JP2011524037A - 医療障害パターン検索エンジン - Google Patents

医療障害パターン検索エンジン Download PDF

Info

Publication number
JP2011524037A
JP2011524037A JP2011508668A JP2011508668A JP2011524037A JP 2011524037 A JP2011524037 A JP 2011524037A JP 2011508668 A JP2011508668 A JP 2011508668A JP 2011508668 A JP2011508668 A JP 2011508668A JP 2011524037 A JP2011524037 A JP 2011524037A
Authority
JP
Japan
Prior art keywords
processor
chain
image
event
binary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011508668A
Other languages
English (en)
Other versions
JP5474937B2 (ja
Inventor
ローレンス エー. リン,
エリック エヌ. リン,
Original Assignee
ローレンス エー. リン,
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ローレンス エー. リン, filed Critical ローレンス エー. リン,
Publication of JP2011524037A publication Critical patent/JP2011524037A/ja
Application granted granted Critical
Publication of JP5474937B2 publication Critical patent/JP5474937B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/80ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for detecting, monitoring or modelling epidemics or pandemics, e.g. flu
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H10/00ICT specially adapted for the handling or processing of patient-related medical or healthcare data
    • G16H10/60ICT specially adapted for the handling or processing of patient-related medical or healthcare data for patient-specific data, e.g. for electronic patient records
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H15/00ICT specially adapted for medical reports, e.g. generation or transmission thereof
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/70ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for mining of medical data, e.g. analysing previous cases of other patients
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H70/00ICT specially adapted for the handling or processing of medical references
    • G16H70/20ICT specially adapted for the handling or processing of medical references relating to practices or guidelines

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Medical Informatics (AREA)
  • Primary Health Care (AREA)
  • General Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Biomedical Technology (AREA)
  • Data Mining & Analysis (AREA)
  • Pathology (AREA)
  • Databases & Information Systems (AREA)
  • Bioethics (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Medical Treatment And Welfare Office Work (AREA)

Abstract

患者安全性検索エンジンおよびアラームプロセッサは、繰り返し病院システム内の全ての患者の電子医療記録を検索して、病態生理学的連鎖発生、具体的には敗血症性ショックの連鎖等の連鎖的死亡発生を伴う患者の早期検出を自動的に提供するようにプログラムされる。検索エンジンはまた、検出が遅すぎた場合には一般的に致命的である広範囲の病態生理学的障害発生を検索する。連鎖または障害の検出時にアラームを提供するようにプログラムされるアラームプロセッサが提供される。プロセッサはさらに、連鎖の画像を提供するように、ならびに手技および治療のタイミングおよび種類と、連鎖と関連する増加費用とに関して、連鎖の重症度および連鎖の開始時間を決定するようにプログラムされる。病院システム内の広範囲の臨床障害パターンまたは画像についての自由裁量リアルタイムシステム全域検索が開示された患者安全性検索エンジンを使用して行われてもよい。

Description

本開示は、臨床医学現場で、患者の状態を検出し、監視するためのシステムおよび方法に関する。
(背景)
患者は、聡明かつ勤勉な医療従事者の厳重な警戒の下でさえ、驚くべき率で思いがけなく病棟で死亡する。病院には障害耐性の文化があると議論されてきた。しかしながら、より批判的な分析は、この「耐性」が実際には断念であり、多数の臨床的障害が、十分な技術なしで重複する人間の病態生理学の著しい複雑性を管理するという準備不十分な試行の回避不可能な結果を含むことを明らかにしている。残念ながら、死亡に進行する複雑な病態生理学的障害連鎖を生じるように組み合わさる、何百ものよく見られるが微妙な摂動が、病院内の全患者において潜在的に発生し得る。
たった1人の患者の生理学的複雑性がしばしば圧倒的である一方で、1人の看護師が12人の複雑な患者を担当している場合があり、1人の病院医師が30人の患者を診ている場合もある。病院の現状では、患者が死亡に向かって進行している際でさえも、生理学的複雑性の大部分が電子医療記録(EMR)の中に存在する。熟練の医師または看護師が適時に全ての断片をまとめて障害発生を確認しない限り、たとえ医療従事者が近くにいても、しばしば患者は絶望的である。
人間の病態生理学が極めて複雑であり、医療従事者が同時に複数の患者の問題に対処するため、病院現場における患者のケアは、複雑な管理過程を伴う。医療従事者によって行われる患者の優先度およびケアに関する決定は、ある程度主観的であり、患者のケアに関与する各個人の専門知識および経験のレベルに応じて異なる場合がある。
特に病院現場における患者のケアに関与する複雑性により、医療従事者は、プロトコルに基づくケアを通した過程に、ある均一性のレベルを提供しようとしてきた。そのようなケアは、「X閾値を破ればY動作」という分岐決定ツリープロトコルを伴ってもよい。しかしながら、そのようなプロトコルは、病態生理学的複雑性の真のレベルに関して考慮されると、医療従事者が決定ツリーの間違った分岐に容易に進み得るように、著しい過度の単純化をしばしば含む。
プロトコルに基づくケアに加えて、医療従事者はしばしば、臨床的ケアの決定の基礎を置いてもよい、より多くの情報を取得するために、患者の種々の生理学的パラメータを監視する。これらのパラメータの多くは、集中電子医療記録に記録されてもよい、血液酸素レベル、脈拍数、定期的血液検査、および生命兆候検査を含んでもよい。しかしながら、この検査は、ある臨床的状態の早期検出において、または患者の状態およびケアの明確な全体像を医療従事者に提供する際に、効果的ではない場合がある。微妙かつ軽微なレベルの摂動さえ、ある臨床的状況では、著しい不安定性につながる場合がある。例えば、脳卒中の状況で、血清ナトリウムの軽微な変化が、混乱、次いで、昏蒙につながる場合があり、それは、誤嚥、肺炎、および静脈血栓症のリスクを増大させる場合がある。実際に、そのような異常を生じる血清ナトリウム減少のレベルは、わずか8mEqである場合があり、そうでなければ、急性脳卒中を除外して有害反応を生じる可能性が低い減少である。血清ナトリウムの8mEqの減少は、通常は脳卒中を除外して許容されるため、関係複雑性全体を認識するほど聡明または勤勉ではないかもしれない医療従事者によって、著しい不安定性の原因として容易に見過ごされる場合がある。微妙または単純な事象または発生が、実際には、はるかに多大で危険であるが未検出の拡大しつつある病態生理学的障害過程の連関構成要素を含むことは、非常に一般的である。単純な摂動が医師によって容易に見過ごされるため(または識別された場合、他の過程への中枢連関が認識されないことが多い)、これは、病態生理学的障害過程が、治療されずに死亡に向かって進行することを可能にする。
複雑な患者の状態発生の適時な検出に関与する課題の別の実施例では、敗血症性ショックがしばしば、感染症の合併症のない状態から、炎症反応症候群、敗血症、重度の敗血症、および最終的には敗血症性ショックの進行性状態への進行の最終結果である。これらの状態の区別は、恣意的であり、臨床で不完全に定義される。患者の大部分には、さらなる進行なしで発熱を伴う感染症があり、多数は、敗血症性ショックへのさらなる進行なしで炎症反応症候群に進行しさえする。定期的な血液検査、および持続的な生命測定さえも、常にショック前状態を検出するとは限らない場合があるため、敗血症性ショック前状態を検出するために特異的に開発された特殊血液検査およびバイオマーカープロファイルが開発されてきた。しかしながら、部分的に、生理学的摂動に対する患者の可変反応により、特定の血液検査およびプロファイルには、特異度の欠如という問題を抱えている。所与の患者がショックに進行するか否かは、存在するバイオマーカーおよびそれらの濃度よりもはるかに多くのものに依存する。ショックへの進行は、免疫学的および炎症性摂動に対する患者特有の生理学的反応の複雑な関係、ならびに、摂動の開始時よび摂動中の患者の生理学的状態、および介入(例えば、抗生物質および/または流体)の適時性および適切性に依存し得る。これらの要因の大部分が、血液検査測定またはバイオマーカープロファイルによって捕捉されないため、特異的にショック前状態の検出に向けられた連続検査さえも、重度の敗血症または敗血症性ショックの進展状態の確実な適時の検出を提供するように、十分な情報を提供しない場合がある。
本開示の1つ以上の具体的実施形態を以下で説明する。これらの実施形態の簡潔な説明を提供する目的で、実際の実装の全ての特徴が本明細書で説明されているわけではない。任意の工学または設計プロジェクトのような、任意のそのような実際の実装の開発において、実装によって異なってもよい、システム関連および事業関連制約の順守等の、開発者の具体的目標を達成するために、多数の実装特有の決定を行わなければならないことを理解されたい。また、そのような開発努力は、複雑で時間がかかる場合があるが、それでもなお、本開示の便益を有する当業者にとって、設計、加工、および製造の日常的な取り組みとなることを理解されたい。
本開示は、ある臨床状態の診断、監視、および治療のためのシステムおよび方法を提供する。
一実施形態は、少なくとも1人の患者の少なくとも検査および生理学的データを含有する、病院または病院システムの電子医療記録データベースと、病態生理学的連鎖発生の複雑なパターンまたは画像を検出するよう、さらに連鎖を定義するよう、連鎖を定量化するよう、および連鎖の関係および費用を決定するよう、データベース内のデータまたはデータベースから導出されたデータを自動的に、かつ繰り返し検索するようにプログラムされる、検索エンジンとを含む、プロセッサシステムを備える。本発明の一局面によれば、一実施形態によって検出されるような病態生理学的連鎖は、拡張する病態生理学的過程を備える。そのような拡張は一般的に、例えば、免疫系のように(炎症連鎖として)、最初に罹患した系統内で発生し、次いで、しばしば、増強、上方調節、下方調節、補償、補償障害、および複合系障害の化学、神経学、および/または解剖学的機構を介して、呼吸器および心血管系等の他の系統の中へ拡張する。本発明の実施形態によって検出される最も重要な連鎖は、連鎖的死亡発生(CED)である。
一実施形態は、病態生理学的連鎖、具体的には、連鎖的死亡発生(CED)を、自動的、断続的、および/または継続的に検索し、検出する検索エンジンと、CEDを生じている患者を識別し、患者の場所に隣接する部位におけるそのような連鎖の検出時に、連鎖の画像、連鎖の種類、および/または連鎖の少なくとも1つの特性を表示するように構成されてもよい、ポケットベルまたは電話によって、患者を管理する介護者へ、患者が滞在する病棟へ、品質管理センターまたは患者安全性管理センターへ、患者自身へ、アラームを提供するようにプログラムされる、アラームプロセッサとを備える。ポケットベルは、検出された障害および/または連鎖の重症度を示す、一連の光を生成してもよい。患者自身(または患者が有能ではない場合は患者の家族)もプロセッサによって通知されるため、患者によるポケットベルの装着は、医療従事者が所見を軽視または無視することを防止する。
本開示の利点は、以下の発明を実施するための形態を読み、図面を参照することで明白になり得る。
図1は、検索および検出のための関係二進数、画像構成要素、およびMPPCを構築するために使用されてもよい、重複患者複雑性を明示する患者の例示的な構成要素図である。 図2は、例示的実施形態による分析のレベルを描写する図である。 図3Aは、例示的実施形態によるデータフロー図である。 図3Bは、例示的実施形態による例示的システムの図である。 図3Cは、例示的実施形態によるデータおよび動作フロー図である。 図4は、関係二進数プロセッサの一実施形態内の1次分類の例示的UML静的図である。 図5は、事象種類の定義を特異的に拡張する関係二進数プロセッサの一部の例示的UML静的図である。 図6は、患者安全性プロセッサ内の1次分類の例示的UML静的図である。 図7は、二進数定義セット内の1次分類の例示的UML静的図である。 図8は、障害画像構成要素定義セット内の1次分類の例示的UML静的図である。 図9は、睡眠時無呼吸症の二進図を描写する、収束エディタの例示的ユーザインターフェースモデルである。 図10は、麻酔薬誘発性喚気不安定性と関連する障害画像構成要素図を描写する、集約障害画像構成要素エディタの例示的ユーザインターフェースモデルである。 図11は、ヘパリン療法の二進図を描写する、収束エディタの例示的ユーザインターフェースモデルである。 図12は、インスリン療法の二進図を描写する、収束エディタの例示的ユーザインターフェースモデルである。 図13は、麻酔薬療法の二進図を描写する、収束エディタの例示的ユーザインターフェースモデルである。 図14は、ヘパリン誘発性出血と関連する障害画像構成要素図を描写する、集約障害画像構成要素エディタの例示的ユーザインターフェースモデルである。 図15Aは、敗血症性ショックによる拡張連鎖的死亡発生を示す、グループに編成された複数の時系列を含む障害画像フレームである。 図15Bは、画像の複数部分が順次状態に分けられている、拡張連鎖的敗血症性ショックの障害画像を示す、グループに編成された複数の時系列を含む障害画像フレームである。 図15Cは、拡張連鎖的重度敗血症性ショックにおける早期時点を示す、グループに編成された複数の時系列を含む障害画像フレームである。 図15Dは、炎症、血流力学、および呼吸増強を伴う、および早期免疫障害を伴う、障害連鎖的重度敗血症性ショックの画像を示す、障害画像フレームである。 図15Eは、炎症、血流力学、および呼吸増強を伴う、免疫障害を伴う、ならびに、呼吸ガス交換の減退および血小板数の減少の徴候を伴う、障害連鎖的重度敗血症性ショックの画像を示す、障害画像フレームである。 図15Fは、代謝障害、腎不全、血流力学障害、および呼吸不全への進行を伴う、進行連鎖的重度敗血症性ショックの画像を示す、例示的障害画像フレームである。 図16は、グループに編成された複数の時系列を含む、例示的なうっ血性心不全(CHF)の障害画像である。 図17は、グループに編成された複数の時系列を含む、例示的な睡眠時無呼吸症の障害画像である。 図18は、グループに編成された複数の時系列を含む、例示的な血小板減少性紫斑病の障害画像である。 図19は、図15Aの時間経過MPPCからの摂動開始および進行の概観を示し、各グループにおける摂動は、各グループの単一の平滑化時系列に沿って総合指数に組み込まれる。 図20は、血清抗利尿ホルモン分泌異常(SIADH)の過剰分泌が誘発した低ナトリウム血症の減少の障害画像を示す、図1の複雑性の図からの複数の時系列を含む、一般障害画像である。 図21は、睡眠時無呼吸症の存在下で、麻酔薬関連回復障害を示すMPPCの構造を示す、患者安全性プロセッサ用の複合生理学的および治療画像を構築するためのドラッグアンドドロップインターフェースの分割画面図である。 図22は、患者安全性プロセッサによる認識のための敗血症性ショックMPPCを構築するための障害画像エディタの例示的画像フレームである。 図23は、例示的な患者安全性プロセッサネットワークの概略図である。
(詳細な説明)
本発明の一局面によれば、連鎖的死亡発生(CED)は、一般的に死亡に至る有機体内の異系統から導出される信号および検査に散在する、生物有機体から導出される信号および/または検査の摂動および変動の拡張集約として、検索エンジンによって検出される。一般に、CEDが発生するにつれて、摂動の数、異なる種類の正または負の動向または変動の数、および/または異なる種類の閾値違反の数、および摂動された系統の数が、次第に上昇する。
幅広く拡張したCEDを一般的に生成する、1つの病態生理学的過程は、重度の敗血症である。重度の敗血症は、微小循環に依存している全ての系統にわたってCEDを最終的に拡張する、微小循環障害を一般的に誘発する。肺では、微小循環障害発生が、ガス交換の効率性の漸進的減退を引き起こし、分時換気量が、過程の原因と関連する要因(毒素等)を補償するように、または要因の直接結果として上昇する。多くの系統では、反応は、初期増強摂動(系統の好反応または予備反応を備える)を伴う二相性である。連鎖が進行するにつれて、増強後に、障害関連摂動が拡張的に発現する。敗血症CED例では、代謝系摂動は、最初は、水素イオンの単純な予備低下を備える増強摂動であってもよいが、以降で、連鎖が発生するにつれて、広範囲の障害関連摂動が優勢になる。
連鎖的死亡発生は、連鎖の事実上全体を通して進行してもよく、それら自体が死亡の前兆となってもよい、より小さい関係パターンを一般的に含有する。例えば、重度の敗血症のCEDは、米国特許第10/150842号(その開示は、本明細書で完全に開示されたかのように、参考として援用されてもよい)で説明されている、換気および動脈血酸素飽和度の病理学的相違のパターンを含有する。そのようなより小さい関係パターンが、CEDの事実上全体を通して進行してもよい(かつそれら自体が死亡の前兆となってもよい)という事実にもかかわらず、特に、連鎖が成熟し、幅広く拡張するにつれて、これらの小さいパターンは、概して、死亡連鎖の信号「帯域幅」のごくわずかな部分しか表さない。したがって、より小さい関係パターンは、CEDの起こり得る存在の検出に有用であるが、CEDの原因を決定する特異度を提供せず、特に、それらの兆候の早期では、CEDの存在に対して特異的ではない場合がある。
通常のCEDは、連鎖の開始を備える、少なくとも1つの開始頂部または頂点を有する。頂部または頂点は、概して、単一の生理系内にある。CEDは、最初に罹患した系統にわたる頂部または頂点から、他の系統の中へ、かつ他の系統にわたって拡張する。CEDは、最初に初期系統内で拡張することが一般的である。最初に初期系統内で、次いで、初期系統を越えて突出する、摂動の次第に拡大する錐体のように、CEDは、死亡の時点に達する時まで、事実上全ての系統を関与させるように拡張し得る。
連鎖的死亡発生は、3次元空間内で、連鎖の開始、連鎖持続時間によって定義されている錐体の長さ、連鎖拡張率によって定義されている錐体の角度、および所与の時点での連鎖拡張の規模によって定義されている、その時点での断面積によって表すことができる。
本発明の一実施形態によれば、データセットが2D形式(各システムが時系列の別個の区画を定義するように、区画化される時系列マトリクス等)に編成されると、CEDは一般的に、部分的にCEDの拡張速度を定義する頂点における角度で、三角形を生じる。CEDは、介入がなければ、一般的には死亡に至る。2D表現では、死亡頂点がX軸上で識別され、死亡時に残る全ての摂動または変動に線を垂直に通過させることによって、三角形を競合させることができる。これがCEDの三角形の基礎を形成する。
患者が自発的回復または介助された回復を達成した場合、連鎖が縮小し始める。縮小が始まる点は、CEDの連鎖拡張三角形の頂点および底辺と、最終的に縮小三角形の終了時に安定状態頂点まで縮小する、CEDの縮小三角形の頂点および底辺とを形成する。患者が回復した後でさえも、CED後の安定状態の時系列マトリクスの生理学的構成要素の状態は、CEDに先行したものとは異なってもよく、この違いと、系統および時系列の種類に関するその場所とは、しばしば、CEDを誘発した事象、CED自体、および/または治療により、患者によって持続される残留損傷の程度および種類の定量化可能な指示である。
錐体および三角形という用語が、本明細書で拡張連鎖の図式表現に使用されているが、事前形成されたマトリクスが広範囲の拡張パターンで影響を受ける。拡張は、均一または線形ではない場合があり、むしろ拡張連鎖の形状は、論議されるような広範囲の要因に応じて異なる。
プロセッサはさらに、連鎖の種類、連鎖の重症度、連鎖の持続時間、連鎖の開始時間、連鎖の成熟度(例えば、段階)のうちの少なくとも1つを決定するようにプログラムされてもよい。重症度は、連鎖、摂動または動向の重症度(例えば、別の重症度の尺度による基準値および/または統計的正常値に関する、連鎖を備える摂動または動向の勾配および/または規模による)、連鎖の影響を受ける系統の数、連鎖と関連する摂動に応じた補償の障害の存在、数、および/または重症度、連鎖の成長を備える、摂動および/または動向の数によって、例えば、単位時間あたりに追加されている新規摂動の数または影響を受けた系統の数によって、決定されてもよい。プロセッサはまた、連鎖と関連する、または連鎖の一部である、事象または構成要素を検出してもよい。アラームプロセッサは、先述のそれぞれの指示を提供するようにプログラムされてもよい。テキスト、聴覚、図式、または他の形式で先述のいずれかを提示するために、アラーム表示が提供されてもよい。検索は、新規データが追加される度に、特定の種類のデータが追加される度に、または事前選択あるいは適応頻度で、再開されてもよい。例えば、検索頻度は、起こり得る連鎖の早期構成要素が識別された時、または実際の連鎖が識別された時に増加してもよい。
データセットの後続の新規検索サイクルが、あまりプロセッサ集中型ではなく、例えば、以前の処理データとの新規データ(事前初期化を伴う、または伴わない)の比較のみを伴って、新規連鎖が発現しているかどうか、既存の連鎖がより重度になっているか、または改善しているかどうか、または連鎖に関する別の事象(治療事象等)が発生したかどうかを決定するように、一実施形態は、以前の検索中に検出された画像および関係を保持する。
一実施形態は、複雑な病態生理学的連鎖発生について電子医療記録(EMR)を繰り返し、および/または継続的に検索するように構成される、病態生理学的連鎖検索エンジンと、連鎖の検出時に警告を出力するためのアラームプロセッサとを備える、1名または複数の患者の全EMRをリアルタイム患者モニタに変換するための患者データ処理システムを備える。病態生理学的障害連鎖検索エンジンは、例えば、敗血症連鎖等の生理学的障害の複雑な画像発生について、EMRを継続的に検索するようにプログラムされてもよく、アラームプロセッサは、病態生理学的障害連鎖の検出時にアラームを提供するようにプログラムされてもよく、画像プロセッサは、障害連鎖の画像発生を出力するようにプログラムされてもよい。データ処理システムはまた、連鎖を定量化し、連鎖の進行を追跡し、連鎖に関する関連イベントを識別、強調、および/または警告し、連鎖と関連する費用を決定し、連鎖に関する治療のタイミングを決定し、治療に関する連鎖の応答を決定するようにプログラムされてもよい。
別の実施形態では、プロセッサは、病態生理学的連鎖について検索するのに適した特定の形式に電子医療記録を変換するようにプログラムされる。一実施例では、そのような形式は、生理学的パラメータおよび検査データの両方の正変動および負変動から成る、順次および時限変動を備え、正および/または負の動向の組み合わせから成る関係動向を検出し、関係動向の複数の組み合わせから成る複雑な連鎖パターンを検出し、検出された複雑な連鎖の画像の表示を自動的に出力し、複雑な連鎖の検出を示す警告を自動的に出力し、複雑な連鎖の成長または減退を追跡し、成長または減退を示す指示を出力し、連鎖パターンは、いくつか例を挙げると、敗血症、重度の敗血症、敗血症性ショック、および微小循環障害、ショック連鎖、および敗血症性ショック連鎖のうちの少なくとも1つ等の、単一または複数の生理学的障害を示してもよい。プロセッサは、検出された連鎖の種類の指示を決定し、出力するように、連鎖に沿った動向のタイミングおよび種類の指示を決定し、出力するように、連鎖の長さの指示を決定し、出力するように、治療法の開始を検出するように、および少なくとも連鎖に関する治療法のタイミングの指示を決定し、出力するように、プログラムされてもよい。患者データ処理システムは、EMRを検索して、少なくとも、生理学的パラメータおよび検査データの両方の正変動および負変動から成る、順次および時限変動を検出し、検出された正および負の動向の関係タイミングを決定し、相互に対して順次時限関係で発生する正および負の動向の複数の組み合わせから成る複雑な連鎖パターンを検出し、検出された複雑な関係連鎖パターンの指示を自動的に出力するようにプログラムされる、コンピュータを備えてもよい。
別の実施形態では、処理システムは、少なくとも、生理学的パラメータおよび検査データの両方の正変動および負変動から成る、順次および時限動向に電子医療記録を変換し、正および/負の動向の組み合わせから成る関係動向を検出し、関係動向の複数の組み合わせから成る複雑な連鎖パターンを検出し、複雑な連鎖パターンの検出を示すアラームを出力するようにプログラムされる、コンピュータを備えてもよい。
別の実施形態は、少なくとも、炎症動向、代謝動向、血流力学動向、血液学的動向、および呼吸動向の組み合わせを備える、正および負の動向を識別し、関係的に、またはまとめて敗血症性ショックまたは敗血症性ショック前障害連鎖を示す、正および負の関係タイミングを識別し、敗血症性ショックまたは敗血症性ショック前障害連鎖の指示を識別し、出力するようにプログラムされるコンピュータを備える、少なくとも1人の患者の少なくとも生理学的パラメータおよび検査データの電子医療記録を処理するための患者データ処理システムを備える。それはさらに、治療の開始を識別し、連鎖の少なくとも1つの構成要素に関する治療のタイミングを識別するように、および、関係パターンを分析して、連鎖の構成要素を備える最早期動向を識別し、治療の監視を識別し、この最早期動向に関する治療のタイミングを識別するようにプログラムされてもよい。少なくとも生理学的パラメータおよび検査データの電子医療記録を処理するための別の実施形態では、少なくとも、患者の生理学的状態および/またはケアに関するデータを含む、患者のデータの大きな一式の時系列を生成し、少なくとも、監視されたデータセットおよび検査データセットを含む、データセットを並列および重複時系列に変換し、少なくとも、炎症の発生、代謝の発生、容積測定の発生、血流力学的発生、治療法の発生、血液学的発生、呼吸の発生を含む、発生を識別し、発生のタイミングを識別し、敗血症連鎖、肺塞栓症連鎖、代謝連鎖、および微小循環障害連鎖のうちの少なくとも1つの障害連鎖を示す複数の時系列に沿って、発生の少なくとも1つの関係パターンを識別し、連鎖の指示、連鎖に沿った発生のタイミングおよび種類、および連鎖の長さのうちの少なくとも1つを出力するようにプログラムされる、コンピュータを備える。別の実施形態は、全電子医療記録を患者モニタに変換するための方法を備え、該方法は、ディスプレイを有する電子医療記録システムを備え、生理学的パラメータおよび検査データの両方の正の動向および負の動向から成る、順次および時限動向に電子医療記録を変換するステップと、正および/または負の動向の組み合わせから成る関係動向を検出するステップと、関係動向の複数の組み合わせから成る複雑な連鎖パターンを検出するステップと、検出された複雑な連鎖の画像の表示を出力するステップと、複雑な連鎖の検出を示す警告を出力するステップと、複雑な連鎖の成長または減退を追跡し、成長または減退を示す指示を出力するステップとを含む。
別の実施形態では、少なくとも1人の患者の電子医療記録を処理するための患者データ処理システムは、フォーマット化された電子医療記録を撮像するための所定の形式に、電子医療記録の少なくとも生理学的および検査データを変換し、患者生理学および患者ケアのうちの少なくとも1つを示す画像を検出し、生理学的障害の存在の指示を出力するようにプログラムされる、コンピュータを備える。コンピュータはさらに、画像を分析して、検出された生理学的障害の関係パターンを検出し、生理学的障害の重症度を決定するように、および/または、検出された生理学的障害に対する患者応答を示す関係パターンを検出して、生理学的障害の重症度を決定するように、および/または、検出された生理学的障害に応じて患者ケアを示す関係パターンを検出し、ケアの適時性および有効性の少なくとも1つを決定するようにプログラムされてもよい。生理学的障害は、例えば、いくつか例を挙げると、敗血症、重度の敗血症、敗血症性ショック、敗血症連鎖、微小循環障害、ショック連鎖、敗血症性ショック連鎖のうちの少なくとも1つとなり得る。
所定の形式は、時系列マトリクス、オブジェクト化時系列マトリクス、または別の形式を備えてもよい。所定の形式は、特定の生理学的構成要素の時系列の少なくとも1つの集合から成る、少なくとも1つの領域を含んでもよい。例えば、いくつか例を挙げると、炎症指標、呼吸指標、心血管指標、および代謝指標のうちの少なくとも1つである。所定の形式は、異なる特定の生理学的構成要素の時系列の複数つの集合から成る、複数の領域を備えることができる。画像は、生理学的データおよび検査データの変動の集約から成ってもよく、変動は、正または負の勾配、および/または、検査データの正および/または負の動向と組み合わせられた、生理学的データの正および/または負の動向の関係変動の集約を有する。
患者データ処理システムは、生理学的障害の画像をアーカイブに保管するため、および、これらを他のプロセッサと共有して、異なる画像および障害の画像の変化例の一般アーカイブおよび知識を増大させるための画像アーカイブシステムを含んでもよい。患者データ処理システムは、時系列マトリクスを、時系列マトリクスの所定の形式に変換し、フォーマット化された時系列マトリクスを撮像して生理学的障害を示す画像を検出してもよい。
一実施形態は、垂直および水平軸を定義する時系列マトリクスに、少なくとも1人の患者の少なくとも生理学的および検査データの医療記録を変換し、物体認識システムを使用して、マトリクスの垂直および水平軸の両方に沿って、生理学的障害発生を示す複数の連鎖関係パターンについて、時系列マトリクスを継続的または断続的に検索するようにプログラムされる、コンピュータを備える、少なくとも1人の患者の医療記録を処理するための、物体認識システムを有する患者データ処理システムを備える。
別の実施形態は、生理学的障害のリアルタイム検出のために電子医療記録を分析するための患者データ処理システムを備え、時系列マトリクスに沿って事象を検出するように、医療記録を継続的または断続的に検索するステップと、検出されたイベントから成る、時系列マトリクスに沿った関係事象を検出するステップと、関係イベントの複数の組み合わせから成る、関係連鎖パターンを検出するステップと、少なくとも1つのパターンの検出に基づいて措置を講じるステップとを含み、例えば、パターンは、生理学的障害を示す。
一実施形態では、検索エンジンは、次第に多数の摂動された生理学的および検査データの次第に拡大する集約を作成する関係補償と関連する、生理学的および検査データの複数の連関摂動および/または動向から少なくとも成る連鎖を検出するようにプログラムされる。プロセッサはさらに、連鎖の少なくとも1つの特性であって、連鎖の重症度、連鎖の持続時間、連鎖の開始時間、連鎖の成熟度、他の事象また他の連鎖に対する連鎖のタイミング関係、連鎖と関連する費用、連鎖の大域的パターン、連鎖の終結時間、連鎖の構成要素、連鎖の進展状態、連鎖に後続する、または連鎖と関連する在院日数、連鎖と関連する治療のうちの少なくとも1つを備える、特性を決定するようにさらにプログラムされてもよい。連鎖の少なくとも1つの特性は、例えば、いくつか例を挙げると、連鎖、摂動および/または動向の重症度、連鎖の影響を受ける系統の数、連鎖と関連する摂動に応じた補償の障害の存在、数、および/または重症度、および連鎖の成長を備える、摂動および/または動向の数によって定義されてもよい。プロセッサは、いくつか例を挙げると、例えば、単位時間あたりに追加されている新規摂動の数および/または重症度の増加、影響を受けた系統の増加数、および/または異なる系統に存在する摂動の増加数のうちの1つ以上によって、連鎖発生の成長率を決定するようにプログラムされてもよい。
プロセッサは、連鎖と時間的および/または空間的に関連するが、連鎖の一部ではない、事象または構成要素、例えば、いくつか例を挙げると、治療、外科的手技、輸送、注射、輸血、鎮静作用、静脈内評価、カテーテル法、操作を検出するようにプログラムされてもよい。
プロセッサベースのシステムは、患者に関するデータを時系列データに分析し、次いで、操作者が解釈可能なデータにさらに処理されてもよい、時系列の異常構成要素の画像または動画を生成することによって、患者の生理学的状態を特徴付け、定量化してもよい。一実施形態によれば、これは、生理系に関する大量の時系列データを生成し、データセット(監視されたデータセット、検査データセット、および履歴データセットを含む)を各データ構成要素の並列時系列に変換し、摂動された時系列構成要素から摂動されていない時系列構成要素を分離し、異常構成要素を異常構成要素のリアルタイム動画に集約し、動画、ならびに動画の画像構成要素および関係事象を認識し、解釈することによって、達成されてもよい。
一実施形態では、電子医療記録および患者モニタからのデータが、患者の状態の動画を含んでもよい、図式表示を生成するために使用される。実施形態では、そのような動画または動画表示は、「生理学的状態の動画」(MPPC)と呼ばれてもよい。本明細書では、臨床データのリアルタイムMPPCを生成するための処理システムおよび方法が提供される。データおよび/または画像はまた、摂動、総合および連鎖摂動、摂動関係、摂動に対する生理学的反応、摂動と関連する治療、治療に対する生理学的反応、生理学的障害、検査障害、治療障害、および通信障害を検出して、MPPCを生成するように分析されてもよい。加えて、MPPCはまた、臨床状態と関連して適用される任意の治療の図式表現を含んでもよい。
一旦、患者状態の画像または動画(すなわち、患者監視が進行するにつれて、経時的により多くのデータを含む画像)MPPCが生成されると、この画像はさらに、操作者が解釈可能な指標を作成して、患者診断および/または治療を補助するように処理されてもよい。例えば、画像は、臨床的に確認された診断を伴う患者から得られた同様な画像のデータベースと直接比較されてもよい。生成された画像との最大類似性を伴うデータベース画像または複数画像の複合物は、患者に対する正しい診断を示してもよい。例えば、特に、画像が経時的に進展するにつれて、生成された画像に、「心筋梗塞」を示すデータベース画像との最大類似性がある場合、プロセッサは、そのような診断を示すテキストおよび指標を医療介護提供者に生成してもよい。プロセッサはまた、診断を確認するように、追加検査が指図されてもよいことを示してもよい。プロセッサはまた、診断に照らして特定の治療の命令を示し、および/または提供してもよい。実施形態では、動画は、2つ以上の臨床状態を示してもよい。プロセッサは、そのような状態のうちの1つ以上を除外してもよい検査を示してもよい。加えて、経時的に、1つの状態が起こる可能性が高いとプロセッサによって決定されてもよい一方で、追加の時系列データは別の状態を除外してもよい。
これらのデータベース画像は、遡及的な臨床データから形成されてもよい。実施形態では、画像登録を含む任意の好適な技術によって、類似性について分析されてもよい。実施形態では、画像を構成する個々の時系列オブジェクトは、特定の診断または臨床状態と関連する他の時系列オブジェクト群との類似性について、一群として処理されてもよい。MPPCは、例えば、異常および/または摂動構成要素、特に、生理系およびその系統に関する外生的作用の「生理学的障害の動画」(MPPF)を含んでもよい。
また、本明細書では、生理学的および/または臨床状態の画像の自動生成および/または分析、ならびに、生理学的システムおよび医療ケアシステム等の複雑な動的システムの画像構成要素の特徴化および集約のためのプロセッサおよび処理方法が提供される。処理システムは、医療信号のリアルタイムMPPCを生成し、これらの画像を処理して、摂動、総合および連鎖摂動、摂動関係、摂動に対する生理学的反応、摂動と関連する治療、治療に対する生理学的反応、生理学的障害、検査障害、治療障害、および通信障害を適時に検出して、生理学的障害および障害と関連して適用される治療の動画を生成し、次いで認識してもよい。一実施形態によれば、プロセッサは、最初に、障害について動的システムを幅広く監視するように適用される、複数のセンサおよび検査ソースのそれぞれから、並列時系列をレンダリングする。実施例では、患者データの時系列オブジェクト化のための命令でプログラムされたプロセッサが、並列時系列に沿ってパターンを検出し、これらのパターンを離散オブジェクトの時系列に変換し、次いで、これらのオブジェクトを離散関係オブジェクト(二進オブジェクト、または関係オブジェクト対で導出された関係二進数)に編成する。次いで、プロセッサは、関係二進数を編成して、生理系および提供されるケアの統一的プログラム画像をレンダリングする。次いで、プロセッサは、自動的に画像構成要素中のオブジェクトを認識し、画像の分析を行うことが可能であってもよい。
一実施形態は、時系列オブジェクト、関係二進数、動画、患者安全性画像、および/または患者安全性視覚化を生成するようにプログラムされる、単一のプロセッサまたはプロセッサの組み合わせを有する、患者安全性プロセッサであってもよい。患者安全性プロセッサは、患者の生理系および医療ケアの画像を出力する。実施形態では、プロセッサは、時系列オブジェクト化、関係二進数処理、および画像処理のための処理機能を含む。実施形態では、画像処理は、単一のマトリックス構築プロセッサを含む。
実施形態によれば、プロセッサによって検出される摂動は、動画を生成するために使用されてもよい画像構成要素に変換される。実施形態では、各追加の障害画像構成要素が追加されるにつれて、障害画像が次第に完全になり、プロセッサによって認識可能となると、MPPCは、「生理学的障害の動画」(MPPF)を表してもよい。一実施形態は、疾患、損傷、および/または薬物反応、提供されるケア、およびそのケアと関連する費用の動的リアルタイム画像を構築するステップを伴ってもよい。画像は、例えば、内因性または外因性由来の1つ以上の毒性および/または免疫原生物質の循環によって引き起こされてもよい、1つ以上の摂動を含む初期画像構成要素と最初に関連付けられる。最初に、毒素、炎症および/またはトロンボゲン形成のメディエイタ等の、これらの摂動は、細胞透過性、イオン流出の軽微な変化のみを誘発し、および/または引き起こし、種々の軽微な生理学的摂動および反応を誘起してもよく、そのそれぞれが画像構成要素を生じてもよい。種々のメディエイタ、イオン、生物学的プロファイルの測定、ならびに標準血液検査、および生命兆候モニタの出力は、これらの早期生理学的摂動および反応の関数として変動し始めてもよく、より大きい画像(すなわちMPPF)が導出される画像構成要素群を拡大するのは、これらの変動である。過程の早期には、透過性、細胞傷害、メディエイタ産生、および生理学的摂動のこれらの変化のそれぞれは、隔離して考慮されると、しばしば軽微である。しかしながら、それらはまとめて、重篤な臨床状態の発生期の動画発生の早期発現を表してもよい。
一実施形態によれば、各摂動は、MPPCの画像構成要素を形成するようにプログラムで編成される。これらの検出された画像構成要素の多くは、良性の過程に関するため隔離されてもよく、画像は、自己消滅してもよく、または、介入を伴う臨床状態と関連する画像またはMPPFに発展しなくてもよい。それにもかかわらず、上述のように、他のものは、早期動画の最初の画像構成要素を表してもよい。本明細書では、生理学的障害がショック(例えば、血液量減少性、血管閉塞性、敗血症性、毒性、心原性、低酸素性、および/または過炭酸性ショックを含む)に進行する前に、これらの障害の適時な検出を提供するように、発生する動画の早期画像構成要素の検出のためのシステムおよび方法が提供される。一実施形態では、患者の予後を改善するように、および臨床介入が依然として有益である間に目標指向療法を適用するように、ショックが発現する前に動画の早期画像構成要素を検出することが有利である。
一実施形態によれば、患者安全性プロセッサは、ケアのプロセッサベースのプロトコル化に使用されてもよい、MPPCを生成する。動画は、心拍数等の単一またはいくつかのパラメータを備える事象だけでなく、いくつか例を挙げると、例えば、心拍数の勾配およびパターン、収縮期圧変動の勾配およびパターン、呼吸数の勾配およびパターン、SPOの勾配およびパターン、換気・酸素測定指数の勾配およびパターン、薬剤および流体注入速度の勾配およびパターン、血圧の勾配およびパターン、好中球数の勾配およびパターン、および炎症および/または血栓マーカーの勾配およびパターン、および種々の他の血液、尿、および/または呼気ガス検査を含んでもよい、他のパラメータも含む、複数のデータソースを包括してもよい。これらのソースの全てからの信号は、時系列および/または段階関数に変換されてもよく、例えば、離散プログラムオブジェクト(事象)を生成するようにオブジェクト化プロセッサによってオブジェクト化されてもよい、生理学的信号、治療法信号、検査信号、または履歴信号であってもよい。一実施形態によれば、プロセッサは、少なくとも1つの医療信号のパターンまたは値を含む第1の離散事象と、少なくとも1つの医療信号の第2のパターンまたは値を含む第2の離散事象とを検出し、次いで、プロセッサは、少なくとも第1の事象および第2の事象を集約して第1の関係オブジェクトを生成し、プロセッサはさらに、少なくとも1つの医療信号のパターンまたは値を含む第3の事象と、少なくとも1つの医療信号の第2のパターンまたは値を含む第4の事象とを検出し、次いで、プロセッサは、少なくとも第3の事象および第4の事象を集約して第2の関係オブジェクトを生成する。次いで、第1の関係オブジェクトおよび第2の関係オブジェクトが、第1の画像構成要素を生成するように集約される。それに応じて、追加画像構成要素が構築され、次いで、画像構成要素は、動画およびケアを導出するように、発生時間に従って集約される。
実施形態では、敗血症障害連鎖の通常の動画の脈拍関連構成要素が、炎症マーカーの活発な上昇によって続行される、心拍数の早期上昇、脈振幅の上昇、および脈拍の上向きの勾配の上昇(指先で測定されるような)等の発生を組み合わせて含む。対照的に、潜在出血障害連鎖(例えば、ヘパリン関連後腹膜出血による)の通常の動画は、心拍数の早期上昇、脈振幅の低下、および脈拍の上向きの勾配の低下(指先で測定されるような)、および呼吸関連脈圧変動の上昇、およびヘモグロビンの低下の発生を含む。本発明の一局面によれば、潜在出血障害連鎖の画像に沿った、これらの発生の全ては、多波長パルス酸素濃度計から導出することができる。
実施形態によれば、関係二進数と称される関係事象を構築するように関係二進数プロセッサによって組み合わせられる、別個のアルファ事象およびベータ事象に、検出された変動を分ける、関係二進数プロセッサが提供される。これらの関係二進数は、画像構成要素を構成するようにタイミングに従って集約される。次いで、これらの画像構成要素はさらに、MPPC(それから所望に応じて視覚画像または電子表現が導出されてもよい)を構成し、次第に構築するようにタイミングに従って集約される。これらのMPPCはしばしば、壊滅的な連鎖障害の動画であり、それにより、より確実な検出を可能にして、患者の適時な救済を可能にする。
信号は、患者モニタによって提供され、電子医療記録に記録されるような化学または生理学的測定であってもよく、および/または、敗血症の潜在的存在を示すように、プロセッサによって自動的に、または臨床医によって手動で、特異的に順序付けられるバイオマーカーであってもよい(例えば、米国特許出願第10/704899、第11/647,689号で開示されているもののように)。そのようなマーカーの存在および/または集中は、他のパラメータに対する時限位置付けを伴うMPPCとの関連で提示されてもよく、それは次いで、バイオマーカーの関連性がはるかに容易に識別されることを可能にする。実施形態によれば、炎症マーカーの時間的および関係パターン、ならびに、同時に測定された、または関連付けられた生理学的パラメータの時間的および関係パターンは、患者の状態発生の次第に拡大するMPPCを生成するように集約される。
したがって、種々のショック前状態の検出ならびに障害の早期検出を達成するために、一実施形態は、早期変動を検出し、それらを集約してMPCに提供し、ショック前およびショック状態の拡張しつつある障害連鎖を動的に提示する。これは、良性の特性を有する、より小さく、あまり拡張的ではない画像構成要素からの拡張画像の分離を可能にし、さらに、ショック状態のうちの1つへの移行の可能性の前触れをする拡張MPPCを生成するように進行する障害からの軽微な隔離障害の画像の分離を可能にする。各画像群ならびに完全MPPCおよびケアは、病院内、病棟内、または所与の医療従事者の保護下の患者ケアを評価する目的で分析されてもよい。
自己消滅する非連鎖障害を示す、多数の画像構成要素の発生は、不安定な患者集団または不良な健康管理送達を示してもよい。代替案では、多数の連鎖障害は、その環境内またはその医療従事者の保護下での高い死亡または損傷率という大きな危険性を示す。MPPCおよび画像構成要素は、それが患者集団またはケアの品質によるものであるかどうかを決定するために使用されてもよい。
一実施形態は、特定の基本摂動または治療、あるいは障害連鎖の早期に行われる治療の欠如の決定とともに、障害連鎖を検出する。特定の基本障害は、複雑な障害に進行する前に、特に、ショック前またはショック状態に進行する前に検出される。さらに、プロセッサは、連鎖が拡張するにつれて、関係摂動および治療で導出された画像を構築する。一実施形態によれば、各時系列は、予期しない事象から予期された事象を分離するように処理される。次いで、予期しない事象および/または異常事象は、関係事象、画像構成要素、および、最終的には、連鎖(存在する場合)ならびに連鎖と関連して適用される治療の動画を備えるMPPCを繰り返し生成するように集約される。このMPPCはさらに、発生するにつれて、障害の動画ならびにMPPCの画像構成要素の発生の推定原因の検出を可能にするように処理され、それにより、障害連鎖の性質および原因の検出を可能にする。
一実施形態によれば、分析が提供され、分析過程の基本構成要素は、複数の事象の基礎関係変数を備える。好ましい実施形態では、基礎関係変数は、2つの事象(関係対)を含むものであり、これは、関係二進数と呼ばれる。一実施形態では、関係二進数は、最初に、関係二進数のメニュー、またはそれからユーザが所望のオブジェクト二進数を構築する事象のメニューからユーザによって(またはドラッグアンドドロップインターフェースによって)選択され、次いで、二進数は、検出のための画像構成要素およびMPPCを構築するために、ドラッグアンドドロップによって使用される。これは、カスタム管理を提供するように、例えば、全国または地域の専門家グループによって、病院内の特定の部門によって、または個別医師によって行われてもよい。これはまた、プロセッサによって自動的に行われてもよい(例えば、包括的に分析され、結果に従って分類された多数の履歴データセットの調査を通して)。オブジェクト化された時系列マトリクスおよび/またはMPPCは、見直し、および自動または手動調整のために、種々の双方向、階層的、および関係形式で出力されてもよい。
MPPCは、広範囲の障害を検出してもよい。例えば、生理学的障害、所与の摂動に関して予期された治療の欠如を示す治療発生障害、所与の摂動に関して予期された検査の欠如を示す検査発生障害、摂動の予期された補正の欠如を示す治療応答障害、あるいは、所与の治療および/または投与量に関して新しい潜在的に併発する摂動の発生である。
プロセッサを、電子医療記録の複雑なデータを、摂動、治療、生理学的反応、診断検査、回復、診断、欠落データ、患者位置、および/または他のデータセットの単一の動画に組み入れる。システムおよび/またはシステムに印加される力の障害のリアルタイム動画を生成するように、複雑なシステムと関連する一式の時系列の関係変動の動的画像が生成される。本発明の一実施形態によれば、患者安全性プロセッサは、例えば、所与の種類の検出された画像で導出された、統一時系列を自動的に出力する。本発明の別の実施形態によれば、プロセッサは、障害連鎖を検出すると、医師が見直すために、画像図形の出力表示上で、MPPC発生をリアルタイムで提示し、強調してもよい。すでに完成されている動画の一部分は、単一の概要スナップショット表示で見直すように、前後に見直されてもよい。
一実施形態では、電子医療記録は、MPPCに変換されてもよい。患者データ処理システムは、順次時限データ等の動向、例えば、経時的な生理学的パラメータおよび検査データの動向に、電子医療記録を変換するための命令でプログラムされたプロセッサを備える。データが動向データに変換されると、プロセッサは、動向データ間の関係を検出してもよい。例えば、そのような関係は、正および/または負の動向を含んでもよい。関係は、関係動向であってもよい(すなわち、1つのパラメータが上昇すると、別のパラメータが低下する)。生理学的状態の複雑な連鎖パターンは、関係動向の複数の組み合わせから形成されてもよい。複雑な連鎖は、例えば、敗血症、重度の敗血症、敗血症性ショック、および微小循環障害、ショック連鎖、および敗血症性ショック連鎖のMPPCを形成してもよい。
例えば、プロセッサは、電子医療記録を処理し、生理学的パラメータおよび検査データの正および負の動向を含む、順次および時限動向を検出するように検索してもよい。次いで、プロセッサは、検出された正および負の動向の関係タイミングを決定して、相互に対する順次時限関係において発生する正および負の動向の複数の組み合わせを含む、複雑な連鎖パターンを検出してもよい。プロセッサは、検出された複雑な関係連鎖パターンの指示を出力してもよい。例えば、指示は、敗血症、重度の敗血症、敗血症性ショック、および微小循環障害等の生理学的障害、ショック連鎖、および敗血症性ショック連鎖であってもよい。プロセッサは、各動向の長さまたは連鎖全体のタイミング等の、個々の動向に関する詳細情報を提供してもよい。治療法情報が電子医療記録に含まれる場合、画像は、治療法の開始を印付けるように、および、少なくとも連鎖に関する治療法のタイミングの指示を決定し、出力するように、指示を含んでもよい。電子医療記録が依然として治療中の患者に由来する場合、プロセッサは、障害連鎖の早期点を示すアラーム機能性を含んでもよい。
別の実施形態では、患者データ処理システムは、炎症動向、代謝動向、血流力学動向、血液学的動向、および呼吸動向の組み合わせ等の、特定の正および負の動向を識別してもよい。動向の識別後、プロセッサは、関係的に、またはまとめて敗血症性ショックまたは敗血症性ショック前障害連鎖を示す、正および負の動向の関係タイミングを識別して、敗血症性ショックまたは敗血症性ショック前障害連鎖の指示を識別し、出力してもよい。
障害連鎖中に、連鎖の最早期点は、連鎖の開始を印付ける最早期動向(例えば、呼吸、免疫、血流力学、または他の患者動向)を含んでもよい。この時点での治療介入には、成功の最高の可能性があってもよい。一実施形態では、プロセッサは、関係パターンを分析して、連鎖の構成要素の最早期動向を識別し、治療の開始を識別し、該最早期動向に関する治療のタイミングを識別してもよい。そのような分析は、どの治療法が特定の生理学的状態連鎖にとって最高の成功率を有するか決定する際に、介護者に便益をもたらしてもよい。あるいは、そのような情報はまた、どの種類の連鎖が自己制御する可能性が高いか医師が決定するのに役立ってもよい。
例えば、敗血症性ショック、肺塞栓症、うっ血性心不全、睡眠時無呼吸症の存在下での麻酔薬による呼吸停止、血栓性血小板減少性紫斑病(TTP)、抗凝固による出血、気管支痙攣による呼吸不全、および成人呼吸窮迫症候群等であるが、これらの臨床状態に限定されない、多くの生理学的障害は、1つまたは2つの非特異的摂動とともに開始する。生理学的障害は、一般的に、単一の時間焦点で基本生理学的摂動とともにしばしば開始する、関係拡張である。実際に、一旦、連鎖がある点を過ぎて進行すると、この初期摂動はしばしば、完全に覆い隠される。そのような場合において、単一の摂動についての検査または監視は、診断を行うために有用ではない場合がある。多くのそのような連鎖臨床状態では、連鎖の第1の摂動はしばしば、第1の摂動がもはや存在しない時に連鎖がさらに進行した後に、回顧して検出されるのみである。これは、発現するにつれて連鎖のリアルタイム撮像によって第1の点の検出を最適化し、次いで、第1の摂動を決定するように画像を調べるための基礎を提供する。
単一の時系列のパターンが、単一の値または範囲よりも大きい動的過程の画像を提供する時、そのようなパターンは、依然として過程の微小な画像断片にすぎない。閾値の決定および摂動の種々のパターンの検出さえも、不完全な分析を含み、それは、壊滅的な障害への進行の容認できない速度を必然的に許容する。測定または検査が独立型検査として決定的と思われてもよい状況でさえも、単一の値(または複数の値の平均)に基づく動作または結論には、不正確であるという合理的な確率がある。例えば、94という単一の測定されたスポットSPOを考慮されたい。この値は、SPOが上昇しているか、低下しているか、または循環しているかを知らなければ、大部分は無意味である。それにもかかわらず、患者の複雑な生理系のこの微小画像断片は、ケアを決定するために病院で毎日使用される。さらに、たとえSPOのパターンが分かっていても(例えば、SPOが少なくとも12時間にわたって約94で安定している)、これは、大部分が役に立たず、実際に、潜在的に誤解を招く恐れがある情報である、不完全な画像である。測定されたSPOパターンの関連時間間隔中の分時換気量の関係パターンを知らなければ、医療従事者は、患者が敗血症性ショックまたは心不全で死亡しつつある時でさえも重症度について誤った認識に陥る場合がある。さらに、例えば、白血球数、温度、脈拍、血圧、微生物値、および薬剤の関連パターン等の、画像の追加関連要素を伴わない、SPOおよび関連分時換気量の両方のパターンのプログラム画像に基づくアラームまたは解釈出力が不完全となり、医療従事者に過大な合成を委ねる。別の実施形態では、脈拍または呼吸数の持続的上昇のパターンの検出を考慮されたい。それぞれのそのようなパターンは、現在の生理学的状態の微小断片を表し、各パターンは、良性であってもよく、またはあるいは、障害連鎖発生としばしば関連する、障害のはるかに大きい動的過程の早期画像構成要素であってもよい。脈拍または呼吸数の良性または病的上昇の間の違いは、この微小画像では決定できず、しばしば、上昇の開始時に知ることさえできない。したがって、上昇する脈拍または上昇する呼吸数に基づく分岐を伴う樹形図プロトコルは、プロトコルが間違った経路に先行する高い危険性とともに、多大な程度のプログラムの複雑性を追加する。
上述のように、潜在的に致命的であるが、著しく複雑な生理学的障害のモードの検出および決定が不均一医療従事者集団に委ねられると、容認できない死亡率が予期される場合がある。
同様に、生理系の不完全な分析はしばしば、必要ではなく、したがって全体的ケアの費用を増加させる、大量の調査、検査、分析、および評価を医療従事者に生成させる。さらに、治療および評価のこれらの誤った経路は、実際の動作障害モードを決定することに介護労働者を集中できなくさせる場合があり、それは、最終的に有害転帰を誘発する。
ショックの前に、患者の生理系は、疾患および治療の両方によって摂動される。摂動を補正するために提供される所与の治療は、摂動を低減する、摂動に影響を及ぼさない、摂動を悪化させる、別の摂動を引き起こす、および/または別の摂動をさらに悪く、または良くする場合がある。治療にどの効果があるかを決定するため、およびこの治療効果の決定が完全であることを確実にするために、適時に、大量の関係データを収集し、一実施形態によって規定されるように重要なことには、それを編成し、分析することが必要である。
別の問題は、現在の病院システム内で、合成を効果的に完成させる前に、医療従事者が多大な考古学的調査(発掘、隔離、識別等)を行わざるを得ないことである。この理由により、医療従事者による情報の合成はしばしば、即時検索、選別、再分析等を可能にする方式で実行されない。医療従事者の通常の作業負荷と組み合わせられた、この摩擦は、調査されてもよい高レベルシナリオの数および範囲を限定する。また、医療従事者は、利用可能な編成データおよび時間の不足により、完全な一式の合成情報なしで決定を実行する場合があり、さらに悪いことには、これが症例であることを認識しない場合がある。
これらの理由により、従来の電子医療記録組み込みプロトコルがあっても、患者は、個別状態の複雑性および介護者が対面する環境の複雑性に基づいて、幅広い障害モードにわたる一連の障害の影響を受けやすいままである。実際に、障害がしばしば重複するため、1つのプロトコルは、別の障害危険性を増加させながら1つの障害の危険性を低減する場合がある。例えば、1つのプロトコルの下で低酸素血症を治療するために与えられる酸素は、SPO2を安定させ、医療従事者から妨害ショックの早期兆候を隠すことによって、肺塞栓症の低酸素血症を遅延してもよい。
障害の潜在的モードの数は、任意の病院環境で非常に多いが、ある障害のモードの発生は、病院内の所与の一式の状況下で合理的に起こり得る。疾患群の組み合わせを考慮した、一般的な障害のモードを示す障害モードの概略図が、図1に示されている。潜在的な障害の数は、病院現場における所与の患者にとって非常に多数(数百)となる場合があり、看護師が、保護下の患者の中で発生する場合がある何千もの多くの障害から単一の障害を適時に検出すると見込まれるように、看護師または医師は、障害を適時に検出しながら、その階にいる多くのそのような患者を監視すると見込まれる。この理由により、プロセッサベースの障害画像化および検出が望ましい。
図1は、病棟における例示的患者の複雑性の概略図200を示す。概略図200は、このレベルの複雑性内で摂動の性質および起源を決定するように、本明細書で規定されるような動画にモデル化されてもよい、複雑性のレベルを明示する。概略図200は、専門委員会によって構築され、次いで、一実施形態によれば、事象、関係二進数、および画像構成要を含む、本明細書で規定される動画の種々の構成要素の構築を容易にするために使用されてもよい、1種類の障害モード図である。障害画像構成要素図200は、糖尿病202、うっ血性心不全204、心房細動206、脳卒中208、睡眠時無呼吸症210、および敗血症212を含む、この1人の患者に存在するいくつかの重複疾患を含む。疾患は、換気量の発散上昇216、高速心室拍数218、肺浮腫214、および酸素飽和度の減少(低酸素血症)222等の生理学的障害を含んでもよい。さらに、治療は、部分トロンボプラスチン時間(PTT)の高閾値違反またはグルコースの低閾値違反(低血糖症)234等の、薬剤障害と潜在的に関連する。加えて、患者への治療の投与(例えば、インスリン224、利尿剤226、ACE阻害剤228、ベータ遮断薬230、および/またはヘパリン232)は、追加生理学的障害(例えば、血小板数の減少(血小板減少症)236、心臓ブロックの発生238、血清カリウムの減少(低カリウム血症)240、血清ナトリウムの減少(低ナトリウム血症)242、血圧の降下(低血圧症)244につながる場合がある。一実施形態では、1人の患者に、早期高血糖血糖(高血糖症)215があり、その後、後期低血糖(低血糖症)234が続く場合がある。示されるように、複数の疾患の進行、患者の症状、および複数の治療の相互関係が、治療遅延248または混乱220につながる場合がある。
図2は、一実施形態における複雑な患者の生理学的状態をモデル化するための分析の流れの概観を描写する。広範囲のソースが、モデル化に入力を提供してもよい。例えば、患者モニタ256、患者記録272、履歴患者データ260、検査結果264、および治療データ268が、分析ストリームに未加工データ入力を提供してもよい。これらの入力は、一式の並列時系列276に変換される。この複数の並列時系列に沿ったパターンおよび閾値違反が、各チャネル内のオブジェクトストリーム280を形成する離散オブジェクトに、識別され、融合され、合成され、編成される。これらの離散オブジェクトは、関係二進数284のインスタンスに既知の関係パターンを識別するように分析される。次いで、一実施形態では、エキスパートシステムが、これらの関係二進数を一式の障害画像288に編成および合成することによって、分析をさらに洗練し、画像は、集合体として、患者および/または患者集団の複雑かつ動的状態の統一プログラム画像を構成する。
図2が、未加工データから画像の集合体への分析240の流れを描写する一方で、図3Aおよび図3Bは、例示的実施形態内のデータ記憶、データフロー、プロセッサ、および出力機構のうちのいくつかを含む。図3Aは、一実施形態の別のデータフローを描写する。データ管理システム300は、モニタ302と、例えば、時系列オブジェクト化プロセッサ336、関係二進数プロセッサ348、および障害画像プロセッサ360を含んでもよい、プロセッサ304とを含む。あるいは、プロセッサ336、348、および360、または時系列オブジェクト化、関係二進数処理、および/または障害画像処理の処理ステップを行うための命令は、システム300の一部である、プロセッサ304と通信している1つ以上の追加処理構成要素上に位置してもよい。プロセッサ304は、医療従事者用のインターフェースを提供するデバイス306に、分析の出力を提供するように適合される。データフローは、広範囲のソース(304、308、310、312、および314)からの入力を伴う。示されるように、入力は、検査命令316、コンソールまたはデバイス306上に表示されてもよい医療介護提供者への指標、および治療命令315を含む、患者に対するさらなる動作を指図してもよいプロセッサ304に、送信されてもよい。したがって、医療従事者は、入院過程の全体を制御し、監視するために、デバイス306を使用してもよい。一例示的実施形態では、プロセッサ304は、デバイス306を駆動するために使用されてもよい。プロセッサ304は、視認コンソールの状態にかかわらず、患者の全員のリアルタイムデータの全てを常に処理するように、および、以降で論議されるようにプロセッサ304から導出された画像の分析に基づいて、検査命令316および/または治療命令315を自動的に送信するように適合されてもよい。
データ管理システム300は、汎用または特定用途向けコンピュータ等の、1つ以上のプロセッサベースの構成要素を含んでもよい。プロセッサベースの構成要素に加えて、データ管理システム300は、RAMチップ等の磁気および光学大容量記憶デバイスおよび/または内部メモリを含む、種々のメモリおよび/または記憶構成要素を含んでもよい。メモリおよび/または記憶構成要素は、プロセッサ304によって、またはデータ管理システム300の関連構成要素によって実行される、本明細書で説明される技法を行うためのプログラムおよびルーチンを記憶するために使用されてもよい。あるいは、プログラムおよびルーチンは、データ管理システム300から遠隔にあるが、コンピュータ上に存在するネットワークおよび/または通信インターフェースによってアクセス可能である、コンピュータでアクセス可能な記憶媒体および/またはメモリ上に記憶されてもよい。
データ管理システム300はまた、種々の入出力(I/O)インターフェース、ならびに種々のネットワークまたは通信インターフェースを備えてもよい。種々のI/Oインターフェースは、構成情報を視認し、入力するため、および/またはシステム300を操作するために使用されてもよい、ディスプレイ、キーボード、マウス、およびプリンタ等のユーザインターフェースデバイスとの通信を可能にしてもよい。種々のネットワークおよび通信インターフェースは、ローカルおよびワイドエリアイントラネットの両方および記憶ネットワークならびにインターネットへの接続を可能にしてもよい。種々のI/Oおよび通信インターフェースは、適宜、または所望に応じて、ワイヤ、回線、または好適な無線インターフェースを利用してもよい。
例示的実施形態では、画像が有意な潜在的障害および/連鎖過程を示す時に、または患者のリスク分類が閾値を超える時点で、デバイス306は、プロセッサ304による継続的視認(通知を伴う)に関してオンとなる。リスク分類は、例えば、計算された不安定性指数、または検出された不安定性指数パターン、および/または検出された障害の関数として導出されてもよい。不安定指数は、例えば、一致画像と相関する信頼測定基準であってもよい。例えば、MPPCに、重篤な状態と関連しているという高い可能性がある場合、不安定指数は高くてもよい。不安定指数は、数値指数、色または図式指標、および/または音声あるいはテキストメッセージであってもよい。
例示的実施形態によれば、デバイス306は、1つ以上の作業中診断、鑑別診断、検査パラメータ、監視パラメータ、および主観(例えば、鎮静状態スケール、混乱スケール、または苦痛スケール)を含む、患者から導出されるパラメータなどのアイテムを表示する、双方向単一画面を含む。実施形態では、本明細書での「パラメータ」という用語は、絶対または相対データ点またはセット、パターン、または偏差、一連のそのようなデータ点またはセット、そのようなデータのパターン、1組のデータに沿った、および/または複数組のデータ間の関係、および/またはデータのパターンを指してもよい。データは、客観的データ型または主観的データ型であってもよく、直接および/または間接的に導出されるか、または履歴的起源であってもよい。加えて、障害画像プロセッサ360(図3B)からの種々の出力が表示されてもよい。実施形態によれば、プロセッサ304は、デバイス306上に存在するディスプレイのために、レポート(電子または紙面)を通して、または外部システムへのインターフェースを提供してもよい電子表現内で、データを提供してもよい。
データ管理システム300はさらに、検査データ310、履歴データ(例えば、診断)312、および治療データ(例えば、薬剤)314を含む、医療記録データベース308を含む。医療記録データベース308は、プロセッサ304およびモニタ302が医療記録データベース308に記憶されたデータにアクセスしてもよいように、これらのシステムに連結される。プロセッサ304は、リアルタイムデータを含有し、全ての病院ソースからデータ入力を受信する、集中患者医療記録への構成要素または直接リンクを含んでもよい。したがって、病院に利用可能な患者に関する構成要素の実質的に全てを含有するデータベースは、埋め込み関係プロセッサが関係二進数をレンダリングし、種々のソースからのこれらのデータを含む障害画像構成要素を構築し、検出することを可能にするように、リアルタイムでプロセッサ304に直接アクセス可能であってもよい。
例示的実施形態によれば、プロセッサ304は、医療記録データベース308に包括的に係合するように適合される。以下でさらに論議されるように、プロセッサ304は、関係プロセッサから導出されるような、生理学的障害画像構成要素、薬剤障害画像構成要素、検査障害画像構成要素、総合障害画像構成要素の正式な自動同時係合を提供するように、およびそれらを視認のために時系列にレンダリングするようにプログラムされてもよい。
プロセッサ304は、全ての障害画像構成要素の即時見直しを提供するように、および特定の障害画像構成要素の検出に基づいて措置を講じるように適合されてもよい。プロセッサ304は、障害画像構成要素発生が第1の分岐二進数の最早期開始を形成することを常に監視するように適合されてもよいため、医療従事者よりも速く、かつ確実に応答することが可能であってもよい。したがって、プロセッサ304は、手遅れになるまで医療従事者によって未検出となりやすい場合がある、単一の分岐二進数が起源である、障害画像構成要素連鎖を検出してもよい。プロセッサ304はまた、いずれの措置も講じられていない、または措置が分岐二進数または障害画像構成要素の発生を補正していない、分岐またはヌル二進数について警報を鳴らすようにプログラムされてもよい。例えば、血液培養が取得されているという最新情報が看護師によってプロセッサ304に与えられているシナリオでは、事前選択された時間後に、結果がプロセッサ304に利用可能ではない場合に、検査障害画像構成要素を示すヌル二進数の存在が生成されてもよいが、培養が陽性であれば、生理学的障害画像構成要素を示す分岐二進数の存在が検出されてもよい。検査障害画像構成要素が検出された場合、プロセッサ304は、明白な遅延を検査室に通知してもよい。通知はアルファ事象であり、その通知に対する受信応答は、真のベータ事象である。したがって、検査室が受信を示すことができないと、分岐二進数の発生を引き起こしてもよく、それは、分岐二進数がシーケンスを完結するまで、同じ方式で看護師の通知を誘起してもよい。一方で、生理学的障害画像構成要素が検出された(培養が陽性である)場合、プロセッサ304は、再度、同じ二進生成様式で看護師に通知する。
陽性血液培養は、培養検査二進数のベータ事象である一方で、初期分岐検査二進数が、完全血球算定、包括的代謝プロファイル、血圧および脈拍測定の増加した頻度、換気量指数化酸素測定、および検出された特定の分岐二進数(この場合は陽性血液培養)に応じてプロセッサ304にプログラムされるような他の検査の獲得をプロセッサに確保させてもよいように、別の検査二進数群にとってはアルファ事象である。これらの新規検査二進数は、予期しないベータ事象(低血圧、高脈拍、または酸素測定指数に対する高換気量等)を生成してもよく、それにより、これらのベータ事象は、新規の一式の分岐生理学的二進数を定義してもよい。この新規の一式の分岐二進数は(集約して)、早期敗血症性ショックを示唆する総合障害画像構成要素の事前選択基準を満たすのに十分であってもよく、その診断考慮事項は、適時かつ適正な監視、適時で適切な患者位置、適時で適切な診断検査、およびこの種類の総合障害画像構成要素の検出の場合における適時かつ適正な介入を確保するようにプロセッサにプログラムされている、複数の新規二進数に対するアルファ事象を備える。加えて、総合障害画像構成要素を備えた分岐生理学的二進数のベータ事象は、新規生理学的二進数にとってのアルファ事象となり、新規二進数のそれぞれのベータ事象は、事前選択された期間内に、これらの値のそれぞれを正常範囲に戻すことを含む(それにより、可能であれば、総合障害画像構成要素が適時に補正されることを確実にする)。加えて、プロセッサ304が、事前選択された時間間隔内に、陽性血液培養に応じて正しい抗生物質が投与されるのを確認することを期待してもよいように、陽性血液培養は、治療二進数にとってのアルファ事象でもある。これが発生しなければ、治療障害を示す分岐二進数が識別されてもよく、確保された看護師通知が前述の二進構築方法によって続行してもよい。
一実施形態によれば、任意の有意な分岐生理学的二進数の検出に応じて、デバイス306は、収束とともに終了しなければならない一式の通知二進数を構築することによって、通知の失敗を防止するようにプログラムされてもよい。デバイス306はまた、収束とともに終了しなければならない一式の治療二進数を構築することによって、適時な治療の失敗を防止するようにプログラムされてもよい。さらに、デバイス306は、収束とともに終了しなければならない一式の検査二進数を構築することによって、検査の失敗を防止するようにプログラムされてもよい。デバイス306はまた、最初に発見された分岐二進数と関連する分岐生理学的二進数を識別することによって、関連生理学的障害画像構成要素を検出するようにプログラムされてもよい。
一実施形態によれば、PSPは、関連付けられた、接続された、および/または埋め込まれた事象システムを含む。この事象サブシステムでは、ユーザは、特定の発生が識別された時に、開始される動作または記録されるデータを指定してもよい。この事象システムは、いくつか例を挙げると、通知システム、ワークフローシステム、非同期通信システム、報告システム、決定支援システム、ダッシュボード、データ保管および/またはデータマイニングシステムを含む、他の内部または外部システムと連動してもよい。
一実施形態によれば、関係プロセッサは、自己変調式であり、軽微障害画像構成要素の発生にさえも迅速に応答する、自動拡張分析を提供する。処理システムの分析活動は、検出された障害画像構成要素の規模および数に直接応じて、多次元増大および縮小が可能である。この点で、プロセッサ304は、生理学的障害画像構成要素の発生時に、たとえその障害画像構成要素が単一の生理学的分岐二進数しか備えなくても、通知、検査、治療、および生理学的二進数の連鎖を生成してもよい。生理学的二進数のベータ事象は、通知、検査、治療、および生理学的二進数の新規生成のそれぞれのアルファ事象を備えてもよい。これらの新規二進数のそれぞれにはベータ事象もあり、そのそれぞれは、他の二進数の形成を誘発してもよく、ベータ事象は、同じまたは別の種類の別の二進数のアルファを備える。それにより、二進数の自発的に増大する連鎖は、適時な通知、適時な検査、および生理学的安定性の適時な修復の確保に向かって発生する。
これらの種類の分岐二進数の急速に拡張する連鎖は、患者の不安定性発生、または医療介護システムの不良な性能を示す。分岐二進数の種類およびシーケンスの時限パターンの分析(オブジェクト化パターン認識または統計分析によるような)は、不良な健康状態または医療従事者の不良な反応性が、連鎖を伝播させているという決定を可能にしてもよい。健康状態が修復されるにつれて、かつ医療従事者が適時に応答するという前提で、二進数連鎖が自動的に減退してもよく、種々の障害画像構成要素が検出されなくなってもよい。したがって、関係二進数オブジェクトプロセッサの出力は、1名の患者、または所与の階における患者、または病院全体の患者の健康状態を追跡するために、容易に使用され、さらに分析されてもよい、自己変調式処理システムを提供する。オブジェクト二進数プロセッサの出力はまた、所与の階における所与の患者または病院全体に提供される医療介護送達の品質を示す、自己変調式処理システムを提供する。
プロセッサ304は、医療データ以外の他の複雑な動的データに適用されてもよく、自己変調式関係分析および制御が有用となる。プロセッサ304には、初期励起(第1の分岐二進数)から広範な系統障害への障害画像構成要素過程を識別するように、例えば、アーカイブに保管されたデータセットの処理と関連する、データマイニングのユーティリティがある。アーカイブに保管されたデータセットの処理は、種々の障害で導出された二進数連鎖の自動変調を見直し、病院内、ならびに食物、化学、または医薬品処理等の工業処理における、複雑な過程の動的障害画像構成要素の構築を容易にする機会を提供する。プロセッサは、ユーザが各アルファ事象を選択し、選択された事象オブジェクトとの特定の時間的、頻度、または空間的関係を有する事象および関係二進数を、プロセッサが検出、提供、および/または導出することを可能にしてもよいように、プログラムされてもよい。あるいは、プロセッサ304は、健康な個人の出力を処理することによって、学習データセットとともに独自の一式の収束オブジェクト二進数を構築するようにプログラムされてもよく、次いで、プロセッサは、予期されたベータ事象(学習データセットによって定義された)の不足を識別することによって、患者に適用されると分岐二進数を検出するために使用されてもよい。連鎖(分岐または障害画像構成要素の検出に基づく、さらなる処理の開始)のウィンドウは、ベータ事象の真性のウィンドウを修正することによって、オブジェクト化過程中のオブジェクトの勾配または規模等の基準を修正することによって、調整されてもよい。これは、分岐としての二進数の指定に対するウィンドウを定義する際に高度の融通性を提供し、したがって、これは、連鎖の開始、伝播、および消滅に対するウィンドウの高度の制御を可能にする。連鎖は、モジュール式または分岐的、あるいは障害画像構成要素特有であってもよい。モジュール式連鎖群は、メニューから選択可能であってもよく、次いで、群のそれぞれ1つは、所望に応じて修正されてもよい。
図3Bに示されるように、プロセッサ304は、任意の数の処理機能のための命令を含んでもよい。示されるように、プロセッサ304は、事象エディタ331(事象定義セット332を作成する)、収束エディタ343(二進数定義セット344を作成する)、および障害画像構成要素355(障害構成要素356を作成する)を含んでもよい。事象定義332、二進数定義344、および障害構成要素356は、時系列オブジェクト化プロセッサ336、関係二進数プロセッサ348、および障害画像プロセッサ360に対する入力として使用されてもよい。時系列オブジェクト化プロセッサ336は、電子医療記録320の並列時系列(324、328)を変換するように、事象定義セット332によって提供される規則およびパラメータでプログラムされる。次いで、関係二進数プロセッサ348は、二進数定義セットによって提供される規則およびパラメータで、オブジェクトストリーム340を処理して、関係二進数のストリームおよび連鎖352を生成する。さらに、次いで、障害画像プロセッサ360は、障害画像構成要素定義セット356によって提供される規則およびパラメータで、関係二進数、場合によっては、オブジェクトストリームからの隔離オブジェクトを、1つ以上の画像364に合成する。これら3つのプロセッサ(336、348、および360)のそれぞれの出力、ならびにそれらが適用された元の時系列は、MPPCデータベース368に記憶される。実施例では、プロセッサ304は、1つ以上の事象、二進数、画像構成要素の検出、または特定のMPPCの検出が、検出の発信通知、検査または治療の命令、あるいは、検査および/または治療を変更、中止、または開始するための治療および/または検査デバイスへの直接制御信号を提供する等の措置をプロセッサに講じさせてもよいように、プログラムされてもよい。
一実施形態によれば、関係二進数プロセッサ348および時系列オブジェクト化プロセッサ336は、分析を修正するように相互の出力に適合してもよい。例えば、時系列オブジェクト化プロセッサ336による、事象、往復運動、不完全な往復運動、または他のオブジェクトあるいはパターンの検出は、分岐の検出に応答して連鎖の調整を引き起こしてもよい。あるいは、または組み合わせて、時系列オブジェクト化プロセッサ336内の事象オブジェクトとしての波形区分の指定のための基準(例えば、血清ナトリウムの減少事象オブジェクトを識別するための勾配基準)もまた、特定のアルファ事象の存在に基づいて調整されてもよい。実施例では、脳血管梗塞(CVA)の診断を備えるアルファ事象が検出されると、これは、好ましくはそのような患者のベータのうちの1つである、血清ナトリウムの減少事象オブジェクトを識別するための絶対勾配(あまり負ではない勾配)を時系列オブジェクト化プロセッサ336に低減させてもよい。ベータ事象の指定のための絶対勾配を自動的に低減することによって、脳血管梗塞のアルファ診断は、診断過程のウィンドウを調整し、異なる生理学的脆弱性の発生および検出時に自動および動的調整を可能にしている。この実施形態では、血清ナトリウムの減少事象オブジェクトの検出のウィンドウの増加(CVA診断を含むアルファと組み合わせられる)は、分岐二進数を備え、それは、血清ナトリウムの緊密な監視および/または追加検査の評価および/または遊離水送達の低減のための診断連鎖を誘起してもよい。これは、CVAによる抗利尿ホルモンの不適切な増加の可能性の関数としてCVAの患者が直面する独特の脆弱性により、望ましい。
二進数定義セット344内の関係二進数定義が、個別に定義され、多数の履歴データを処理することによって洗練されてもよいため、相関は、大多数の意見または専門家の意見の関数として、単純に提案され、維持されるよりもむしろ、検証されてもよい。一実施形態では、介入がないと時機を失して消滅につながる、専門家によって提供される分岐のための基準によって発生する連鎖は、分岐ベータの検出のウィンドウを変化させるように、または分岐二進数をもたらす連鎖を変化させるように、自動的に適合されてもよい。別の実施例では、適時な措置にもかかわらず、かつ生理学的分岐の進行がなくても自己伝播および拡張し続ける、専門家によって提供される基準によって発生する連鎖は、分岐ベータの検出のウィンドウを変化させるように、または分岐二進数をもたらす連鎖を変化させるように、自動的に適合されてもよい。システムがアーカイブに保管されたデータセットに適用されてもよいため、感受性および特異性は、さらに強化されてもよく、結果が分かっているため、連鎖の規模および方向は、連鎖の所望の規模および方向と比較され、それに応じて調整されてもよい。適用されたアーカイブ保管データセットにより、早期の自己消滅および過剰伝播を伴わずに連鎖が続行するまで、事象基準、分岐基準、または連鎖生成における自動適応調整の適用が適用されてもよい。さらに、システムは、不完全(ヌル)二進数にどのように影響を及ぼす場合があるかについての決定を可能にするように、欠落データ上の仮定事項に適用されてもよい。
一実施形態によれば、時系列オブジェクト化プロセッサ336、関係二進数プロセッサ348、および障害画像プロセッサ360を含む、プロセッサは、MPPCデータベース368に、それらの分析の結果を出力してもよい。MPPCデータベース368は、分析が行われた時系列328、ならびに、事象ストリーム340、関係対352、総合障害364、ならびにこれらの要素の集約、関係、および代替画像を含む、分析の結果を含有する。一実施形態では、メタデータ規則セット(1次および代替要素の両方、および/または一時的に無効化または改変された要素)が、患者安全性画像データベース368の中でXML(事象定義セット332、二進数定義セット344、障害画像構成要素定義セット356)として存続する。
(時系列オブジェクト化プロセッサ)
時系列オブジェクト化プロセッサ336は、その全体があらゆる目的で本明細書に参考として援用される、米国特許出願第11/280,559号および第11/351,449号で規定されているような命令を含有してもよい。したがって、そのようなプロセッサは、入院の過程中に導出される各パラメータの時系列を構築することによって機能し、次いで、各時系列をオブジェクト化してもよい。これらの時系列は、例えば、いくつか例を挙げると、客観的測定値、薬剤投与、注入速度、および主観的臨床スコアを含んでもよい。時系列のうちの少なくともいくつかは、ステップ機能として提供されてもよい。
例えば、いくつか例をあげると、体重、血清ナトリウム値、SPO、呼吸数、心拍数、薬剤注入速度、鎮静状態スコア、苦痛スコア、昏迷スコア、作業中診断、不安定性スコア、疾病の重症度スコアの時系列が、全て含まれてもよい。これらの時系列から、時系列オブジェクト化プロセッサは、例えば、これらの時系列の全てから導出されるオブジェクトの並列ストリームを含んでもよい、総合「オブジェクト円柱」または時系列マトリクスをレンダリングしてもよい。
実施形態では、データの時系列の実質的全体が、昇順複雑性の関係階層においてオブジェクトの時系列に変換されるように、時系列オブジェクト化プロセッサは、一式の時系列を、順次および重複離散要素またはオブジェクトのストリームに変換する。時系列が変換されるオブジェクトは、ユーザによって事前定義される、および/または適応可能に定義されてもよい。作成される離散オブジェクトは、定義される境界内の集約データから導出される時間位置および一式の特性を提供する、発生を表し、特徴付ける。この過程は、複数の並列時系列に適用されると、オブジェクト化時系列マトリクス(OTM)を生成する。オブジェクトは、単一の時系列に沿った短時間の上昇または降下等、非常に単純であってもよく、または、いくつか例を挙げると、大きなOTMにわたる関係生理学的変動、治療、および治療への応答の何百ものより単純なオブジェクトから成り、それらを継承する敗血症連鎖オブジェクト等、極めて複雑であってもよい。OTMに沿った、これらのオブジェクトは、導出される位置および特性によって区別され、したがって、個々のオブジェクトを限定することができ、OTMのオブジェクトを検索することができる。OTMを形成するための時系列マトリクスの変換は、EMRのデータで具現化される、実質的に全てのパターンおよび関係の間の関係の識別、認定、および検索能力を提供する。したがって、オブジェクト化は、電子医療記録を、画像化または画像の検索のための特定の形式に変換するための1つの手段である。オブジェクト化プロセッサは、例えば、この複雑性のレベルでは、OTMの複数の並列時系列にわたる垂直および水平寸法の両方に沿って画像(敗血症連鎖発生の画像等)を備える、所定の複雑なオブジェクトを継続的に検索するように、継続検索エンジンとしてプログラムされてもよい。患者の電子医療記録(EMR)がOTMに変換されると、継続検索エンジンは、アラームプロセッサにリンクされてもよく、それにより、特定画像(いくつか例を挙げると、敗血症連鎖の画像、失敗した、または見過ごされた治療の画像、または薬剤反応の画像等)の検出時に自動警報を提供する。これは、複雑な障害および単純な障害の両方のリアルタイム検出をともに、EMRをリアルタイム画像生成器に変換する。昇順複雑性の継承階層で提供され、継続的に検索可能である、広範囲の単純および複雑な関係パターンまたは画像は、例えば、いくつか例を挙げると、生理学的過程、病態生理学的障害、および患者のケアで導出され、全て、OTMに沿った継続または断続的検索または画像化のために公開される。
論議されるように、一実施形態は、時系列オブジェクト化プロセッサ336および関連二進数プロセッサ348を含む、患者安全性処理システムを含む。関係二進数プロセッサ348は、時系列オブジェクト化プロセッサ336に組み込まれるか、またはそれと通信してもよい。時系列オブジェクト化プロセッサ336は、中央ソースまたは広範囲のソースから、ならびに他のプロセッサ(例えば、患者安全性プロセッサ)からの電子医療記録の並列時系列を、並列オブジェクトストリームに変換するようにプログラムされる。次いで、関係二進数プロセッサ348は、オブジェクトストリームを処理して、関係二進数のストリームおよび連鎖を生成する。一実施形態によれば、プロセッサ304は、例えば、所与の種類の検出された障害画像構成要素で導出された、統一時系列を自動的に出力する。別の実施形態によれば、プロセッサは、障害連鎖を検出すると、医師が見直すために、障害画像構成要素の概略図の出力表示上に、リアルタイムで、MPPC発生を提示し、強調してもよい。別の実施形態によれば、プロセッサ304は、障害画像構成要素および分析の全ての他の結果を、他のシステムへの視覚化、報告、およびインターフェースのためのソースであってもよい、MPPC画像データベース368の中へ存続させる。すでに完成している動画の一部分は、単一の概要スナップショット表示で見直すように、前後に見直されてもよい。
論議されるように、一実施形態によれば、関係二進数プロセッサ348は、関係二進数を生成する。そのような関係二進数は、アルファ事象オブジェクトと、ベータ事象オブジェクトとを含む。この過程の早期ステップは、ユーザによる、またはプロセッサによる関係二進数の定義を含む。関係二進数を定義するために、最初に、アルファ事象が定義される(ユーザによって、または適応的に)。アルファ事象は、そのチャネルおよびチャネルに沿ったオブジェクトの両方に関して定義される。一実施形態では、各チャネルに沿ったオブジェクトは、特性(前述の特許出願で論議されるような、オブジェクトを定義する勾配、振幅、または他の特徴等)によって定義される。あるいは、閾値違反がアルファ事象として識別されてもよい。ベータ事象は、再度、そのチャネルおよびその特性に関して定義され、パターンまたは閾値事象のいずれか一方であってもよい。アルファおよびベータ事象の両方はまた、特定の事象に先行したもの等の他の事象の特性に対する、その特性の関係に関して、定義されてもよい。一実施形態では、ユーザは、チャネル(時系列型を定義する)を選択することによって、および特定範囲の基準を満たす事象オブジェクト(例えば、減少事象または上昇事象)を選択することによって、ならびに、先行アルファ事象の少なくとも一部分に関してベータ事象の時限関係(時間間隔等)を識別することによって、および/または他の事象に対する1つの事象の空間的関係および/または頻度関係を識別することによって、(ドラッグアンドドロップデザイナを使用することによって)関係オブジェクトを定義してもよい。一実施形態では、関係二進数プロセッサが、所望であれば、事象検出のための基準を修正すること、または基準に影響を及ぼすことではなく、検出された事象オブジェクトの存在およびタイミングの検出のみに関与してもよいように、アルファオブジェクトおよびベータオブジェクトは、事象オブジェクトの検出のために時系列オブジェクト化プロセッサ336のみに提供される基準によって定義される。(時系列オブジェクト化プロセッサ336による事象オブジェクトの検出は、その全体があらゆる目的で本明細書に参考として援用される、米国特許出願第11/280,559号および米国特許第7,081,095号で開示されている通りであってもよい。)これは、基礎時系列パターンが離散オブジェクトに変換されるオブジェクト化過程によって、これらの基礎パターンの関数としてオブジェクトを検出する、関係二進数プロセッサ348の機能性を限定するものではない(基準を特定するように関係二進数プロセッサ348のプログラミングを組み込む、処理システムが、実施形態に含まれるため)次いで、関係二進数プロセッサ348は、画像構成要素を導出するように、それらの発生時間および/またはユーザまたはプロセッサによって設定された集約のための特定の基準に従って関係二進数を集約し、画像構成要素は、何百もの並列時系列にわたる事象およびパターンで導出されたMPPCおよびケアを導出するように、それらの発生時間および/またはユーザまたはプロセッサによって設定された集約のための特定の基準に従って集約される。ある意味で、関係二進数および事象は、それから患者の生理系のMPPCがプロセッサ304によって構築される、離散「ピクセル」となる。
一実施形態によれば、プロセッサ304はまた、事象および関係二進数を、動画よりもむしろ統一オブジェクト時系列として構築されてもよい、より大きい総合因数分解可能オブジェクトに編成するようにもプログラムされる。各総合因数分解可能オブジェクトは、事象および関係二進数オブジェクトの特定の集約を含む。いくつかの総合因数分解可能オブジェクトでは、個々の関係二進数および事象オブジェクトが、特定の順序または一連の順序(重複してもよい)で発生し、オブジェクトは、相互に対して特定の時間的関係(または一連の時間的関係)を有する。1つの特定の種類のオブジェクト時系列は、単純にグループ化されたセットとして特定されてもよい。別の実施例では、関係二進数は、事象および関係二進数オブジェクトが検出された特定順序で順序付けられ、それにより、オブジェクト時系列を定義する。
一実施形態によれば、特定種類のオブジェクトはまた、患者の生理系およびケアの単純な概要である、「統一患者時系列」をレンダリングするように、組み合わせられて導出されてもよい。MPPCおよびケアは、より包括的なレベルで情報を提供する。両方とも、さらに単純化された要約または画像詳細を明かす掘り下げを提供するように構成されてもよい。統一患者時系列は、例えば、複数の並列時系列から、しばしば、特定の種類または複数の種類の関係二進数オブジェクトの単一時系列に導出された、少なくとも1つの因数分解可能総合オブジェクトのインスタンスを表す。1つの場合において、統一患者時系列および/またはMPPCおよびケアは、好ましくは、入院中、または家庭用モニタに接続される時、または血液検査が行われる時等、信号が利用可能である時はいつでも記録される、生涯の時系列および/または動画となるように構築される。動画または時系列の開始は、患者が死亡するまで統一患者時系列が終了しない、データ(アーカイブに保管された患者データから導出されてもよい)の最も早い日付の時間によって定義される。時系列(または動画)の区分は、入院区分等の患者の位置によって、または、周術期区分等の患者を治療するために講じられる措置によって、死亡の直前または睡眠中の区分等の変化した患者状態に関する事象によって、検討のために分離されてもよい。一実施形態によれば、複数の並列患者関連時系列の二進数オブジェクトおよび事象の時限および順序関係を指定する、オブジェクト命名法が提供され、それにより、簡潔な命名法の適用を通して解釈可能である、容易に出力される因数分解可能なオブジェクトの単一の時系列に、大量の複数のデータセットを変換する。
一実施形態では、医師が、検査結果または他のデータ点を、間違いまたは異常として印付けてもよい。この場合、プロセッサが、分析を、作業中分析(検査結果または他のデータ点を除去または変更する)および背景分析(元のデータを維持する)といった2つに分割する。プロセッサは、「いわゆる」異常検査から予期されたかもしれない状態が発生するかどうかを決定するように、元の検査結果が有効なままであるシナリオを実行してもよい。背景は作業中分析に影響を及ぼさないが、元の検査結果が間違っていなかったもしれず、実際に、現在の作業状態(例えば、検査結果が除去されている状態)に適合しない状態を説明するという考慮事項を正当化するように、十分に示唆的なパターンで事象の相関関係が見出された場合、通知が生成されてもよい。背景分析は、時間に従って(例えば、次の事象との相関関係が見出されない、ある時間量後に)またはユーザあるいはシステム操作者の要求により、削除されてもよい(例えば、リソース利用を低減するため)。
別の実施形態では、プロセッサは、より頻繁な検査二進数を生成して、明白に発生している画像を確認または除外するようにプログラムしてもよい。このように、種々の従来の閾値違反による障害連鎖の検出の待機と関連する遅延が排除されるように、プロセッサは、追加検査とともに可能な限り先を見て、可能な限り早く特定の障害の動画を確認しようとしている。
実施例では、将来像が完全であることを確実にするステップの一部として、選択された事象、二進数、画像構成要素、またはMPPCが存在する場合に、画像へのある薬剤の追加(アルファ事象)が、薬剤に関する合併症(ベータ事象)について監視する検査の自動命令を引き起こしてもよいように、検査二進数が指定される。実施形態では、医師がヘパリンを発注した場合、48時間ごとの血小板算定の自動命令を含む、検査二進数が生成され、画像に追加される。一実施形態によれば、時系列オブジェクト化プロセッサ336は、少なくとも1つの減少事象(例えば、負の勾配および/または減少の規模および/または閾値減少によって定義される)を検出するように、血小板算定の時系列をオブジェクト化しており、減退しつつある勾配が検出された場合、分岐二進数が生成され、減少を示すマーカーが血小板算定時系列に沿って画像に追加され、プロセッサは、より頻繁な血小板検査二進数を生成して、画像中のこれらの分岐二進数の存在を確認してもよい。複数の分岐二進数が検出された場合は、プロセッサは、異なる種類の検査二進数を生成してもよく、アルファ事象は、血小板数の減少である。これは、検査二進数の連鎖を誘起してもよく、例えば、アルファ事象は、ヘパリン治療および血小板数の減少を含む二進数であり、ベータ事象は、例えば、血小板因子4検定または別の検定である。
このように、障害画像プロセッサ360を使用して、血小板数の絶対または相対閾値低下の待機と関連する遅延が低減される。加えて、連鎖は、追加検査二進数を含んでもよい(肝機能検査に関して、画像構成要素がヘパリン誘発性血小板減少症と一致する場合に指図されてもよい薬剤である、アルガトロバンの安全性を決定するため)。プロセッサが、以降で論議されるようなTTPおよび/または潜在出血を示す連鎖を含んでもよい、血小板数の減少の他の原因について、動画の画像を調べるため、MPPCの一部として、これらの二進数および画像構成要素を有するという利点がここでは明白である。
一実施形態は、並列生理学的時系列をプログラムで画像化して、ピラミッドの最上部が分析および抽象化の最高レベルにおけるデータを表す一方で、データが分析の層を通って移動し、底層が未加工データストリームである、データの関係ピラミッドをレンダリングする。医療従事者は、いくつか例を挙げると、以下の方法でピラミッドを調査してもよい。
1)掘り下げ―介護労働者が、データの詳細および分析の理論的根拠(すなわち、存在する状態および分析がその結論に到達する規則の両方)にナビゲートしてもよい。
2)アスペクト-ある要素/状態を重視し、他の要素/状態を重視しない(および/または除去する)システムへのビューポート
上記のこれら2つの実施例は、一緒に使用されてもよく、医療従事者が垂直(分析のレベルを通した掘り下げ)および水平に(フィルタ/アスペクトを通して)関係ピラミッドを通してナビゲートすることを可能にする。
一実施形態では、関係ピラミッドは、仮定シナリオ、または、エラー、異常、または別様に不正確と見なされてもよい、ある検査結果または事象の拒絶に基づくシナリオを考慮するように、医療従事者および/または研究者によって操作されてもよい。代替ピラミッドが、全体的に、または微分画像として、記憶されてもよい。代替ピラミッドは、変更されたデータの結果を理解するために、作業中ピラミッドに対して比較されてもよい。
一実施形態では、プロセッサ304は、いずれの前兆も識別されなくてもよい摂動の存在等の、ある条件下で、代替ピラミッドを自動的に考慮する。摂動または分岐の突然の存在は、一連の起こり得る前兆を考慮することによって、いくつか例を挙げると、不正確な診断、故障した監視機器、標識の間違い、患者が処方通りに薬剤を服用しなかったことといった、異常状態を示唆してもよい。
一局面によれば、炎症メディエイタ等の血液検査の値および/またはパターンは、生理学的摂動の画像、または、いくつか例を挙げると、脈拍数、呼吸数、および/または換気量酸素測定指数等の、少なくとも1つの生理学的パラメータのパターンまたは値と比較される。明白な関係の検出時に、プロセッサは、十分な数の順次血液検査を自動的に指図して、パラメータのパターンが血液検査療法のパターンと収束していることを確認してもよく、それにより、生理学的パラメータおよびメディエイタに、例えば、敗血症障害等の、一般的な生理学的障害に基づいた連関があるという、強力な根拠となる証拠であって、補強冗長証拠を提供する。一実施形態は、生理学的パラメータおよび治療の画像とのマーカーまたは指標の包括的比較が提供されるように、その分析を延長させて、障害の動画に特殊炎症メディエイタを組み込む。
図4は、関係二進数を定義し、それにより、障害画像構成要素の適時な検出のために電子医療記録の複雑性を編成する、関係二進数プロセッサ348の一実施形態のUML静的図を示す。この実施形態によれば、そのチャネル(例えば、酸素測定)およびその特性(例えば、勾配、規模、持続時間)に関して定義される、アルファ事象オブジェクトを最初に検出することによって、関係二進数が定義される。次いで、アルファ事象に対する空間的および/または時間的関係を含んで、再度、そのチャネル(例えば、脈拍または酸素測定)およびその特性(例えば、勾配、規模、持続時間)に関して、随伴(関係)ベータ事象オブジェクトが定義される。言い換えれば、ベータ事象はまた、アルファ事象の規模、勾配、タイミング、または他の関係の関数として特定されてもよい。あるいは、または組み合わせて、ベータ事象は、そのそれぞれがアルファ事象の規模の関数であってもよい、2つの値の間にあるものとして識別されてもよい。
オブジェクト二進数を備えるアルファおよびベータ事象の間の実際の関係は、原因および結果(完全な確信を持って分からない場合がある)によって定義されないが、むしろ、事象の時間的、空間的、および/または頻度関係等のパターン関係によって、または単純に、関係対としての以前の指定によって定義される。例えば、所与の関係二進数を備えるアルファおよびベータ事象の間の実際の関係は、いくつか例を挙げると、原因および結果、監視されていない原因に起因する2つの結果、同じ生理学的減少を測定する2つの監視技術間の関係、予期された代償性反応、または病的反応となり得る。1つの目的は、実際の関係が定義されてもよいように、複数の関係二進数を含む総合オブジェクトのパターン関係を識別することである。
アルファ事象は、そのチャネル(例えば、酸素測定)およびその特性(例えば、勾配、規模、持続時間、および/または閾値違反)に関して定義される、摂動として定義される。ベータ事象は、再度、そのチャネル(例えば、脈拍または酸素測定)に関して、かつアルファ事象のようにその特性(例えば、勾配、規模、および持続時間)に関して定義される、予期された反応事象として定義されてもよい。加えて、ベータ事象はまた、アルファ事象、またはアルファ事象の構成要素あるいは一部分に対する、空間的および/または時間的関係によって定義されてもよい。例えば、ベータ事象が予期された反応事象である時、ベータ事象は、アルファ事象の規模、勾配、タイミング、または他の関係の関数として特定されてもよい。あるいは、別の実施形態では、予期された反応事象は、そのそれぞれが摂動事象の規模の関数であってもよい、2つの値の間にあるものとして識別されてもよい。アルファ事象および/またはベータは、例えば、いくつか例を挙げると、摂動事象、治療事象、または診断指定事象であってもよい。
一実施形態によれば、(他の関係二進数が提供されてもよいが)収束関係二進数、分岐関係二進数、およびヌル関係二進数といった、3つの基本的な関係二進数の種類がある。収束二進数は、予期されたベータ事象反応と組み合わせられたアルファ事象である。予期された反応のチャネルが存在し、破損していないが、予期された反応が見出されない場合は、欠落事象(例えば、予期された反応の領域の波形区分または検査結果を備える)が特定され、アルファ事象および欠落ベータ事象を含む関係二進数は、分岐二進数と呼ばれる。予期された反応のチャネルが存在せず、波形区分または検査結果が予期された反応の領域中で破損している場合は、アルファ事象および未検査ベータ事象を含む関係二進数は、ヌル二進数と呼ばれる。
事象は、第1の関係二進数のアルファ事象、および第2の関係二進数のベータ事象であってもよい(アルファ事象およびベータ事象がそれぞれ、異なる並列チャネルに沿っているという前提で)。いくつかの生理学的過程により、関係二進数は、あるパターンで循環または反復し、これは、関係二進数クラスタまたはパターンの特例を生じる。
一実施形態では、事象特性が、擬人化値、年齢、性別、または先在疾患等の患者状態値によって定義される修飾因子に関して定義されてもよいため、これらの修正因子(例えば、事象定義メニューと組み合わせて規則システムによって提供される)の存在が事象定義パラメータおよび/または閾値の変化を引き起こす。
一実施形態では、事象および/または関係二進数(収束および分岐)は、大域的な因数分解可能オブジェクトを構築して、因数分解可能なオブジェクト化された時系列を導出するように集約される。因数分解可能なオブジェクト化された時系列は、図式的にレンダリングされるか、または、例えば、事象、および最も近い先行事象の開始から次の事象の開始までの時間を識別する、命名法によって提供されてもよい。
実施形態によれば、関係二進数オブジェクト、または関係二進数オブジェクトの特定の集約あるいはパターンが、障害画像構成要素を定義するように、ユーザによって事前指定されてもよい。次いで、プロセッサが、各患者について記憶されている、事象ストリーム、分岐二進数ストリーム、および修飾二進数ストリームを検索することによって、障害画像構成要素の発生を自動的かつ適時に識別してもよい。代替案では、または組み合わせて、全てのそのようなストリーム、または特定のストリームの一部分、または(例えば)分岐の重症度について選別されたストリームのグループが、集約され、周期的視認のためにレンダリングされ、例えば、分岐二進数または発生している障害の画像構成要素の時間的関係が、例えば、容易に認識されるか、または特異的に示される。
図4は、この場合、電子医療記録力ストリームの処理、分析、および合成中に関係二進数プロセッサが使用する、分類(および関係)のUML静的図を含む、一実施形態による収束分析静的モデルを示す。これらの分類から作成されるオブジェクトは、識別された摂動、ならびに、データストリームの欠如により失敗した、試行された識別を表す。ユーザインターフェース、報告システム、ビジネスインテリジェンスおよびデータ保管サブシステム、通知機構、アラーム、および他のヒューマンまたはソフトウェアアプリケーションインターフェースが、この分析構造にアクセスして、分析の結果を集約し、さらに分析し、記憶し、および/または分析の結果に反応する。
描写された実施形態では、症例404、チャネル408、および時系列412の分類が、そこから分析が導出されてもよいデータストリームを表す。これらの分類は、それら各々の全体があらゆる目的で本明細書に参考として援用される、米国特許第6,609,016号および第7,081,095号、ならびに米国特許出願第11/431686号、第11/351449,号および第11/148325号で開示されているように定義されてもよい。各症例404について、1つ以上の症例分析416が構築されてもよい。症例分析416は、特定二進数定義セットを伴う関係二進数プロセッサ348に提出されている、症例404の結果である。単一の症例404は、複数の二進数定義セットで分析されてもよく、適用される二進数定義セットにつき1つの症例分析416をもたらす。
症例分析416は、主に、処理中に識別される関係二進数から成る。一実施形態では、関係二進数は、収束二進数440、分岐二進数456、およびヌル二進数428といった3種類のうちの1つである。症例分析416は、これらのペアのそれぞれの集合を含有し、これらの集合のそれぞれには、より多くのペアのうちのいずれもなくてもよい。論議されるように、関係二進数は、関係事象444から成る。関係二進数の構造(すなわち、関係二進数を構成する事象の種類)は、その種類によって定義され、分類は、これらの関係の構造を固定するように提供される。一実施形態では、全ての関係二進数は、真の事象である(例えば、パターンまたは閾値違反の識別を表す、図5参照)アルファ事象を含有する。実施形態では、識別されるベータ事象の種類が、オブジェクト二進数の種類の区別を行う。例えば、収束二進数440は、事象の関係対を表し、ベータ事象は、二進数定義セットにおいて表されるようなアルファ事象との予期された関係を有する。関係二進数は、何が予期された状態として特定されているかに応じて、真の事象444または欠落事象460のいずれか一方をベータとして有してもよい。真の事象444が関係二進数定義において特定された場合には、関連収束二進数440が、真の事象444をベータ事象として有してもよい。欠落事象460が特定された場合には、関連収束二進数440が、欠落事象460をベータ事象として有してもよい。したがって、分類構造は、ゼロから1つの事象444、およびゼロから1つの欠落事象460を可能にする。現在好ましい実施形態では、収束二進数440は、2つのベータ事象を含有しなくてもよい。
分岐二進数456は、二進数定義セットにおいて表されるような予期された関係と矛盾する関係において識別される、事象の関係対を表す。したがって、分岐二進数456は、何が予期された状態として特定されているかに応じて、真の事象444または欠落事象460のいずれか一方をベータとして有してもよい。真の事象444が二進数定義において特定された場合には、関連分岐二進数456が欠落事象460をベータ事象として有してもよい。欠落事象460が特定された場合には、関連分岐二進数456が真の事象444をベータ事象として有してもよい。したがって、分類構造は、ゼロから1つの事象444、およびゼロから1つの欠落事象460を可能にする。一実施形態によれば、分岐二進数456は、2つのベータ事象を含有しなくてもよい。
ヌル二進数428は、アルファ事象が識別されたが、そこから予期されたベータ事象が導出されるデータストリームが関係二進数プロセッサ348に利用不可である、状態の存在を表す。事象444は、隔絶されてもよく(例えば、任意の識別された関係対の一部ではない)、または1つ以上の二進数の一部であってもよい。チャネル事象ストリーム424は、時間によって順序付けられ、チャネル408によって分離される事象444の集約を提供する。真の事象444が波形区分448である(例えば、波形区分を継承する)一方で、欠落事象460は、二進数定義セットにおいて予期されるように表された事象について検索されたチャネル408の部分を表す、波形区分448と関連する。取り付けられたであろうチャネル408またはそのチャネル408の関連部分が利用不可であるか、破損しているため、ヌル事象432は波形区分448と関連しない。関係二進数プロセッサ348は、ヌル二進数428を収束440に変換し、またはデータのチャネル408としての分岐456二進数が利用可能となる。
分析は、反復収束436、反復分岐452、および反復ヌル420といった、3つの集約分類で反復する(例えば、循環往復運動)、二進数の集約を含有する。この構造をさらに明確にするために、一実施形態による分析を構築するため、関係二進数プロセッサの例示的実施形態内の動作の順番を説明することが有用であってもよい。
1.順に、各チャネル408が反復され、名前付き事象492および閾値違反484(関係対を参照せずに識別されてもよい事象)が識別され、チャネル事象ストリーム424の中へ配置される。
2.任意の識別された事象444を候補アルファ事象(特定二進数定義セットにおいて定義されるような)と合致させるように、チャネルストリーム424が反復される。単一の事象444が任意の数のアルファ事象定義に合致してもよく、それぞれ1つが候補アルファ事象と見なされる。
a.各候補アルファ事象に対して、予期されたベータ事象について特定検索領域が調べられる。
i.予期されたベータ事象が利用不可であるか、または破損しているチャネル408の場合
1.ヌル二進数428が作成される(その関連ヌル事象432とともに)
2.反復ヌル420が作成または付加されるべきかどうかを決定するように状態が調べられる
ii.予期された状態が見出された場合
1.収束二進数440が作成される
2.関係事象488が過程において識別されたなら、それが作成され、チャネル事象ストリーム424に追加される
3.反復収束436が作成または付加されるべきかどうかを決定するように状態が調べられる
iii.予期された状態が見出されない場合
1.分岐二進数456が作成される
2.関係事象488が過程において識別されたなら、それが作成され、チャネル事象ストリーム424に追加される
3.反復分岐452が作成または付加されるべきかどうかを決定するように状態が調べられる
3.障害画像構成要素および総合障害画像構成要素が識別される(以下参照)。
図5は、事象種類の静的モデルを示す。実施形態によれば、事象は、閾値違反484、名前付き事象492、および関係事象488といった、3種類のうちの1つとして表されてもよい。閾値違反484は、関連チャネル408内の何らかの特定、計算、または導出された限界の違反の存在を表す。名前付き事象492および関係事象488は、チャネル408内の識別された単極パターンを表す。それでパターンが識別されるパラメータが、関連事象(例えば、制限事象496)の要素の関数ではないという点で、名前付き事象492は、関係事象488とは異なる。収束二進数440という脈絡内の制限事象496は、関連関係二進数のアルファ事象である。
制限事象496は、閾値違反484または名前付き事象492のいずれか一方であってもよいが、一実施形態では、関係事象488でなくてもよい。実施形態では、制限事象496は、関係事象488であってもよく、関係二進数プロセッサは、包括的な一式の事象を決定するために再帰アルゴリズムを採用する。閾値違反484および名前付き事象492は、隔離事象であってもよい(例えば、関係二進数と無関係に識別される)。関係二進数のアルファ事象は、閾値違反484または名前付き事象492のいずれか一方であってもよいが、この実施形態では、関係事象488でなくてもよい。実施形態では、関係連鎖を生じる能力を提供するように、この規則が緩和される。実施形態では、アルファ事象は、関係事象であってもよく、関係二進数プロセッサは、包括的な一式の事象を決定するために再帰アルゴリズムを採用してもよい。
図6は、患者安全性プロセッサの現在好ましい実施形態にさらなる明確化を提供する、総合障害画像構成要素静的モデルを示す。総合障害画像は、検索される1種の画像である。関係二進数が識別された後、関係二進数プロセッサ348は、これらの識別されたペアを、事象および二進数のパターンの識別を表す総合障害画像構成要素オブジェクトに集約してもよい。総合障害画像構成要素524は、障害画像構成要素定義セットに関して作成される。障害画像構成要素定義セットは、二進数定義セットと関連するが、複数の障害画像構成要素定義セットが、二進数定義セットに対して作成されてもよい。
総合障害画像構成要素524は、障害画像構成要素の要素528の2つの集合を有する。第1は、特定のシーケンスにおいて識別された一式の障害画像構成要素の要素528である。第2は、単純に特定検索ウィンドウ(例えば、シーケンスではない存在が集約に十分である)の範囲内に入った障害画像構成要素の要素528を表す。集約型532は、分析オブジェクト(536、540、544、548、552、556、560、564、568)が集約に関与することを可能にする、軽量インターフェースの一実施形態である。分析オブジェクトは、全て総合障害画像構成要素528に関与してもよい、収束二進数536、分岐二進数540、ヌル二進数544、反復ヌル548、反復収束552、反復分岐556、事象560、欠落事象564、およびヌル事象568を含む。
図7は、二進数定義セット静的モデルを示す。二進数定義セットモデルは、収束分析を作成するために関係二進数プロセッサ348によって使用される二進数定義セットの一部である、オブジェクトを表す。二進数定義590は、関係二進数を識別するために使用されるパラメータを表す。二進数定義590は、二進数の種類606、検索ウィンドウ定義618、ならびにアルファ事象630および予期されたベータ事象594の定義といった、4つの要素で構成される。
図8は、収束分析を作成するために関係二進数プロセッサによって使用されてもよい、二進数定義セットの作成および修正のための能力を提供する、収束エディタの実施形態を示す。二進数定義セットは、図7に示されたオブジェクトインスタンスの視覚表現である、収束モデルとして表されてもよい。ユーザインターフェースは、設計面764および要素ツールボックス700を含み、それは、二進数図と呼ばれる収束モデルの一部のドラッグアンドドロップ作成および操作を可能にする。単一の名前で作成された全ての二進数図の集約が収束モデル全体を構成し、いくつか例を挙げると、関係データベースの中またはXMLファイルの中で二進数定義セットとして存続してもよい。収束モデルを二進数図に分けることにより、モデルの複数表示を可能にする。これらの表示は、相互排他的ではなく(すなわち、同じ二進数定義が複数図で表されてもよい)、したがって、複雑性の種々のレベルおよび参照点でモデルの表示を提供する。
左側のボックスは、設計面、したがって、二進数図に追加されてもよい視覚要素を提示する、収束要素ツールボックス700である。形状は、追加されてもよい事象を表す。名前付き事象598、関係事象602、および閾値違反622といった、利用可能な3つの事象種類が、図7の事象定義分類に対応する。ツールボックス700の関係768部は、2つの事象を接続して関係二進数を作成するために使用されてもよい、一式の線を提示する。選択される線は、二進数の種類606を決定する。二進数の種類は、予期716、類似二進数720、起こり得る循環724、非存在の検証728、再発検証732を含む。線に取り付けられた視覚アイコンは、その種類をユーザに伝えてもよい。二進数の種類606は、候補アルファ事象が識別されると発生してもよい検索の種類および頻度を決定する。例えば、再発検証種類732は、関係二進数プロセッサに、特定頻度で予期された事象について検索するように指図するため、単一の候補アルファ事象に対する複数の二進数を生成してもよく、各間隔で二進数を生成する。いくつかの二進数の種類が組み合わせて使用されてもよい(例えば、再発検証732および非存在の検証724)。設計面764に追加される各関係には、二進数定義590のための検索ウィンドウ定義618を表す、提供された少なくとも1つの時間間隔(例えば、768)がなければならない。各関係は、指向性であってもよい。線は、ベータ定義626を表す、矢印端型を端部に含む。矢印のない端部は、アルファ定義630を表す。
接続関係を有する、各対の事象は、単一の二進数定義590を表す。上記の図では、以下の7つの二進数である。
1.鼻圧降下と酸素減少との間の類似二進数(736、772、740)
2.酸素減少と酸素上昇との間の起こり得る循環二進数(740、773、748)
3.酸素下限違反の閾値違反と酸素上昇との間の予期された関係(744、768、748)
4.酸素減少と酸素上昇との間の予期された関係(748、770、740)
5.酸素上昇と鼻圧上昇と間の類似二進数(748、774、752)
6.酸素減少と脈拍上昇との間の非存在の検証の二進数(740、771、756)
7.酸素減少と脈拍減少との間の非存在の検証の二進数(740、769、760)
この図は、これらの事象のそれぞれの関係の全てを表すわけではない。これは、睡眠時無呼吸症に焦点を当てた全体的収束モデルの一部の表示の例である。関係および要素は、モデル全体から除去することなく、この図から除去されてもよい(すなわち、エディタが、モデルではなく図から要素を除去する「除去」と、図およびモデル(全ての他の図を含む)から要素を除去する「削除」とを区別する)。事象および関係の全てを示す図が構築されてもよいが、それは、判読不可能なほど大きく複雑になる可能性がある。
エディタは、存続前に、またはユーザの要求に応じて、有効性について図をチェックする。例えば、ベータ事象のない関係は、図を無効にする。無効な図は、収束モデルを無効にしてもよい。収束モデルを二進数定義セットに存続させることができないことが好ましい。エディタは、図の構築中に融通性を提供するように、無効状態を可能にする。さらに、標的二進数定義セットが、エディタに利用可能である障害画像構成要素定義セットと関連する場合、エディタは、図の変更による関連モデルとの対立を警告してもよい。エディタ設定に応じて、これらの変更は許可されない、または、変化は障害画像構成要素へ伝播されてもよい。
各図要素は、要素の種類と関連するプロパティエディタを通して、より詳細な方法で操作されてもよい。エディタが完全な二進数定義セットを構築するのに十分であるように、プロパティエディタは、関連定義オブジェクトの全ての編集可能なプロパティへのアクセスを提供する。エディタは、人間の可読性を増加させるように、およびユーザ間で通信するように、テキスト、注釈、線、および他の視覚要素を図に提供する。これらの追加視覚要素は、二進数定義セットに影響を及ぼさない。
この構造は、二進数定義セットを視覚的に構築するために使用されてもよい、図7でモデル化されたユーザインターフェースモデルの脈絡内で理解されてもよい。具体的には、図7は、睡眠時無呼吸症の監視に関する収束エディタ内の二進数図を描写する。接続関係(例えば、754)を有する、各対の事象(例えば、744、748)は、単一の二進数定義590を表す。2つの事象の間の接続線は、二進数の種類606を表す。二進数の種類は、予期716、類似二進数720、起こり得る循環724、非存在の検証728、再発検証732を含んでもよい。二進数の種類606は、候補アルファ事象が識別されると発生してもよい検索の種類および頻度を決定する。例えば、再発検証732種類は、関係二進数プロセッサに、特定頻度で予期された事象について検索するように指図するため、単一の候補アルファ事象に対する複数の二進数を生成してもよく、各間隔で二進数を生成する。実施形態では、いくつかの二進数の種類が組み合わせて使用されてもよい(例えば、再発検証732および非存在の検証728)。1対の時間オフセットを含有するボックス768は、検索ウィンドウ定義618を表す。この定義は、それについてベータ事象が標的ベータチャネルにおいて検索されるべきである、アルファ事象の終点からの開始および終了時間オフセットを含有する。最後に、形状は、アルファおよびベータ事象定義を表す。これらの定義は、パラメータを提供し、それにより関係二進数プロセッサが、単極パターン(すなわち、名前付き事象定義598または関係事象定義602によって定義される基準を満たす)または閾値違反(すなわち、閾値違反定義622によって定義される基準を満たす)の存在について、識別された波形区分を検索してもよい。
図9は、障害画像構成要素定義の静的モデルを示す。障害画像構成要素モデルは、総合障害画像構成要素を識別し、作成するために障害画像プロセッサによって使用される、障害画像構成要素定義セットの一部である分類を表す。障害画像構成要素定義は、要素のパターンが特定障害画像構成要素の基準を満たすかどうかを、障害画像プロセッサが決定することを可能にする、一式の要素の定義およびそれらの関係を表す。図10は、収束分析を作成するために、二進数定義セットと連携して障害画像プロセッサによって使用される、障害画像構成要素定義セットの作成および修正のための能力を提供する総合障害画像構成要素エディタの実施形態を示す。障害画像構成要素定義セットは、図9に示されたオブジェクトインスタンスの視覚表現である、障害画像構成要素として表されてもよい。ユーザインターフェースは、設計面832および要素ツールボックス780を含み、それは、障害画像構成要素図と呼ばれる障害画像構成要素の一部のドラッグアンドドロップ作成および操作を可能にする。単一の名前で作成された全ての障害画像構成要素図の集約が障害画像構成要素全体を構成し、いくつか例を挙げると、関係データベースの中またはXMLファイルの中で障害画像構成要素定義セットとして存続してもよい。収束モデルと同様に、障害図は、複雑性の種々のレベルおよび参照点で視覚化を提供する、モデルの表示である。
障害画像構成要素定義セットは、特定二進数定義セットと関連し、かつそれに依存している。障害画像構成要素定義セット、したがって、障害画像構成要素およびその対応する図の全ては、二進数定義セットの仕様がないと作成することができない。さらに、特定二進数定義セットは、障害画像構成要素図を作成するために使用されてもよい事象および二進数を提供し、制限する。
この構造は、図10のユーザインターフェースモデルの脈絡内で理解されてもよい。各図は、単一の障害画像構成要素定義650を表す。この実施形態では、障害画像構成要素の要素定義662は、二進数定義674または事象定義678のいずれか一方であってもよい(しかし一実施形態では、両方でなくてもよい)。これらの障害画像構成要素の要素定義662は、特定の事象または関連二進数の存在を表す。要素の特定のシーケンスが障害画像構成要素を識別すると定義される場合には、シーケンスがコネクタおよび時間オフセット(例えば、812、824、816、828、および820)で特定される。各形状コンテナ(他の形状を含有する形状)は、障害画像構成要素の要素定義662を表す。障害画像構成要素の要素定義662は、二進数定義674および二進数モードの両方を含む。二進数モード666は、分析内で二進数定義674によって作成されなければならない二進数の種類を示す(例えば、収束、分岐、またはヌル)。図10内では、ツールボックス780から二進数コンテナ(例えば、784、788、および792)を選択することによって、モードが特定される。内部形状がない隔離形状は、事象障害画像構成要素の要素678を表す。事象障害画像構成要素の要素678は、事象定義678および事象モード670の両方を含む。事象モード670は、分析内で事象定義678によって作成されなければならない事象の種類を示す(例えば、事象、欠落事象、またはヌル事象)。
図10の障害画像構成要素の要素ツールボックス780は、設計面832に、したがって障害画像構成要素図に追加されてもよい、視覚要素を表す。大きい太線のコンテナ形状(784、788、および792)が、二進数を指す障害画像構成要素の要素を表す一方で、より小さい形状(796、800、804)は、事象(隔離されているか、または二進数の一部である)を指す障害画像構成要素の要素を表す。収束、分岐、およびヌルといった、利用可能な3つの二進数要素の種類が、利用可能な二進数モード666に対応する。表面上にドロップされた各二進数は、後に、関連二進数定義セットからの二進数定義674の選択につながってもよい。設計面は、シーケンス化および非シーケンス化といった、2つの部分に分けられる。シーケンス化領域中の要素は、図9のシーケンス化モード集約654に対応する。これらの要素は、時間の関係を伴い、したがって、それらの間で関係が特定されてもよい(例えば、824)。ツールボックスの関係部836は、全体的集約の一部として2つの障害画像構成要素の要素(二進数または事象のいずれか一方)を接続するために使用されてもよい、一式の線を表す。設計面に追加される各関係には、シーケンス化モード集約654内で関係付けられた検索ウィンドウ定義を表す、提供された時間間隔(例えば、828)がなければならない。各関係は、指向性であり、シーケンス654における優先順位を示す。
ゼロ以上のシーケンスが特定されてもよいが、要素がシーケンス化部に配置された場合は、シーケンスの一部として定義される。非シーケンス化部に配置された要素は、関係を有することができない。障害画像構成要素について特定された全体的時間枠内では、存在のみが特定される。障害画像構成要素図は、図自体が障害画像構成要素定義650というエンティティを表し、単に他のエンティティ(例えば、二進数エディタの場合は二進数)の集合ではないという点で、二進数図とは異なる。要素を除去することにより、いつ障害画像構成要素が識別されるかという定義を変更する。障害画像構成要素図に追加される全ての要素は、識別目的で「および」の関係を表す(すなわち、全ての要素およびシーケンスが、識別される障害画像構成要素について存在しなければならない)。一実施形態では、「または」のシナリオを作成するために、複数の障害画像構成要素図が、「または」の組み合わせを表す変動で作成される。エディタは、存続前に、またはユーザの要求に応じて、有効性について図をチェックする。エディタは、図の構築中に融通性を提供するように、無効状態を可能にする。
各図要素は、要素の種類と関連するプロパティエディタを通して、より詳細な方法で操作されてもよい。エディタが完全な障害画像構成要素定義セットを構築するのに十分であるように、プロパティエディタは、関連定義オブジェクトの全ての編集可能なプロパティへのアクセスを提供する。エディタは、人間の可読性を増加させるように、およびユーザ間で通信するように、テキスト、注釈、線、および他の視覚要素を図に提供する。これらの追加視覚要素は、障害画像構成要素定義セットに影響を及ぼさない。
図11は、以下の二進数定義が特定される、ヘパリン療法を指す二進数図の実施例を提供する。
1.ヘパリン療法850と治療範囲までのptt上昇858との間の再発検証二進数854
2.ヘパリン療法850と脈拍上昇862との間の非存在の検証の二進数866
3.ヘパリン療法850と血圧降下870との間の非存在の検証の二進数882
4.ヘパリン療法850とヘモグロビン減少874との間の非存在の検証の二進数886
5.ヘパリン療法850と血小板数減少878との間の非存在の検証の二進数890
図12は、以下の二進数定義が特定される、インスリン療法を指す二進数図の追加実施例を提供する。
1.インスリン療法920と治療範囲までの血糖減少924との間の予期二進数922
2.インスリン療法920と血糖違反930との間の非存在の検証の二進数926
3.インスリン療法920と混乱928との間の非存在の検証の二進数926
図13は、以下の二進数定義が特定される、インスリン療法を指す二進数図の追加実施例を提供する。
1.麻酔薬療法940と治療範囲までの苦痛スコア減少(948)との間の再発検証二進数944
2.麻酔薬療法940と酸素減少956との間の非存在の検証の二進数952
3.麻酔薬療法940と血圧降下961との間の非存在の検証の二進数960
4.麻酔薬療法940と呼吸数減少964との間の非存在の検証の二進数962
5.麻酔薬療法940と混乱967との間の非存在の検証の二進数966
図14は、3つの非シーケンス化二進数(970、971、972)が、起こり得るヘパリン誘発性出血を識別するのに十分と定義される、障害画像構成要素エディタの追加実施例を提供する。
図15Aは、患者の生理系およびケアの障害画像フレーム973を示し、障害画像プロセッサによって生成されるような、一実施形態による1つの例示的画像を明示する。示された画像は、安定性を示唆する画像から敗血症性ショックの障害連鎖を示唆する画像への動的進行を示す。これは、患者での使用に配備されると継続的に検索してもよい「病態生理学的連鎖に対する検索エンジン」として、患者安全性プロセッサが配備される、画像のうちの1つである。画像は、それぞれ、上昇事象または降下事象であるかを示す、上下の矢印として基準を満たした、オブジェクト化された事象を表示する。軽微な時系列変動(事象としてのオブジェクト化プロセッサによる基準を満たすことができない、信号雑音に特有の検出された軽微な上昇または降下等)が、並列時系列に沿った白丸として各時系列上に表される(そのような変動の視覚化は、所望に応じてオンまたはオフにされてもよい)。検出された事象は、二進数を形成するように他の事象と組み合わせられ、次いで二進数は、患者の生理系および各画像の時間間隔中に生理系に適用される医療ケアの動的状態を定義する、総合二進数および個々の事象を含む、関係パターンの画像を生成するように組み合わせられる。完全な画像内で、より小さい障害画像が、総合障害の(この場合は敗血症性ショックの)より大きい画像を生成するように集約する。リアルタイムでは、これは、MPPC内で再動画化された、これらのパラメータ内での患者の実際のデジタル動画等の、レンダリングとともに、または代替レンダリングとともに示されてもよい、動画の画像である。
図15Aは、多くの早期フレームを示したMPPCの後期「時間経過」フレームであるため、患者安全性プロセッサ出力は、検索エンジンが検出した連鎖画像が敗血症性ショックであるという信頼が高かったということを規定した。上昇事象または降下事象の表現は、各時系列974上で、それぞれ上向きの矢印および下向きの矢印として描写されている。時系列974は、カテゴリ975にグループ化される。画像の時間間隔内で検出された第1の事象は、好中球時系列上の上向きの矢印によって示された好中球数976の上昇事象である、摂動事象である。この摂動事象は、第1の関係二進数978(976および977を接続する矢印によって図中で組み合わせられる)を生成するように、同様に上向きの矢印によって示された呼吸数977の上昇である、第2の摂動事象に、関係プロセッサによって組み合わせられる。画像中の各後続摂動は、その時系列および矢印によって指定される。その周囲に丸がある矢印は、特定の画像の検出に応じて患者安全性プロセッサによって自動的に指図される検査によって決定される、摂動を指定する。実施例では、早期画像が、正常な温度を伴うが、好中球数の上昇、脈拍の上昇、および呼吸数の上昇を明示したため、いくらか不明瞭になった画像の炎症部分をより良好に定義するように、炎症メディエイタまたは指標979における上昇事象が、患者安全性プロセッサによって指図された。この不明瞭な画像は、ケアを決定するためにより良好に定義されなければならないため、画像をより良好に完成させるように、炎症メディエイタ/指標に対する検査がプロセッサによって自動的に指図される。
これらの基本的指定を使用して、図15Aの画像は、拡張し、連関した連鎖980における炎症の摂動、その後に続く血流力学摂動、その直後に続く呼吸摂動、次いで、腎臓摂動を含む、MPPCの検索によって検出される、明確な画像フレーム(時間経過スナップショット)を明らかにする。障害過程の後期のフレームが、連鎖980の開始を観察するのに十分な尺度で最も良く視認されるように、第1の検出された摂動事象である、好中球数976の初期上昇は、連鎖の後期に完全に消滅する。画像は、温度時系列981に沿って、あらゆる事象の完全欠如を示す。プロセッサ304によって提供される分析がないと、発熱の欠如が、発熱を敗血症の早期検出のための確実な指標として考える場合のある医療従事者を、誤った方向に導く場合がある。しかしながら、プロセッサ304は、不完全な画像をレンダリングしたか、または見出したことを認識するようにプログラムされ、次いで、炎症メディエイタ979の検査を指図することによって画像を完成させようとする。この検査は、温度の上昇に対する「代理画像構成要素」としての機能を果たし、それにより、障害画像全体が実際には炎症の早期構成要素を示さないことを確立する。
2つの薬剤治療が画像中で明白であり、抗生物質のバンコマイシン982が時系列上でその用量によって指定され、レボフロキサシン983が同様に指定されている。また、生理食塩水984の形態の静脈内輸液の上昇も示されている。これらの治療の全ては、画像が敗血症の高い確率を長い間示した後に、遅れて生じる。(患者安全性プロセッサによってリアルタイムで検出されてもよい、この遅延は、患者安全性プロセッサを無視した、あるいは患者安全性プロセッサへの応答が不良であった、不良かつ無効なケアを示唆する。プロセッサは、提供されたケアの品質の指示を提供するようにプログラムされてもよい。遅延が特定の位置または介護労働者に結び付けられてもよいように、介護労働者または病棟を含む時系列が提供されてもよい。)
進行性連鎖980の画像は、連鎖980に沿って画像内で非常に遅れて現れるため、画像の薬剤治療構成要素982、983が遅すぎることを示す。連鎖980の画像の後期部分はまた、アニオンギャップ985の上昇を備える、非常に不吉なベータも含む。この新規画像構成要素の追加は、連鎖980の成熟画像を提供し、それは、敗血症性ショックの極めて致命的な段階を強く示す。他の画像表示は、例えば、いくつか例を挙げると、時系列の特定の拡張部分、時系列部分に沿った総合障害構成要素の特定の拡張表示、時系列の特定のグループ、グループごとの摂動進行の概観(これの実施例は図19に示されている)であってもよい。
図15Bは、画像の複数部分が、炎症986、全身性炎症反応症候群987、推定重度敗血症988、推定重度敗血症性ショック989という順次状態に分けられている、図15Aの障害画像フレームである。
図15Cは、敗血症に向かった妨害連鎖を警告する、これらの第1の摂動がほとんどなくてもよいことを明示する、図15Aの過程のリアルタイム画像化からの早期障害画像フレームである。この画像中で明白な好中球数990の上昇である、第1の「スパーク」は、回顧すると、敗血症性ショックの開始の先触れをし、この動画が図15D(以下参照)に示された点に到達する時までに完全に消滅するという事実にもかかわらず、完全に非特異的であり、画像を拡張して、より特異的な画像により迅速に近づくように、この好中球数の上昇の有意性を決定するための、集中検査、より頻繁なCBC検査、および/またはより頻繁な生命兆候測定が、プロセッサ304によって示唆または指図されてもよい。
図15Dは、図15Aの過程のリアルタイム画像化からの障害画像フレームである。このフレームは、早期免疫障害992と組み合わせられた、炎症、血流力学、および呼吸増強991の早期画像構成要素を明示する。画像によって示されるように、MPPCのこのフレームが経過する時までに治療が発生しなければ、重篤な敗血症が起こり得る可能性が高い。
図15Eは、図15Aの過程のリアルタイム画像化からの障害画像フレームである。このフレームは、免疫障害992と組み合わせられた、炎症、血流力学、および呼吸増強991の画像構成要素を明示するが、ここでは、呼吸ガス交換の減退993および血小板数の減少994を示す画像構成要素を伴う。画像によって示されるように、MPPCのこれらのフレームが経過する時までに治療が発生しなければ、図15Dで示された段階よりも、重篤な敗血症が起こり得る可能性がさらに高い。
図15Fは、画像が、代謝障害995、腎不全996、血流力学997、および呼吸不全998の画像構成要素を含むように、図15Eのフレームからの障害連鎖の拡張を示すことを明示する、図15Aの障害画像フレームである。これは、敗血症に対する医学的介入が、現在の電子医療記録および監視システムによって監視された多くの患者において始まる時点である。動画のこの時点での治療の導入は、しばしば完全に無効である。画像のこの後期フレームにおける急速輸液の導入999は、患者の進行にほとんど影響を及ぼさない可能性が高い。
図16は、うっ血性心不全の障害連鎖の時間経過障害画像フレームを示す。プロセッサによって検出される第1の摂動事象は、図15Aのような炎症よりもむしろ、血流力学(脈拍数の上昇事象100)であることに留意されたい。次の検出された摂動事象は、呼吸性であり、脈拍の上昇100と組み合わせられて第1の関係二進数104を生じる、呼吸数の上昇102である。呼吸数の上昇102とともに第2の関係二進数108を生じる、換気量指数化酸素測定値106がある。呼吸数の上昇102は、第1の関係二進数104のベータ事象および第2の関係二進数108のアルファ事象である。一緒に、これら2つの結合関係二進数は、発生期の連鎖112の画像の最初の開始に戻ってもよい、画像構成要素110を形成する。フロセミド114およびメトプロロール116を含む治療は、発生期の連鎖112の画像の開始の極めて近くで開始されるが、進行性連鎖118の画像の後続の発生を防止するのに効果的ではない。進行性連鎖118のこの画像は、MPPCの構成要素および長さの両方によって定義される。プロセッサ304は、この障害画像の検出時に、病院安全委員会がこれらの種類の保護対策を所望する場合、心筋酵素(図示せず)および他の検査を自動的に指図することによって、連鎖進行の根本的原因について検索してもよい。連鎖118は、心房細動120の発現、および後のさらなる悪化を含むことに留意されたい。
図17は、睡眠時無呼吸症の障害画像フレームを示す。第1の摂動事象は、脈拍数122、呼吸数124、SPO126、および脈拍上昇128の循環事象を含む一群で発生する。これらは、3mgIVの麻酔薬用量130の開始後に発生する。次いで、循環を示す集約された画像構成要素132が、第2のそのような画像構成要素133および第3のそのような画像構成要素134を生じるように反復する。循環を示す第3の画像構成要素134のSPOサイクル135部分は、回復障害136を伴って、より重度となる。CPAP治療137が適時に与えられ、いずれの麻酔薬も与えられない。この場合、生命にかかわる麻酔薬誘発性持続的低換気症を示す、拡張する連鎖または次第に減退する呼吸数あるいは減退するSPOの画像がない。監視報告において、または指導回診で、後に見直す際に、進行の微妙性をより良好に視覚化するように、高速フレーム画像に沿って移動することによって、このフレームを含有するMPPC全体が見直されてもよく、さらに、医師または看護グループが、その実際の時系列を確認するように掘り下げてもよい(例えば、SPO循環記号137を右クリックすることによって)。この場合の治療が適時なケアとなったか否かに関する決定が評価されてもよい。実施形態では、議会内の医師が、患者安全委員会に、患者安全性プロセッサを調整して、この動画の早期部分において定義されるもの等の画像が存在する時に、看護師通知とともに早期自動RT部門通知の推奨を提供するように、請願してもよい。このように、患者安全性プロセッサは、病院システムの継続的品質改善措置の不可欠な部分となり、目標は、治療または検査のための十分な画像支援を提供する再早期フレームの中へ、治療および検査を左方向に移動させることである。目標は、連鎖が発現する前に、早期摂動源のより早期の治療に近づき続けることである。一局面によれば、プロセッサ304は、継続的品質改善過程に組み込まれ、プロセッサ304は、病院の品質改善委員会、病院全体の主要供給源、ならびに集中分析、および品質改善に焦点を当てた変化を迅速に制度化する機構の不可欠な部分となる。
図18は、敗血症性ショックの画像によく似た、珍しい血栓および炎症の状態である、血栓性血小板減少性紫斑病(TTP)の高信頼度を示す、障害画像フレームを示す。TTPは、自己抗体によるADAMTS酵素の阻害によって引き起こされる場合があるが、この疾患は、非常に一般的な薬剤のクロピドグレルによって稀に誘起される場合もある。TTPはしばしば、薬剤開始の2週間以内に発生し、検出されなければ重篤な有害事象をもたらす場合がある。残念ながら、TTPは、同様に血小板減少症を引き起こす、敗血症(図15A)という非常によく見られる疾患の全身性反応特徴の多くを共有する。敗血症は、はるかによく見られる症状であるため、TTPの存在下での敗血症の誤診は高い可能性であり、さらに、大部分の病態生理学的障害と同様に、両過程は、全身性エリテマトーデスおよび膵臓炎等の他の関連症状とともに、1人の患者に共存する場合がある。TTPおよび敗血症における障害の動画が同様であるという事実にもかかわらず、TTPが抗生物質治療に応答すると期待できないため、TTPの存在下での敗血症の誤診は深刻となる場合があり、敗血症が抗生物質を伴わない血漿交換法に応答すると期待できないため、敗血症の存在下でのTTPの誤診は深刻となる場合がある。
TTPは、赤血球を損傷し、広範な微小血管血栓症を誘発し、混乱、腎不全、および末梢血塗抹で検出されてもよい(診断が疑われ、検査が指図された場合)前哨分裂赤血球と関連する微小血管症性貧血をもたらす、フォン・ヴィレブランド因子の大型多量体の蓄積と関連する。血小板減少症、腎不全、および血尿が、敗血症よりもこの過程の早期に現れる場合があるが、これらの早期所見は、画像の手掛かりにすぎず、2つのMPPCを区別しない。
TTPを示唆するMPPCがプロセッサ304によって生成され、プロセッサ304は、敗血症および/またはTTP、ならびに急性血管増生等の起こる可能性が低い状態の可能性と一致する障害画像を示す。プロセッサ304は、「生命にかかわる急性または亜急性血栓症および炎症増強と一致する画像」等の画像の非特異的特性化を出力してもよく、そのような画像を生成してもよい過程の鑑別診断を提示してもよい。
また、例えば、1つまたは複数の閾値フレームの検出時に、プロセッサ304は、末梢血液塗抹、血液培養、尿培養、痰培養、胸部X線、ANA、膵酵素、腎堆積物、およびANCA検査を自動的に指図して、可能な限り迅速に画像のギャップを拡大および充填してもよい。病院の専門家が、連鎖に沿って検査が指図される位置によって定義されるような、これらの検査の指図の費用効果的なバランスを最終的に決定する。所望であれば、胸部X線からの報告は、時系列として現れる部分を含んでもよい(例えば、段階関数)。解釈を行う放射線医は、肺浸潤、肺浮腫などの指示を入力してもよく、かつさらに悪いか、または良いかを示してもよく、それは最近の検査からの段階的変化をもたらしてもよい。このように、胸部X線等の検査の結果は、時系列をレンダリングし、および障害画像化過程に組み込むためのソースとなる。
画像の存在は、血小板数の早期減少142、換気量酸素測定指数(VIO)の減少144、ヘモグロビンの減少または閾値146、混乱スコアの上昇または閾値148、および/または尿中の赤血球の上昇または閾値150、および/またはクレアチニンの上昇または閾値152とともに、炎症・血流力学・呼吸・増強(IHRA)140を含む、障害連鎖139を定義する、画像構成要素を含む。一緒に、画像構成要素の組み合わせは、TTPおよび/または敗血症および/またはあまりよく見られない過程の可能性を示唆するMPPCを生じる。例えば、患者が輸血を受けたばかりであった場合、起こり得る輸血反応を示唆する。
プロセッサ304は、画像の重要性、画像によって示唆されるような鑑別診断、存在する障害連鎖の一般型および/または生理学的説明、ならびに、患者安全性プロセッサによる、この種類の画像の検出が、主治医の即座の通知およびICUへの移送につながってもよいという通知を、医療従事者に示してもよい。措置を講じるのに十分な信頼度でTTPを示唆する障害画像の存在を定義するのに十分なベータ構成要素を定義するために、結果が利用可能ではないため、画像が不十分な二進数を有する場合、画像を完成させようとして、部分的画像の検出時に、利用不可能な検査が指図される。図18では、TTPの完全なMPPCの起こり得る存在を示唆する画像構成要素の検出が、TTP画像を完成させようとして、分裂赤血球の検査152を誘起したことに留意されたい。閾値段階関数の検出、および/または画像の他の部分と組み合わされた分裂赤血球の上昇は、TTPの潜在的存在の警告を誘起する。図18は、血漿交換法154の命令の実行が遅すぎたため、プロセッサによって検出された遡及的事例における準最適ケアを反映する。そのような遅延は、病歴データにおいて検出されてもよく、プロセッサは、病院の品質改善部門に差異の自動報告を提供するように構成されてもよい。
ある実施形態では、プロセッサ304に漸増アラームを構築することによって、患者安全性プロセッサの命令に物理的に従う際の人為的遅延が対処されてもよい。命令を実行する際の時間は、プロセッサ304によって決定され、プロセッサ304は、遅延が増加すると、警告を上方指示するようにプログラムされてもよい。この遅延を防止するために、プロセッサ304は、図18の画像等の種々の障害発生の画像の検出に応じて、措置が講じられなければ、別のステーションに通知するようにプログラムされてもよい。これらは、患者安全性プロセッサが経時的に改善するように、所望であれば、例えば、病院の品質改善委員会によって、または個々の医師あるいは看護師によって決定されてもよく、かつ医療従事者の勤勉を代償するように調整されてもよい。画像が敗血症にも一致し、医療従事者が敗血症を実験的に治療することを決定したため(いくぶん制限された抗生物質範囲にもかかわらず)、患者は、敗血症の可能性を補うように、早期にレボフロキサシンを受容してもよい。しかしながら、抗生物質療法にもかかわらず、連鎖は続行する。連鎖が画像構成要素であり、連鎖、その成長、およびその特徴の関係、ならびに、治療の用量、タイミング、および種類に関するMPPC内でのそのタイミングも、MPPCの一部を形成するため、これらの関係は、治療が効果的であるかどうかを決定するように、リアルタイムでプロセッサによって自動的に評価されてもよい。病院安全委員会または感染症委員会は、培養の結果が分かる前に、多種多様な障害画像に基づいて抗生物質の提案を行うように患者安全性プロセッサをプログラムするか否かを決定してもよい。
図19は、図15Aの時間経過MPPCから導出されるような摂動の開始および進行の概観画像を示し、各グループにおける摂動は、各群に対する単一の平滑化時系列に沿って総合指数に組み込まれる。これは、炎症群160の初期改善を伴う敗血症の通常の進行であり、次いで、それぞれの他の群が進行に関与することに留意されたい。治療162の遅いタイミングが、より複雑な画像から導出された、この概要図では特に明白であることに留意されたい。
指数よりもむしろ、または指数と組み合わせて、所望であれば、プロセッサ304は、各群における総合摂動の重層度および数の指示を提供するようにプログラムされてもよい。これらは、例えば、いくつか例をあげると、拡大する矢印または色付きの矢印、他のアイコン、および/または時限不安定性スコアによって指定されてもよい。ユーザが、複数群にわたる連鎖進行のシーケンスおよびパターンを視覚化する選好を定義してもよいように、多くのそのようなオプションが含まれてもよい。
一連のエキスパートおよびパターン認識システムは、障害画像プロセッサによって生成される画像および画像構成要素を分析するように適用されてもよい。これらは、画像識別プロセッサを備える。一実施形態では、画像識別プロセッサは、例えば、ドラッグアンドドロップインターフェースを使用することにより、ユーザが検出のための画像を選択することを可能にする、障害画像エディタと連動する。実施形態では、ドラッグアンドドロップインターフェースが、例えば、選択される時系列種類の自由裁量選択を提供し、次いで、事象および二進数が各時系列種類上で順番に選択され、事象および二進数の相対位置および順番の範囲が選択される。この実施例では、障害画像エディタは、選択される画像の構成要素の所望範囲(したがって、画像自体の範囲)のカスタマイズ、ならびに所与の画像および/または複数画像の検出に対する画像識別プロセッサの応答を可能にする。障害画像エディタは、提案された診断、警告、さらなる検査または治療の開始あるいは終結の命令等の、特定の出力を生成するように、事象および二進数のタイミングおよび順番の範囲を選択することを可能してもよい。画像識別プロセッサはまた、医師が、所与の画像で、例えば、敗血症性ショック等の存在する診断を入力するように、適応型であってもよい。医師はまた、所与の画像または一式の画像を障害画像エディタの中へ捕捉して、適応画像プロセッサがより迅速に習得してもよいように、敗血症性ショックの存在を示したであろう画像内の事象および二進数に関する範囲を選択してもよい。
図15A−F、16、17、18、および20は、進行した状態に進んだ後の4つのMPPCの2次元「時間計画」スナップショット表示を表す。この表示はまた、障害画像定義セットの作成および編集のための代替ユーザインターフェースも提供する。研究者は、障害モデルを作成し、操作するために障害画像エディタを使用してもよい。
一実施形態では、研究者が上から下に作業して障害画像を定義する。研究者は、障害画像を「ペイント」したい一式のチャネルを選択することによって開始する。図20は、麻酔薬誘発性換気不安定性障害画像を「ペイント」するために使用されている、障害画像エディタを描写する。チャネル(100、102、104、106、108)は、ソートすること、分類すること、または障害画像エディタ内の位置の単純なドラッグアンドドロップ選択によって、任意の数の方法で順序付けられてもよい。複数の関係を定義する複雑な定義のために、重複しない方法で関係が定義されてもよいように、画像を拡張するようチャネルが複製されてもよい(例えば、100、102、104、106)。障害画像エディタは、エディタ内の垂直位置にもかかわらず、チャネル内の定義された要素内および間の関係を維持する。次いで、研究者がチャネルを選択し、障害画像エディタが、所与のチャネルに適用する利用可能な一式の事象および二進数を提示する。研究者は、これらの要素のうちのいずれかを選択し、それらをチャネル上にドロップしてもよい。また、研究者は、(例えば、右クリックメニューエディタを使用して)チャネル内の任意の点で新規要素(事象または二進数)を作成してもよい。エディタ内の位置は、選択および/または作成された要素間の時間的な相対位置を示す。二進数がある位置にドロップされた場合、障害画像エディタは、ベータまたはアルファ事象が選択されたチャネル上に属するかを決定し、事象をチャネル内に、および対応する事象(ベータまたはアルファ)を関係二進数定義によって示されたチャネル上に配置する。チャネルが現在、障害画像エディタの中になければ、追加される。単一のアイコン(例えば、単一のチャネル内で循環する)に縮小する関係二進数は、アルファおよび二進数事象よりもむしろ、単一のアイコン110、112を示す。対応する事象の位置は、検索ウィンドウ定義の中間点として決定される。ウィンドウ全体は、対応する事象、この場合は、IV麻酔薬を伴う治療事象114に対する検索ウィンドウの範囲を示す、一式の括弧116として示されている。検索ウィンドウは、関係二進数のベータチャネル内のみで示されており、事象自体は、検索ウィンドウの中間点内に示されている。事象がベータおよびアルファ事象の両方である場合、事象の周囲に表示される検索ウィンドウは、ベータ事象として関与している時の事象に特異的である。単一の事象が任意の数の二進数のベータであってもよいという事実により、検索ウィンドウは、エディタ内で抑制され、および/または現在選択されている関係二進数内のみで示されてもよい。個々の事象が、チャネル上にドロップされるか、またはチャネル上で作成されてもよい。新規の事象種類が、障害画像エディタ内で定義されてもよい。事象は、例えば、新規の関係二進数の種類を定義するように、ドラッグアンドドロップ選択と、またはアルファおよびベータクリック選択と接続されてもよい。
次いで、画像全体または画像の複数部分が、総合障害モードとして存続してもよい。障害画像エディタは、総合障害モードエディタと連携して作動し、障害画像義セットを作成し、修正する。さらに、総合障害モードエディタは、収束エディタおよび事象エディタの両方と連携して作動し、二進数および事象定義セットを作成し、修正する。図20では、総合障害モードの定義が、最上ウィンドウ枠118の中の障害画像エディタを示す分割画面表示で達成される一方で、総合障害モードエディタは、代替種類の障害モード図を示す下部ウィンドウ枠120の中にある。これら2つのモデルは、一方の変更と完全に同期化され、他方の変更を即座に反映する。
一実施形態では、研究者が、下から上に作業して一式の時系列から障害を定義する。研究者は、既知の障害と診断された患者からの一式の実際の時系列、ある状態をシミュレートするようにプロセッサによって生成された一式の時系列、または患者体内の摂動を全くシミュレートしない一式の時系列から初めてもよい。この一式の時系列は、不変と指定されてもよく(例えば、一式の実際の時系列で)、または定義されているパターンのサンプルを提供するように編集されてもよい。研究者は、候補事象定義を提供するように障害画像エディタが分析する、時系列の複数部分を選択してもよい。あるいは、研究者は、事象を定義するようにパラメータを選択してもよく、表示される時系列は、時系列の最上部にオーバーレイされるその定義の結果を示して、研究者に視覚ガイダンスを提供する。一旦、研究者が事象の定義を完成させると、障害画像エディタは、その定義を、同じチャネル内の他の定義を比較する。同様のパターンが見出された場合、研究者は警告を受け、新規事象種類を作成するか、すでに選択された事象種類のうちの1つを選択できるようになる。事象が関係事象である場合、研究者は、それから関係パラメータが定義され、試行されてもよい、対応する事象を選択してもよく、または、研究者は、単純に関数を定義してもよい(例えば、>2×相対規模)。一旦、事象が完全に定義されると、研究者は、事象を、画像内の別の事象に、または画像内の検索ウィンドウに関係付けることを選択してもよい(例えば、欠落または空知事象を示すために)。研究者は、関係二進数のベータとして、プロセッサが指図した事象を示してもよい。次いで、総合障害モードを定義するように、事象および関係二進数群が選択されてもよい。
一実施形態では、障害画像エディタは、特定の既知の障害画像の有無の指示が提供された、時系列セットの大きな集合とともに提示されてもよい。障害画像エディタは、一式の候補定義セットを作成し、サンプルセットに合致する適切な特異性および感度を生成するように、それらを洗練する。一旦、最良適合定義セットが作成されると、時間系列セットの第2の大きな集合に、特定の既知の障害画像の有無の指示が提供される。障害画像エディタは、最初に候補定義セットを使用して、感度および特異度を決定し、次いで、可能であれば、サンプルデータの第1および第2の集合の両方に適するように、定義セットを洗練する。この過程は、一式の最良適合定義セットが作成されるまで、または過程が漸近と見なされずに放棄されるまで、反復して実行されてもよい。
一実施形態では、障害画像は、さらに時間特異的なマーカーを提供するように、MPPCとして画像エディタによって「再生」または実行されてもよい。障害画像のデフォルト実行は、画像定義によって定義されるような、それぞれの検索ウィンドウ内のデフォルト(例えば、中間点)位置で特定されるような全ての事象を配置することによって、「再生」される。これのサンプル結果が、図15Aに表示されている。一旦、画像が再生されると、発生する画像内の進行状態を示すように、垂直マーカーが図15Aのような時系列内に配置される。このように、画像定義には、それにより画像状態が識別され、患者安全性モニタ内に表示されてもよい、仕様が提供されてもよい。
代替および/または相補的実施形態では、画像エディタは、画像の実行を複数の中間および/または終了状態に分ける能力を提供する。障害画像定義内のそれぞれの異なる分岐が、障害画像、または異なるが関連する障害画像内で、状態として定義されてもよい。障害画像定義内の障害の代替発生を提供するように、関連画像のツリーが構成されてもよい。
図21は、図1の障害モード図に示された患者からの複数の時系列を含む、時間経過障害動画像からのフレームである。この画像では、脳卒中を経験した患者が、血清ナトリウムの誘発性減少および混乱を誘発する、血清抗利尿ホルモン分泌異常(SIADH)と関連する症状を発現している。患者は急性脳卒中を示したが、回復しつつあり、意識がはっきりしていた。次いで、患者は混乱および意識低下をゆっくりと発現し始めた。脳卒中が大規模であったため、症例を管理していた看護師および医師は、患者の混乱および昏蒙が脳腫脹によるものと考えた。患者SPOおよび換気率が正常であったため、患者に敗血症の兆候がなく、最近の正常な電解質により、主治医は混乱の代謝原因が合理的な意見であると考えなかった。言い換えれば、病態生理学的障害経路(図1の障害モード図200に示されている)を誤診し、病態生理学的経路が、図1の障害モード図200で示されるような脳卒中208と混乱220との間の直接接続線170を辿っていると考えた。しかしながら、混乱の開始前に、患者は、飲食をしていたという事実にもかかわらず、0.5NSを受容していた。反復血清ナトリウムがナトリウムの減少を確認し、追加検査でSIADHが確認された。ナトリウムの慎重な補正は、混乱および昏蒙の急速な回復および解決をもたらした。
脳卒中がSIADH(血清ナトリウムの減少を引き起こした)を引き起こしたため、実際の障害のモードは、この場合に医師によって疑われたものとは有意に異なった。図1を再度参照すると、実際の障害は、脳卒中208から低ナトリウム血症242へと辿り、次いで、低ナトリウム血症242から混乱220へと辿った。この場合、患者は見逃された診断を乗り切ったが、この障害の検出および治療の遅延により、不必要な在院日数である、余分な数日を体験した。
図21は、図1で説明された患者に対するプロセッサ304による認識のために、一連のMPPCを構築するための障害画像エディタの画像フレーム2100を示す。この場合、示された障害画像は、推定重度敗血症と一致する。画像中、炎症/血行動態/呼吸増強2110の後に、VIOの減少2114、およびアニオンギャップの上昇2116を伴う代謝障害が続く。炎症/血行動態/呼吸増強2110が温度の上昇2118と関連しない(ヌル二進数2120が識別される)場合、障害画像の炎症構成要素の存在を確認するように、炎症メディエイタマーカー2123が指図されることに留意されたい。二進数の通常のシーケンスが示されているが、これらの事象は任意の順番で発生してもよい。プロセッサ304は、順番が示される通りである場合は、より高い信頼度を、順番が示されたものとは異なる場合は、より少ない信頼度を提供してもよい。記述されるように、血液導体不安定性が先在する患者は敗血症になる場合があるため、障害画像は重複してもよく、この理由により、この場合では順番が極めて重要と見なされない。しかしながら、いくつかの障害画像については、事象の順番が、はるかに優れた特異性を提供してもよい(この場合、それに応じて括弧が調整されてもよい)。最初に、障害画像エディタは、より寛大となるように設定され、次いで、病院の経験および品質管理が決定付けてもよいように調整されてもよい。
ここで図22を参照すると、この例示的画像は、脳卒中、糖尿病、心房細動、うっ血性心不全の履歴、および睡眠時無呼吸症を有する(この場合、混合型敗血症は存在しない)、図1の障害モード図を伴う患者から導出される。これらは、脳卒中208、糖尿病202、心房細動206、うっ血性心不全204、および睡眠時無呼吸症210の間の潜在的関係を示す、図1の障害モード図に対応する。脳卒中を示す時系列により、患者安全性プロセッサが、定期的混乱スコア185を指図していることに留意されたい。混乱185の増加の検出、または脳卒中時系列を伴う患者への低張食塩水投与186の存在は、一定量の電解質187を自動的に誘起し、低血清ナトリウム188の検出時に、プロセッサは、尿浸透圧189を指図し、SIADH190の高い確率を示し、輸液療法191の調整を推奨する。ここで、問題は単純であるが、障害の早期兆候は最初、介入が在院日数の増加を防止したであろう時に微妙なものであり、後に、障害の経路が混乱し、さらなる遅延につながり、間違った診断を伝えられたため、家族をかなり困惑させた。この場合、看護師および医師が忙しかったのかもしれないし、または、脳卒中患者におけるSIADHの発現に随伴する場合のある変異の微妙な減退に未経験であったか、または単に熟知していなかったのかもしれない。微妙な所見が見逃された理由は無数である。また、図1の障害モード図で示されるように、これは、単に1つの障害であり、この複雑な患者にとって、非常に多くの潜在的障害があることにも留意されたい。さらに、この場合、低ナトリウムが最終的に検出された時に、血清ナトリウムがほぼ正常であったため、多くの医師は、これらの症状を引き起こすか、または介入を正当化するほどレベルが十分に低かったとは考えない場合がある。しかしながら、ナトリウムは、正常高値から正常値直下に降下しており、脳浮腫がある患者では、血清ナトリウムの減少の規模は絶対値よりも有意であり、共存疾患、疾患、および薬剤に応じた、患者間および同じ患者内でのこの脆弱性の変動は、精神作用の変化を伴わず、非常に低いナトリウムを伴う患者を観察してきた、一部の医療従事者によって容易に把握される概念ではない。これは、障害およびケアの動画を生成し、認識することの価値を示す。システムが、障害およびケア画像の全体を経時的に分析し、この画像が血清ナトリウムの減少であって、閾値を下回らない減少にも対する脆弱性を示すと認識するようにプログラムされるため、患者安全性プロセッサは、アラームを誘起したり、または単一の閾値違反によって診断を定義したりしない。患者安全性プロセッサは、画像と一致する潜在的な生理学的障害の全ての持続的警戒および継続的考慮という利点を提供する。一局面によれば、図1のもの等の障害モード図は、障害モードエディタを使用して障害画像および画像範囲を構築するように、疾患、治療、および摂動間の連鎖二進数関係を適用することによって、図22のような予想または溯及障害画像を構築するために使用されてもよい。
開示された実施形態に適用されるようなプロセッサ304は、本明細書で規定される例示的定義によって拘束されないが、むしろ、実際のデータを複数のMPPC画像(記憶された、またはリアルタイム)および画像状態と比較して、最良適合合致を見出してもよい。一実施形態では、最良適合合致は、画像登録技法によって決定されてもよい。実施形態では、合致は、相互相関、相互情報、二乗強度差の和、および画像均一比率を含む、画像類似性尺度によって行われてもよい。プロセッサ304は、信頼水準によってランク付けされる、全ての起こり得る画像および画像状態を示してもよい。例えば、プロセッサ304は、MPPCが、高い程度の信頼度で全身性炎症反応症候群に一致し、かつ中程度の信頼度で早期敗血症性ショックに一致して、TTP(および他の潜在的代替物)または重複障害モードが、画像を考慮すると遠隔で可能であり、除外されたままであることを示してもよい。医師は、これらの遠隔代替物または重複を除外するように、集中検査を指図することが所望されるかどうか尋ねられてもよく、および/または、プロセッサは、特定の一式の画像(例えば、前述のドラッグアンドドロップエディタを使用して定義されるような)に基づいて、この検査を自動的に追加するようにプログラムされてもよい。
プロセッサ304内の障害の識別は、障害オードまたは障害状態の単一の選択ではなく、提示されたデータ内での適合に関する一式の画像のランキングである。複数の障害画像の識別は、単に代替物の選択ではない。複数の障害が実際に存在して、相互作用してもよい。いくつかの障害画像の早期段階は、他の障害画像または障害画像の組み合わせの早期段階と非常に類似するか、または実際に全く同じであってもよい。プロセッサ304は、仕様に関する信頼水準とともに、代替物および候補重複物といった、起こり得る将来の状態に関して、医療従事者が患者(および患者環境)の現状を理解することを可能にしてもよい、分析および視覚化を提供する。さらに、プロセッサ304は、信頼水準、具体的には、2つの画像および/または画像状態間の比較信頼水準に関して、医療従事者が患者の状態の問い合せを行うことを可能にする。例えば、敗血症の信頼水準は、図15Bに示されたフレームでは低いが、図15Cのフレームについては中間であり、図15D−15Fについては高い。所望される措置とともに、これらの信頼水準は、専門グループや病院安全委員会によって事前に患者安全性プロセッサにプログラムされてもよく、および/または個々の医師によってカスタマイズされ、「同調」されてもよく、および/または入力された新規診断を現在の画像と比較し、その状態の指示としてその画像を再コード化することにより、プロセッサによって適応的に適用されてもよい。適応モードでは、プロセッサは、「この障害画像は、この新規に入力された診断によって定義された障害過程を示していますか?もしそうであれば、回顧するとこの特定の障害過程の一部であった、第1の事象、二進数、または画像構成要素を特定して下さい」と尋ねるようにプログラムされてもよい。
一実施形態では、プロセッサ304は、障害および応答画像の作成のために、病態生理学的エンジン(当技術分野で公知であるような模造人体)によって訓練されてもよい。特定事象定義セットおよび二進数定義セットを考慮して、患者安全性プロセッサは、病態生理学的エンジンの入力から導出される動的画像を提供し、プロセッサは、これらの画像が将来検出された時に認識されるように、画像の性質に関して指導を受ける。一実施形態では、医療従事者用の改良型指導ツールを提供するように、模造人体が患者安全性プロセッサに接続される。研究者は、種々の状態を伴う正常な非摂動患者が提示されるように選択してもよい。一旦、患者の動的画像が表示されると、研究者が病態生理学的エンジンに摂動を導入してもよく、それはプロセッサ304から新規動的画像をもたらす。例えば、研究者は、収束に従って提示された関係を選択し、それらを分岐に切り替えてもよい。また、ランダム分岐がシステムの中に構成されてもよい。単一または一式の反応システムに関する分岐が、全身性反応の内訳をモデル化するように特定されてもよい。分岐は、大域的に構成され、または、全身性反応が機能していないか、または遅延していることを示す特定の時間枠について構成されてもよい。このように、全身性反応の摂動および障害の両方が、障害画像を作成するように選択的に導入されてもよい。これらの障害画像は、障害画像エディタ内でさらに編集されるように存続してもよい。研究者は、いくつかの異なる変動を選択し、それらを障害および/または障害状態として保存してもよい。これらの障害および/または障害状態は、障害画像プロセッサによって使用されるように、障害構成要素定義セット内で存続してもよい。さらに、結果として生じた障害画像は、事象および二進数定義セットを洗練するように、実際の患者データと比較されてもよい。
あるいは、または組み合わせて、一実施形態によれば、医療従事者が、患者安全性プロセッサのMPPCの再動画化を、デジタル動画として、または人体模型の出力から導出される再動画化として観察してもよいように、プロセッサ304からのMPPCは、模造人体を駆動するプロセッサによってシミュレートされてもよい。病態生理学的エンジンをプロセッサ304に組み合わせる実施形態の1つの利用は、治療プロトコルをモデル化することである。エンジンは、治療に応じて、予期された、または予期しないパラメータ(分岐)を出力してもよく、患者安全性プロセッサの画像出力は、プロトコルモデル化のために観察および/または記録されてもよい。さらに、分岐を導入する能力を使用して、全身性反応の障害を補うように、処理されたプロトコルまたは他のプロトコルが合理的な冗長性について検証されることを可能にする。
このデータ、分析、およびメタデータの集約は、患者安全性視覚化プロセッサ372用のデータソースを提供する。一実施形態では、患者安全性視覚化過程372が、特定の信号の時系列の横列、および/または信号のグループおよび/またはカテゴリ、および/または信号によって定義される、包括的グループの中の患者の状態の視覚化を提供する。一実施形態では、各横列の大域状態は、持続的安定性、安定性、収束、摂動、分岐、ヌル、障害、連鎖障害のそれぞれに異なる色で、スペクトルにおける色によって表される。
別の実施形態では、各時系列に沿った、色付きの矢印、アイコン、テキスト、および/または他の視覚表現が、これらの状態を表す。一実施形態では、患者安全性視覚化プロセッサは、患者の状態を、左から右に移動する一式のピクセルストリームとして表し、経時的な状態の発生を示す。プロセッサは、患者安全性画像データベース368内で、時間的に前後に、ならびに分析のレベルを通して上下に、ナビゲーションを提供する。実施形態では、分析のレベルは、例えば、以下であってもよい。
時系列―時系列の形態の未分析データストリーム
事象および摂動―事象定義セット332に従って明確に定義された摂動を表すかどうかについて、それぞれのチャネル内で特徴付けられた事象および閾値違反
全身性反応―二進数定義セット344に従って、事象、閾値違反、摂動、および予期された要素の間の関係を表す、収束、分岐、およびヌル二進数
障害―1人の患者の体内で識別されている障害の画像を表す、総合障害オブジェクト
系統障害―1人の患者の体内で識別されている障害の画像を表す、特定のカテゴリ(呼吸器系等)内の総合障害オブジェクト
障害パターン―患者集団、または、例えば特定の病棟等の特定領域内の障害の動向および障害画像。
一実施形態では、患者安全性視覚化プロセッサ372は、データおよび分析ストリームを表す、水平に配向された一連のピクセルによって構成される、コンピュータモニタ(患者安全性コンソール384)上の画像を構成する。これらのピクセルストリームは、特定の時点を表すx軸上の位置で垂直に積み重ねられる。プロセッサは、ピクセルストリームの移動を水平に提供して、時間を通したパン撮りを提供する。
各ピクセルストリームは、特定時点におけるデータおよび/または分析の状態を示す、一式のピクセルから成る。ピクセルは、状態(例えば、色によって表される)および粒度(時間の長さ、例えば、1分を表す)を有する。表示のサイズ、ならびに選択された期間は、ピクセルの粒度を決定する。実施形態では、ピクセルは、ピクセルストリーム内の単一のピクセルによって表される期間内で見出される、最高レベルの不安定性によって表示される。
さらに、各ピクセルは、患者安全性画像データベース368からのどのオブジェクトがその状態に寄与するかを決定する、抽象のレベルを有する。寄与オブジェクトが分析のレベルによって下記に示されている。
時系列―チャネル内のデータ点(例えば、酸素飽和値)
事象および摂動―事象および閾値違反
全身性反応―関係二進数
障害―総合障害オブジェクト
障害パターン―障害動向および相関。
実施形態では、患者安全性視覚化を作成するように、ピクセルストリーム群が垂直に積み重ねられる。患者安全性視覚化は、異なる患者のピクセルストリームから、または1人の患者内のデータおよび分析ストリームから成ってもよい。患者安全性画像は、迅速に分析をフィルタにかけ、問題の領域または特定の性質の領域を識別する介護労働者の能力を提供する。緊急障害連鎖または他のパターン障害を強調するように、並べ替えが提供されてもよい。
実施形態では、患者安全性画像は、患者安全性コンソール384上に表示され、同時に時間によって相関付けられる、異なるレベルの分析から成ってもよい。混合分析レベル視覚化の使用は、介護労働者に、より低いレベルのデータ(例えば、酸素測定内の不完全な回復)とより高いレベルの分析(例えば、麻酔薬誘発性換気不安定性の識別)との間の関係を迅速に理解する能力を提供する。
実施形態では、患者安全性コンソール384は、ユーザに、障害と関連する最早期事象まで障害の状態を遡り、障害連鎖の視覚表示を提供する能力を提供する。あるいは、役割を果たした高次オブジェクトを識別するように、個々の事象および閾値違反が選択されてもよい。言い換えれば、患者不安定性発生内の関係を理解するように、低次事象が前方に追跡されてもよい。この前後両方の追跡は、関係二進数のアルファ事象がしばしば先行関係二進数のベータ事象であるという事実によって提供される。患者安全性視覚化プロセッサは、起源、発生、および解決を示す、これらの二進数鎖を隔離する能力を提供する。一実施形態では、視覚化は、二進数鎖の存在および特徴によってフィルタにかけられてもよい。
一実施形態では、構成によって選択された場合、患者安全性視覚化プロセッサは、視覚化内の任意の点におけるメタデータモデルにナビゲートする能力を提供する。事象、収束、および障害画像構成要素図が、事象定義セット332、二進数定義セット344、および障害画像構成要素定義セット356内でこれらの図内の特定要素を使用して構成された、オブジェクトからアクセス可能である。メタデータモデルへのナビゲーションは、熟達した介護労働者および研究者に、分析をさらに理解および/または変更する能力を提供する。
患者安全性コンソール384は、忙しい介護労働者の即座の必要性を満たす、複雑な一式のデータおよび分析を提示する。一実施形態では、最高レベルでの分析は、全体的患者安全性の発生の単純表現を提供する、患者ごとの単一ピクセルストリームまたはピクセルストリーム群になってもよい。そのピクセルストリーム内で、かつそこから、介護労働者は、いくつか例を挙げると、複数レベルの分析、二進数鎖、およびメタデータモデルといった、最も複雑な表現に掘り下げてもよい。あるいは、この掘り下げは、例えば、マウスの移動やタッチスクリーンによって提供されてもよく、または、プロセッサがある有害パターンまたは閾値を検出した時に自動的に現れてもよい。
一実施形態では、オブジェクトストリーム視覚化が、患者体内の摂動の開始の関係および連鎖に焦点を当てる。これは、分析の種々のレベルにおけるシステム内の離散要素の状態に大きく焦点を当てる、上記で説明されるピクセルストリームに対する代替的かつ補完的な表示である。これら2つの視覚化は、並列で使用され、および/またはそれらの間のナビゲーションを提供してもよい。
実施形態では、オブジェクトストリーム視覚化は、時系列に沿ったアイコンとして事象および閾値違反を表し、その場合、アイコンは事象または閾値違反が発生した第1の時点に配置される。アイコンは、色、サイズ、および装飾によって、それらの特徴を示す。基本アイコンは、上または下を指し示す矢印である(図15Aのような)。上向きの矢印は、事象を誘起した正の動きを示すが、下向きの矢印は、負の動きを示す。ブール変化が、偽から真に移動する時には上向きの矢印、真から偽に移動する時には下向きの矢印として示される。矢印の厚さおよび/または色が、その動きの程度を示すために使用されてもよい。
矢印の装飾が、事象の性質に関する視覚的な手掛かりを提供するように提示されてもよい。矢じりの下の線は、発生した事象が閾値違反であったことを示す。矢印の周囲の丸(図15Aの979を参照)は、事象が患者安全性プロセッサによって指図された措置または検査の結果であったことを示すために使用されてもよい。装飾および/または適合色および/または閃光が、図18の低血小板数と薬剤クロピドグレルとの間の潜在的関係の警告と同様に、プロセッサによる関係警告を示すために使用されてもよい。
一実施形態では、患者安全性視覚化プロセッサ372は、特定期間および/または特定画像の自動視覚ナビゲーションを提供する。この自動視覚ナビゲーションは、選択された期間の分析駆動ビデオ再生の役割を果たす。医療従事者は、「再生」を選択し、患者安全性視覚化プロセッサが特定状態の発生を通して視覚的に移動することを可能にする。医療従事者は、いくつか例を挙げると、「再生」、「一時停止」、「早送り」、「巻き戻し」、「読み飛ばし」、「読み戻し」を含む、ナビゲーション動作を選択してもよい。実施形態では、再生モード中に、患者安全性視覚化プロセッサは、表示されている状態の重症度に応じて、自動視覚化を通して異なる速度で移動する。表示されている時系列に摂動がほとんどない(または特定障害連鎖に関する摂動がほとんどない)場合、プロセッサは時間を通して(すなわち、左から右に)非常に迅速に移動する。プロセッサによって決定されるような関心の領域が視界に入ってくると、患者安全性視覚化プロセッサが左から右への移動を減速させる。さらに、患者安全性視覚化プロセッサは、障害の発生および/または連鎖ならびに他の要素との関係を示し、明確にし、特定する要素を強調する。患者安全性視覚化プロセッサはさらに、さらなるテキストおよび/または視覚化要素を提供して、現在の表示および現在の表示内の要素を説明する、半透明のポップアップパネルを表示する。任意の時点で、医療従事者は、自動視覚ナビゲーションを「一時停止」して、表示されたデータを見直し、および/または表示されているものを教え込んでもよい。
実施形態では、医療従事者は、概要表示から期間を選択して、関心のある期間の部分を見直し、また示してもよい。患者安全性視覚化プロセッサは、関心の選択された領域について減速し、強調された部分について適切にテキストおよび視覚化表示を増加させる。
一実施形態では、患者安全性視覚化プロセッサ304は、表示するオブジェクトストリームを選択し、ビデオナビゲーションにおいて重要になるにつれて、ストリームを含むか、または除去してもよい。医療従事者は、ビデオストリームで常に利用可能となるよう、追加ストリームを含むこと、またはストリームを「ピンで固定する」ことを選択してもよい。欠落ストリームも示される。
患者安全性視覚化プロセッサ372はさらに、医療従事者に、自動視覚ナビゲーションに推定される時間を示してもよい(例えば、「2分37秒で推定された標準視覚ナビゲーション」)。患者安全性視覚化プロセッサは、ビデオおよび音声供給が利用可能である場合に、時系列に沿った時系列データに対応し、かつそれと同期した、音声および視覚要素を含んでもよい。実施形態では、医療従事者は、患者安全性視覚化プロセッサ内に表示された要素に関して伝達し、協働するように、データストリームに音声および/またはビデオコメントを含んでもよい。患者安全性視覚化プロセッサは、自動視覚ナビゲーション内のこれらの要素の全てまたは特定の一部を含む(例えば、「医師Xからのコメントを含む」)ように指図されてもよい。
実施形態では、患者安全性視覚化プロセッサ372は、自動視覚ナビゲーションセッションが、患者安全性画像データベースまたは患者安全性視覚化プロセッサにアクセスできない医療従事者と共有されてもよいように(例えば、Eメールの添付ファイルとして、またはビデオ対応電話からアクセスされる)、標準ビデオ機器上で、ストリーム配信技術で、または標準メディアプレーヤで視認されてもよい、非双方向ビデオ形式に自動視覚ナビゲーションセッションを「記録」してもよい。
一実施形態では、プロセッサ304は、最良適合画像合致を決定するためのソースとして、またはそのような合致を向上させる進行中モデルとして、溯及および/または理論モデルMPPCのアーカイブまたはデータベースを使用してもよい。図23に示されるように、一実施形態は、MPPCのデータベースをアーカイブに保管し、カタログに入れるため、ならびに、向上した障害モード認識、向上したプロトコル化、および適時な障害モード検出および介入への地方病院または十分なサービスを受けていない病院の向上したアクセスを発展させるための患者安全性プロセッサネットワーク2310である。示されるように、ネットワーク2310は、それぞれ各患者安全性プロセッサ2314に接続される各病院2312が、MPPCアーカイブ2316等の中央画像アーカイブに接続されることを可能にしてもよい。各患者安全性プロセッサ2314からのMPPCは、各病院から中央MPPCアーカイブ2316にアップロードされる。中央MPPCアーカイブは、中央MPPCアーカイブ2316からのMPPCを処理し、MPPC認識を改善し、新規障害モード認識および治療プロトコルを開発する働きをする、データベースプロセッサ2318に接続される。客観的に知られている症例、例えば、陽性肺動脈造影図を含む、肺塞栓症を示唆するMPPC等の、追加検査(例えば、組織病理学、遺伝子検査)または剖検結果を通して独立して確認される症例と関連するものとして分類される、病院患者安全性プロセッサ2314からのMPPCは、客観的に定義されたMPPCデータベースを構築して、肺塞栓症のMPPCの範囲および特異度をさらに構築するように、プロセッサ2318に入力される。代替案では、例えば、これが最終診断であるという合意群の意見に従った、SLE誘発性肺胞出血を示唆するMPPC等の、主観的最終診断と関連するものとして分類されるMPPCは、SLE誘発性肺胞出血のMPPCの範囲および特異度をさらに構築するように、客観的に定義されたMPPCデータベースの症例データベースに追加されてもよい。このように、膨大なデータベースが、疾患の世界的管理のために、MPPCおよびMPPCの画像構成要素から導出されてもよい。ベッドが少ない地方病院、人材が不足している都市病院、ならびに医師および看護師の経験が非常に低い場合がある環境でさえも、壊滅的事象の検出の最低基準を潜在的に設定してもよい、リアルタイムMPPC検出に基づく国際検査および治療プロトコルが開発されてもよい。新規プロトコルが、古いプロトコルに応じて、MPPC結果の分析としての自由裁量使用のために、導出され、これらの病院にアップロードされてもよく、または、プロトコル外の新規または追加治療が、改善の可能性を明らかにする。該アプローチには、例えば、実験プロトコルであってもよいプロトコルへの新規薬剤の導入後に、薬剤反応および有効性の向上した監視を提供する可能性がある。不十分を補うか、または障害の原因を定義するように指図された検査の数をおそらく低減する、新規検査の開発を支援するように、MPPCの欠落部分も識別されてもよい。異なる検査および治療プロトコルの費用比較が行われてもよい。
MPPCの帯域幅は、MPPCにおけるオブジェクトとなる、検査、履歴データ、および治療を含んでもよい。摂動の潜在的に臨床的有意な画像がMPPCにおいて識別されると、患者安全性プロセッサは、帯域幅を迅速に広げて、代替原因を調査するようにプログラムされる。これは、合併症が連鎖を拡大させて発現し、救命をより高価かつ困難にするため、未検出障害モードの持続時間が長くなるほど費用および死亡率の増加が大きくなるため、重要である。一方で、狭い帯域幅(より少ない検査)は(障害のより長い持続時間を許容するという犠牲を考慮せずに)、より広い帯域幅ほど高価ではない。「有効帯域幅」は、MPPCの障害画像構成要素を能動的に定義する因子を特徴付けることに実際に貢献する帯域幅の構成要素を含む。準備不十分な検査および治療は、帯域幅および医療費を増加させるが、有効帯域幅を増加させない場合がある。患者安全性プロセッサ2314の1つの目的は、帯域幅を異常に広げることなく、可能な限り急速に有効帯域幅を増加させることである。実施形態では、患者安全性プロセッサ医療システムは、少ない監視および検査で監視するが、これらを標識として使用し、MPPCが開始した場合に、監視および検査の数を自動的に増加させる。
したがって、継続的に広く、かつ高価な帯域幅を適用することなく、障害の持続時間を最適に短縮するように、任意の時に(例えば、地方病院での人材不足時間中に)MPPCの有効帯域幅を自動的に増加させる機構を提供することが有利であってもよい。帯域幅を広げる1つの機構は、特定の障害モードに対する高感度および特異度を有する集中検査等の、改良型検査を伴う。患者安全性プロセッサネットワーク2300のMPPCアーカイブ2316は、動画帯域幅を増加させる機会について、かつ早期検出および改善した治療反応を通して障害の持続時間を短縮することによって、死亡率および費用削減のための均衡のとれた機構を達成するために調べられてもよい。
論議されるように、一実施形態によれば、患者安全性処理ネットワークは、病棟または部署に位置する一式のローカル患者安全性プロセッサを含む。ローカル患者安全性プロセッサは、その場所における医療従事者の指図を受ける。これは、地方の医療従事者が、管理下の患者に配備された、治療および検査プロトコル、および検査帯域幅の変動を制御することを可能にする。地方の主治医が個別に、またはグループとして、ならびに病院の薬剤師および看護師が、ローカル患者安全性プロセッサの使用を通して、これらのプロトコルを処方してもよい。ローカル患者安全性プロセッサは、例えば、医師または看護師が例えば責任を負う時に発生する上昇事象、および医師または看護師が別の人に置き換えられた時の減少事象の段階的時系列として、医療従事者を記録する。したがって、患者を介護する者は、MPPCの一部である。プロトコルは、患者を介護するグループまたは個別医師によって決定されてもよい。特定の医療従事者またはグループが、好ましい、または好ましくないMPPCと統計的または別様に関連する程度は、プロセッサによって評価されてもよい。ローカル患者安全性プロセッサに対するプロトコル選択は、以前に論議されているように、事前準備されたMPPCプロトコルの使用を通して行われてもよい。
ローカル患者安全性プロセッサは、医師の時系列を認識し、プロトコルおよびMPPCを、この医師によって選択されたものと合致させるように調整してもよい。医師は、患者安全性プロセッサを無効にしてもよく、これが発生した場合、この無効化は、無効化が撤回されるまで新規時系列をレンダリングする事象である。特定の無効化が、好ましい、または好ましくないMPPCと統計的または別様に関連する程度は、病院患者安全性プロセッサ、病院グループ患者安全性プロセッサ、またはデータベースプロセッサ18によって評価されてもよい。これらは、将来のプロトコルの修正、および無効化の修正の組み込みさえも提供してもよく、または、この種類の無効化の防止さえも、それに応じて行われてもよい。
ローカル患者安全性プロセッサは、好ましくは、品質改善委員会および各分野の病院の専門家の指図を受ける、病院全体または病院患者安全性プロセッサと通信する。病院患者安全性プロセッサは、全てのローカル患者安全性プロセッサと通信し、治療および/または検査および/または帯域幅調整プロトコルおよび/または比較MPPCをアップロードするために使用されてもよく、それはローカル患者安全性プロセッサへの病院全体適用のために同意されている。
単一の病院の病院患者安全性プロセッサは、中央組織患者安全性プロセッサと通信する(かつ中央組織患者安全性プロセッサによって制御されてもよい)。組織患者安全性プロセッサは、その管理下にある病院患者安全性プロセッサを通して病院プロトコルの標準化を可能にして、最低安全性治療および検査基準を設定し、病院の全てからの専門代表者による集中保証グループによって制御されてもよい。患者を介護する個人が少なくとも1つの時系列を表し、病棟が少なくとも1つの時系列を表し、病院が少なくとも1つの時系列を表し、組織が少なくとも1つの時系列を表す。したがって、MMPPは、これらの位置の全てを含む。患者が監視されたGPSユニットを装着している場合、これは、MMPPの一部として連続リアルタイム位置を提供する、位置時系列を備えてもよい。患者安全性プロセッサは、収束を識別するように、入力された位置と比較する。
一実施形態は、検査デバイスから導出され、患者安全性プロセッサに提供される新規の一式の時系列が、費用有効性についてどのように評価されてもよいかという実施例を明示する。この実施例では、パルス酸素濃度計反射率プローブが、帽子、またはヘッドバンド、または他の固定デバイスによって、少なくとも目より上側で患者の頭部に載置され、プローブは、パルス酸素濃度計およびローカル患者安全性プロセッサに無線で、または別様に接続される(例えば、Bluetoothによって)。送信機が、所望であれば、プローブの中、ヘッドバンドまたは帽子の上、あるいは補聴器の位置で耳の後に載置されてもよい。位置センサもまた、患者に載置されてもよい。体位の変化等の操作が、患者安全性プロセッサによって、事象、および操作に関する光電脈波パルス(内頸動脈の遠位分岐である、眼窩上動脈の毛細血管床分布のかん流を示す)の構成要素の減少として検出され、含まれてもよい。このように、目より上側の毛細血管床の流量は、内頸動脈から供給される他の毛細血管床の代理マーカーとなる。リアルタイムかん流は、内頸動脈分布の一方または両方におけるかん流の差異を識別するように、(例えば、侵襲性動脈ラインによって)耳のかん流、指先のかん流、または脈圧と比較されてもよい。ローカル患者安全性プロセッサは、追加時系列としてこれらを伴うMPPCを処理する。ローカル患者安全性プロセッサは、病院患者安全性プロセッサ、病院患者安全性プロセッサ、組織患者安全性プロセッサ、および/またはデータベースプロセッサ18にMPPCをアップロードし、MPPCは、共存疾患の関数としてMPPCの差異を調整した後であるかどうかを決定するように評価されてもよい。眼窩上動脈のプレチスモグラフのパルスから導出された時系列を含むMPPCは、病院内の減少の数の低減と関連付けられてもよい。これが臨床的に有意である場合、所与の患者のMPPCが、処理された時系列データの追加が結果プラスの影響を及ぼした研究対象集団と同様であることが検出された時に、これらの時系列は、検査および帯域幅を増加させるように自動的に追加されてもよい(研究に使用される断続的または継続的眼窩上監視を自動的に指図することによって)。
データベースプロセッサ18は、好ましくは、全ての組織患者安全性プロセッサ(または、病院が中央組織の下にない場合は病院患者安全性プロセッサ)に接続される。データベースプロセッサ18は、好ましくは、データベースプロセッサ18およびネットワークを維持する、医療情報団体によって制御される。データベースプロセッサ18の下の各患者安全性プロセッサは、患者安全性プロセッサネットワークとは無関係に動作することが可能であるため、非常に広範な冗長性、従属依存性の欠如、したがって、ネットワーク障害に対するさらに優れた安全性が、患者安全性プロセッサネットワークに内蔵される。
この患者安全性プロセッサネットワーク構造は、多様な最低基準が各政府機関によって設定されることを可能にし、費用および利益を決定するように、これらの多様な最低基準の効果の監視を可能にする。データベースプロセッサ18は、好ましくは、MPPC、ならびに、事象、二進数、画像構成要素、および連鎖等のMPPCのオブジェクトの全てを、他のMPPCおよび他のMPPCのオブジェクトの全てと比較して、改善した、または悪化した費用、結果、在院日数、罹患率、死亡率、資源消費、および/または合併症と関連するMPPC間の差異を統計的に識別する、比較プロセッサを含む。患者安全性プロセッサの1つの利点は、MPPCのオブジェクトが離散的であり、したがって、PSCPの統計ソフトウェア構成要素に容易に組み込まれることである。統計ソフトウェア構成要素は、離散時間関連データ収集の差異を識別するために、当技術分野で周知であるような多様な統計ソフトウェアを含んでもよい。オブジェクトはまた、複雑性の昇順階層の編成された集合と、関連差異を識別するように複雑性の各昇順レベルで統計的に比較されてもよい、編成された集合とを備える。一実施形態では、PSCPは、MPPCを、実質的に同じ画像構成要素の最小配分を有する群に分割する。例えば、実質的に同じ初期敗血症連鎖像、同様の共存疾患、年齢、および性別を有するが、異なる医師、病院、および/または治療を有するグループが、導出されてもよい。連鎖と関連する長さ、進行、編集、および死亡率の差異は、識別され、医師、病院、治療、検査、および/または治療タイミングの差異と統計的に比較されてもよい。
特定の検査、治療、帯域幅変動、病棟の位置、または病院の位置が、改善した結果と統計的に関連するものとして識別されると、データベースプロセッサ18は、考慮するために、これらの識別された事項を病院患者安全性プロセッサおよび/または組織患者安全性プロセッサに組み込む、新規プロトコルを、ダウンロードに関して提供してもよい。このように、新規薬剤または治療は、実験医療の時系列が実験コードで標識されるように、患者安全性プロセッサによって適応させられるデータの盲検化により評価されてもよい。
開示された実施形態は、種々の修正および代替形態の影響を受けやすい場合があるが、具体的実施形態が一例として図面に示され、本明細書で詳細に説明されている。しかしながら、本開示は、開示された特定の形態に限定されることを目的としないと理解されたい。実際に、開示された実施形態は、生理学的障害の系統の臨床診断に適用されてもよいだけでなく、本明細書で規定されるように、画像によって表されてもよい任意の臨床状態に適用されてもよい。実際に、開示された実施形態は、術後監視等の、患者の状態が概して改善している状態を監視および/または診断するように適用されてもよい。むしろ、本開示は、開示された実施形態の精神および範囲であって、かつ以下の添付の請求項によって定義されるような精神および範囲内に入る、全て修正、均等物、および代替案を網羅するものである。

Claims (20)

  1. データの電子医療記録リポジトリを備える、データベース(308)であって、該データの電子医療記録リポジトリは、少なくとも1つの病院内の複数の患者のデータを含有する、データベースと、
    プロセッサ(18)であって、該複数の患者の該データ内の少なくとも1つの複雑な連鎖パターンについて該データベースを検索し、該少なくとも1つの複雑な連鎖パターンを生成する1人以上の患者を識別するための命令でプログラムされる、プロセッサと
    を備える、病院監視システム。
  2. 前記複雑な連鎖パターンの検出時に自動アラームを提供するための命令でプログラムされる、アラームプロセッサを備える、請求項1に記載の病院監視システム。
  3. 前記複雑な連鎖パターンは、敗血症、重度の敗血症、敗血症性ショック、微小循環障害、およびショックのうちの少なくとも1つの連鎖を含む、請求項1に記載の病院監視システム。
  4. 前記複雑な連鎖パターンは、次第により多数の摂動された生理学的データおよび検査データの次第に拡大する集約を作成する、生理学的データおよび検査データの少なくとも複数の連関摂動および/または動向を含む、請求項1に記載の病院監視システム。
  5. 前記複雑な連鎖パターンの少なくとも1つの特性であって、前記複雑な連鎖パターンの重症度、前記複雑な連鎖パターンの持続時間、前記複雑な連鎖パターンの開始時間、前記複雑な連鎖パターンの成熟度、他の事象また別の複雑な連鎖パターンに対する前記複雑な連鎖パターンのタイミング関係、前記複雑な連鎖パターンと関連する費用、前記複雑な連鎖パターンの大域的パターン、前記複雑な連鎖パターンの終結時間、前記複雑な連鎖パターンの構成要素、前記複雑な連鎖パターンの進展状態、前記複雑な連鎖パターンに後続する、または前記複雑な連鎖パターンと関連する在院日数、または前記複雑な連鎖パターンと関連する治療のうちの少なくとも1つを含む、特性を決定するようにさらにプログラムされる、請求項1に記載の病院監視システム。
  6. 前記複雑な連鎖パターンの少なくとも1つの特性は、該複雑な連鎖パターン、摂動および/または動向の重症度、該複雑な連鎖パターンの影響を受ける系統の数、該複雑な連鎖パターンと関連する摂動に応じた補償の障害の存在、数、および/または重症度を含む、複数の摂動および/または動向のうちの少なくとも1つによって定義される、請求項5に記載の病院監視システム。
  7. 前記プロセッサ(18)は、前記複雑な連鎖パターンの成長率を決定するための命令を含む、請求項1に記載の病院監視システム。
  8. 前記プロセッサ(18)は、単位時間あたりに追加されている新規摂動の数および/または重症度の増加、影響を受けた系統の増加数、および異なる系統に存在する摂動の増加数のうちの少なくとも1つによって、前記複雑な連鎖パターンの前記成長率を決定するための命令を含む、請求項1に記載の病院監視システム。
  9. 前記プロセッサ(18)は、前記複雑な連鎖パターンと時間的および/または空間的に関連するが、該複雑な連鎖パターンの一部ではない、事象または構成要素を検出するための命令を含む、請求項1に記載の病院監視システム。
  10. 前記プロセッサ(18)は、前記複雑な連鎖パターンを検索するのに好ましい形式に前記電子医療記録を変換するための命令を含む、請求項1に記載の病院監視システム。
  11. 前記形式は、少なくとも前記データの正変動および負変動を含む、順次および時限変動を含む、請求項10に記載の病院監視システム。
  12. 前記データの電子医療記録リポジトリは、複数の病院からのデータを含み、前記プロセッサ(18)は、複雑な連鎖パターンを生成している前記患者、および該患者が位置する該病院を識別するための命令を含んでプログラムされる、請求項10に記載の病院監視システム。
  13. 患者データ処理システムであって、
    少なくとも1つの病院の電子医療記録を、生理学的パラメータおよび検査データの両方の少なくとも正の動向および負の動向を含む、順次および時限動向に、変換し、
    正および/または負の動向の組み合わせを含む関係動向を検出し、
    関係動向の複数の組み合わせを含む複雑な連鎖パターンを検出し、
    該検出された複雑な連鎖の画像の表示を自動的に出力し、
    該複雑な連鎖の検出および該複雑な連鎖を生成する患者の識別を示す、警告を自動的に出力し、
    該複雑な連鎖の成長または減退を追跡し、成長または減退を示す指示を出力する
    ようにプログラムされる、プロセッサ18を備える、患者データ処理システム。
  14. 前記複雑な連鎖パターンは、生理学的障害を示す、請求項13に記載の患者データ処理システム。
  15. 前記生理学的障害は、敗血症、重度の敗血症、敗血症性ショック、および微小循環障害、ショック連鎖、および敗血症性ショック連鎖のうちの少なくとも1つである、請求項13に記載の患者データ処理システム。
  16. 前記プロセッサ(18)は、検出された前記連鎖の種類の指示を決定し、出力するための命令を含む、請求項13に記載の患者データ処理システム。
  17. 前記プロセッサ(18)は、前記連鎖に沿った少なくとも前記動向のタイミングおよび種類の指示を決定し、出力するための命令を含む、請求項13に記載の患者データ処理システム。
  18. 前記プロセッサ(18)は、少なくとも前記連鎖の長さの指示を決定し、出力するための命令を含む、請求項13に記載の患者データ処理システム。
  19. 前記プロセッサ(18)は、少なくとも前記連鎖に関する治療法のタイミングの指示を決定し、出力する、治療法の開始を検出するための命令を含む、請求項13に記載の患者データ処理システム。
  20. 病院の電子医療記録を処理するための患者データ処理システムであって、
    少なくとも各患者の生理学的状態および/またはケアに関するデータを含む、該病院内の複数の患者の少なくとも一部分のデータの時系列を生成し、
    少なくとも監視されたデータセットおよび検査データセットを含む、データセットを並列および重複時系列に変換し、
    炎症の発生、代謝の発生、容積測定の発生、血流力学的発生、治療法の発生、血液学的発生、または呼吸の発生を含む発生を識別し、
    該発生のタイミングを識別し、
    敗血症連鎖、肺塞栓症連鎖、代謝連鎖、または微小循環障害連鎖のうちの少なくとも1つの障害連鎖を示す複数の時系列に沿って、発生の少なくとも1つの関係パターンを識別し、
    該障害連鎖が検出されるとアラームを出力する
    ようにプログラムされる、プロセッサ(18)を備える、システム。
JP2011508668A 2008-05-07 2009-05-07 医療障害パターン検索エンジン Expired - Fee Related JP5474937B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US12690608P 2008-05-07 2008-05-07
US61/126,906 2008-05-07
US20016208P 2008-11-25 2008-11-25
US61/200,162 2008-11-25
PCT/US2009/043150 WO2009137682A1 (en) 2008-05-07 2009-05-07 Medical failure pattern search engine

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013265038A Division JP2014075154A (ja) 2008-05-07 2013-12-24 医療障害パターン検索エンジン

Publications (2)

Publication Number Publication Date
JP2011524037A true JP2011524037A (ja) 2011-08-25
JP5474937B2 JP5474937B2 (ja) 2014-04-16

Family

ID=40852498

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2011508668A Expired - Fee Related JP5474937B2 (ja) 2008-05-07 2009-05-07 医療障害パターン検索エンジン
JP2013265038A Withdrawn JP2014075154A (ja) 2008-05-07 2013-12-24 医療障害パターン検索エンジン

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2013265038A Withdrawn JP2014075154A (ja) 2008-05-07 2013-12-24 医療障害パターン検索エンジン

Country Status (6)

Country Link
US (2) US20090281838A1 (ja)
EP (1) EP2283443A1 (ja)
JP (2) JP5474937B2 (ja)
AU (1) AU2009244200B2 (ja)
CA (1) CA2722773C (ja)
WO (1) WO2009137682A1 (ja)

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9042952B2 (en) 1997-01-27 2015-05-26 Lawrence A. Lynn System and method for automatic detection of a plurality of SPO2 time series pattern types
US9468378B2 (en) 1997-01-27 2016-10-18 Lawrence A. Lynn Airway instability detection system and method
US8932227B2 (en) 2000-07-28 2015-01-13 Lawrence A. Lynn System and method for CO2 and oximetry integration
US20070191697A1 (en) 2006-02-10 2007-08-16 Lynn Lawrence A System and method for SPO2 instability detection and quantification
US9521971B2 (en) 1997-07-14 2016-12-20 Lawrence A. Lynn System and method for automatic detection of a plurality of SPO2 time series pattern types
US20060195041A1 (en) 2002-05-17 2006-08-31 Lynn Lawrence A Centralized hospital monitoring system for automatically detecting upper airway instability and for preventing and aborting adverse drug reactions
US9053222B2 (en) 2002-05-17 2015-06-09 Lawrence A. Lynn Patient safety processor
US7578793B2 (en) 2004-11-22 2009-08-25 Widemed Ltd. Sleep staging based on cardio-respiratory signals
US7668579B2 (en) 2006-02-10 2010-02-23 Lynn Lawrence A System and method for the detection of physiologic response to stimulation
AU2009244200B2 (en) 2008-05-07 2012-10-18 Lawrence A. Lynn Medical failure pattern search engine
US11728041B2 (en) 2008-05-07 2023-08-15 Lawrence A. Lynn Real-time time series matrix pathophysiologic pattern processor and quality assessment method
US20120246181A1 (en) * 2009-11-26 2012-09-27 Wieslaw Lucjan Nowinski Method for construction and use of a probabilistic atlas for diagnosis and prediction of a medical outcome
US20110201905A1 (en) * 2010-02-12 2011-08-18 David Spencer Decision support method for casualty treatment using vital sign combinations
US20110313301A1 (en) 2010-06-17 2011-12-22 Welch Allyn, Inc. Blood pressure irregularity sensing
US11610653B2 (en) 2010-09-01 2023-03-21 Apixio, Inc. Systems and methods for improved optical character recognition of health records
US11694239B2 (en) 2010-09-01 2023-07-04 Apixio, Inc. Method of optimizing patient-related outcomes
US11195213B2 (en) * 2010-09-01 2021-12-07 Apixio, Inc. Method of optimizing patient-related outcomes
WO2012052040A1 (en) * 2010-10-19 2012-04-26 Mevis Medical Solutions Ag Apparatus for displaying icons representing medical objects
US8583586B2 (en) 2011-01-21 2013-11-12 International Business Machines Corporation Mining temporal patterns in longitudinal event data using discrete event matrices and sparse coding
EP3567603A1 (en) * 2011-02-13 2019-11-13 Masimo Corporation Medical risk characterization system
US8595264B2 (en) * 2011-06-30 2013-11-26 Bm Software, Inc. Event processing based on meta-relationship definition
EP2779892A4 (en) * 2011-11-14 2015-08-26 Eric N Lynn PROCESSOR FOR IMPROVING PATTERN PATTERN TO ITERATIVE TIME SERIES
WO2013074971A1 (en) * 2011-11-17 2013-05-23 The Cleveland Clinic Foundation Graphical tool for managing a longitudinal patient episode
US9013294B1 (en) * 2012-01-24 2015-04-21 Alarm.Com Incorporated Alarm probability
US10496788B2 (en) 2012-09-13 2019-12-03 Parkland Center For Clinical Innovation Holistic hospital patient care and management system and method for automated patient monitoring
US10593426B2 (en) 2012-09-13 2020-03-17 Parkland Center For Clinical Innovation Holistic hospital patient care and management system and method for automated facial biological recognition
US10354429B2 (en) 2012-11-14 2019-07-16 Lawrence A. Lynn Patient storm tracker and visualization processor
US9953453B2 (en) 2012-11-14 2018-04-24 Lawrence A. Lynn System for converting biologic particle density data into dynamic images
WO2014134557A1 (en) 2013-02-28 2014-09-04 Lynn Lawrence A System for presentation of sequential blood laboratory measurements to image recognition systems
US20150019236A1 (en) * 2013-07-15 2015-01-15 Covidien Lp Data age display and management
EP3021739A4 (en) * 2013-07-18 2017-03-22 Parkland Center for Clinical Innovation Patient care surveillance system and method
EP3132367A1 (en) * 2014-04-17 2017-02-22 Koninklijke Philips N.V. Method and system for visualization of patient history
US20170154157A1 (en) * 2014-07-08 2017-06-01 Fronteo, Inc. Data analysis device, control method for data analysis device, and control program for data analysis device
US10755369B2 (en) 2014-07-16 2020-08-25 Parkland Center For Clinical Innovation Client management tool system and method
EP3373803A4 (en) * 2015-12-15 2019-06-12 Respiratory Motion, Inc. EVALUATING THE RESPIRATORY VOLUME MONITORING TO DETECT RESPIRATORY IMPACT ON PULSE OXIMETRY AND REMOVE INCORRECT LOSS OF ATTACHMENT
WO2017127778A1 (en) * 2016-01-22 2017-07-27 Scanadu Incorporated Systems, methods, and apparatus for personal medical record keeping
EP3477608A4 (en) * 2016-06-24 2019-07-10 Konica Minolta, Inc. CENTRAL PROCESSING DEVICE FOR THE MONITORING SYSTEM OF A MONITORED PERSON, CENTRAL PROCESSING PROCESS AND MONITORING SYSTEM OF A MONITORED PERSON
US10945661B2 (en) * 2017-04-21 2021-03-16 Physio-Control, Inc. Physiological feedback systems and methods
JP6878260B2 (ja) 2017-11-30 2021-05-26 パラマウントベッド株式会社 異常判定装置、プログラム
CN108921719A (zh) * 2018-07-02 2018-11-30 深圳云感物联网科技有限公司 一种林区内的人员自动跟踪系统及算法
US11031128B2 (en) * 2019-01-25 2021-06-08 Fresenius Medical Care Holdings, Inc. Augmented reality-based training and troubleshooting for medical devices
US11340692B2 (en) * 2019-09-27 2022-05-24 Cerner Innovation, Inc. Health simulator
US12080396B2 (en) * 2020-05-12 2024-09-03 International Business Machines Corporation Risk based presentation of healthcare protocols
TWI762996B (zh) * 2020-08-07 2022-05-01 國立臺北科技大學 工作計時系統及其方法
US20240164703A1 (en) * 2022-11-22 2024-05-23 GE Precision Healthcare LLC Systems and methods for sepsis alerts

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05266002A (ja) * 1992-03-19 1993-10-15 Hitachi Ltd 臓器組織間ネットワークによる病状予測システム
JP2002312472A (ja) * 2001-01-24 2002-10-25 Siemens Medical Solutions Usa Inc 医療情報システム及び医療情報システムによって使用される方法
JP2004145853A (ja) * 2002-05-31 2004-05-20 Siemens Medical Solution Health Services Corp ヘルスケア外来診療関連情報を監視するためのシステム
JP2006519626A (ja) * 2002-12-17 2006-08-31 カーディアック ペースメーカーズ,インコーポレイティド インプラント型医療装置向け通信用リピータ装置

Family Cites Families (496)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5935099A (en) 1992-09-09 1999-08-10 Sims Deltec, Inc. Drug pump systems and methods
US3638640A (en) * 1967-11-01 1972-02-01 Robert F Shaw Oximeter and method for in vivo determination of oxygen saturation in blood using three or more different wavelengths
US3646606A (en) * 1969-08-06 1972-02-29 Care Electronics Inc Physiological monitoring system
US3926177A (en) 1972-09-11 1975-12-16 Cavitron Corp Activity and respiration monitor
US3884219A (en) 1973-04-02 1975-05-20 Medical Monitor Systems System for determining temperature and respiration rate
US3999537A (en) 1973-10-25 1976-12-28 United States Surgical Corporation Temperature, pulse and respiration detector
US4036211A (en) 1975-04-08 1977-07-19 United States Surgical Corporation Temperature, pulse and respiration detection apparatus
JPS5266002A (en) 1975-11-26 1977-06-01 Fuji Photo Film Co Ltd Desensitizer for lithographic press plate
US4022353A (en) 1975-11-28 1977-05-10 Remington Arms Company, Inc. Non-shearing metering dispenser for shell loading machines
JPS53118885A (en) 1977-02-22 1978-10-17 United States Surgical Corp Wasteful sanitary sheath used for body temperature and respiration sensing probe
US4141354A (en) * 1977-03-04 1979-02-27 Aaron Ismach Ventilator system for controlling, assisting and monitoring a patient's breathing
US4340044A (en) 1980-03-20 1982-07-20 Berkshire Research Partners Volume ventilator
US5862802A (en) * 1981-04-03 1999-01-26 Forrest M. Bird Ventilator having an oscillatory inspiratory phase and method
US4995400A (en) * 1982-08-27 1991-02-26 Boehringer Laboratories Pneumotach and components therefor
US4938218A (en) 1983-08-30 1990-07-03 Nellcor Incorporated Perinatal pulse oximetry sensor
US4714341A (en) 1984-02-23 1987-12-22 Minolta Camera Kabushiki Kaisha Multi-wavelength oximeter having a means for disregarding a poor signal
US4651746A (en) * 1984-05-08 1987-03-24 Wall William H Oral airway and endotrachial monitor
FR2566276B1 (fr) 1984-06-21 1988-07-08 Medtronic Bv Procede et appareil de stimulation diaphragmatique
FR2569975B1 (fr) 1984-09-11 1989-01-27 Fournier Montgieux Francois Dispositif pour la detection en continu du rythme respiratoire, notamment en vue de la prevention de la mort subite du nourrisson par arret respiratoire au cours du sommeil
US4911167A (en) * 1985-06-07 1990-03-27 Nellcor Incorporated Method and apparatus for detecting optical pulses
US4936679A (en) 1985-11-12 1990-06-26 Becton, Dickinson And Company Optical fiber transducer driving and measuring circuit and method for using same
US4838275A (en) 1985-11-29 1989-06-13 Lee Arnold St J Home medical surveillance system
US4800495A (en) * 1986-08-18 1989-01-24 Physio-Control Corporation Method and apparatus for processing signals used in oximetry
US4913150A (en) 1986-08-18 1990-04-03 Physio-Control Corporation Method and apparatus for the automatic calibration of signals employed in oximetry
DE3709073A1 (de) 1987-03-19 1988-09-29 Alt Eckhard Implantierbares medizinisches geraet
JP2562894B2 (ja) 1987-05-08 1996-12-11 浜松ホトニクス株式会社 診断装置
US5322057A (en) 1987-07-08 1994-06-21 Vortran Medical Technology, Inc. Intermittent signal actuated nebulizer synchronized to operate in the exhalation phase, and its method of use
US5143078A (en) 1987-08-04 1992-09-01 Colin Electronics Co., Ltd. Respiration rate monitor
US4802485A (en) * 1987-09-02 1989-02-07 Sentel Technologies, Inc. Sleep apnea monitor
US4805623A (en) * 1987-09-04 1989-02-21 Vander Corporation Spectrophotometric method for quantitatively determining the concentration of a dilute component in a light- or other radiation-scattering environment
US4807631A (en) * 1987-10-09 1989-02-28 Critikon, Inc. Pulse oximetry system
EP0315040B1 (en) 1987-11-02 1993-01-27 Sumitomo Electric Industries Limited Bio-photosensor
US5092326A (en) * 1987-11-19 1992-03-03 Winn Bryan D Apparatus and method for a ventilator system
JPH0288041A (ja) 1988-09-24 1990-03-28 Misawahoomu Sogo Kenkyusho:Kk 指尖脈波センサ
CA1331483C (en) 1988-11-02 1994-08-16 Britton Chance User-wearable hemoglobinometer for measuring the metabolic condition of a subject
US5122974A (en) 1989-02-06 1992-06-16 Nim, Inc. Phase modulated spectrophotometry
US5873821A (en) * 1992-05-18 1999-02-23 Non-Invasive Technology, Inc. Lateralization spectrophotometer
US4972331A (en) 1989-02-06 1990-11-20 Nim, Inc. Phase modulated spectrophotometry
US5564417A (en) 1991-01-24 1996-10-15 Non-Invasive Technology, Inc. Pathlength corrected oximeter and the like
EP0374668A3 (de) * 1988-12-16 1992-02-05 A.W. Faber - Castell GmbH & Co. Fluoreszierende Markierungsflüssigkeit
US5119815A (en) 1988-12-21 1992-06-09 Nim, Incorporated Apparatus for determining the concentration of a tissue pigment of known absorbance, in vivo, using the decay characteristics of scintered electromagnetic radiation
US5553614A (en) 1988-12-21 1996-09-10 Non-Invasive Technology, Inc. Examination of biological tissue using frequency domain spectroscopy
US5028787A (en) 1989-01-19 1991-07-02 Futrex, Inc. Non-invasive measurement of blood glucose
US6183414B1 (en) * 1999-04-26 2001-02-06 Michael S. Wysor Technique for restoring plasticity to tissues of a male or female organ
US6708048B1 (en) 1989-02-06 2004-03-16 Non-Invasive Technology, Inc. Phase modulation spectrophotometric apparatus
US5329931A (en) 1989-02-21 1994-07-19 William L. Clauson Apparatus and method for automatic stimulation of mammals in response to blood gas analysis
US5072737A (en) 1989-04-12 1991-12-17 Puritan-Bennett Corporation Method and apparatus for metabolic monitoring
ATE283085T1 (de) 1989-05-19 2004-12-15 Puritan Bennett Corp Drucksystem für atmungswege
US5483646A (en) * 1989-09-29 1996-01-09 Kabushiki Kaisha Toshiba Memory access control method and system for realizing the same
US5190038A (en) * 1989-11-01 1993-03-02 Novametrix Medical Systems, Inc. Pulse oximeter with improved accuracy and response time
DE3938759A1 (de) * 1989-11-23 1991-05-29 Philips Patentverwaltung Nichtinvasive oximeteranordnung
DK0613652T3 (da) * 1990-02-15 1997-08-25 Hewlett Packard Gmbh Apparat og fremgangsmåde til ikke invasiv måling af oxygenmåling
US5161525A (en) 1990-05-11 1992-11-10 Puritan-Bennett Corporation System and method for flow triggering of pressure supported ventilation
US5390666A (en) * 1990-05-11 1995-02-21 Puritan-Bennett Corporation System and method for flow triggering of breath supported ventilation
US5066859A (en) 1990-05-18 1991-11-19 Karkar Maurice N Hematocrit and oxygen saturation blood analyzer
DE59104363D1 (de) 1990-05-22 1995-03-09 Obermayer Anton Vorrichtung zur automatischen Steuerung der Spontanatmungsunterstützung.
US5094246A (en) * 1990-07-19 1992-03-10 R. J. Instruments Hot wire anemometer and pulmonary gas flow monitor combination capable of fast accurate calibration
US5822544A (en) 1990-07-27 1998-10-13 Executone Information Systems, Inc. Patient care and communication system
US5269310A (en) 1990-09-06 1993-12-14 Spacelabs Medical, Inc. Method of measuring blood pressure with a plethysmograph
US5372136A (en) 1990-10-06 1994-12-13 Noninvasive Medical Technology Corporation System and method for noninvasive hematocrit monitoring
US6681128B2 (en) 1990-10-06 2004-01-20 Hema Metrics, Inc. System for noninvasive hematocrit monitoring
US6266546B1 (en) 1990-10-06 2001-07-24 In-Line Diagnostics Corporation System for noninvasive hematocrit monitoring
US6246894B1 (en) 1993-02-01 2001-06-12 In-Line Diagnostics Corporation System and method for measuring blood urea nitrogen, blood osmolarity, plasma free hemoglobin and tissue water content
EP1357481A3 (en) * 1991-03-07 2005-04-27 Masimo Corporation Signal processing apparatus and method
MX9702434A (es) 1991-03-07 1998-05-31 Masimo Corp Aparato de procesamiento de señales.
US5638818A (en) 1991-03-21 1997-06-17 Masimo Corporation Low noise optical probe
US6580086B1 (en) 1999-08-26 2003-06-17 Masimo Corporation Shielded optical probe and method
US5995855A (en) 1998-02-11 1999-11-30 Masimo Corporation Pulse oximetry sensor adapter
DE4138702A1 (de) * 1991-03-22 1992-09-24 Madaus Medizin Elektronik Verfahren und vorrichtung zur diagnose und quantitativen analyse von apnoe und zur gleichzeitigen feststellung anderer erkrankungen
US6549795B1 (en) 1991-05-16 2003-04-15 Non-Invasive Technology, Inc. Spectrophotometer for tissue examination
US5458137A (en) 1991-06-14 1995-10-17 Respironics, Inc. Method and apparatus for controlling sleep disorder breathing
US5246003A (en) 1991-08-28 1993-09-21 Nellcor Incorporated Disposable pulse oximeter sensor
US5247931A (en) 1991-09-16 1993-09-28 Mine Safety Appliances Company Diagnostic sensor clasp utilizing a slot, pivot and spring hinge mechanism
US5238001A (en) 1991-11-12 1993-08-24 Stuart Medical Inc. Ambulatory patient monitoring system having multiple monitoring units and optical communications therebetween
US5253645A (en) 1991-12-13 1993-10-19 Critikon, Inc. Method of producing an audible alarm in a blood pressure and pulse oximeter monitor
ES2123535T3 (es) 1992-01-25 1999-01-16 Alsthom Cge Alcatel Procedimiento para facilitar el manejo de aparatos terminales en instalaciones de telecomunicaciones.
US5385143A (en) * 1992-02-06 1995-01-31 Nihon Kohden Corporation Apparatus for measuring predetermined data of living tissue
US5297548A (en) 1992-02-07 1994-03-29 Ohmeda Inc. Arterial blood monitoring probe
EP0630203B1 (en) 1992-02-28 2002-07-31 CADELL, Theodore E. Non-invasive device and method for determining concentrations of various components of blood or tissue
US5263244A (en) * 1992-04-17 1993-11-23 Gould Inc. Method of making a flexible printed circuit sensor assembly for detecting optical pulses
US5490502A (en) * 1992-05-07 1996-02-13 New York University Method and apparatus for optimizing the continuous positive airway pressure for treating obstructive sleep apnea
EP0572684B1 (en) 1992-05-15 1996-07-03 Hewlett-Packard GmbH Medical sensor
US6785568B2 (en) 1992-05-18 2004-08-31 Non-Invasive Technology Inc. Transcranial examination of the brain
US6397099B1 (en) 1992-05-18 2002-05-28 Non-Invasive Technology, Inc. Non-invasive imaging of biological tissue
US5355880A (en) 1992-07-06 1994-10-18 Sandia Corporation Reliable noninvasive measurement of blood gases
JPH0638965A (ja) * 1992-07-23 1994-02-15 Minolta Camera Co Ltd 呼吸診断装置
US6223064B1 (en) 1992-08-19 2001-04-24 Lawrence A. Lynn Microprocessor system for the simplified diagnosis of sleep apnea
WO1994004071A1 (en) * 1992-08-19 1994-03-03 Lynn Lawrence A Apparatus for the diagnosis of sleep apnea
DE4227454C1 (de) 1992-08-19 1994-02-03 Henning Berlin Gmbh Verfahren zur Früherkennung, zur Erkennung des Schweregrads sowie zur therapiebegleitenden Verlaufsbeurteilung einer Sepsis sowie Mittel zur Durchführung des Verfahrens
US7081095B2 (en) * 2001-05-17 2006-07-25 Lynn Lawrence A Centralized hospital monitoring system for automatically detecting upper airway instability and for preventing and aborting adverse drug reactions
US20050062609A9 (en) 1992-08-19 2005-03-24 Lynn Lawrence A. Pulse oximetry relational alarm system for early recognition of instability and catastrophic occurrences
US6342039B1 (en) * 1992-08-19 2002-01-29 Lawrence A. Lynn Microprocessor system for the simplified diagnosis of sleep apnea
US7758503B2 (en) 1997-01-27 2010-07-20 Lynn Lawrence A Microprocessor system for the analysis of physiologic and financial datasets
US5680857A (en) 1992-08-28 1997-10-28 Spacelabs Medical, Inc. Alignment guide system for transmissive pulse oximetry sensors
US5312454A (en) 1992-12-14 1994-05-17 Medtronic, Inc. Apparatus and method of automatically adjusting a sensor signal comparator threshold for an oxygen sensing pacemaker
CA2109017A1 (en) 1992-12-16 1994-06-17 Donald M. Smith Method and apparatus for the intermittent delivery of oxygen therapy to a person
EP0615723A1 (en) 1993-03-04 1994-09-21 Hamamatsu Photonics K.K. Method and apparatus for measuring blood flow
US5520176A (en) 1993-06-23 1996-05-28 Aequitron Medical, Inc. Iterative sleep evaluation
US5584298A (en) 1993-10-25 1996-12-17 Kabal; John Noninvasive hemodynamic analyzer alterable to a continuous invasive hemodynamic monitor
US6675797B1 (en) * 1993-11-05 2004-01-13 Resmed Limited Determination of patency of the airway
EP2113196A3 (en) * 1993-11-05 2009-12-23 ResMed Limited Control of CPAP treatment
CA2155932A1 (en) 1993-12-14 1995-06-22 Tadakazu Yamauchi Medical measuring apparatus
US5645059A (en) 1993-12-17 1997-07-08 Nellcor Incorporated Medical sensor with modulated encoding scheme
JP3464697B2 (ja) 1993-12-21 2003-11-10 興和株式会社 酸素飽和度測定装置
DE69421375T2 (de) 1994-02-07 2000-07-06 Azriel Perel Verfahren zur Bestimmung der Herzgefässfunktion
US5995859A (en) 1994-02-14 1999-11-30 Nihon Kohden Corporation Method and apparatus for accurately measuring the saturated oxygen in arterial blood by substantially eliminating noise from the measurement signal
US6371921B1 (en) 1994-04-15 2002-04-16 Masimo Corporation System and method of determining whether to recalibrate a blood pressure monitor
SE9401578D0 (sv) 1994-05-06 1994-05-06 Siemens Elema Ab Medicinsk anordning
US5804370A (en) 1994-06-08 1998-09-08 Critichem Medical Products Limited Early diagnosis of sepsis utilizing antigen-antibody interactions amplified by whole blood chemiluminescence
DE4423597C1 (de) 1994-07-06 1995-08-10 Hewlett Packard Gmbh Pulsoximetrie-Ohrsensor
US5632270A (en) 1994-09-12 1997-05-27 Puritan-Bennett Corporation Method and apparatus for control of lung ventilator exhalation circuit
US5483969A (en) * 1994-09-21 1996-01-16 Medtronic, Inc. Method and apparatus for providing a respiratory effort waveform for the treatment of obstructive sleep apnea
US5485851A (en) * 1994-09-21 1996-01-23 Medtronic, Inc. Method and apparatus for arousal detection
DE69530117T2 (de) 1994-10-14 2003-12-04 Bird Products Corporation, Palm Springs Tragbares, mechanisches und mit einem schleppkompressor angetriebenes beatmungsgerät
US5692503A (en) 1995-03-10 1997-12-02 Kuenstner; J. Todd Method for noninvasive (in-vivo) total hemoglobin, oxyhemogolobin, deoxyhemoglobin, carboxyhemoglobin and methemoglobin concentration determination
WO1996030848A1 (en) 1995-03-31 1996-10-03 Levin Richard I System and method of generating prognosis reports for coronary health management
AUPN236595A0 (en) 1995-04-11 1995-05-11 Rescare Limited Monitoring of apneic arousals
US5619991A (en) 1995-04-26 1997-04-15 Lucent Technologies Inc. Delivery of medical services using electronic data communications
US7035697B1 (en) 1995-05-30 2006-04-25 Roy-G-Biv Corporation Access control systems and methods for motion control
US5638816A (en) 1995-06-07 1997-06-17 Masimo Corporation Active pulse blood constituent monitoring
US6517283B2 (en) 2001-01-16 2003-02-11 Donald Edward Coffey Cascading chute drainage system
US6931268B1 (en) 1995-06-07 2005-08-16 Masimo Laboratories, Inc. Active pulse blood constituent monitoring
AU6256196A (en) 1995-06-07 1996-12-30 Blackbox, Inc. Method for noninvasive intermittent and/or continuous hemogl obin, arterial oxygen content, and hematocrit determination
US5758644A (en) 1995-06-07 1998-06-02 Masimo Corporation Manual and automatic probe calibration
US5645060A (en) 1995-06-14 1997-07-08 Nellcor Puritan Bennett Incorporated Method and apparatus for removing artifact and noise from pulse oximetry
US5853364A (en) 1995-08-07 1998-12-29 Nellcor Puritan Bennett, Inc. Method and apparatus for estimating physiological parameters using model-based adaptive filtering
US5942986A (en) 1995-08-09 1999-08-24 Cedars-Sinai Medical Center System and method for automatic critical event notification
US5800348A (en) 1995-08-31 1998-09-01 Hewlett-Packard Company Apparatus and method for medical monitoring, in particular pulse oximeter
DE19537646C2 (de) 1995-10-10 1998-09-17 Hewlett Packard Gmbh Verfahren und Vorrichtung zum Erkennen verfälschter Meßwerte in der Pulsoximetrie zur Messung der Sauerstoffsättigung
US5865173A (en) * 1995-11-06 1999-02-02 Sunrise Medical Hhg Inc. Bilevel CPAP system with waveform control for both IPAP and EPAP
US5995856A (en) 1995-11-22 1999-11-30 Nellcor, Incorporated Non-contact optical monitoring of physiological parameters
US6041777A (en) 1995-12-01 2000-03-28 Alliance Pharmaceutical Corp. Methods and apparatus for closed-circuit ventilation therapy
US6158432A (en) 1995-12-08 2000-12-12 Cardiopulmonary Corporation Ventilator control system and method
SE9600322L (sv) 1996-01-30 1997-07-31 Hoek Instr Ab Sensor för pulsoximetri med fiberoptisk signalöverföring
US5840019A (en) 1996-01-31 1998-11-24 Wirebaugh; Jeffrey F. Graphic presentation chart of medical tests for a patient
US6148814A (en) 1996-02-08 2000-11-21 Ihc Health Services, Inc Method and system for patient monitoring and respiratory assistance control through mechanical ventilation by the use of deterministic protocols
US20010044588A1 (en) 1996-02-22 2001-11-22 Mault James R. Monitoring system
ES2162672T3 (es) * 1996-04-01 2002-01-01 Linde Medical Sensors Ag Reconocimiento de señales parasitas en la medicion pulsoximetrica.
TW376312B (en) 1996-04-17 1999-12-11 Seiko Epson Corp Arrhythmia detector
US5716384A (en) * 1996-07-08 1998-02-10 Pacesetter, Inc. Method and system for organizing, viewing and manipulating information in implantable device programmer
US5842981A (en) 1996-07-17 1998-12-01 Criticare Systems, Inc. Direct to digital oximeter
US6163715A (en) 1996-07-17 2000-12-19 Criticare Systems, Inc. Direct to digital oximeter and method for calculating oxygenation levels
IL120881A (en) 1996-07-30 2002-09-12 It M R Medic L Cm 1997 Ltd Method and device for continuous and non-invasive monitoring of peripheral arterial tone
US5830139A (en) 1996-09-04 1998-11-03 Abreu; Marcio M. Tonometer system for measuring intraocular pressure by applanation and/or indentation
US6120460A (en) 1996-09-04 2000-09-19 Abreu; Marcio Marc Method and apparatus for signal acquisition, processing and transmission for evaluation of bodily functions
US6544193B2 (en) 1996-09-04 2003-04-08 Marcio Marc Abreu Noninvasive measurement of chemical substances
US5871442A (en) * 1996-09-10 1999-02-16 International Diagnostics Technologies, Inc. Photonic molecular probe
US6081742A (en) 1996-09-10 2000-06-27 Seiko Epson Corporation Organism state measuring device and relaxation instructing device
AUPO247496A0 (en) 1996-09-23 1996-10-17 Resmed Limited Assisted ventilation to match patient respiratory need
AUPO322396A0 (en) 1996-10-25 1996-11-21 Robinson, Gavin J.B. Dr A method of measuring cardiac output by pulmonary exchange of oxygen and an inert gas with the blood utilising a divided airway
US5865174A (en) 1996-10-29 1999-02-02 The Scott Fetzer Company Supplemental oxygen delivery apparatus and method
US5830136A (en) 1996-10-31 1998-11-03 Nellcor Puritan Bennett Incorporated Gel pad optical sensor
US6364834B1 (en) 1996-11-13 2002-04-02 Criticare Systems, Inc. Method and system for remotely monitoring multiple medical parameters in an integrated medical monitoring system
US6322502B1 (en) 1996-12-30 2001-11-27 Imd Soft Ltd. Medical information system
US6070098A (en) 1997-01-11 2000-05-30 Circadian Technologies, Inc. Method of and apparatus for evaluation and mitigation of microsleep events
US8932227B2 (en) 2000-07-28 2015-01-13 Lawrence A. Lynn System and method for CO2 and oximetry integration
US9042952B2 (en) 1997-01-27 2015-05-26 Lawrence A. Lynn System and method for automatic detection of a plurality of SPO2 time series pattern types
US20130060110A1 (en) 1997-01-27 2013-03-07 Lawrence A. Lynn System and method for automatic detection of a plurality of spo2 time series pattern types
US6004276A (en) 1997-03-03 1999-12-21 Quinton Instrument Company Open architecture cardiology information system
US6487439B1 (en) 1997-03-17 2002-11-26 Victor N. Skladnev Glove-mounted hybrid probe for tissue type recognition
ATE383814T1 (de) * 1997-03-17 2008-02-15 Vivometrics Inc Verfahren zur atmungswellenformanalyse in bezug auf ihren einfluss auf neuromuskuläre atmung
AU736060B2 (en) 1997-03-21 2001-07-26 Nellcor Puritan Bennett Inc. Method and apparatus for arbitrating to obtain best estimates for blood constituent values and rejecting harmonics
US6002952A (en) 1997-04-14 1999-12-14 Masimo Corporation Signal processing apparatus and method
AUPO676397A0 (en) 1997-05-13 1997-06-05 Dunlop, Colin Method and apparatus for monitoring haemodynamic function
US5931790A (en) 1997-06-06 1999-08-03 Southwest Research Institute System and method for accurately monitoring the cardiovascular state of a living subject
IL121079A0 (en) 1997-06-15 1997-11-20 Spo Medical Equipment Ltd Physiological stress detector device and method
CN1309341C (zh) 1997-06-17 2007-04-11 里普朗尼克股份有限公司 胎儿血氧测定系统和传感器
US6353750B1 (en) 1997-06-27 2002-03-05 Sysmex Corporation Living body inspecting apparatus and noninvasive blood analyzer using the same
US9521971B2 (en) 1997-07-14 2016-12-20 Lawrence A. Lynn System and method for automatic detection of a plurality of SPO2 time series pattern types
US20070191697A1 (en) 2006-02-10 2007-08-16 Lynn Lawrence A System and method for SPO2 instability detection and quantification
FI973454A (fi) 1997-08-22 1999-02-23 Instrumentarium Oy Joustoväline mittausanturissa, jolla havannoidaan elävän kudoksen ominaisuuksia
WO1999013766A1 (en) 1997-09-16 1999-03-25 Kinetic Concepts, Inc. Critical care management system incorporating remote imaging and telemetry
US6141590A (en) 1997-09-25 2000-10-31 Medtronic, Inc. System and method for respiration-modulated pacing
US6985762B2 (en) * 1997-09-26 2006-01-10 Datex-Ohmeda, Inc. Network formatting for remote location oximetry applications
US6415166B1 (en) 1997-09-26 2002-07-02 Datex-Ohmeda, Inc. Photoplethysmographic device with remote facsimile
US5865736A (en) * 1997-09-30 1999-02-02 Nellcor Puritan Bennett, Inc. Method and apparatus for nuisance alarm reductions
AU1091099A (en) 1997-10-16 1999-05-03 Board Of Trustees Of The Leland Stanford Junior University Method for inferring mental states from eye movements
AUPP026997A0 (en) * 1997-11-07 1997-12-04 Resmed Limited Administration of cpap treatment pressure in presence of apnea
US6050951A (en) 1997-11-10 2000-04-18 Critikon Company, L.L.C. NIBP trigger in response to detected heart rate variability
US6159683A (en) 1997-12-16 2000-12-12 Spectral Diagnostics, Inc. Method of determining stage of sepsis
DE69700384T2 (de) 1997-12-22 1999-11-25 Hewlett-Packard Co., Palo Alto Telemetriesystem, insbesondere für medizinische Zwecke
US6230142B1 (en) 1997-12-24 2001-05-08 Homeopt, Llc Health care data manipulation and analysis system
JP3567319B2 (ja) 1997-12-26 2004-09-22 日本光電工業株式会社 パルスオキシメータ用プローブ
KR100472736B1 (ko) 1998-02-05 2005-03-08 인-라인다이아그노스틱스코포레이션 비침입식 혈액성분 측정 장치
US6024699A (en) * 1998-03-13 2000-02-15 Healthware Corporation Systems, methods and computer program products for monitoring, diagnosing and treating medical conditions of remotely located patients
US6804551B2 (en) * 1998-03-17 2004-10-12 University Of Virginia Patent Foundation Method and apparatus for the early diagnosis of subacute, potentially catastrophic illness
JP3576851B2 (ja) 1998-03-23 2004-10-13 キヤノン株式会社 液晶表示装置、ビデオカメラ
US6102038A (en) 1998-05-15 2000-08-15 Pulmonetic Systems, Inc. Exhalation valve for mechanical ventilator
US6662030B2 (en) * 1998-05-18 2003-12-09 Abbott Laboratories Non-invasive sensor having controllable temperature feature
AUPP370198A0 (en) * 1998-05-25 1998-06-18 Resmed Limited Control of the administration of continuous positive airway pressure treatment
CA2333062A1 (en) 1998-06-03 1999-12-09 Mohamed K. Diab Stereo pulse oximeter
IL124787A0 (en) 1998-06-07 1999-01-26 Itamar Medical C M 1997 Ltd Pressure applicator devices particularly useful for non-invasive detection of medical conditions
US5920263A (en) 1998-06-11 1999-07-06 Ohmeda, Inc. De-escalation of alarm priorities in medical devices
JP2000083933A (ja) 1998-07-17 2000-03-28 Nippon Koden Corp 生体組織中吸光物質濃度測定装置
US6671526B1 (en) 1998-07-17 2003-12-30 Nihon Kohden Corporation Probe and apparatus for determining concentration of light-absorbing materials in living tissue
JP2000042111A (ja) 1998-07-27 2000-02-15 Osaka Ship Building Co Ltd 濃縮酸素供給システム及びこれに用いる装置
AU5180499A (en) 1998-08-13 2000-03-06 Whitland Research Limited Optical device
US6949081B1 (en) 1998-08-26 2005-09-27 Non-Invasive Technology, Inc. Sensing and interactive drug delivery
US6064898A (en) 1998-09-21 2000-05-16 Essential Medical Devices Non-invasive blood component analyzer
US6171258B1 (en) * 1998-10-08 2001-01-09 Sleep Solutions, Inc. Multi-channel self-contained apparatus and method for diagnosis of sleep disorders
WO2000021438A1 (en) 1998-10-15 2000-04-20 University Of Florida Research Foundation Device for determining respiratory rate from optoplethysmogram
US6519486B1 (en) 1998-10-15 2003-02-11 Ntc Technology Inc. Method, apparatus and system for removing motion artifacts from measurements of bodily parameters
US6393311B1 (en) 1998-10-15 2002-05-21 Ntc Technology Inc. Method, apparatus and system for removing motion artifacts from measurements of bodily parameters
DE19847690A1 (de) 1998-10-15 2000-04-20 Brahms Diagnostica Gmbh Verfahren und Substanzen für die Diagnose und Therapie von Sepsis und sepsisähnlichen systemischen Infektionen
US6230708B1 (en) 1998-10-30 2001-05-15 Sechrist Industries, Inc. Ventilator triggering device
US6398727B1 (en) 1998-12-23 2002-06-04 Baxter International Inc. Method and apparatus for providing patient care
US6385589B1 (en) 1998-12-30 2002-05-07 Pharmacia Corporation System for monitoring and managing the health care of a patient population
US6684090B2 (en) * 1999-01-07 2004-01-27 Masimo Corporation Pulse oximetry data confidence indicator
US6606511B1 (en) 1999-01-07 2003-08-12 Masimo Corporation Pulse oximetry pulse indicator
US6658276B2 (en) 1999-01-25 2003-12-02 Masimo Corporation Pulse oximeter user interface
WO2000045881A1 (en) 1999-02-03 2000-08-10 University Of Florida Method and apparatus for nullifying the imposed work of breathing
US6752150B1 (en) 1999-02-04 2004-06-22 John E. Remmers Ventilatory stabilization technology
FR2789593B1 (fr) 1999-05-21 2008-08-22 Mallinckrodt Dev France Appareil de fourniture de pression d'air a un patient souffrant de troubles du sommeil et ses procedes de commande
US6438399B1 (en) 1999-02-16 2002-08-20 The Children's Hospital Of Philadelphia Multi-wavelength frequency domain near-infrared cerebral oximeter
US6360114B1 (en) 1999-03-25 2002-03-19 Masimo Corporation Pulse oximeter probe-off detector
US6190324B1 (en) * 1999-04-28 2001-02-20 Medtronic, Inc. Implantable medical device for tracking patient cardiac status
US7171269B1 (en) * 1999-05-01 2007-01-30 Cardiodigital Limited Method of analysis of medical signals
SE522908C2 (sv) 1999-05-10 2004-03-16 Aneo Ab Arrangemang för att kunna tilldela en levande varelse ett anestesialt tillstånd
EP1294277A4 (en) 1999-06-02 2005-02-09 Itamar Medical Cm 1997 Ltd DIAGNOSIS OF PATHOLOGICAL CONDITIONS BY CONTROL OF THE PERIPHERAL ARTERIAL TONUS
US7315825B2 (en) 1999-06-23 2008-01-01 Visicu, Inc. Rules-based patient care system for use in healthcare locations
DE60020842T2 (de) 1999-06-30 2006-05-18 University of Florida Research Foundation, Inc., Gainesville Überwachungssystem für beatmungsgerät
US6583794B1 (en) 1999-07-01 2003-06-24 Smart Money Interface system for information mapping
IL130818A (en) 1999-07-06 2005-07-25 Intercure Ltd Interventive-diagnostic device
US6675029B2 (en) 1999-07-22 2004-01-06 Sensys Medical, Inc. Apparatus and method for quantification of tissue hydration using diffuse reflectance spectroscopy
US6415175B1 (en) 1999-08-20 2002-07-02 Cardiac Pacemakers, Inc. Interface for a medical device system
US7904139B2 (en) 1999-08-26 2011-03-08 Non-Invasive Technology Inc. Optical examination of biological tissue using non-contact irradiation and detection
US6413226B1 (en) 1999-10-22 2002-07-02 Respironics, Inc. Method and apparatus for determining cardiac output
US6618042B1 (en) 1999-10-28 2003-09-09 Gateway, Inc. Display brightness control method and apparatus for conserving battery power
US6736759B1 (en) 1999-11-09 2004-05-18 Paragon Solutions, Llc Exercise monitoring system and methods
JP2001149349A (ja) 1999-11-26 2001-06-05 Nippon Koden Corp 生体用センサ
US6622095B2 (en) 1999-11-30 2003-09-16 Nihon Kohden Corporation Apparatus for determining concentrations of hemoglobins
US6415236B2 (en) 1999-11-30 2002-07-02 Nihon Kohden Corporation Apparatus for determining concentrations of hemoglobins
WO2001040776A1 (en) 1999-12-02 2001-06-07 Johns Hopkins University Method of measuring tissue hemoglobin saturation using gaussian decomposition
US7204250B1 (en) 1999-12-16 2007-04-17 Compumedics Limited Bio-mask
EP2308374B1 (en) 1999-12-22 2012-07-18 Orsense Ltd. A method of optical measurements for determining various parameters of the patient's blood
US6419671B1 (en) 1999-12-23 2002-07-16 Visx, Incorporated Optical feedback system for vision correction
US6594513B1 (en) 2000-01-12 2003-07-15 Paul D. Jobsis Method and apparatus for determining oxygen saturation of blood in body organs
US6816266B2 (en) 2000-02-08 2004-11-09 Deepak Varshneya Fiber optic interferometric vital sign monitor for use in magnetic resonance imaging, confined care facilities and in-hospital
IL135077A0 (en) * 2000-03-15 2001-05-20 Orsense Ltd A probe for use in non-invasive measurements of blood related parameters
DE10015026C2 (de) * 2000-03-25 2002-05-08 Draeger Medical Ag Anordnung und Verfahren zur Regelung eines numerischen Werts für die Patientenbeatmung
SE0001274L (sv) 2000-04-06 2001-10-07 Anders Johansson Förfarande för mätning av inandning och/eller utandning
AU2001251514A1 (en) 2000-04-10 2001-10-23 The Research Foundation Of State University Of New York Method for detecting cheyne-stokes respiration in patients with congestive heart failure
US6839581B1 (en) * 2000-04-10 2005-01-04 The Research Foundation Of State University Of New York Method for detecting Cheyne-Stokes respiration in patients with congestive heart failure
AU2001257052A1 (en) 2000-04-11 2001-10-23 The Regents Of The University Of California Database of body surface ecg p wave integral maps for localization of left-sidedatrial arrhythmias
WO2001078577A2 (en) 2000-04-17 2001-10-25 Vivometrics, Inc. Systems and methods for ambulatory monitoring of physiological signs
PT2322085E (pt) 2000-04-17 2014-06-23 Covidien Lp Sensor de oxímetro de pulsação com função por partes
US6475153B1 (en) 2000-05-10 2002-11-05 Motorola Inc. Method for obtaining blood pressure data from optical sensor
US6650932B1 (en) 2000-05-15 2003-11-18 Boston Medical Technologies, Inc. Medical testing telemetry system
US6430525B1 (en) 2000-06-05 2002-08-06 Masimo Corporation Variable mode averager
GB0014855D0 (en) * 2000-06-16 2000-08-09 Isis Innovation Combining measurements from different sensors
US7657379B2 (en) 2000-07-05 2010-02-02 Microsoft Corporation Methods and systems for determining the biological function of cell constituents using response profiles
US6532960B1 (en) 2000-07-10 2003-03-18 Respironics, Inc. Automatic rise time adjustment for bi-level pressure support system
US6659947B1 (en) 2000-07-13 2003-12-09 Ge Medical Systems Information Technologies, Inc. Wireless LAN architecture for integrated time-critical and non-time-critical services within medical facilities
EP1313397A2 (en) * 2000-07-19 2003-05-28 Nigel E. Sharrock Non-invasive measurement of suprasystolic signals
US6889153B2 (en) 2001-08-09 2005-05-03 Thomas Dietiker System and method for a self-calibrating non-invasive sensor
IL138683A0 (en) 2000-09-25 2001-10-31 Vital Medical Ltd Apparatus and method for monitoring tissue vitality parameters
US20080027368A1 (en) * 2000-09-27 2008-01-31 Sorin Group Usa, Inc. Disposable cartridge for a blood perfusion system
IL138884A (en) 2000-10-05 2006-07-05 Conmed Corp Pulse oximeter and a method of its operation
US6616607B2 (en) 2000-10-18 2003-09-09 Matsushita Electric Industrial Co., Ltd. State information acquisition system, state information acquisition apparatus, attachable terminal apparatus, and state information acquisition method
US6466809B1 (en) 2000-11-02 2002-10-15 Datex-Ohmeda, Inc. Oximeter sensor having laminated housing with flat patient interface surface
AU2002223118A1 (en) 2000-11-27 2002-06-03 Modco Inc. Apparatus and method for monitoring blood pressure and another physiological parameter
ATE412366T1 (de) * 2000-12-29 2008-11-15 Ares Medical Inc Risikobewertung von schlafapnoe
US6561986B2 (en) 2001-01-17 2003-05-13 Cardiodynamics International Corporation Method and apparatus for hemodynamic assessment including fiducial point detection
US6501974B2 (en) 2001-01-22 2002-12-31 Datex-Ohmeda, Inc. Compensation of human variability in pulse oximetry
JP3495710B2 (ja) 2001-02-01 2004-02-09 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー 血流イメージング装置および超音波診断装置
US9053222B2 (en) 2002-05-17 2015-06-09 Lawrence A. Lynn Patient safety processor
US20060195041A1 (en) 2002-05-17 2006-08-31 Lynn Lawrence A Centralized hospital monitoring system for automatically detecting upper airway instability and for preventing and aborting adverse drug reactions
DE10106046A1 (de) 2001-02-09 2002-08-29 Draeger Medical Ag Kombinierter Atemstromsensor
DE10290217B4 (de) 2001-02-19 2009-06-10 Toyota Jidosha Kabushiki Kaisha, Toyota-shi Laserbearbeitungsvorrichtung und damit durchführbares Bearbeitungsverfahren
US6606509B2 (en) 2001-03-16 2003-08-12 Nellcor Puritan Bennett Incorporated Method and apparatus for improving the accuracy of noninvasive hematocrit measurements
US6591122B2 (en) 2001-03-16 2003-07-08 Nellcor Puritan Bennett Incorporated Device and method for monitoring body fluid and electrolyte disorders
US7239902B2 (en) 2001-03-16 2007-07-03 Nellor Puritan Bennett Incorporated Device and method for monitoring body fluid and electrolyte disorders
US6898451B2 (en) 2001-03-21 2005-05-24 Minformed, L.L.C. Non-invasive blood analyte measuring system and method utilizing optical absorption
GR1003802B (el) * 2001-04-17 2002-02-08 Micrel �.�.�. ������� ��������� ��������������� ��������� Συστημα τηλειατρικης.
US20020156354A1 (en) 2001-04-20 2002-10-24 Larson Eric Russell Pulse oximetry sensor with improved spring
DE60125326T2 (de) 2001-05-03 2007-09-27 Ge Healthcare Finland Oy Pulsoximeter
JP2002336207A (ja) 2001-05-14 2002-11-26 Matsushita Electric Ind Co Ltd 在床異常モニタ装置
US20070093721A1 (en) 2001-05-17 2007-04-26 Lynn Lawrence A Microprocessor system for the analysis of physiologic and financial datasets
US6801798B2 (en) 2001-06-20 2004-10-05 Purdue Research Foundation Body-member-illuminating pressure cuff for use in optical noninvasive measurement of blood parameters
EP2319400B1 (en) 2001-06-22 2012-08-22 Nellcor Puritan Bennett Ireland Wavelet-based analysis of pulse oximetry signals
SG126677A1 (en) 2001-06-26 2006-11-29 Meng Ting Choon Method and device for measuring blood sugar level
US6697658B2 (en) * 2001-07-02 2004-02-24 Masimo Corporation Low power pulse oximeter
US6754516B2 (en) 2001-07-19 2004-06-22 Nellcor Puritan Bennett Incorporated Nuisance alarm reductions in a physiological monitor
DE10139379A1 (de) * 2001-08-10 2003-03-06 Siemens Ag Vorrichtung zum Erfassen einer Bewegung
US6766216B2 (en) 2001-08-27 2004-07-20 Flow International Corporation Method and system for automated software control of waterjet orientation parameters
US6654621B2 (en) 2001-08-29 2003-11-25 Bci, Inc. Finger oximeter with finger grip suspension system
AU2002331850A1 (en) 2001-09-11 2003-03-24 Pulmonx Methods of endobronchial diagnosis using imaging
US6668183B2 (en) 2001-09-11 2003-12-23 Datex-Ohmeda, Inc. Diode detection circuit
IL145445A (en) * 2001-09-13 2006-12-31 Conmed Corp A method for signal processing and a device for improving signal for noise
US7118534B2 (en) 2001-09-21 2006-10-10 Virginia Commonwealth University Methods for monitoring and optimizing central venous pressure and intravascular volume
US6723077B2 (en) 2001-09-28 2004-04-20 Hewlett-Packard Development Company, L.P. Cutaneous administration system
US20030101076A1 (en) 2001-10-02 2003-05-29 Zaleski John R. System for supporting clinical decision making through the modeling of acquired patient medical information
US7822470B2 (en) 2001-10-11 2010-10-26 Osypka Medical Gmbh Method for determining the left-ventricular ejection time TLVE of a heart of a subject
US6738666B1 (en) 2001-11-01 2004-05-18 Pacesetter, Inc. Detection of orthostatic hypotension using positional data and cross-check data
JP2005507298A (ja) 2001-11-07 2005-03-17 ミルズ、アレキサンダー・ケー 生理学的特性を,非侵襲的に連続測定する方法
US6832113B2 (en) 2001-11-16 2004-12-14 Cardiac Pacemakers, Inc. Non-invasive method and apparatus for cardiac pacemaker pacing parameter optimization and monitoring of cardiac dysfunction
US7162306B2 (en) * 2001-11-19 2007-01-09 Medtronic Physio - Control Corp. Internal medical device communication bus
JP3709836B2 (ja) 2001-11-20 2005-10-26 コニカミノルタセンシング株式会社 血液成分測定装置
US20050101841A9 (en) 2001-12-04 2005-05-12 Kimberly-Clark Worldwide, Inc. Healthcare networks with biosensors
ATE282831T1 (de) 2001-12-04 2004-12-15 Brahms Ag Verfahren zur diagnose von sepsis unter bestimmung löslicher cytokeratinfragmente
EP1358106B1 (de) 2001-12-20 2004-06-02 Prospective Concepts AG Vorrichtung zum messen der atemfrequenz
IL147502A0 (en) 2002-01-07 2002-08-14 Widemed Ltd Self-adaptive system, for the analysis of biomedical signals of a patient
US6934570B2 (en) 2002-01-08 2005-08-23 Masimo Corporation Physiological sensor combination
US6822564B2 (en) 2002-01-24 2004-11-23 Masimo Corporation Parallel measurement alarm processor
CA2474123A1 (en) 2002-01-31 2003-08-07 Btg International Limited Venous pulse oximetry
CA2475726C (en) 2002-02-14 2010-02-09 Toshinori Kato Apparatus for evaluating biological function
WO2003071941A1 (en) 2002-02-22 2003-09-04 Datex-Ohmeda, Inc. Cepstral domain pulse oximetry
WO2003071939A1 (en) 2002-02-22 2003-09-04 Masimo Corporation Active pulse spectraphotometry
US7282368B2 (en) 2002-02-27 2007-10-16 Biomerieux, Inc. Method for diagnosing and monitoring hemostatic dysfunction, severe infection and systematic inflammatory response syndrome
AU2003208465A1 (en) 2002-03-01 2003-09-16 Terry Beaumont Ear canal sensing device
US7181264B2 (en) * 2002-03-12 2007-02-20 Sekos, Inc. Method and apparatus for noninvasive physiologic monitoring
GB0205771D0 (en) 2002-03-12 2002-04-24 Monitoring Tech Ltd Method and apparatus for the setting or adjustment of a cardiac pacemaker
US6863652B2 (en) 2002-03-13 2005-03-08 Draeger Medical Systems, Inc. Power conserving adaptive control system for generating signal in portable medical devices
US7022070B2 (en) 2002-03-22 2006-04-04 Mini-Mitter Co., Inc. Method for continuous monitoring of patients to detect the potential onset of sepsis
JP3916985B2 (ja) 2002-03-26 2007-05-23 株式会社日立メディコ 生体光計測装置
DE10213692B4 (de) 2002-03-27 2013-05-23 Weinmann Diagnostics Gmbh & Co. Kg Verfahren zur Steuerung einer Vorrichtung und Vorrichtung zur Messung von Inhaltsstoffen im Blut
US7465555B2 (en) * 2002-04-02 2008-12-16 Becton, Dickinson And Company Early detection of sepsis
US20080009689A1 (en) * 2002-04-09 2008-01-10 Benaron David A Difference-weighted somatic spectroscopy
AUPS214502A0 (en) 2002-05-06 2002-06-06 Uscom Pty Ltd Blood flow oxygen measurement
US6690958B1 (en) * 2002-05-07 2004-02-10 Nostix Llc Ultrasound-guided near infrared spectrophotometer
JP2005537041A (ja) 2002-05-13 2005-12-08 スコット・ラボラトリーズ・インコーポレイテッド 医療手法中のトランスペアレントな早期検出、警告、および介入のシステムおよび方法
US20080200775A1 (en) 2007-02-20 2008-08-21 Lynn Lawrence A Maneuver-based plethysmographic pulse variation detection system and method
US6711425B1 (en) 2002-05-28 2004-03-23 Ob Scientific, Inc. Pulse oximeter with calibration stabilization
FI20025029A0 (fi) 2002-05-29 2002-05-29 Joni Kettunen Menetelmä luotettavan hengitysaktiviteetti-informaation saamiseksi sydämen sykemittauksesta
US20040128163A1 (en) * 2002-06-05 2004-07-01 Goodman Philip Holden Health care information management apparatus, system and method of use and doing business
US6909912B2 (en) 2002-06-20 2005-06-21 University Of Florida Non-invasive perfusion monitor and system, specially configured oximeter probes, methods of using same, and covers for probes
US7024235B2 (en) 2002-06-20 2006-04-04 University Of Florida Research Foundation, Inc. Specially configured nasal pulse oximeter/photoplethysmography probes, and combined nasal probe/cannula, selectively with sampler for capnography, and covering sleeves for same
US20050001728A1 (en) * 2003-06-27 2005-01-06 Appelt Daren R. Equipment and method for identifying, monitoring and evaluating equipment, environmental and physiological conditions
AU2003281207A1 (en) 2002-07-04 2004-01-23 Dainippon Pharmaceutical Co., Ltd. Electrocardiogram analysis device and method thereof
WO2004006748A2 (en) 2002-07-15 2004-01-22 Itamar Medical Ltd. Body surface probe, apparatus and method for non-invasively detecting medical conditions
US20070225614A1 (en) 2004-05-26 2007-09-27 Endothelix, Inc. Method and apparatus for determining vascular health conditions
US6733464B2 (en) * 2002-08-23 2004-05-11 Hewlett-Packard Development Company, L.P. Multi-function sensor device and methods for its use
US6869402B2 (en) 2002-08-27 2005-03-22 Precision Pulsus, Inc. Method and apparatus for measuring pulsus paradoxus
US7828739B2 (en) 2002-08-27 2010-11-09 Precision Pulsus, Inc. Apnea detection system
US20050247311A1 (en) 2002-09-16 2005-11-10 Charles Vacchiano Reduced-oxygen breathing device
AU2003282491B2 (en) 2002-10-03 2008-09-11 Scott Laboratories, Inc. Neural networks in sedation and analgesia systems
US7539537B2 (en) 2002-10-03 2009-05-26 Scott Laboratories, Inc. Systems and methods for providing sensor fusion
JP2004121668A (ja) 2002-10-04 2004-04-22 Denso Corp 呼吸異常検出装置及び測定装置並びに呼吸異常検出方法
EP1551279A1 (en) 2002-10-14 2005-07-13 Instrumentarium Corporation A method and an apparatus for pulse plethysmograph based detection of nociception during anaesthesia or sedation
MXPA05005031A (es) 2002-11-12 2005-11-17 Becton Dickinson Co Diagnostico de la sepsis o sirs usando perfiles de biomarcadores.
WO2004044554A2 (en) 2002-11-12 2004-05-27 Becton, Dickinson And Company Diagnosis of sepsis or sirs using biomarker profiles
CA2505785A1 (en) 2002-11-12 2004-05-27 Becton, Dickinson And Company Diagnosis of sepsis or sirs using biomarker profiles
US7027849B2 (en) 2002-11-22 2006-04-11 Masimo Laboratories, Inc. Blood parameter measurement system
JP4284674B2 (ja) 2003-01-31 2009-06-24 日本光電工業株式会社 血中吸光物質濃度測定装置
DE10304085A1 (de) * 2003-01-31 2004-08-12 Günther, Andreas Anordnung und Verfahren zur Durchführung einer Magnetfeldtherapie
WO2004069046A1 (en) 2003-02-05 2004-08-19 Philips Intellectual Property & Standards Gmbh Finger medical sensor
JP4526532B2 (ja) 2003-02-27 2010-08-18 ネルコア ピューリタン ベネット アイルランド 信号の解析及び処理方法
US8251912B2 (en) 2003-03-12 2012-08-28 Yale University Method of assessing blood volume using photoelectric plethysmography
US20040183683A1 (en) * 2003-03-19 2004-09-23 Fuji Photo Film Co., Ltd. Medical support system and medical support apparatus
US6947780B2 (en) 2003-03-31 2005-09-20 Dolphin Medical, Inc. Auditory alarms for physiological data monitoring
US20080082018A1 (en) 2003-04-10 2008-04-03 Sackner Marvin A Systems and methods for respiratory event detection
AU2004229488B2 (en) 2003-04-10 2011-07-14 Adidas Ag Systems and methods for respiratory event detection
US7865233B2 (en) 2003-04-11 2011-01-04 Cardiac Pacemakers, Inc. Subcutaneous cardiac signal discrimination employing non-electrophysiologic signal
US7218966B2 (en) 2003-04-11 2007-05-15 Cardiac Pacemakers, Inc. Multi-parameter arrhythmia discrimination
US20040215244A1 (en) * 2003-04-23 2004-10-28 Marcovecchio Alan F. Processing pulse signal in conjunction with ECG signal to detect pulse in external defibrillation
JP2006514570A (ja) 2003-05-06 2006-05-11 エヴェレスト バイオメディカル インストルメンツ 麻酔および鎮静監視のシステムおよび方法
KR100571811B1 (ko) 2003-05-09 2006-04-17 삼성전자주식회사 귀속형 생체 신호 측정 장치
IL155955A0 (en) 2003-05-15 2003-12-23 Widemed Ltd Adaptive prediction of changes of physiological/pathological states using processing of biomedical signal
US20040249299A1 (en) 2003-06-06 2004-12-09 Cobb Jeffrey Lane Methods and systems for analysis of physiological signals
US6918878B2 (en) 2003-06-13 2005-07-19 Ge Medical Systems Information Technologies, Inc. Methods and systems for monitoring respiration
US7190995B2 (en) 2003-06-13 2007-03-13 The Regents Of The University Of Michigan System and method for analysis of respiratory cycle-related EEG changes in sleep-disordered breathing
US7047056B2 (en) 2003-06-25 2006-05-16 Nellcor Puritan Bennett Incorporated Hat-based oximeter sensor
US7367949B2 (en) 2003-07-07 2008-05-06 Instrumentarium Corp. Method and apparatus based on combination of physiological parameters for assessment of analgesia during anesthesia or sedation
JP4326866B2 (ja) 2003-07-17 2009-09-09 帝人株式会社 急性増悪の発生予測方法
US7188621B2 (en) 2003-08-04 2007-03-13 Pulmonetic Systems, Inc. Portable ventilator system
US8118024B2 (en) 2003-08-04 2012-02-21 Carefusion 203, Inc. Mechanical ventilation system utilizing bias valve
US7951129B2 (en) * 2003-08-07 2011-05-31 Medtronic, Inc. Diastolic coronary perfusion detection for timed delivery of therapeutic and/or diagnostic agents
ATE429681T1 (de) 2003-08-20 2009-05-15 Koninkl Philips Electronics Nv System und verfahren zur erkennung von signalartefakten
WO2005020798A2 (en) 2003-08-27 2005-03-10 Datex-Ohmeda, Inc. Multi-domain motion estimation and plethysmographic recognition using fuzzy neural-nets
US7254431B2 (en) 2003-08-28 2007-08-07 Masimo Corporation Physiological parameter tracking system
US7353054B2 (en) 2003-09-11 2008-04-01 Hitachi Medical Corporation Optical measurement apparatus for living body
US20060287590A1 (en) 2003-09-18 2006-12-21 Mceowen Edwin L Noninvasive vital sign measurement device
WO2005030048A1 (en) 2003-09-23 2005-04-07 The Research Foundation Of State University Of New York Method for predicting apnea-hypopnea index from overnight pulse oximetry readings
US8086323B2 (en) 2003-09-23 2011-12-27 Medtronic Minimed, Inc. Implantable multi-parameter sensing system and method
EP1673465A4 (en) 2003-09-29 2008-04-30 Biosite Inc PROCESS AND COMPOSITIONS FOR SEPSIS DIAGNOSIS
US8467876B2 (en) 2003-10-15 2013-06-18 Rmx, Llc Breathing disorder detection and therapy delivery device and method
US7373193B2 (en) 2003-11-07 2008-05-13 Masimo Corporation Pulse oximetry data capture system
JP4474145B2 (ja) 2003-11-12 2010-06-02 株式会社日立メディコ 光計測装置
US7802571B2 (en) 2003-11-21 2010-09-28 Tehrani Fleur T Method and apparatus for controlling a ventilator
US20050113709A1 (en) 2003-11-24 2005-05-26 Titanium Ventures Inc. Diagnostic system and methods for detecting disorders in the respiratory control chemoreceptors
US20050113651A1 (en) 2003-11-26 2005-05-26 Confirma, Inc. Apparatus and method for surgical planning and treatment monitoring
JP4751338B2 (ja) 2003-12-30 2011-08-17 ユニバーシティ オブ フロリダ リサーチファウンデーション インコーポレイティッド 新規で特殊構成の鼻用パルスオキシメータ
EP1706025B1 (en) 2003-12-30 2012-05-09 University of Florida Research Foundation, Inc. Novel specially configured nasal pulse oximeter
JP3928051B2 (ja) 2004-01-14 2007-06-13 独立行政法人情報通信研究機構 心理状態評価装置
US7421296B1 (en) 2004-01-26 2008-09-02 Pacesetter, Inc. Termination of respiratory oscillations characteristic of Cheyne-Stokes respiration
CA2555807A1 (en) 2004-02-12 2005-08-25 Biopeak Corporation Non-invasive method and apparatus for determining a physiological parameter
US20050181354A1 (en) 2004-02-18 2005-08-18 Estep Preston W.Iii Methods of assaying physiological states
JP2005237472A (ja) 2004-02-24 2005-09-08 七臣 ▲苅▼尾 血圧測定装置
DE102004009952B4 (de) 2004-03-01 2011-06-01 Sirs-Lab Gmbh Verfahren zur Erkennung von Sepsis
US7277741B2 (en) 2004-03-09 2007-10-02 Nellcor Puritan Bennett Incorporated Pulse oximetry motion artifact rejection using near infrared absorption by water
US7387608B2 (en) 2004-04-06 2008-06-17 David A Dunlop Apparatus and method for the treatment of sleep related disorders
US20050228248A1 (en) 2004-04-07 2005-10-13 Thomas Dietiker Clip-type sensor having integrated biasing and cushioning means
CA2464029A1 (en) 2004-04-08 2005-10-08 Valery Telfort Non-invasive ventilation monitor
US20080051764A1 (en) * 2004-04-19 2008-02-28 Board Of Regents, The University Of Texas System Physiological Monitoring With Continuous Treatment
US7056292B2 (en) 2004-04-30 2006-06-06 Ge Medical Systems Information Technologies, Inc. System and method of monitoring systolic pressure variation
US20050251054A1 (en) 2004-05-10 2005-11-10 Medpond, Llc Method and apparatus for measurement of autonomic nervous system function
WO2005110215A2 (en) 2004-05-10 2005-11-24 Meddorna, Llc Method and apparatus for processing respiration data and assessing autonomic function
US20070208269A1 (en) 2004-05-18 2007-09-06 Mumford John R Mask assembly, system and method for determining the occurrence of respiratory events using frontal electrode array
GB0412315D0 (en) * 2004-06-03 2004-07-07 Chemcept Ltd Blood/air mass exchange apparatus
US7407485B2 (en) 2004-06-08 2008-08-05 Instrumentarium Corporation Monitoring pain-related responses of a patient
US7551950B2 (en) * 2004-06-29 2009-06-23 O2 Medtech, Inc,. Optical apparatus and method of use for non-invasive tomographic scan of biological tissues
US7447541B2 (en) 2004-06-30 2008-11-04 Instrumentarium Corporation Monitoring subcortical responsiveness of a patient
US7343186B2 (en) * 2004-07-07 2008-03-11 Masimo Laboratories, Inc. Multi-wavelength physiological monitor
US7013898B2 (en) 2004-07-09 2006-03-21 Praxair Technology, Inc. Nasal pressure sensor oxygen therapy device
US20060042638A1 (en) 2004-08-31 2006-03-02 Niklewski Paul J Apparatus for delivering oxygen to a patient undergoing a medical procedure
CN103083768B (zh) 2004-10-06 2016-07-06 瑞思迈有限公司 用于非侵入性监测睡眠紊乱呼吸中呼吸参数的方法和设备
JP2006115948A (ja) 2004-10-19 2006-05-11 Hitachi Ltd 血糖値測定装置
US7428520B2 (en) 2004-11-15 2008-09-23 Becton, Dickinson And Company Graphical user interface for use with open expert system
US7578793B2 (en) 2004-11-22 2009-08-25 Widemed Ltd. Sleep staging based on cardio-respiratory signals
US20060229822A1 (en) 2004-11-23 2006-10-12 Daniel Theobald System, method, and software for automated detection of predictive events
GB0426982D0 (en) 2004-12-09 2005-01-12 Secr Defence Early detection of sepsis
US20060137577A1 (en) 2004-12-23 2006-06-29 Chang Walter H System and method for controlling a tilt table
US20060157647A1 (en) 2005-01-18 2006-07-20 Becton, Dickinson And Company Multidimensional liquid chromatography/spectrometry
EP1848336A4 (en) 2005-02-07 2009-11-11 Widemed Ltd DETECTION AND MONITORING OF STRESS EVENTS DURING SLEEP
US7930015B2 (en) 2005-02-14 2011-04-19 Hebah Noshy Mansour Methods and sensors for monitoring internal tissue conditions
EP1860990B1 (en) 2005-03-01 2018-09-19 Masimo Laboratories, Inc. Multiple wavelength sensor equalization
US8423116B2 (en) 2005-03-16 2013-04-16 Or-Nim Medical Ltd. Noninvasive measurements in a human body
US8715193B2 (en) 2005-03-24 2014-05-06 General Electric Company Determination of the clinical state of a subject
US7635337B2 (en) 2005-03-24 2009-12-22 Ge Healthcare Finland Oy Determination of clinical stress of a subject in pulse oximetry
US7925338B2 (en) 2005-03-24 2011-04-12 General Electric Company Determination of the anesthetic state of a patient
EP1877774A4 (en) 2005-03-25 2011-01-12 Cnoga Holdings Ltd OPTICAL SENSOR DEVICE AND IMAGE PROCESSING UNIT FOR MEASURING CHEMICAL CONCENTRATIONS, CHEMICAL SATURATIONS AND BIOPHYSICAL PARAMETERS
US7548771B2 (en) 2005-03-31 2009-06-16 Nellcor Puritan Bennett Llc Pulse oximetry sensor and technique for using the same on a distal region of a patient's digit
AU2006236588A1 (en) 2005-04-15 2006-10-26 Becton, Dickinson And Company Diagnosis of sepsis
US20060235726A1 (en) 2005-04-18 2006-10-19 Lotmax Paraison System and method for pharmaceutical item and prescription management
US7785262B2 (en) 2005-04-25 2010-08-31 University Of Florida Research Foundation, Inc. Method and apparatus for diagnosing respiratory disorders and determining the degree of exacerbations
WO2006126152A1 (en) 2005-05-24 2006-11-30 Koninklijke Philips Electronics N.V. Glucose sensor
US8021299B2 (en) * 2005-06-01 2011-09-20 Medtronic, Inc. Correlating a non-polysomnographic physiological parameter set with sleep states
US8070677B2 (en) 2005-06-09 2011-12-06 Koninklijke Philips Electronics N.V. Method and apparatus for distinguishing between clinically significant changes and artifacts in patient physiological information
US8574156B2 (en) * 2005-07-05 2013-11-05 General Electric Company Determination of the clinical state of a subject
US20070027369A1 (en) * 2005-07-28 2007-02-01 Guido Pagnacco Apparatus and methods for assessing human physical performance
KR100725580B1 (ko) 2005-07-28 2007-06-08 연세대학교 산학협력단 동적 외란을 가진 이동 생체 신호의 전송과 아티팩트 보상시스템
US20070037873A1 (en) * 2005-08-08 2007-02-15 Zurier Robert B Airway remodeling treatments
US7460909B1 (en) 2005-08-16 2008-12-02 Pacesetter, Inc. Implantable device for monitoring hemodynamic profiles
JP4747297B2 (ja) 2005-08-24 2011-08-17 国立大学法人鳥取大学 健康診断用の自己組織化マップ、その表示装置及び表示方法並びに健康診断用の自己組織化マップの表示プログラム
US20070073361A1 (en) 2005-09-23 2007-03-29 Bioq, Inc. Medical device for restoration of autonomic and immune functions impaired by neuropathy
US7536214B2 (en) 2005-10-26 2009-05-19 Hutchinson Technology Incorporated Dynamic StO2 measurements and analysis
US20090207790A1 (en) 2005-10-27 2009-08-20 Qualcomm Incorporated Method and apparatus for settingtuneawaystatus in an open state in wireless communication system
JP5238507B2 (ja) 2005-10-31 2013-07-17 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 臨床ワークフロー管理及び意思決定システム及び方法
US8485978B2 (en) 2006-01-17 2013-07-16 The Trustees Of Dartmouth College Systems and methods for noninvasively monitoring baroreflex response and nominal blood volume
US7706852B2 (en) 2006-01-30 2010-04-27 Nellcor Puritan Bennett Llc System and method for detection of unstable oxygen saturation
US7668579B2 (en) 2006-02-10 2010-02-23 Lynn Lawrence A System and method for the detection of physiologic response to stimulation
US8208983B2 (en) 2006-02-27 2012-06-26 Hutchinson Technology Incorporated Clinical applications of StO2 analysis
US20070225606A1 (en) 2006-03-22 2007-09-27 Endothelix, Inc. Method and apparatus for comprehensive assessment of vascular health
EP1844743A3 (en) 2006-04-14 2007-10-31 Bio Sleep Med Co., Ltd. Apparatus for preventing sleeping respiratory obstruction
US7558674B1 (en) 2006-04-24 2009-07-07 Wsi, Corporation Weather severity and characterization system
US7846106B2 (en) 2006-04-26 2010-12-07 The General Electric Company Atrial fibrillation detection using SPO2
US8306624B2 (en) 2006-04-28 2012-11-06 Medtronic, Inc. Patient-individualized efficacy rating
US7941199B2 (en) * 2006-05-15 2011-05-10 Masimo Laboratories, Inc. Sepsis monitor
GB0610078D0 (en) 2006-05-20 2006-06-28 Secr Defence Sepsis detection microarray
US20080064965A1 (en) 2006-09-08 2008-03-13 Jay Gregory D Devices and methods for measuring pulsus paradoxus
US8521243B2 (en) 2007-01-17 2013-08-27 Hitachi, Ltd. Biological optical measurement instrument
US20080177163A1 (en) 2007-01-19 2008-07-24 O2 Medtech, Inc. Volumetric image formation from optical scans of biological tissue with multiple applications including deep brain oxygenation level monitoring
US20080183083A1 (en) 2007-01-31 2008-07-31 Markowitz H Toby Systems and methods for monitoring effectiveness of congestive heart failure therapy
CA2677257A1 (en) 2007-02-02 2008-08-14 Ken M. Brady A method and system for determining a cerebrovascular autoregulation state of a patient
US7846104B2 (en) 2007-02-08 2010-12-07 Heart Force Medical Inc. Monitoring physiological condition and detecting abnormalities
US20080195322A1 (en) 2007-02-12 2008-08-14 The Board Of Regents Of The University Of Texas System Quantification of the Effects of Perturbations on Biological Samples
WO2008117338A1 (en) 2007-03-22 2008-10-02 Aqumen Biopharmaceuticals K.K. Oxygen consumption measurement system and diagnostic system
US20080235049A1 (en) * 2007-03-23 2008-09-25 General Electric Company Method and System for Predictive Modeling of Patient Outcomes
US20080269832A1 (en) 2007-04-26 2008-10-30 The Hong Kong Polytechnic University Device and method for sleep apnea management using SpO2
US7806832B2 (en) 2007-04-30 2010-10-05 The General Electric Company False positive reduction in SPO2 atrial fibrillation detection using average heart rate and NIBP
US8585607B2 (en) 2007-05-02 2013-11-19 Earlysense Ltd. Monitoring, predicting and treating clinical episodes
JP5275340B2 (ja) 2007-05-08 2013-08-28 シー・アール・バード・インコーポレーテッド 多電極位置データを用いた迅速な3dマッピング
US20080305464A1 (en) 2007-06-05 2008-12-11 Lawrence Allan Lynn Apparatus and method for the simulation of the adverse cardiovascular effects of dynamic hyperinflation
US9529972B2 (en) 2007-09-24 2016-12-27 Medtronic, Inc. Patient event indication
US8527296B2 (en) 2007-09-26 2013-09-03 Fujifilm Corporation Medical information processing system, medical information processing method, and computer readable medium
WO2009043144A1 (en) 2007-10-03 2009-04-09 Ottawa Health Research Institute Method and apparatus for monitoring physiological parameter variability over time for one or more organs
US8139225B2 (en) 2007-10-24 2012-03-20 Siemens Medical Solutions Usa, Inc. System for processing patient monitoring power and data signals
EP2234535A1 (en) * 2007-12-26 2010-10-06 Nellcor Puritan Bennett LLC Historical trend icons for physiological parameters
JP4788927B2 (ja) 2007-12-26 2011-10-05 日本光電工業株式会社 モニタリングネットワークシステム
US20090187082A1 (en) 2008-01-21 2009-07-23 Cuddihy Paul E Systems and methods for diagnosing the cause of trend shifts in home health data
US8275553B2 (en) 2008-02-19 2012-09-25 Nellcor Puritan Bennett Llc System and method for evaluating physiological parameter data
US8365730B2 (en) * 2008-03-24 2013-02-05 Covidien Lp Method and system for classification of photo-plethysmographically detected respiratory effort
KR101766473B1 (ko) 2008-03-26 2017-08-23 테라노스, 인코포레이티드 임상 결과를 평가하기 위한 방법 및 시스템
US8669113B2 (en) 2008-04-03 2014-03-11 Becton, Dickinson And Company Advanced detection of sepsis
AU2009244200B2 (en) 2008-05-07 2012-10-18 Lawrence A. Lynn Medical failure pattern search engine
US8439835B1 (en) 2008-06-30 2013-05-14 Bruce A. McKinley System and method for diagnosis and management of sepsis
US8203438B2 (en) * 2008-07-29 2012-06-19 Masimo Corporation Alarm suspend system
US8398555B2 (en) 2008-09-10 2013-03-19 Covidien Lp System and method for detecting ventilatory instability
US20100070888A1 (en) 2008-09-13 2010-03-18 Mark Watabe Device and method for graphical user interface having time based visualization and manipulation of data
KR20110090919A (ko) 2008-10-10 2011-08-10 카디오배스큘러 디시젼 테크놀로지스, 인코포레이티드 위험 평가 및 진단을 위해 적용된 복잡성 과학 및 전문 지식을 사용한 의료 데이터의 자동 관리
EP2376923A4 (en) 2008-12-22 2012-08-15 Children S Res Inst SEPSIE DETECTION METHOD
US10426906B2 (en) 2009-03-18 2019-10-01 Mayo Foundation For Medical Education And Research Ventilator monitoring and control
US20110009760A1 (en) * 2009-07-10 2011-01-13 Yi Zhang Hospital Readmission Alert for Heart Failure Patients
CN102625915B (zh) 2009-07-14 2014-12-31 独立行政法人产业技术综合研究所 糖蛋白的测定方法、试剂及糖链标记物
WO2011023961A1 (en) 2009-08-28 2011-03-03 Naylor, Matthew J. Relational thermorespirometer spot vitals monitor
EP2494364A1 (en) 2009-10-29 2012-09-05 Tethys Bioscience, Inc. Protein and lipid biomarkers providing consistent improvement to the prediction of type 2 diabetes
US8527449B2 (en) 2009-11-05 2013-09-03 Mayo Foundation For Medical Education And Research Sepsis monitoring and control
ES2539854T3 (es) 2010-03-02 2015-07-06 F. Hoffmann-La Roche Ag Diagnóstico y predicción precoces basados en la detección de IL-6 del síndrome de respuesta inflamatoria sistémica y sepsis en pacientes asintomáticos
US20120220845A1 (en) 2011-02-28 2012-08-30 Nellcor Puritan Bennett Llc Shock or sepsis early detection method and system
US9436645B2 (en) 2011-10-13 2016-09-06 Masimo Corporation Medical monitoring hub
EP2779892A4 (en) 2011-11-14 2015-08-26 Eric N Lynn PROCESSOR FOR IMPROVING PATTERN PATTERN TO ITERATIVE TIME SERIES
US9480435B2 (en) 2012-02-09 2016-11-01 Masimo Corporation Configurable patient monitoring system
US9195385B2 (en) 2012-03-25 2015-11-24 Masimo Corporation Physiological monitor touchscreen interface
US9953453B2 (en) 2012-11-14 2018-04-24 Lawrence A. Lynn System for converting biologic particle density data into dynamic images
US10354429B2 (en) 2012-11-14 2019-07-16 Lawrence A. Lynn Patient storm tracker and visualization processor
US20140180722A1 (en) 2012-11-14 2014-06-26 Lawrence A. Lynn Time Lapsable Motion Image Responsive to Features of Pathophysiologic Perturbations

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05266002A (ja) * 1992-03-19 1993-10-15 Hitachi Ltd 臓器組織間ネットワークによる病状予測システム
JP2002312472A (ja) * 2001-01-24 2002-10-25 Siemens Medical Solutions Usa Inc 医療情報システム及び医療情報システムによって使用される方法
JP2004145853A (ja) * 2002-05-31 2004-05-20 Siemens Medical Solution Health Services Corp ヘルスケア外来診療関連情報を監視するためのシステム
JP2006519626A (ja) * 2002-12-17 2006-08-31 カーディアック ペースメーカーズ,インコーポレイティド インプラント型医療装置向け通信用リピータ装置

Also Published As

Publication number Publication date
JP5474937B2 (ja) 2014-04-16
US20090281838A1 (en) 2009-11-12
US10354753B2 (en) 2019-07-16
WO2009137682A1 (en) 2009-11-12
CA2722773C (en) 2015-07-21
AU2009244200B2 (en) 2012-10-18
JP2014075154A (ja) 2014-04-24
CA2722773A1 (en) 2009-11-12
EP2283443A1 (en) 2011-02-16
AU2009244200A1 (en) 2009-11-12
US20130218600A1 (en) 2013-08-22
US20160378952A9 (en) 2016-12-29

Similar Documents

Publication Publication Date Title
JP5474937B2 (ja) 医療障害パターン検索エンジン
JP5694178B2 (ja) 患者安全プロセッサ
US11404145B2 (en) Medical machine time-series event data processor
US9898513B2 (en) System, method and computer program for multi-dimensional temporal and relative data mining framework, analysis and sub-grouping
US10943692B1 (en) System and method for generating quaternary images of biologic force propagation and recovery
KR20210113299A (ko) 대화형 유연한 데이터 제시를 위한 시스템 및 방법
US11751821B2 (en) Systems and methods of advanced warning for clinical deterioration in patients
CN105792731A (zh) 患者护理监督系统和方法
JP2015504555A (ja) 病態生理学的嵐トラッカー
JP2014520335A (ja) 評価システム及び評価方法
CN109074871A (zh) 用于分析临床数据特征生成患者群组的模式发现可视分析系统
Blum et al. Specificity improvement for network distributed physiologic alarms based on a simple deterministic reactive intelligent agent in the critical care environment
Brankovic et al. Elucidating discrepancy in explanations of predictive models developed using emr
Pushpa et al. Threshold alarm algorithm for in-patient monitoring system
US20230360780A1 (en) Generating information indicative of an interaction
WO2024032129A1 (zh) 一种医疗设备及其显示处理方法
Baig Smart monitoring systems for alert generation during anaesthesia

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120827

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20121120

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20121128

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20121225

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20130107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130624

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20130920

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20130930

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20131022

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20131029

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20131122

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20131129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140205

R150 Certificate of patent or registration of utility model

Ref document number: 5474937

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees