JP2011515221A5 - - Google Patents

Download PDF

Info

Publication number
JP2011515221A5
JP2011515221A5 JP2011502059A JP2011502059A JP2011515221A5 JP 2011515221 A5 JP2011515221 A5 JP 2011515221A5 JP 2011502059 A JP2011502059 A JP 2011502059A JP 2011502059 A JP2011502059 A JP 2011502059A JP 2011515221 A5 JP2011515221 A5 JP 2011515221A5
Authority
JP
Japan
Prior art keywords
catalyst system
metal
oxide
monolith
oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011502059A
Other languages
Japanese (ja)
Other versions
JP2011515221A (en
Filing date
Publication date
Priority claimed from US12/240,170 external-priority patent/US20090246109A1/en
Priority claimed from US12/363,310 external-priority patent/US9403151B2/en
Priority claimed from US12/363,329 external-priority patent/US20100196217A1/en
Application filed filed Critical
Priority claimed from PCT/US2009/038403 external-priority patent/WO2010002486A2/en
Publication of JP2011515221A publication Critical patent/JP2011515221A/en
Publication of JP2011515221A5 publication Critical patent/JP2011515221A5/ja
Pending legal-status Critical Current

Links

Description

本明細書におけるドープされたOS材料は、実質的に相純粋な立方晶のフルオライト構造を含有するZrO2/CeO2固溶体に基づくものであって、卑金属、即ち非貴金属の特定のイオン交換により生成される。適切な材料の範囲及びイオン交換の実施に関する全詳細は、米国特許出願第12/363,310号及び第12/363,329号に記載されている。イオン交換の様式は、化学的に塩基性の条件、即ち、高pH、即ち高OH-/低ヒドロニウム(H3+)又はプロトン(H+)含有率の条件下での固溶体への活性金属/カチオンの導入を本質的に含む。前記方法において、酸性の金属溶液の溶液は、例えばpH8.0〜9.5の高いpHを有するアンモニア性塩基(水酸化アンモニウムを基礎とした溶液)の添加によって化学的に塩基性の形に変換されうる。前述の研究において示されるように、得られた材料は、酸性金属、例えば金属硝酸塩の従来の含浸により実現されるいかなる促進とも対照的に高活性及び水熱耐久性を示すが、ここで結果として生じる非活性化を伴う新しい材料におけるバルク酸化物相の形成及びかかる酸化物相の急激な焼結が基準である。金属イオンによるCe−ZrOx格子内のCe3+不足部位に存在するH+種の提案された交換は、酸化物マトリックス内で高分散での特定の一価イオン、例えばK+、二価イオン、例えばCu2+、三価イオン、例えばFe3+、より高い原子価のイオンの組み込み及び安定化を可能にする。しかるに組み込まれる卑金属の選択は、特に興味深く、触媒的に重要な反応に活性であることが知られている酸化物に基づく。特定の触媒的に重要性のある金属としては、Ag、Cu、Co、Mn、Fe、アルカリ金属、アルカリ土類金属、遷移金属、車両排出の従来の操作窓内の条件下でN2のその後の分解及び還元を受け得る安定した硝酸塩を形成することが知られている他の金属又は半金属が挙げられる。「遷移金属」という用語は、元素の周期律表の第3〜12族における38の元素を指す。 The doped OS material herein is based on a ZrO 2 / CeO 2 solid solution containing a substantially phase-pure cubic fluorite structure, which is based on specific ion exchange of base metals, ie non-noble metals. Generated. Full details regarding the scope of suitable materials and performing ion exchange are described in US patent application Ser. Nos. 12 / 363,310 and 12 / 363,329. The mode of ion exchange is the active metal to solid solution under chemically basic conditions, ie high pH, ie high OH / low hydronium (H 3 O + ) or proton (H + ) content. / Essentially including the introduction of cations. In the above method, the solution of the acidic metal solution is converted into a chemically basic form by adding an ammoniacal base (a solution based on ammonium hydroxide) having a high pH, for example, pH 8.0-9.5. Can be done. As shown in the previous study, the resulting material exhibits high activity and hydrothermal durability in contrast to any enhancement achieved by conventional impregnation of acidic metals, such as metal nitrates, but here as a result The basis is the formation of the bulk oxide phase in the new material with the resulting deactivation and the rapid sintering of such oxide phase. The proposed exchange of H + species present at Ce 3+ deficient sites in the Ce-ZrOx lattice by metal ions is due to the specific monovalent ions, eg K + , divalent ions, highly dispersed in the oxide matrix, For example, Cu 2+ , trivalent ions such as Fe 3+ , allowing the incorporation and stabilization of higher valence ions. The selection of the base metals that are incorporated, however, is based on oxides that are particularly interesting and known to be active in catalytically important reactions. Certain catalytically important metals include Ag, Cu, Co, Mn, Fe, alkali metals, alkaline earth metals, transition metals, N 2 after the conditions in conventional operating windows of vehicle emissions. Other metals or metalloids known to form stable nitrates that can undergo decomposition and reduction of The term “transition metal” refers to the 38 elements in Groups 3-12 of the Periodic Table of Elements.

本発明の一実施態様によれば、前記触媒は、CDPF又はディーゼルNOx微粒子トラップの標準構成に適合しないので、交互チャネルを有する多孔質基材を含まない。むしろ、触媒の好ましい構成は、活性触媒ウォシュコートが配置される、単位面積につき高ユニットセル数の従来の「フロースルー型」モノリスとしてのものである。高内部表面積及び乱流堆積メカニズムとの活性ウォシュコートの組み合わせは、ディーゼル/圧縮点火車両の従来の作動温度及びフローの下での保持及び連続微粒子酸化を容易にするのに十分である。本発明の実施態様は、従って以下である:
本発明は、内燃エンジンのオフガス中の粒子状物質の直接触媒酸化用触媒系に関し、前記系は、前記粒子状物質の直接低温酸化のための活性酸化触媒配合物が被覆された標準的フロースルー型モノリス装置を含み、前記活性触媒が、その中に配置される活性レドックス酸化物を含有する。前記触媒系は、前記モノリスが、1平方インチにつき900超のセルを有するフロースルー型モノリスである。前記触媒系は、前記モノリスが、1平方インチにつき600超のセルを有するフロースルー型モノリスである。前記触媒系は、前記モノリスが、1平方インチにつき400超のセルを有するフロースルー型モノリスである。前記モノリスが、排気流において乱流フローを導入することが可能な金属モノリスである前記触媒系。前記モノリスが、高度に蛇行する性質の流路を示す金属発泡体又はセラミック発泡体である前記触媒系。前記触媒系が耐火性酸化物である前記触媒系。前記触媒系がセリウムを含有する前記触媒系。前記酸化物が、セリウム及びジルコニウム酸化物(Ce−Zr酸化物)の固溶体の形態のセリウム酸化物である前記触媒系。前記酸化物が、酸素イオン伝導特性を有する(従来のXRD法により測定される通りの)実質的に相純粋な立方晶のフルオライトの固溶体であり、且つ、
a.約95%以下のジルコニウム
b.約95%以下のセリウム
c.希土類、イットリウム、及びそれらの混合物から成る群から選択される約20%以下の安定剤
を含むCe−Zr酸化物の固溶体の形態のセリウム酸化物である前記触媒系。前記触媒系が、遷移金属、アルカリ金属、アルカリ土類金属及びIIIb族金属から成る群から選択される1種以上の卑金属ドーパント種の導入により更に改質される実質的に相純粋な立方晶のフルオライトの固溶体である前記触媒系。前記レドックス酸化物が、高ph/低ヒドロニウムイオン(H 3 + )/低プロトン(H + )含有率の条件下で、溶解されたカチオンの前駆体溶液をレドックス活性材料に接触させることにより生成される立方晶のフルオライトの固溶体を含有する、卑金属をドープしたセリウムである前記触媒系。前記卑金属が、金属カチオンの水酸化アンモニウム/アンモニア錯体によりレドックス活性酸化物に導入される前記触媒系。前記卑金属が、金属カチオンの有機アミン錯体によりレドックス酸化物に導入される前記触媒系。前記卑金属が、金属カチオンの水酸化化合物によりレドックス酸化物に導入される前記触媒系。前記導入される金属種の濃度が、約0.01質量%〜約10質量%である前記触媒系。前記導入される金属種の濃度が、最も好ましくは0.1質量%〜約2.5質量%である前記触媒系。前記卑金属をドープした固溶体が、従来のXRD法による相解析が実質的に相純粋な立方晶のフルオライト相(95%超)を保持するように高レベルの分散度で金属を含有し、バルク金属酸化物ドーパント相が5%未満で記録され、線幅の広がり/シェラーの式の方法により測定されるドーパント金属酸化物の粒径が約30A〜約100Aである前記触媒系。前記卑金属をドープした前記固溶体が、XRDによる相解析により、促進された材料が1100℃での水熱酸化エージングの後で少なくとも95%の立方晶のフルオライト相を維持することが明らかにされるように高レベルの分散度で金属を含有する前記触媒系。前記卑金属をドープした前記固溶体が、XRDによる相解析により、促進された材料が1100℃での水熱酸化エージングの後で少なくとも99%の立方晶のフルオライト相を維持することが明らかにされるように高レベルの分散度で金属を含有する前記触媒系。前記触媒系とハウジングとを含む、すすの直接触媒酸化用装置であって、連続的なすす酸化が約100〜約650℃の温度で起きる前記装置。前記触媒系が白金族金属を含まない、前記すすの直接触媒酸化用触媒系。白金族金属を更に含む、前記すすの直接触媒酸化用触媒系。前記白金族金属が、白金、パラジウム、ロジウム及びそれらの混合物から成る群から選択される、前記すすの直接触媒酸化用触媒系。更なる担体又は結合剤としてAl 2 3 、改質Al 2 3 、SiO 2 、ZrO 2 又はそれらの組み合わせ或いは他の適切な耐火性酸化物を更に含有する単層のウォシュコートとして前記モノリス上に配置される触媒活性なウォシュコートを更に含む、前記すすの直接触媒酸化用触媒系。担体又は結合剤として実質的にAl 2 3 、改質Al 2 3 、SiO 2 、ZrO 2 、それらの組み合わせ或いは他の適切な耐火性酸化物を含有する第1層と、卑金属をドープした混合酸化物を含む活性酸化触媒配合物を含む第2層とを有する2つ以上の層で前記モノリス上に配置される触媒活性なウォシュコートを更に含む、前記すすの直接触媒酸化用触媒系。前記触媒系上に排出ガスを通過させる工程を含む排出ガスの処理方法。金属カチオンの水酸化アンモニウム/アンモニア錯体の化学的塩基状態下で固溶体中への活性金属/カチオンの導入によって、又は金属カチオンの有機アミン錯体によって、又は金属カチオンの水酸化化合物によって、実質的に純粋な立方晶のフルオライト構造を含むCeZeOx固溶体に基づくレドックス活性材料中に卑金属を導入する工程
を含む、請求項1から20までのいずれか1項に記載のすすの直接触媒酸化のための触媒系を製造する方法。前記方法によって得られる酸化触媒。
According to one embodiment of the present invention, the catalyst does not include a porous substrate with alternating channels because it does not meet the standard configuration of CDPF or diesel NOx particulate traps. Rather, the preferred configuration of the catalyst is as a conventional “flow-through” monolith with a high unit cell count per unit area on which the active catalyst washcoat is placed. The combination of an active washcoat with a high internal surface area and turbulent deposition mechanism is sufficient to facilitate retention under a conventional operating temperature and flow and continuous particulate oxidation of a diesel / compression ignition vehicle. Embodiments of the present invention are therefore:
The present invention relates to a catalyst system for direct catalytic oxidation of particulate matter in off-gas of an internal combustion engine, the system comprising a standard flow-through coated with an active oxidation catalyst formulation for direct low temperature oxidation of the particulate matter. Wherein the active catalyst contains an active redox oxide disposed therein. The catalyst system is a flow-through monolith where the monolith has more than 900 cells per square inch. The catalyst system is a flow-through monolith in which the monolith has more than 600 cells per square inch. The catalyst system is a flow-through monolith in which the monolith has more than 400 cells per square inch. The catalyst system, wherein the monolith is a metal monolith capable of introducing a turbulent flow in the exhaust stream. The catalyst system, wherein the monolith is a metal foam or ceramic foam showing a highly serpentine channel. The catalyst system, wherein the catalyst system is a refractory oxide. The catalyst system wherein the catalyst system contains cerium. The catalyst system, wherein the oxide is cerium oxide in the form of a solid solution of cerium and zirconium oxide (Ce-Zr oxide). The oxide is a solid solution of substantially phase pure cubic fluorite (as measured by a conventional XRD method) having oxygen ion conduction properties; and
a. Less than about 95% zirconium
b. Less than 95% cerium
c. About 20% or less of the stabilizer selected from the group consisting of rare earths, yttrium, and mixtures thereof.
Said catalyst system is a cerium oxide in the form of a solid solution of Ce-Zr oxide containing. The catalyst system is a substantially phase-pure cubic crystal that is further modified by the introduction of one or more base metal dopant species selected from the group consisting of transition metals, alkali metals, alkaline earth metals, and Group IIIb metals. The catalyst system is a solid solution of fluorite. The redox oxide is obtained by contacting a dissolved cation precursor solution with a redox active material under conditions of high ph / low hydronium ion (H 3 O + ) / low proton (H + ) content. The catalyst system comprising cerium doped with a base metal, containing a solid solution of cubic fluorite produced. The catalyst system wherein the base metal is introduced into the redox active oxide by an ammonium hydroxide / ammonia complex of a metal cation. The catalyst system wherein the base metal is introduced into the redox oxide by an organic amine complex of a metal cation. The catalyst system wherein the base metal is introduced into the redox oxide by a hydroxide compound of a metal cation. The catalyst system wherein the concentration of the metal species introduced is about 0.01% to about 10% by weight. The catalyst system wherein the concentration of the introduced metal species is most preferably from 0.1% to about 2.5% by weight. The base metal-doped solid solution contains metal at a high level of dispersion such that the conventional XRD phase analysis retains a substantially phase-pure cubic fluorite phase (> 95%), bulk The catalyst system wherein the metal oxide dopant phase is recorded at less than 5% and the particle size of the dopant metal oxide is about 30A to about 100A as measured by the line broadening / Scherrer formula method. The base solution doped solid solution reveals by XRD phase analysis that the promoted material maintains at least 95% cubic fluorite phase after hydrothermal oxidation aging at 1100 ° C. Such a catalyst system containing metal at a high level of dispersion. The solid solution doped with the base metal reveals that the promoted material maintains at least 99% cubic fluorite phase after hydrothermal aging at 1100 ° C. by phase analysis by XRD Such a catalyst system containing metal at a high level of dispersion. An apparatus for direct catalytic oxidation of soot comprising the catalyst system and a housing, wherein the continuous soot oxidation occurs at a temperature of about 100 to about 650 ° C. The catalyst system for direct catalytic oxidation of soot, wherein the catalyst system does not contain a platinum group metal. The catalyst system for direct catalytic oxidation of soot, further comprising a platinum group metal. The catalyst system for direct catalytic oxidation of soot, wherein the platinum group metal is selected from the group consisting of platinum, palladium, rhodium and mixtures thereof. On the monolith as a single-layer washcoat further containing Al 2 O 3 , modified Al 2 O 3 , SiO 2 , ZrO 2 or combinations thereof or other suitable refractory oxides as further support or binder The catalytic system for direct catalytic oxidation of soot, further comprising a catalytically active washcoat disposed in A first layer containing essentially Al 2 O 3 , modified Al 2 O 3 , SiO 2 , ZrO 2 , combinations thereof or other suitable refractory oxides as a support or binder , and base metal doped The catalytic system for direct catalytic oxidation of soot, further comprising a catalytically active washcoat disposed on the monolith in two or more layers having a second layer comprising an active oxidation catalyst formulation comprising a mixed oxide. An exhaust gas treatment method comprising a step of passing exhaust gas over the catalyst system. Substantially pure by introduction of an active metal / cation into a solid solution under the chemical base state of an ammonium hydroxide / ammonia complex of a metal cation, or by an organic amine complex of a metal cation, or by a hydroxide compound of a metal cation. Of introducing a base metal into a redox active material based on a CeZeOx solid solution containing a unique cubic fluorite structure
21. A process for producing a catalyst system for direct catalytic oxidation of soot according to any one of claims 1 to 20. An oxidation catalyst obtained by the method.

b)すす蓄積の間のガス環境:図2、4、5及び6に示される通りの充填サイクル中の両方において触媒性能に対する反応性ガス化学作用の明らかな影響があり、更に、昇温反応バーンアウトプロトコルに対するTPOの対照から明らかなように、ガス雰囲気の性質が再生に影響することを認めることができる(図5、8、10、13、14、16及び18a/b)。この影響は、熱伝達及び触媒活性の組み合わせに起因する。ある熱伝達成分は、反応性ガス混合気内の著しいレベルの燃料成分、主にCO及びHCの燃焼から生じる活性触媒の外部加熱により生じる。このエネルギーは、ウォシュコート内で保持され、それにより、予想床温より熱くなると認められ、従って、触媒すす酸化に対する活性化エネルギー障壁の克服が促進される。第2の複合熱伝達及び触媒活性成分は、CO酸化過程への関与から生じるレドックス酸化物の活性化から生じる。ドープされたセリウム酸化物は、PGMの非存在下でも効果的な酸化触媒であり、低温でのCO酸化を容易にすることができることが示されている(PCT/US2009/038398)。それを行う際、触媒Oイオン輸送機能が活性化され、CO酸化の活性部位でエネルギーが放出される。枯渇した酸素の後続の再酸化は、すす酸化を開始するためにOSを更に装填する意味でOSの構造物全体に亘って分配される更なる発熱をもたらす。このメカニズムは、より完全な説明が明らかにされ得るUS2005/0282698A1の基礎の部分を形成する。 b) Gas environment during soot accumulation: there is a clear influence of reactive gas chemistry on the catalyst performance both during the filling cycle as shown in FIGS. It can be seen that the nature of the gas atmosphere affects the regeneration, as is evident from the TPO control over the out protocol (Figures 5, 8, 10, 13, 14, 16 and 18a / b). This effect is due to a combination of heat transfer and catalytic activity. Some heat transfer components are caused by external heating of the active catalyst resulting from combustion of significant levels of fuel components in the reactive gas mixture, primarily CO and HC. This energy is retained within the washcoat, and is thereby recognized to be hotter than the expected bed temperature, thus facilitating overcoming the activation energy barrier to catalytic soot oxidation. The second combined heat transfer and catalytically active component results from redox oxide activation resulting from participation in the CO oxidation process. It has been shown that doped cerium oxide is an effective oxidation catalyst even in the absence of PGM and can facilitate CO oxidation at low temperatures ( PCT / US2009 / 038398 ). In doing so, the catalytic O ion transport function is activated and energy is released at the active site of CO oxidation. Subsequent reoxidation of the depleted oxygen results in further exotherm being distributed throughout the OS structure in the sense of further loading the OS to initiate soot oxidation. This mechanism forms the basis of US 2005/0282698 A1 where a more complete description can be revealed.

Claims (29)

内燃エンジンのオフガス中の粒子状物質の直接触媒酸化用触媒系であって、前記系が、前記粒子状物質の直接低温酸化のための活性酸化触媒配合物が被覆された標準的フロースルー型モノリス装置を含み、前記活性触媒が、その中に配置される活性レドックス酸化物を含有する、触媒系。   Standard flow-through monolith for direct catalytic oxidation of particulate matter in off-gas of an internal combustion engine, the system coated with an active oxidation catalyst formulation for direct low temperature oxidation of the particulate matter A catalyst system comprising an apparatus, wherein the active catalyst contains an active redox oxide disposed therein. モノリスが、1平方インチにつき900超のセルを有するフロースルー型モノリスである、請求項1に記載の触媒系。   The catalyst system of claim 1, wherein the monolith is a flow-through monolith having more than 900 cells per square inch. モノリスが、1平方インチにつき600超のセルを有するフロースルー型モノリスである、請求項1に記載の触媒系。   The catalyst system of claim 1 wherein the monolith is a flow-through monolith having more than 600 cells per square inch. モノリスが、1平方インチにつき400超のセルを有するフロースルー型モノリスである、請求項1に記載の触媒系。   The catalyst system of claim 1 wherein the monolith is a flow-through monolith having more than 400 cells per square inch. モノリスが、排気流において乱流フローを導入することが可能な金属モノリスである、請求項1に記載の触媒系。   The catalyst system of claim 1, wherein the monolith is a metal monolith capable of introducing turbulent flow in the exhaust stream. モノリスが、高度に蛇行する性質の流路を示す金属発泡体又はセラミック発泡体である、請求項1に記載の触媒系。   The catalyst system according to claim 1, wherein the monolith is a metal foam or ceramic foam exhibiting a highly serpentine channel. 触媒系が耐火性酸化物である、請求項1から6までのいずれか1項に記載の触媒系。 7. The catalyst system according to any one of claims 1 to 6 , wherein the catalyst system is a refractory oxide. 触媒系がセリウムを含有する、請求項1から7までのいずれか1項に記載の触媒系。 8. The catalyst system according to any one of claims 1 to 7 , wherein the catalyst system contains cerium. 酸化物が、セリウム及びジルコニウム酸化物(Ce−Zr酸化物)の固溶体の形態のセリウム酸化物である、請求項1から8までのいずれか1項に記載の触媒系。 9. The catalyst system according to claim 1, wherein the oxide is cerium oxide in the form of a solid solution of cerium and zirconium oxide (Ce—Zr oxide). 酸化物が、酸素イオン伝導特性を有する(従来のXRD法により測定される通りの)実質的に相純粋な立方晶のフルオライトの固溶体であり、且つ、
a.約95%以下のジルコニウム
b.約95%以下のセリウム
c.希土類、イットリウム、及びそれらの混合物から成る群から選択される約20%以下の安定剤
を含むCe−Zr酸化物の固溶体の形態のセリウム酸化物である、請求項1から9までのいずれか1項に記載の触媒系。
The oxide is a solid solution of substantially phase-pure cubic fluorite (as measured by a conventional XRD method) with oxygen ion conduction properties; and
a. Up to about 95% zirconium b. About 95% or less of cerium c. Rare earth, yttrium, and cerium oxide in the form of a solid solution of Ce-Zr oxide containing about 20 percent of a stabilizer selected from the group consisting of mixtures thereof, any of claims 1 to 9 1 The catalyst system according to item.
触媒系が、遷移金属、アルカリ金属、アルカリ土類金属及びIIIb族金属から成る群から選択される1種以上の卑金属ドーパント種の導入により更に改質される実質的に相純粋な立方晶のフルオライトの固溶体である、請求項1から10までのいずれか1項に記載の触媒系。 The substantially phase-pure cubic fluorinated catalyst system is further modified by the introduction of one or more base metal dopant species selected from the group consisting of transition metals, alkali metals, alkaline earth metals and group IIIb metals. 11. The catalyst system according to any one of claims 1 to 10 , which is a solid solution of light. レドックス酸化物が、高ph/低ヒドロニウムイオン(H3+)/低プロトン(H+)含有率の条件下で、溶解されたカチオンの前駆体溶液をレドックス活性材料に接触させることにより生成される立方晶のフルオライトの固溶体を含有する、卑金属をドープしたセリウムである、請求項1から11までのいずれか1項に記載の触媒系。 A redox oxide is produced by contacting a dissolved cation precursor solution with a redox active material under conditions of high ph / low hydronium ion (H 3 O + ) / low proton (H + ) content 12. The catalyst system according to any one of claims 1 to 11 , which is a cerium doped with a base metal containing a solid solution of cubic fluorite. 卑金属が、金属カチオンの水酸化アンモニウム/アンモニア錯体によりレドックス活性酸化物に導入される、請求項12に記載の触媒系。   13. The catalyst system of claim 12, wherein the base metal is introduced into the redox active oxide by an ammonium hydroxide / ammonia complex of a metal cation. 卑金属が、金属カチオンの有機アミン錯体によりレドックス酸化物に導入される、請求項12に記載の触媒系。   The catalyst system according to claim 12, wherein the base metal is introduced into the redox oxide by an organic amine complex of a metal cation. 卑金属が、金属カチオンの水酸化化合物によりレドックス酸化物に導入される、請求項12に記載の触媒系。   The catalyst system according to claim 12, wherein the base metal is introduced into the redox oxide by a hydroxide compound of a metal cation. 導入される金属種の濃度が、約0.01質量%〜約10質量%である、請求項1から15までのいずれか1項に記載の触媒系。 The catalyst system according to any one of claims 1 to 15 , wherein the concentration of the metal species introduced is from about 0.01% to about 10% by weight. 導入される金属種の濃度が、最も好ましくは0.1質量%〜約2.5質量%である、請求項1から16までのいずれか1項に記載の触媒系。 The catalyst system according to any one of claims 1 to 16 , wherein the concentration of the metal species introduced is most preferably from 0.1% to about 2.5% by weight. 卑金属をドープした固溶体が、従来のXRD法による相解析が実質的に相純粋な立方晶のフルオライト相(95%超)を保持するように高レベルの分散度で金属を含有し、バルク金属酸化物ドーパント相が5%未満で記録され、線幅の広がり/シェラーの式の方法により測定されるドーパント金属酸化物の粒径が約30A〜約100Aである、請求項1から17までのいずれか1項に記載の触媒系。 The base metal-doped solid solution contains metal at a high level of dispersion so that the conventional XRD phase analysis retains a substantially phase-pure cubic fluorite phase (> 95%), bulk metal 18. The oxide of any of claims 1 to 17, wherein the oxide dopant phase is recorded at less than 5% and the dopant metal oxide particle size is measured from the line broadening / Scherrer formula method from about 30A to about 100A. A catalyst system according to claim 1 . 卑金属をドープした前記固溶体が、XRDによる相解析により、促進された材料が1100℃での水熱酸化エージングの後で少なくとも95%の立方晶のフルオライト相を維持することが明らかにされるように高レベルの分散度で金属を含有する、請求項1から18までのいずれか1項に記載の触媒系。 The solid solution doped with base metal reveals by XRD phase analysis that the promoted material maintains at least 95% cubic fluorite phase after hydrothermal oxidation aging at 1100 ° C. 19. The catalyst system according to any one of claims 1 to 18 , wherein the catalyst system contains a metal at a high level of dispersion. 卑金属をドープした前記固溶体が、XRDによる相解析により、促進された材料が1100℃での水熱酸化エージングの後で少なくとも99%の立方晶のフルオライト相を維持することが明らかにされるように高レベルの分散度で金属を含有する、請求項1から19までのいずれか1項に記載の触媒系。 The solid solution doped with base metal reveals by XRD phase analysis that the promoted material maintains at least 99% cubic fluorite phase after hydrothermal oxidation aging at 1100 ° C. 20. The catalyst system according to any one of claims 1 to 19 , wherein the catalyst system contains a metal at a high level of dispersion. 請求項1から20までのいずれか1項に記載の触媒系とハウジングとを含む、すすの直接触媒酸化用装置であって、連続的なすす酸化が約100〜約650℃の温度で起きる前記装置。 21. An apparatus for direct catalytic oxidation of soot comprising a catalyst system according to any one of claims 1 to 20 and a housing, wherein continuous soot oxidation occurs at a temperature of about 100 to about 650 ° C. apparatus. 触媒系が白金族金属を含まない、請求項1から20までのいずれか1項に記載のすすの直接触媒酸化用触媒系。 21. The catalytic system for direct catalytic oxidation of soot according to any one of claims 1 to 20 , wherein the catalytic system does not contain a platinum group metal. 白金族金属を更に含む、請求項1から20までのいずれか1項又は請求項22に記載のすすの直接触媒酸化用触媒系。 23. The catalyst system for direct catalytic oxidation of soot according to any one of claims 1 to 20 or claim 22 , further comprising a platinum group metal. 白金族金属が、白金、パラジウム、ロジウム及びそれらの混合物から成る群から選択される、請求項23に記載のすすの直接触媒酸化用触媒系。 24. The catalytic system for direct catalytic oxidation of soot according to claim 23 , wherein the platinum group metal is selected from the group consisting of platinum, palladium, rhodium and mixtures thereof. 更なる担体又は結合剤としてAl23、改質Al23、SiO2、ZrO2又はそれらの組み合わせ或いは他の適切な耐火性酸化物を更に含有する単層のウォシュコートとして前記モノリス上に配置される触媒活性なウォシュコートを更に含む、請求項23又は24に記載のすすの直接触媒酸化用触媒系。 On the monolith as a single-layer washcoat further containing Al 2 O 3 , modified Al 2 O 3 , SiO 2 , ZrO 2 or combinations thereof or other suitable refractory oxides as further support or binder 25. The catalytic system for direct catalytic oxidation of soot according to claim 23 or 24 , further comprising a catalytically active washcoat disposed in 担体又は結合剤として実質的にAl23、改質Al23、SiO2、ZrO2、それらの組み合わせ或いは他の適切な耐火性酸化物を含有する第1層と、卑金属をドープした混合酸化物を含む活性酸化触媒配合物を含む第2層とを有する2つ以上の層で前記モノリス上に配置される触媒活性なウォシュコートを更に含む、請求項23から25までのいずれか1項に記載のすすの直接触媒酸化用触媒系。 A first layer containing essentially Al 2 O 3 , modified Al 2 O 3 , SiO 2 , ZrO 2 , combinations thereof or other suitable refractory oxides as a support or binder, and base metal doped 26. Any one of claims 23-25 , further comprising a catalytically active washcoat disposed on the monolith in two or more layers having a second layer comprising an active oxidation catalyst formulation comprising a mixed oxide. A catalyst system for direct catalytic oxidation of soot as described in the paragraph . 請求項1から20までのいずれか1項に記載の触媒系上に排出ガスを通過させる工程を含む排出ガスの処理方法。 21. A method for treating exhaust gas, comprising a step of passing exhaust gas over the catalyst system according to any one of claims 1 to 20 . 以下、Less than,
金属カチオンの水酸化アンモニウム/アンモニア錯体の化学的塩基状態下で固溶体中への活性金属/カチオンの導入によって、又は金属カチオンの有機アミン錯体によって、又は金属カチオンの水酸化化合物によって、実質的に純粋な立方晶のフルオライト構造を含むCeZeOx固溶体に基づくレドックス活性材料中に卑金属を導入する工程Substantially pure by introduction of an active metal / cation into a solid solution under the chemical base state of an ammonium hydroxide / ammonia complex of the metal cation, or by an organic amine complex of the metal cation, or by a hydroxide compound of the metal cation. Of introducing a base metal into a redox active material based on a CeZeOx solid solution containing a unique cubic fluorite structure
を含む、請求項1から20までのいずれか1項に記載のすすの直接触媒酸化のための触媒系を製造する方法。21. A process for producing a catalyst system for direct catalytic oxidation of soot according to any one of claims 1 to 20.
請求項28に記載の方法によって得られる酸化触媒。An oxidation catalyst obtainable by the method according to claim 28.
JP2011502059A 2008-03-27 2009-03-26 Continuous diesel soot control with minimum back pressure penalty using conventional flow substrate and active direct soot oxidation catalyst placed on it Pending JP2011515221A (en)

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
US3987908P 2008-03-27 2008-03-27
US61/039,879 2008-03-27
US12/240,170 2008-09-29
US12/240,170 US20090246109A1 (en) 2008-03-27 2008-09-29 Solid solutions and methods of making the same
US12/363,310 US9403151B2 (en) 2009-01-30 2009-01-30 Basic exchange for enhanced redox OS materials for emission control applications
US12/363,329 2009-01-30
US12/363,310 2009-01-30
US12/363,329 US20100196217A1 (en) 2009-01-30 2009-01-30 Application of basic exchange os materials for lower temperature catalytic oxidation of particulates
PCT/US2009/038403 WO2010002486A2 (en) 2008-03-27 2009-03-26 Continuous diesel soot control with minimal back pressure penality using conventional flow substrates and active direct soot oxidation catalyst disposed thereon

Publications (2)

Publication Number Publication Date
JP2011515221A JP2011515221A (en) 2011-05-19
JP2011515221A5 true JP2011515221A5 (en) 2012-02-23

Family

ID=41466517

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2011502059A Pending JP2011515221A (en) 2008-03-27 2009-03-26 Continuous diesel soot control with minimum back pressure penalty using conventional flow substrate and active direct soot oxidation catalyst placed on it
JP2011501155A Withdrawn JP2011526198A (en) 2008-03-27 2009-03-27 Application of base exchange OS materials for low temperature catalytic oxidation of fine particles
JP2011501154A Pending JP2011526197A (en) 2008-03-27 2009-03-27 Basic exchange for enhanced redox OS materials for emission purification applications

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2011501155A Withdrawn JP2011526198A (en) 2008-03-27 2009-03-27 Application of base exchange OS materials for low temperature catalytic oxidation of fine particles
JP2011501154A Pending JP2011526197A (en) 2008-03-27 2009-03-27 Basic exchange for enhanced redox OS materials for emission purification applications

Country Status (6)

Country Link
EP (3) EP2259870A4 (en)
JP (3) JP2011515221A (en)
KR (3) KR20110008190A (en)
CN (3) CN102006923B (en)
BR (3) BRPI0909377A2 (en)
WO (4) WO2010002486A2 (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2276701A4 (en) * 2008-03-27 2017-11-08 Umicore AG & Co. KG Base metal and base metal modified diesel oxidation catalysts
KR20110008190A (en) * 2008-03-27 2011-01-26 우미코레 아게 운트 코 카게 Continuous diesel soot control with minimal back pressure penality using conventional flow substrates and active direct soot oxidation catalyst disposed thereon
US9403151B2 (en) 2009-01-30 2016-08-02 Umicore Ag & Co. Kg Basic exchange for enhanced redox OS materials for emission control applications
EP2335808B1 (en) * 2009-12-21 2015-06-03 Bernhard Kahlert NO2 Slip catalyst
US8017097B1 (en) * 2010-03-26 2011-09-13 Umicore Ag & Co. Kg ZrOx, Ce-ZrOx, Ce-Zr-REOx as host matrices for redox active cations for low temperature, hydrothermally durable and poison resistant SCR catalysts
US8529853B2 (en) 2010-03-26 2013-09-10 Umicore Ag & Co. Kg ZrOx, Ce-ZrOx, Ce-Zr-REOx as host matrices for redox active cations for low temperature, hydrothermally durable and poison resistant SCR catalysts
US9239019B2 (en) * 2012-01-26 2016-01-19 Ford Global Technologies, Llc Particulate matter retaining system
CN102854207A (en) * 2012-09-21 2013-01-02 兰州大学 Method for determining content of palygorskite in attapulgite clay
RU2502561C1 (en) * 2012-11-28 2013-12-27 Федеральное государственное бюджетное учреждение науки Институт металлургии и материаловедения им. А.А. Байкова Российской академии наук (ИМЕТ РАН) Method of preparing catalyst for purification of exhaust gases of combustion engines and catalyst obtained thereof
US8980209B2 (en) 2012-12-12 2015-03-17 Basf Corporation Catalyst compositions, catalytic articles, systems and processes using protected molecular sieves
PL2931423T3 (en) 2012-12-12 2022-01-31 Basf Corporation Method of making a catalytic article using large particle molecular sieves
US9266092B2 (en) 2013-01-24 2016-02-23 Basf Corporation Automotive catalyst composites having a two-metal layer
CN104415744B (en) * 2013-09-10 2016-08-31 湖南稀土金属材料研究院 The preparation method of polynary praseodymium based oxygen storage material Pr-Zr-Tb-Y-Sc
GB201401115D0 (en) 2014-01-23 2014-03-12 Johnson Matthey Plc Diesel oxidation catalyst and exhaust system
JP6700822B2 (en) * 2015-12-28 2020-05-27 昭和電工株式会社 Microporous layer and fuel cell using the same
WO2017150596A1 (en) * 2016-03-03 2017-09-08 国立大学法人京都大学 Multicomponent solid solution microparticles and method for producing same, and catalyst
US10159960B2 (en) * 2016-10-25 2018-12-25 GM Global Technology Operations LLC Catalysts with atomically dispersed platinum group metal complexes
CN111417452B (en) * 2018-01-08 2023-04-04 太平洋工业发展公司 Catalyst comprising a ceria-zirconia-oxygen storage material and method for producing the catalyst
CN108380198A (en) * 2018-02-07 2018-08-10 广州德隆宝环保科技有限公司 A kind of Zirconia composite nano-catalyst and preparation method thereof
CN111960464B (en) * 2020-08-28 2023-04-28 陕西科技大学 Black titanium dioxide optical nano material rich in oxygen vacancy defects and preparation method and application thereof
CN113477068B (en) * 2021-05-30 2023-05-16 中国人民解放军东部战区疾病预防控制中心 Preparation method and adding method of cigarette smoke active oxygen scavenger
DE102021125536A1 (en) 2021-10-01 2023-04-06 Umicore Ag & Co. Kg Catalytically active particle filter with high filtration efficiency
CN115805068B (en) * 2022-11-09 2023-11-24 太原理工大学 Multifunctional metal oxide catalyst KCeMn and preparation method and application thereof

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4902487A (en) 1988-05-13 1990-02-20 Johnson Matthey, Inc. Treatment of diesel exhaust gases
JP3144880B2 (en) * 1992-02-14 2001-03-12 ダイハツ工業株式会社 Method for producing three-way catalyst with excellent low-temperature activity
IN187850B (en) 1995-08-16 2002-07-06 Emitec Emissionstechnologie
JP3341973B2 (en) * 1995-12-07 2002-11-05 株式会社豊田中央研究所 Oxide solid solution particles and method for producing the same
JP3429967B2 (en) * 1997-02-10 2003-07-28 ダイハツ工業株式会社 Oxygen storage cerium-based composite oxide
US6458741B1 (en) * 1999-12-20 2002-10-01 Eltron Research, Inc. Catalysts for low-temperature destruction of volatile organic compounds in air
US6387338B1 (en) 2000-03-15 2002-05-14 Delphi Technologies, Inc. Preparation of multi-component Ce, Zr, Mox high oxygen-ion-conduct/oxygen-storage-capacity materials
US6468941B1 (en) 2000-10-17 2002-10-22 Delphi Technologies, Inc. Niobium containing zirconium-cerium based soild solutions
US6585944B1 (en) 2000-10-17 2003-07-01 Delphi Technologies, Inc. Enhancement of the OSC properties of Ce-Zr based solid solutions
JP3528839B2 (en) * 2002-05-15 2004-05-24 トヨタ自動車株式会社 Particulate oxidizer and oxidation catalyst
JP2004337840A (en) * 2003-03-17 2004-12-02 Umicore Ag & Co Kg Oxygen occluding material, manufacturing method of the oxygen occluding material and catalyst for clarifying exhaust gas of internal combustion engine
JP2005256804A (en) 2004-03-15 2005-09-22 Denso Corp Exhaust emission cleaning device for internal combustion engine
JP4432588B2 (en) * 2004-04-07 2010-03-17 株式会社豊田中央研究所 Catalyst and method for producing catalyst
JP2005296816A (en) * 2004-04-12 2005-10-27 Toyota Central Res & Dev Lab Inc Catalyst and its manufacturing method
US20050282698A1 (en) 2004-06-22 2005-12-22 Southward Barry W Particulate filter device and exhaust treatment system, and methods of regenerating the same
US7441403B2 (en) 2004-12-20 2008-10-28 Detroit Diesel Corporation Method and system for determining temperature set points in systems having particulate filters with regeneration capabilities
US7412822B2 (en) 2005-01-27 2008-08-19 Southwest Research Institute Regeneration control for diesel particulate filter for treating diesel engine exhaust
GB0501783D0 (en) * 2005-01-28 2005-03-09 Johnson Matthey Plc Catalysts and preparation method
GB0503818D0 (en) * 2005-02-25 2005-04-06 Johnson Matthey Plc Catalysts
JP4192915B2 (en) * 2005-05-18 2008-12-10 トヨタ自動車株式会社 PM purification apparatus and method
DE602006009675D1 (en) * 2005-08-05 2009-11-19 Basf Catalysts Llc N THEREFORE
US7469532B2 (en) 2005-09-22 2008-12-30 Gm Global Technology Operations, Inc. Diesel particulate filter (DPF) regeneration by electrical heating of resistive coatings
US8119075B2 (en) * 2005-11-10 2012-02-21 Basf Corporation Diesel particulate filters having ultra-thin catalyzed oxidation coatings
EP2000202A4 (en) * 2006-03-28 2011-05-18 Toyota Chuo Kenkyusho Kk Catalyst for purifying exhaust gas, method of regenerating the same, exhaust gas purification apparatus using the same and method of purifying exhaust gas
JP4775953B2 (en) * 2006-03-28 2011-09-21 株式会社豊田中央研究所 Exhaust gas purification catalyst and regeneration method thereof
JP5085176B2 (en) * 2006-04-07 2012-11-28 本田技研工業株式会社 Exhaust gas purification catalyst and exhaust gas purification device
JP2007301471A (en) * 2006-05-11 2007-11-22 Toyota Central Res & Dev Lab Inc Catalyst for cleaning exhaust gas
JP4826944B2 (en) * 2006-05-26 2011-11-30 株式会社豊田中央研究所 Diesel exhaust gas purification structure and exhaust gas purification method using the same
US7998423B2 (en) 2007-02-27 2011-08-16 Basf Corporation SCR on low thermal mass filter substrates
US7433776B1 (en) 2007-04-18 2008-10-07 International Engine Intellecutal Property Company, Llc System and method for quantizing fuel dilution of engine motor due to post-injection fueling to regenerate an exhaust aftertreatment device
KR20110008190A (en) * 2008-03-27 2011-01-26 우미코레 아게 운트 코 카게 Continuous diesel soot control with minimal back pressure penality using conventional flow substrates and active direct soot oxidation catalyst disposed thereon
EP2276701A4 (en) * 2008-03-27 2017-11-08 Umicore AG & Co. KG Base metal and base metal modified diesel oxidation catalysts

Similar Documents

Publication Publication Date Title
JP2011515221A5 (en)
JP5637980B2 (en) Base metal and base metal modified diesel oxidation catalyst
US7666375B2 (en) Method for catalytic reduction of nitrogen oxides
JP2011526198A (en) Application of base exchange OS materials for low temperature catalytic oxidation of fine particles
EP2098289B1 (en) Composite oxide for exhaust gas clean-up catalyst, exhaust gas clean-up catalyst, and diesel exhaust gas clean-up filter
US20100077727A1 (en) Continuous diesel soot control with minimal back pressure penatly using conventional flow substrates and active direct soot oxidation catalyst disposed thereon
WO2017163916A1 (en) Exhaust gas purifying catalyst and production method therefor, and exhaust gas purification device using same
Yi et al. Insight into catalytic activity of K-Ce catalysts and K-Ce based mixed catalysts on diesel soot combustion
WO2012037526A2 (en) Nitric oxide oxidation catalysts
US20120277094A1 (en) Catalyst support or catalyst, and process for producing the same
EP2094384A1 (en) Potassium oxide-incorporated alumina catalysts with enganced storage capacities of nitrogen oxide and a producing method therefor
EP1020405B1 (en) Alumina-based oxide material useful as NOx absorbent
JP4483348B2 (en) catalyst
JP5720558B2 (en) Exhaust gas purification catalyst
JP4254444B2 (en) Exhaust gas purification catalyst for internal combustion engine and method for producing the same
JP2006224086A (en) Catalyst carrier, its production method, and exhaust gas treatment catalyst
JP7262975B2 (en) Ceria-Zirconia Composite Oxygen Absorption-Desorption Material and Exhaust Gas Purification Catalyst
JP4194805B2 (en) Method for catalytic removal of nitrogen oxides and catalyst therefor
JP3770416B2 (en) Method for producing exhaust gas purification catalyst
JP4103407B2 (en) NOx storage reduction catalyst
JP2004209386A (en) Method and catalyst therefor for reducing nitrogen oxide catalytically
KR102618881B1 (en) Low-temperature NOx adsorbent with improved repeated adsorption performance and manufacturing method thereof
JP2010284597A (en) Diesel exhaust gas oxidation catalyst and diesel exhaust gas oxidation catalyst honeycomb structure
WO2021251000A1 (en) Ce-zr composite oxide and exhaust gas cleaning catalyst using same
JP5692594B2 (en) Exhaust gas purification catalyst