26. 前記少なくとも1つのプロセッサは、前記FFTの前にインプリメントされるデジタルAGC(DAGC)を用いて前記利得を調節し、飽和が検出されるとき、前記DAGCによる前記利得の調節を変えるように構成される、請求項24記載の装置、
  27. 前記少なくとも1つのプロセッサは、前記複数の時間領域サンプルの電力を測定し、飽和が検出される場合にはセットポイントを減少させるように構成され、前記セットポイントは前記複数の時間領域サンプルの平均電力を決定する、及び、前記測定された電力と前記セットポイントに基づいて前記利得を決定するように構成される、請求項24記載の装置。
  28. 前記少なくとも1つのプロセッサは、前記セットポイントと前記測定された電力との間の誤差を決定し、前記利得を得るために前記誤差をフィルタリングし、飽和が検出される場合は前記フィルタリングの帯域幅を増加させるように構成される、請求項27記載の装置。
  29. 前記少なくとも1つのプロセッサは、前記複数の時間領域サンプルの電力を測定し、前記測定された電力とセットポイントに基づいて初期利得を決定し、飽和が検出されるか否かに基づいて利得オフセットを決定し、前記利得オフセット及び前記初期利得に基づいて前記利得を決定するように構成される、請求項24記載の装置。
  30. 前記少なくとも1つのプロセッサは、特定の数の周波数領域記号が閾値を越える電力を有する場合に飽和を宣言するように構成される、請求項24記載の装置。
  31. 下記を備えたコンピュータ・プログラム製品、
    下記を備えるコンピュータ可読媒体、
    複数の周波数領域記号を得るために高速フーリエ変換(FFT)を用いて複数の時間領域サンプルを、少なくとも1つのコンピュータに変換させるためのコード、
    前記FFTからの前記複数の周波数領域記号の飽和を、少なくとも1つのコンピュータに検出させるためのコード、及び
    飽和が検出されるか否かに基づいて前記FFTの前に適用される利得を、少なくとも1つのコンピュータに調節させるためのコード。
JP2011522147A 2008-08-05 2009-08-03 無線通信のための共有の時間・周波数自動利得制御 Expired - Fee Related JP5453427B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US8618908P 2008-08-05 2008-08-05
US61/086,189 2008-08-05
US12/510,176 2009-07-27
US12/510,176 US8548105B2 (en) 2008-08-05 2009-07-27 Joint time-frequency automatic gain control for wireless communication
PCT/US2009/052610 WO2010017147A1 (en) 2008-08-05 2009-08-03 Joint time-frequency automatic gain control for wireless communication

Publications (2)

Publication Number Publication Date
JP2011530874A true JP2011530874A (ja) 2011-12-22
JP5453427B2 JP5453427B2 (ja) 2014-03-26

Family

ID=41652955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011522147A Expired - Fee Related JP5453427B2 (ja) 2008-08-05 2009-08-03 無線通信のための共有の時間・周波数自動利得制御

Country Status (12)

Country Link
US (1) US8548105B2 (ja)
EP (1) EP2319174B1 (ja)
JP (1) JP5453427B2 (ja)
KR (1) KR101227469B1 (ja)
CN (1) CN102113210B (ja)
AT (1) ATE548798T1 (ja)
BR (1) BRPI0917264A2 (ja)
CA (1) CA2730653A1 (ja)
ES (1) ES2383943T3 (ja)
RU (1) RU2011108455A (ja)
TW (1) TW201010300A (ja)
WO (1) WO2010017147A1 (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101808392A (zh) * 2010-04-01 2010-08-18 复旦大学 一种时分正交频分复用系统的自动增益控制方法
US8773966B1 (en) 2010-05-07 2014-07-08 Marvell International Ltd. Signal power measurement and automatic gain control in orthogonal frequency division multiple access systems
US8774874B2 (en) * 2010-06-04 2014-07-08 Qualcomm Incorporated Reducing power consumption by in-circuit measurement of receive band attenuation and/or noise
US8842582B2 (en) * 2010-06-04 2014-09-23 Qualcomm Incorporated Reducing power consumption by taking advantage of superior in-circuit duplexer performance
JP5615203B2 (ja) * 2011-02-24 2014-10-29 パナソニック株式会社 自動利得制御装置
CN102187588B (zh) 2011-04-13 2013-06-05 华为技术有限公司 无线接收机中自动增益调整的方法及装置
CN103188787B (zh) * 2011-12-31 2016-03-30 重庆重邮信科通信技术有限公司 一种自动增益控制方法及装置
KR101674415B1 (ko) 2012-04-27 2016-11-09 삼성전자주식회사 디지털 신호 처리 시스템에서 신호 이득 제어 방법 및 장치
CN104158578A (zh) * 2013-05-14 2014-11-19 华为技术有限公司 一种终端间的协作通信方法、设备及系统
US9647646B2 (en) 2014-04-22 2017-05-09 Qualcomm Incorporated Systems and methods for gain and offset control
CN104393884B (zh) 2014-11-21 2017-12-01 华为技术有限公司 射频接收机及射频接收机的自动增益调整方法
US9946687B2 (en) * 2016-01-28 2018-04-17 Analog Devices, Inc. Fixed-point high dynamic range fast fourier transforms
WO2017219324A1 (zh) * 2016-06-23 2017-12-28 华为技术有限公司 一种自动控制增益的方法和装置
EP3373027A1 (en) * 2017-03-10 2018-09-12 Nxp B.V. Wireless communication unit, interference detection circuit and method for interference detection
CN111586829B (zh) * 2020-05-28 2022-11-04 哲库科技(北京)有限公司 自动增益控制方法、终端及存储介质
CN112866162B (zh) * 2021-01-05 2022-05-31 上海微波技术研究所(中国电子科技集团公司第五十研究所) 基于时域和频域功率的自动增益控制方法、系统及介质
CN113596980B (zh) * 2021-09-14 2023-04-25 四川安迪科技实业有限公司 Mf-tdma返向链路接收机模拟agc的数字控制方法
CN114050956A (zh) * 2021-11-09 2022-02-15 北京思朗科技有限责任公司 一种无线信号处理方法及无线信号接收机

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60225279A (ja) * 1984-04-23 1985-11-09 Mitsubishi Electric Corp フーリエ変換装置
JP2002353813A (ja) * 2001-05-23 2002-12-06 Mitsubishi Electric Corp ディジタル通信装置及びこれを用いた配電線搬送用の通信装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100271650B1 (ko) * 1998-04-16 2000-11-15 김영환 곱셈기와 부궤환을 이용한 자동이득 제어 회로
US6795426B1 (en) 1999-07-06 2004-09-21 Cisco Technology, Inc. Realtime power control in OFDM systems
US6515599B1 (en) 2000-03-22 2003-02-04 Lucent Technologies Inc. High-power selective signal attenuator and method of attenuation
US7499508B2 (en) * 2001-04-03 2009-03-03 Agere Systems Inc. Method and apparatus for adjusting the gain of an if amplifier in a communication system
US7295517B2 (en) 2002-11-27 2007-11-13 Texas Instruments Incorporated Method and apparatus for channel quality metric generation within a packet-based multicarrier modulation communication system
DE60331728D1 (de) * 2003-07-15 2010-04-29 St Microelectronics Sa Verfahren zur automatischen Verstärkungsregelung, beispielsweise in einem Telekommunikationssystem, Vorrichtung und Computerprogramm hierfür
US8605836B2 (en) * 2005-03-11 2013-12-10 Qualcomm Incorporated Automatic gain control for a wireless receiver
US7783260B2 (en) 2006-04-27 2010-08-24 Crestcom, Inc. Method and apparatus for adaptively controlling signals
US7643812B2 (en) 2006-09-18 2010-01-05 Agere Systems Inc. Method and apparatus for a single-path enhanced-algorithm digital automatic gain control integrated receiver with power management and XM interference enhancement

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60225279A (ja) * 1984-04-23 1985-11-09 Mitsubishi Electric Corp フーリエ変換装置
JP2002353813A (ja) * 2001-05-23 2002-12-06 Mitsubishi Electric Corp ディジタル通信装置及びこれを用いた配電線搬送用の通信装置

Also Published As

Publication number Publication date
ATE548798T1 (de) 2012-03-15
US8548105B2 (en) 2013-10-01
BRPI0917264A2 (pt) 2015-11-10
TW201010300A (en) 2010-03-01
KR20110039389A (ko) 2011-04-15
KR101227469B1 (ko) 2013-01-30
JP5453427B2 (ja) 2014-03-26
CA2730653A1 (en) 2010-02-11
RU2011108455A (ru) 2012-09-10
US20100034327A1 (en) 2010-02-11
EP2319174A1 (en) 2011-05-11
ES2383943T3 (es) 2012-06-27
WO2010017147A1 (en) 2010-02-11
CN102113210B (zh) 2014-08-06
CN102113210A (zh) 2011-06-29
EP2319174B1 (en) 2012-03-07

Similar Documents

Publication Publication Date Title
JP5453427B2 (ja) 無線通信のための共有の時間・周波数自動利得制御
JP5497071B2 (ja) ワイヤレス通信ネットワークにおけるofdmベースの送信のための自動利得制御(agc)
US7822153B2 (en) Automatic gain control apparatus and method in an orthogonal frequency division multiple access system
US7295517B2 (en) Method and apparatus for channel quality metric generation within a packet-based multicarrier modulation communication system
US8891637B2 (en) Spectral shaping to reduce peak-to-average ratio in wireless communication
JP4539539B2 (ja) 軟判定値補正方法,受信装置,プログラム
CN110800341B (zh) 用于唤醒信号管理的方法和装置
JP2005057644A5 (ja)
JP2017188874A (ja) 信号処理回路
KR20150094164A (ko) 주파수 직각 진폭 변조를 사용하는 무선 통신 시스템에서 채널 품질 정보 피드백을 위한 방법 및 장치
US20180034731A1 (en) Device and method for handling effective path of channel impulse response
US20160057656A1 (en) Delay spread estimation and utilization
US8855250B2 (en) Wireless communication system with improved automatic gain control
US9106300B1 (en) Method and apparatus for detecting narrow-band interference in a communication system
TWI607643B (zh) 處理軟資訊的裝置及方法
JP6518623B2 (ja) デジタル情報伝送システムとこのシステムで使用される送信機および方法
EP4218135A1 (en) Impulse noise mitigation in communication systems
TW202402016A (zh) 無線通訊的窄頻干擾管理方法及裝置
Zhang et al. Joint estimation of power and DC offset for OFDM systems based on distribution function
JP2009278251A (ja) 受信方法および装置
JP2010278675A (ja) 無線通信装置及びタイミング推定方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121002

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20130104

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20130111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140106

R150 Certificate of patent or registration of utility model

Ref document number: 5453427

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees