JP3770416B2 - Method for producing exhaust gas purification catalyst - Google Patents

Method for producing exhaust gas purification catalyst Download PDF

Info

Publication number
JP3770416B2
JP3770416B2 JP33862595A JP33862595A JP3770416B2 JP 3770416 B2 JP3770416 B2 JP 3770416B2 JP 33862595 A JP33862595 A JP 33862595A JP 33862595 A JP33862595 A JP 33862595A JP 3770416 B2 JP3770416 B2 JP 3770416B2
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
storage material
composite oxide
same manner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP33862595A
Other languages
Japanese (ja)
Other versions
JPH09173839A (en
Inventor
慎二 辻
健 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP33862595A priority Critical patent/JP3770416B2/en
Publication of JPH09173839A publication Critical patent/JPH09173839A/en
Application granted granted Critical
Publication of JP3770416B2 publication Critical patent/JP3770416B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は自動車などの排ガスを浄化する排ガス浄化用触媒の製造方法に関し、詳しくは製造時にNOx 吸蔵材の分散度が低下するのを防止した製造方法に関するものである。
【0002】
【従来の技術】
従来より、自動車の排ガス浄化用触媒として、CO及びHCの酸化とNOx の還元とを行って排ガスを浄化する三元触媒が用いられている。このような三元触媒としては、例えばコーディエライトなどからなる耐熱性基材にγ−アルミナからなる多孔質担体層を形成し、その多孔質担体層に白金(Pt)、ロジウム(Rh)などの触媒貴金属を担持させたものが広く知られている。また、酸素吸蔵能をもつセリア(セリウム酸化物)を併用し、低温活性を高めた三元触媒も知られている。
【0003】
一方、近年、地球環境保護の観点から、自動車などの内燃機関から排出される排ガス中の二酸化炭素(CO2 )が問題とされ、その解決策として酸素過剰雰囲気において希薄燃焼させるいわゆるリーンバーンが有望視されている。このリーンバーンにおいては、燃費が向上するために燃料の使用量が低減され、その結果燃焼排ガスであるCO2 の発生を抑制することができる。
【0004】
これに対し、従来の三元触媒は、空燃比が理論空燃比(ストイキ)において排ガス中のCO,HC,NOx を同時に酸化・還元し、浄化するものであって、リーンバーン時の排ガスの酸素過剰雰囲気下におけるNOx の還元除去に対しては充分な浄化性能を示さない。このため、酸素過剰雰囲気下においても効率よくNOx を浄化しうる触媒及び浄化システムの開発が望まれている。
【0005】
そこで本願出願人は、先にアルカリ土類金属とPtをアルミナなどの多孔質担体に担持した排ガス浄化用触媒(特開平5−317652号公報)や、ランタンとPtを多孔質担体に担持した排ガス浄化用触媒(特開平5−168860号公報)、あるいはアルカリ金属とPtとをアルミナ担体に担持した排ガス浄化用触媒(特開平6−31139号公報)を提案している。これらの排ガス浄化用触媒によれば、リーン側ではNOx がアルカリ土類金属の酸化物やランタンの酸化物に吸蔵され、それがストイキ又はリッチ側でHCやCOなどの還元性成分と反応するため、リーン側においてもNOx の浄化性能に優れている。
【0006】
また、これらの排ガス浄化用触媒を製造するには、アルミナなどの多孔質担体に先ず触媒貴金属化合物溶液を含浸させ、乾燥・焼成して触媒貴金属を担持する。次いで、NOx 吸蔵材化合物溶液を含浸させて乾燥・焼成し、NOx 吸収材を担持する、いわゆる吸水担持法が主流である。
ところで、排ガス規制の強化及びエンジンの高性能化などにより、排ガス浄化用触媒への入りガスの平均温度及び最高温度は近年ますます上昇する傾向にあり、排ガス浄化用触媒にはさらなる耐熱性の向上が望まれている。また入りガス温度の上昇に伴い、高温域におけるNOx 浄化性能の向上も望まれている。
【0007】
ところが従来の排ガス浄化用触媒では、高温域でNOx 吸蔵材と担体との反応が生じてNOx 吸蔵材のNOx 吸蔵能が低下するという問題がある。また従来の排ガス浄化用触媒では、最高浄化能を示す温度域(温度ウインドウ)が狭く、高温域でのNOx 浄化能を確保することが困難であった。
また、この排ガス浄化用触媒においては、燃料中に含まれる微量の硫黄に起因するSOx によるNOx 吸蔵材の被毒(硫酸塩の生成によるNOx 吸蔵能の低下)が生じ、その結果耐久性が低下してしまう。
【0008】
そして従来の触媒の製造方法では、吸水担持法によりNOx 吸蔵材が担持されているが、この方法ではNOx 吸蔵材の分散性が悪く、NOx 吸蔵材の分布が不均一となって担持濃度の高い部分を中心にNOx 吸蔵材の結晶化が進行し、その結果NOx 吸蔵能が低下してしまう。特に高温におけるNOx 浄化能は、NOx吸蔵材と担体との組合せやNOx 吸蔵材の分散度の影響が大きい。
【0009】
さらに、NOx 吸蔵材の分散性が悪いと、硫黄被毒により生成した硫酸塩の結晶が成長しやすく、その結果硫酸塩の脱離が一層困難となって耐久性が低下する。またアルカリ金属のNOx 吸蔵材は、従来技術であると担体表面に担持されているため、排ガス中の水蒸気により飛散や溶出が起こり易く耐久性が低い。
そこで本願出願人は、NOx 吸蔵材を触媒担体中に原子サイズで分散させた非晶質で均質な複合酸化物担体を開発した。この複合酸化物担体は、元素周期表の3B族、4A族及び4B族から選ばれる少なくとも1種の金属の酸化物と、アルカリ金属とアルカリ土類金属及び希土類元素の中から選ばれる少なくとも1種の元素の酸化物よりなるNOx 吸蔵材とからなり、酸化物とNOx 吸蔵材とは非晶質の複合酸化物を構成していることを特徴としている。
【0010】
そして、この複合酸化物担体を粉末とし、この担体粉末と貴金属を担持した別の粉末とを混合して排ガス浄化用触媒を形成することにより、NOx 浄化性能に優れ硫黄被毒も防止できる排ガス浄化用触媒を製造することができる。
しかし複合酸化物担体を用いて排ガス浄化用触媒を製造する場合、貴金属の担持法としては、ノウハウも確立され各種改良もなされた吸水担持法を利用するのが便利である。つまり、例えば白金を担持する場合、ジニトロジアミン白金硝酸水溶液を複合酸化物担体に吸水させ、それを乾燥・焼成することで白金を容易に担持させることができる。また吸水担持法によれば、高価な白金を排ガスと接触する担体表面に優先的に担持させることができ、白金のロスが低減されるという効果もある。
【0011】
【発明が解決しようとする課題】
複合酸化物担体を用いてハニカム形状の排ガス浄化用触媒を製造する場合、コージェライト質などのハニカム担体基材に複合酸化物担体のスラリーを付着させ、焼成して担体層を形成し、それをジニトロジアミン白金水溶液などに浸漬して吸水させ、乾燥・焼成して白金を担持する方法がある。
【0012】
ところがこの吸水担持法で白金を担持すると、複合酸化物担体中に均質分散しているNOx 吸蔵材が水溶液中に溶出し、NOx 吸蔵材の分散性が低下して耐熱性や耐硫黄被毒性が劣化するという不具合が生じることが明らかとなった。また例えばジニトロジアミン白金水溶液などにNOx 吸蔵材が溶出すると、水溶液がアルカリ性となり貴金属が担持されにくくなることもわかった。貴金属が必要量担持できないと、初期の三元活性、NOx 吸蔵能及び還元能が低下してしまう。
【0013】
例えばCsとAlの複合酸化物担体を各pHのアンモニア水に1時間浸漬した場合の浸漬前のpHと、Cs溶出率及び浸漬後のpHとの関係を図1に示す。このようにCsの溶出率はきわめて高く、それによってpHが増大していることがわかる。
本発明は上記事情に鑑みてなされたものであり、貴金属担持時の複合酸化物担体中のNOx 吸蔵材の溶出を防止するとともに高分散性を維持することで、触媒の耐熱性及び耐久性の低下を防止することを目的とする。
【0014】
【課題を解決するための手段】
上記課題を解決する本発明の排ガス浄化用触媒の製造方法の特徴は、NO x 吸蔵還元型の排ガス浄化用触媒の製造方法であって、多孔質担体にアルカリ金属とアルカリ土類金属及び希土類元素の中から選ばれる少なくとも1種の元素からなるNOx 吸蔵材が原子サイズで均質分散した非晶質の複合酸化物担体を調製する第1工程と、複合酸化物担体中に均質分散したNOx 吸蔵材が溶解しない溶剤に貴金属化合物が溶解又は分散された溶液に複合酸化物担体を浸漬し、複合酸化物担体に貴金属を1.2重量%以上10重量%以下の量で担持する第2工程と、よりなることにある。
【0015】
【発明の実施の形態】
本発明の製造方法では、先ず第1工程において多孔質担体にNOx 吸蔵材が原子サイズで均質分散した非晶質の複合酸化物担体が調製される。多孔質担体としては、アルミナ、チタニア、ジルコニア、シリカ、シリカ−アルミナ、シリカーチタニアなど、元素周期表の3B族、4A族及び4B族から選ばれる少なくとも1種の金属の酸化物あるいはゼオライトが例示される。
【0016】
またNOx 吸蔵材を構成する元素としては、アルカリ金属、アルカリ土類金属及び希土類元素から選ばれる少なくとも一種を用いることができる。アルカリ金属としてはリチウム、ナトリウム、カリウム、ルビジウム、セシウム、フランシウムが挙げられる。また、アルカリ土類金属とは周期表2A族元素をいい、バリウム、ベリリウム、マグネシウム、カルシウム、ストロンチウムが挙げられる。また希土類元素としては、スカンジウム、イットリウム、ランタン、セリウム、プラセオジム、ネオジムなどが例示される。
【0017】
多孔質担体にNOx 吸蔵材を均質に分散担持するには、多孔質担体を構成する酸化物ゾル溶液とNOx 吸蔵材化合物の溶液を混合し、それをゲル化させて多孔質担体とNOx 吸蔵材とからなる非晶質の複合酸化物担体を形成することが望ましい。この方法によれば、酸化物ゾルは比表面積が約500m2 /g以上の微細粒子からなり、その微細粒子表面にNOx 吸蔵材が分散されるので、NOx 吸蔵材はきわめて高分散される。またNOx 吸蔵材の結晶化する温度が高くなるため、十分な高温耐久性が維持される。
【0018】
なお、多孔質担体を構成する金属酸化物とNOx 吸蔵材の両方を金属アルコキシドとして供給し、いわゆるゾルゲル法にて製造しても、NOx 吸蔵材を高分散担持した複合酸化物担体を製造することができる。しかし金属アルコキシドは高価であり、ゾルゲル法では原料コストが多大となる。そこで酸化物ゾルを用いる上記方法によれば、ゾルゲル法に比べて安価に複合酸化物担体を製造することができる。
【0019】
NOx 吸蔵材の含有量は、多孔質担体100モルに対して1〜50モルが好ましく、8〜33モルの範囲が特に望ましい。含有量が1モルより少ないとNOx 吸蔵能力が小さくNOx 浄化性能が低下し、50モルを超えて含有しても、NOx 吸蔵能力が飽和すると同時にHCのエミッションが増加するなどの不具合が生じる。
【0020】
複合酸化物担体としては、多孔質担体としてのアルミナとNOx 吸蔵材としてのセシウム酸化物からなり、酸化セシウムと酸化アルミニウムのモル比が1/3≧Cs 2 /Al2 3 >1/90であって、結晶化しない温度で熱処理されたものを用いることが望ましい。Csは低温におけるNOx 吸蔵能に優れるばかりか、Alとの相互作用により400℃以上でも高いNOx 吸蔵能を示す。
【0021】
つまりCsは塩基性が強く、酸性のNOx と強固に結びつくためNOx 吸蔵能に優れる。そしてCsはBaなどと比べてアルミナと反応しずらいので、NOx 吸蔵能を長期間高く維持することができる。またCsはアルミナと複合酸化物を形成すると高い耐久性を示し、また硫黄被毒されても硫酸塩はCsとAlの複合硫酸塩として生成されるため、Baなどの場合に比べて硫酸塩の分解が容易であり脱離しやすい。
【0022】
そしてCsとAlの組成比を、モル比で1/3≧Cs 2 /Al2 3 >1/90の範囲とすることが好ましい。Csが多すぎる(1/3<Cs 2 /Al2 3 )と、NOx 吸蔵能は有するものの還元雰囲気におけるNOx の放出が不十分となり、比表面積が小さく耐熱性に不足する。またCsが少なくなる(Cs2 O/Al2 3 ≦1/90)と、高温において担体にシンタリングが生じ比表面積が低下したり、必要なNOx 吸蔵量を維持することが困難となる。したがってこの範囲とすることで、十分な耐熱性及び耐久性が得られる。
【0023】
Csを用いる場合には、Csの一部をCs以外のアルカリ金属、アルカリ土類金属、希土類元素及び遷移金属の中から選ばれる少なくとも1種の元素で置換することが望ましい。この置換元素は、Csより耐硫黄被毒性に一層優れているので、優れたNOx 浄化能と耐硫黄被毒性を両立することができる。例えばTiで置換すれば、Tiは酸性元素であるため硫酸塩の生成が防止される。またKやCaはAlとともに三元素複合硫酸塩を生成し、これは二元素の複合硫酸塩より分解温度が低いので硫黄被毒を一層速やかに解消することができる。
【0024】
本発明の特色をなす第2工程では、触媒担体中に均質分散したNOx 吸蔵材が溶解しない溶剤に貴金属化合物が溶解又は分散された触媒担体が浸漬され、触媒担体に貴金属が担持される。貴金属としては、白金(Pt)、ロジウム(Rh)、パラジウム(Pd)、銀(Ag)、金(Au)、イリジウム(Ir)などが例示される。
【0025】
触媒担体中に分散しているNOx 吸蔵材は、一般に水溶性である。したがってNOx 吸蔵材を溶解しない溶剤としては有機溶剤が選ばれる。有機溶剤中に少量の水が混入していてもよいが、多量の水が混入しているとNOx 吸蔵材が溶出するため好ましくない。許容できる水の混入量は、有機溶剤の種類及びNOx 吸蔵材の種類に応じて決められる。そして有機溶剤に溶解する貴金属化合物としては、例えば貴金属のビスアセチルアセトナト錯塩、貴金属のジカルボニルビストリフェニルホスフィン、貴金属のジフェニルビストリエチルホスフィンなどが例示され、中でもビスアセチルアセトナト錯塩が好適である。
【0026】
上記錯塩を溶解する有機溶剤としては各種のものがあるが、溶剤の粘性率が大きいと触媒担体への含浸が困難となり、また触媒担体への濡れ性も良好であることが望ましい。そこでアルコール類が推奨され、中でも特性が水に近く、NOx 吸蔵材が特に溶出しにくいイソプロピルアルコールが望ましい。なお、上記には貴金属化合物が溶解する例を示したが、貴金属化合物をコロイド状に分散した溶液に触媒担体を浸漬して貴金属を担持することも可能である。
【0027】
貴金属の触媒担体への担持量は、貴金属が1.2〜10重量%の範囲で任意に選択することができる。貴金属の担持量が1.2重量%より少ないとNOx 浄化性能が低下して実用的ではなく、10重量%より多く担持してもNOx 浄化性能が飽和するとともにコストの高騰を招く。
【0028】
【実施例】
以下、実施例及び比較例により本発明を具体的に説明する。
(実施例1)
(1)触媒担体の調製
酢酸セシウム16.0g及びアルミニウムトリイソプロポキシド153.3gをイソプロピルアルコール480mlに溶解した。この溶液を80℃で2時間還流攪拌した後、2,4−ペンタンジオン14.5g混合し、さらに3時間攪拌した。ここにイオン交換水84.0mlとイソプロピルアルコール100mlの混合溶液を80℃に保ちながら滴下した。そして80℃で5時間攪拌した後、減圧下120℃で加熱乾燥して白色粉末を得た。
【0029】
この粉末を大気中800℃で5時間焼成し、触媒担体粉末を調製した。この触媒担体粉末の比表面積は161m2 /gであり、X線回折の結果CsとAlとは複合酸化物担体を構成して、CsはAlに対して高分散されていた。なお、CsとAlとは、酸化物としてモル比でCs2 O/Al2 3 =1/9の割合で含まれている。
【0030】
(2)貴金属の担持
得られた触媒担体粉末の所定量をイソプロピルアルコールと混合し、そこへ白金源としてビスアセチルアセトナト白金[Pt(C5H7O2)2 ]の所定量をイソプロピルアルコールに溶解した溶液を添加して、1時間攪拌混合した。その後遠心分離により溶剤を分離し、沈殿物を室温から徐々に120℃まで昇温して乾燥し、次いで窒素雰囲気下で500℃に昇温して熱処理し触媒粉末を得た。この触媒粉末中のPtの担持量を化学分析(ICP)により測定し、計算値とともに表2に示す。また分散度をCO吸蔵装置により測定し、結果を表2に示す。
【0031】
上記触媒粉末とイソプロピルアルコールとを混合してスラリーを調製した。そしてハニカム形状のモノリス骨材をそのスラリーに浸漬し、引き上げて余分なスラリーを吹き払った後、120℃で乾燥し、500℃で熱処理して本実施例の排ガス浄化用触媒を得た。
(3)評価試験
得られた触媒をモデルガス耐久装置に装着し、表1に示すリーンモデルガスを4分間と、リッチモデルガスを1分間交互に流すのを、入りガス温度900℃、SV=5万hr-1で5時間行う耐久試験を行った。その後リーンモデルガスとリッチモデルガスをそれぞれ2分間ずつSV=10万hr-1で交互に流し、リーン時のNOx 浄化率を測定して熱処理後の浄化率とした。
【0032】
一方、触媒をモデルガス耐久装置に装着し、表1に示すSO2 を200ppm含む被毒処理ガスを400℃で30分間流通させて硫黄被毒処理を行った。その後上記と同様にしてリーン時のNOx 浄化率を測定し、硫黄被毒処理後のNOx 浄化率とした。また硫黄被毒処理後の触媒中の硫黄付着量を化学分析し、これらの結果を表2に示す。
【0033】
【表1】

Figure 0003770416
(実施例2)
実施例1で得られた触媒担体粉末を用い、白金源としてジカルボニルビストリフェニルホスフィン白金[Pt(CO)2(P(C6H5)3)2]を用いたこと以外は実施例1と同様にしてPtを担持した。Ptの担持量は1.2重量%である。
【0034】
得られた触媒粉末を用いて実施例1と同様に触媒化し、同様に評価試験を行った結果を表2に示す。
(実施例3)
実施例1で得られた触媒担体粉末を用い、白金源としてジフェニルビストリエチルホスフィン白金[Pt(C6H5)2(P(C2H5)3)2]を用いたこと以外は実施例1と同様にしてPtを担持した。Ptの担持量は1.2重量%である。
【0035】
得られた触媒粉末を用いて実施例1と同様に触媒化し、同様に評価試験を行った結果を表2に示す。
(実施例4)
ジ−i−プロポキシバリウムとアルミニウムトリイソプロポキシドを用いたこと以外は実施例1と同様にして、BaとAlを酸化物としてモル比でBaO/Al2 3 =1/3の割合で含む複合酸化物担体を調製した。
【0036】
そして実施例1と同様にしてPtを担持した後、ビスアセチルアセトナトロジウム[Rh(C5H7O2)2 ]をイソプロピルアルコールに溶解した溶液を用い、Ptの担持方法と同様にしてRhを担持した。Pt及びRhの担持量は、それぞれ1.2重量%と0.1重量%である。
得られた触媒粉末を用いて実施例1と同様に触媒化し、同様に評価試験を行った結果を表2に示す。
【0037】
(実施例5)
酢酸セシウムと、ジ−i−プロポキシバリウムとアルミニウムトリイソプロポキシドを用いたこと以外は実施例1と同様にして、CsとBa及びAlを酸化物としてモル比でCs2 O/BaO/Al2 3 =1/1/6の割合で含む複合酸化物担体を調製した。
【0038】
そしてビスアセチルアセトナトパラジウム( Pd(C5H7O2)2 )をイソプロピルアルコールに溶解した溶液を用いたこと以外は実施例1のPtの担持方法と同様にして、Pdを担持した。Pdの担持量は10重量%である。
得られた触媒粉末を用いて実施例1と同様に触媒化し、同様に評価試験を行った結果を表2に示す。
【0039】
(実施例6)
酢酸カリウムと、テトラ−i−プロポキシチタニウムとアルミニウムトリイソプロポキシドを用いたこと以外は実施例1と同様にして、KとTi及びAlを酸化物としてモル比でK2 O/TiO2 /Al2 3 =1/1/6の割合で含む複合酸化物担体を調製した。
【0040】
そして実施例1と同様にしてPtを担持した後、ビスアセチルアセトナトロジウム( Rh(C5H7O2)2 )を2ープロピルアルコールに溶解した溶液を用い、Ptの担持方法と同様にしてRhを担持した。Pt及びRhの担持量は、それぞれ2重量%と0.1重量%である。
得られた触媒粉末を用いて実施例1と同様に触媒化し、同様に評価試験を行った結果を表2に示す。
【0041】
(実施例7)
酢酸カリウムと、酢酸セリウムとアルミニウムトリイソプロポキシドを用いたこと以外は実施例1と同様にして、KとCe及びAlを酸化物としてモル比でK2 O/CeO2 /Al2 3 =2/1/12の割合で含む複合酸化物担体を調製した。
【0042】
そして実施例1と同様にPtを同量担持して同様に触媒化し、同様に評価試験を行った結果を表2に示す。
(比較例1)
実施例1で得られた触媒担体粉末の所定量を水と混合し、そこへ白金源としてビスアセチルアセトナト白金[Pt(C5H7O2)2 ]の所定量を添加したこと以外は実施例1と同様にしてPtを担持した。
【0043】
得られた触媒粉末を用いて実施例1と同様に触媒化し、同様に評価試験を行った結果を表2に示す。
(比較例2)
ジ−i−プロポキシバリウムとアルミニウムトリイソプロポキシドを用いたこと以外は実施例1と同様にして、BaとAlを酸化物としてモル比でBaO/Al2 3 =1/3の割合で含む複合酸化物担体を調製した。
【0044】
そして比較例1と同様にしてPtを担持した後、さらに水に混合しビスアセチルアセトナトロジウム[Rh(C5H7O2)2 ]を添加してPtの担持方法と同様にしてRhを担持した。Pt及びRhの担持量は、それぞれ計算値で1.2重量%と0.1重量%である。
得られた触媒粉末を用いて実施例1と同様に触媒化し、同様に評価試験を行った結果を表2に示す。
【0045】
(比較例3)
酢酸セシウムと、ジ−i−プロポキシバリウムとアルミニウムトリイソプロポキシドを用いたこと以外は実施例1と同様にして、CsとBa及びAlを酸化物としてモル比でCs2 O/BaO/Al2 3 =1/1/6の割合で含む複合酸化物担体を調製した。
【0046】
そして複合酸化物担体粉末を水に添加した後、ビスアセチルアセトナトパラジウム( Pd(C5H7O2)2 )を添加し、比較例1のPtの担持方法と同様にして、Pdを担持した。Pdの担持量は計算値で10重量%である。
得られた触媒粉末を用いて実施例1と同様に触媒化し、同様に評価試験を行った結果を表2に示す。
【0047】
(比較例4)
実施例1で得られた触媒担体粉末の所定量をイソプロピルアルコールと混合し、そこへ白金源としてジニトロジアミン白金硝酸水溶液を添加したこと以外は実施例1と同様にしてPtを担持した。Ptの担持量は計算値で1.2重量%である。
【0048】
得られた触媒粉末を用いて実施例1と同様に触媒化し、同様に評価試験を行った結果を表2に示す。
(比較例5)
ジ−i−プロポキシバリウムとアルミニウムトリイソプロポキシドを用いたこと以外は実施例1と同様にして、BaとAlを酸化物としてモル比でBaO/Al2 3 =1/3の割合で含む複合酸化物担体を調製した。
【0049】
この複合酸化物担体よりなる触媒担体粉末の所定量をイソプロピルアルコールと混合し、そこへ白金源としてジニトロジアミン白金硝酸水溶液を添加したこと以外は実施例1と同様にしてPtを担持した。また、Ptを担持した触媒担体粉末をイソプロピルアルコールと混合し、そこへ硝酸ロジウム水溶液を添加して同様にRhを担持した。Pt及びRhの担持量は、それぞれ計算値で1.2重量%及び0.1重量%である。
【0050】
得られた触媒粉末を用いて実施例1と同様に触媒化し、同様に評価試験を行った結果を表2に示す。
(比較例6)
酢酸カリウムと、酢酸セリウムとアルミニウムトリイソプロポキシドを用いたこと以外は実施例1と同様にして、KとCe及びAlを酸化物としてモル比でK2 O/CeO2 /Al2 3 =2/1/12の割合で含む複合酸化物担体を調製した。
【0051】
この複合酸化物担体よりなる触媒担体粉末の所定量をイソプロピルアルコールと混合し、そこへ白金源としてジニトロジアミン白金硝酸水溶液を添加したこと以外は実施例1と同様にしてPtを担持した。Ptの担持量は計算値で4重量%である。
得られた触媒粉末を用いて実施例1と同様に触媒化し、同様に評価試験を行った結果を表2に示す。
【0052】
【表2】
Figure 0003770416
【0053】
(評価)
表2より、比較例の製造方法で得られた排ガス浄化用触媒では、実施例に比べて熱処理後のNOx 浄化率が低く、耐熱性に劣っていることがわかる。また硫黄付着量が実施例に比べて高く、したがって硫黄被毒処理後のNOx 浄化率も低く、比較例で得られた排ガス浄化用触媒は耐硫黄被毒性にも劣っていることがわかる。
【0054】
一方、実施例の製造方法で得られた排ガス浄化用触媒では、耐熱性及び硫黄被毒性に優れ、NOx 吸蔵材の分散性が高く維持されていることが間接的に示されている。また貴金属担持量の計算値と実測値とが一致し、かつ貴金属は高い分散度を示していることから、実施例ではNOx 吸蔵材の溶出による不具合が回避されていることが明らかであり、これは貴金属を錯塩としてイソプロピルアルコールに溶解し、そこへ担体を浸漬して水を用いずに担持させた効果であることが明らかである。
【0055】
【発明の効果】
すなわち本発明の製造方法によれば、NOx 吸蔵材の溶出による不具合がなく、均質かつ高い分散度でNOx 吸蔵材が含まれた排ガス浄化用触媒を確実に製造することができる。さらに吸水担持法(水は用いない)を利用して貴金属を担持しても、貴金属は担持が阻害されることなく高い分散度で担持される。したがって耐熱性及び耐硫黄被毒性に優れた排ガス浄化用触媒を、容易にかつ安定して製造することができる。
【図面の簡単な説明】
【図1】Cs−Al複合酸化物担体を各pHのアンモニア水に浸漬したときのCs溶出量と溶液のpHを示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing an exhaust gas purifying catalyst for purifying exhaust gas from automobiles and the like, and more particularly to a production method that prevents a decrease in the degree of dispersion of NO x storage material during production.
[0002]
[Prior art]
Conventionally, a three-way catalyst that purifies exhaust gas by oxidizing CO and HC and reducing NO x has been used as an exhaust gas purification catalyst for automobiles. As such a three-way catalyst, for example, a porous carrier layer made of γ-alumina is formed on a heat-resistant substrate made of cordierite or the like, and platinum (Pt), rhodium (Rh) or the like is formed on the porous carrier layer. A catalyst on which a catalyst noble metal is supported is widely known. Also known is a three-way catalyst that uses ceria (cerium oxide) having an oxygen storage capacity and has improved low-temperature activity.
[0003]
On the other hand, in recent years, from the viewpoint of protecting the global environment, carbon dioxide (CO 2 ) in exhaust gas discharged from internal combustion engines such as automobiles has been a problem, and so-called lean burn that makes lean combustion in an oxygen-excess atmosphere is promising as a solution. Is being viewed. In this lean burn, since the fuel consumption is improved, the amount of fuel used is reduced, and as a result, the generation of CO 2 as combustion exhaust gas can be suppressed.
[0004]
In contrast, conventional three-way catalyst, the air-fuel ratio is CO in the exhaust gas, HC, and NO x simultaneously oxidized and reduced at the theoretical air-fuel ratio (stoichiometric), there is for purifying, during the lean-burn exhaust gas It does not show sufficient purification performance for NO x reduction and removal under an oxygen-excess atmosphere. For this reason, development of a catalyst and a purification system capable of efficiently purifying NO x even in an oxygen-excess atmosphere is desired.
[0005]
Accordingly, the applicant of the present application previously described an exhaust gas purifying catalyst (Japanese Patent Laid-Open No. 5-317852) in which an alkaline earth metal and Pt are supported on a porous carrier such as alumina, or an exhaust gas in which lanthanum and Pt are supported on a porous carrier. A purifying catalyst (JP-A-5-168860) or an exhaust gas-purifying catalyst (JP-A-6-31139) in which an alkali metal and Pt are supported on an alumina carrier is proposed. According to these exhaust gas purification catalysts, NO x is occluded in the alkaline earth metal oxide or lanthanum oxide on the lean side, and it reacts with reducing components such as HC and CO on the stoichiometric or rich side. Therefore, it is excellent in purification performance of the NO x even in the lean side.
[0006]
In order to produce these exhaust gas-purifying catalysts, a porous carrier such as alumina is first impregnated with a catalyst noble metal compound solution, dried and calcined to carry the catalyst noble metal. Next, a so-called water absorption supporting method in which the NO x storage material compound solution is impregnated, dried and fired, and supports the NO x absorbent is the mainstream.
By the way, due to stricter exhaust gas regulations and higher engine performance, the average temperature and maximum temperature of the gas entering the exhaust gas purification catalyst have been increasing in recent years, and the exhaust gas purification catalyst has further improved heat resistance. Is desired. As the incoming gas temperature increases, it is also desired to improve the NO x purification performance in a high temperature range.
[0007]
However, the conventional exhaust gas purifying catalyst has a problem in that the NO x storage material and the carrier react in a high temperature range and the NO x storage capacity of the NO x storage material is lowered. Further, in the conventional exhaust gas purifying catalyst, the temperature range (temperature window) showing the maximum purifying ability is narrow, and it is difficult to ensure the NO x purifying ability in the high temperature range.
Further, in this exhaust gas purifying catalyst, poisoning of the NO x storage material by SOx due to a small amount of sulfur contained in the fuel (decrease in NO x storage capacity due to sulfate formation) occurs, resulting in durability. Will fall.
[0008]
And in the conventional method of manufacturing a catalyst, although the NO x storage material is supported by a water-absorbing supporting method, poor dispersibility of the NO x storage material in this way, the distribution of the NO x storage material becomes uneven bearing The crystallization of the NO x storage material proceeds mainly in the high concentration portion, and as a result, the NO x storage capacity decreases. In particular, the NO x purification ability at high temperatures is greatly affected by the combination of the NO x storage material and the carrier and the dispersion degree of the NO x storage material.
[0009]
Furthermore, if the dispersibility of the NO x storage material is poor, sulfate crystals produced by sulfur poisoning tend to grow, resulting in further difficulty in detachment of sulfate and lowering durability. Further, since the alkali metal NO x storage material is supported on the surface of the carrier in the prior art, it is likely to be scattered and eluted by water vapor in the exhaust gas, and has low durability.
Accordingly, the applicant of the present application has developed an amorphous and homogeneous composite oxide support in which an NO x storage material is dispersed in an atomic size in a catalyst support. The composite oxide support is an oxide of at least one metal selected from Group 3B, 4A and 4B of the periodic table, and at least one selected from alkali metals, alkaline earth metals and rare earth elements. It is characterized by comprising an NO x storage material made of an oxide of the above element, and the oxide and the NO x storage material constitute an amorphous composite oxide.
[0010]
Then, the exhaust gas of the composite oxide support is a powder, by forming the exhaust gas purifying catalyst by mixing with another powder carrying the support powder and the noble metal, can be prevented even better sulfur poisoning the NO x purification performance A purification catalyst can be produced.
However, when producing a catalyst for exhaust gas purification using a composite oxide support, it is convenient to use a water absorption support method with established know-how and various improvements as a noble metal support method. That is, for example, when platinum is supported, platinum can be easily supported by absorbing a dinitrodiamine platinum nitric acid aqueous solution into the composite oxide carrier, and drying and firing it. Further, according to the water absorption support method, it is possible to preferentially support expensive platinum on the surface of the carrier in contact with the exhaust gas, and there is an effect that the loss of platinum is reduced.
[0011]
[Problems to be solved by the invention]
When manufacturing a honeycomb-shaped exhaust gas purification catalyst using a composite oxide support, a slurry of the composite oxide support is attached to a honeycomb support substrate such as cordierite, and fired to form a support layer. There is a method in which platinum is supported by dipping in a dinitrodiamine platinum aqueous solution to absorb water, drying and firing.
[0012]
However, when carrying platinum in the water-absorbing supporting method, the NO x storage material are homogeneously dispersed in the composite oxide support is eluted in an aqueous solution, the heat resistance and sulfur-dispersibility of the NO x storage material is lowered It became clear that the malfunction that toxicity deteriorates occurred. It has also been found that, for example, if the NO x storage material is eluted in a dinitrodiamine platinum aqueous solution or the like, the aqueous solution becomes alkaline and it is difficult to support the noble metal. If the required amount of noble metal cannot be supported, the initial ternary activity, NO x storage capacity, and reduction capacity will decrease.
[0013]
For example, FIG. 1 shows the relationship between the pH before immersion, the Cs elution rate, and the pH after immersion when a complex oxide carrier of Cs and Al is immersed in ammonia water at each pH for 1 hour. Thus, the elution rate of Cs is extremely high, and it can be seen that the pH is increased.
The present invention has been made in view of the above circumstances, and prevents the elution of the NO x storage material in the composite oxide support at the time of supporting the noble metal and maintains the high dispersibility, thereby improving the heat resistance and durability of the catalyst. The purpose is to prevent the decrease of
[0014]
[Means for Solving the Problems]
The feature of the method for producing an exhaust gas purification catalyst of the present invention that solves the above problems is NO x A method of manufacturing a storage reduction catalyst for purifying an exhaust gas, homogeneous the NO x storage material comprising at least one element selected in the porous carrier from alkali metals and alkaline earth metals and rare earth elements in atomic size a first step of preparing a dispersed amorphous composite oxide support, the composite oxide support in a noble metal compound in a solvent which the nO x storage material that is homogeneously dispersed in the composite oxide support is insoluble is dissolved or dispersed solution And a second step of supporting the precious metal in an amount of 1.2 wt% or more and 10 wt% or less on the composite oxide support .
[0015]
DETAILED DESCRIPTION OF THE INVENTION
In the production method of the present invention, first, in the first step, an amorphous composite oxide support in which a NO x storage material is uniformly dispersed in an atomic size in a porous support is prepared. Examples of the porous carrier include oxides or zeolites of at least one metal selected from Group 3B, Group 4A and Group 4B of the periodic table of elements such as alumina, titania, zirconia, silica, silica-alumina, silica-titania. Is done.
[0016]
Further, as the element constituting the NO x storage material, at least one selected from alkali metals, alkaline earth metals and rare earth elements can be used. Examples of the alkali metal include lithium, sodium, potassium, rubidium, cesium, and francium. Alkaline earth metal refers to Group 2A elements of the periodic table, and examples include barium, beryllium, magnesium, calcium, and strontium. Examples of rare earth elements include scandium, yttrium, lanthanum, cerium, praseodymium, neodymium, and the like.
[0017]
In order to uniformly disperse and support the NO x storage material on the porous carrier, the oxide sol solution and the NO x storage material compound solution constituting the porous carrier are mixed and gelled to form the porous carrier and NO. It is desirable to form an amorphous composite oxide carrier composed of the x storage material. According to this method, the oxide sol is composed of fine particles having a specific surface area of about 500 m 2 / g or more, and the NO x storage material is dispersed on the surface of the fine particles. Therefore, the NO x storage material is extremely highly dispersed. . Further, since the temperature at which the NO x storage material crystallizes increases, sufficient high-temperature durability is maintained.
[0018]
It should be noted that both the metal oxide and NO x storage material constituting the porous support are supplied as metal alkoxides, and even if manufactured by the so-called sol-gel method, a composite oxide support in which the NO x storage material is supported in a highly dispersed state is manufactured. can do. However, the metal alkoxide is expensive, and the raw material cost is high in the sol-gel method. Therefore, according to the above method using an oxide sol, a composite oxide carrier can be produced at a lower cost than the sol-gel method.
[0019]
The content of the NO x storage material is preferably from 1 to 50 mol, particularly preferably from 8 to 33 mol, per 100 mol of the porous carrier. If the content is less than 1 mole, the NO x storage capacity is small and the NO x purification performance is reduced. Even if the content exceeds 50 moles, the NO x storage capacity is saturated and at the same time HC emissions increase. Arise.
[0020]
The composite oxide carrier is composed of alumina as a porous carrier and cesium oxide as a NO x storage material, and the molar ratio of cesium oxide to aluminum oxide is 1/3 ≧ Cs 2 O / Al 2 O 3 > 1 / It is desirable to use 90 which has been heat-treated at a temperature at which it does not crystallize. Cs not only has excellent NO x storage capacity at low temperatures, but also exhibits high NO x storage capacity even at 400 ° C. or higher due to interaction with Al.
[0021]
In other words, Cs has a strong basicity and is strongly bound to acidic NO x, and therefore has excellent NO x storage capacity. Since Cs hardly reacts with alumina as compared with Ba or the like, the NO x storage capacity can be maintained high for a long period of time. Cs shows high durability when it forms a composite oxide with alumina, and even if it is sulfur-poisoned, sulfate is produced as a composite sulfate of Cs and Al. It is easy to decompose and detach easily.
[0022]
And the composition ratio of Cs and Al, is preferably in the range of 1/3 ≧ Cs 2 O / Al 2 O 3> 1/90 by molar ratio. If there is too much Cs ( 1/3 <Cs 2 O / Al 2 O 3 ), although it has NO x storage capacity, it will not release NO x in a reducing atmosphere, and its specific surface area will be small and heat resistance will be insufficient. Further, when Cs decreases (Cs 2 O / Al 2 O 3 ≦ 1/90), sintering occurs in the support at a high temperature, the specific surface area decreases, and it becomes difficult to maintain the necessary NO x storage amount. . Therefore, by setting it as this range, sufficient heat resistance and durability can be obtained.
[0023]
In the case of using Cs, it is desirable to replace a part of Cs with at least one element selected from alkali metals, alkaline earth metals, rare earth elements and transition metals other than Cs. Since this substitution element is more excellent in sulfur poisoning resistance than Cs, it is possible to achieve both excellent NO x purification ability and sulfur poisoning resistance. For example, if substituted with Ti, since Ti is an acidic element, the formation of sulfate is prevented. Further, K and Ca together with Al produce a ternary complex sulfate, which has a lower decomposition temperature than a two-element complex sulfate, so that sulfur poisoning can be eliminated more rapidly.
[0024]
In the second step, which is a feature of the present invention, the catalyst carrier in which the noble metal compound is dissolved or dispersed is immersed in a solvent in which the homogeneously dispersed NO x storage material does not dissolve, and the noble metal is supported on the catalyst carrier. Examples of the noble metal include platinum (Pt), rhodium (Rh), palladium (Pd), silver (Ag), gold (Au), and iridium (Ir).
[0025]
The NO x storage material dispersed in the catalyst carrier is generally water-soluble. Therefore, an organic solvent is selected as the solvent that does not dissolve the NO x storage material. A small amount of water may be mixed in the organic solvent, but if a large amount of water is mixed, the NO x storage material is eluted, which is not preferable. The allowable amount of water mixed is determined according to the type of organic solvent and the type of NO x storage material. Examples of the noble metal compound dissolved in the organic solvent include a noble metal bisacetylacetonate complex salt, a noble metal dicarbonylbistriphenylphosphine, a noble metal diphenylbistriethylphosphine, and the like. Among them, a bisacetylacetonate complex salt is preferable.
[0026]
There are various kinds of organic solvents for dissolving the complex salt, but it is desirable that impregnation of the catalyst carrier becomes difficult and the wettability to the catalyst carrier is good when the viscosity of the solvent is large. Therefore, alcohols are recommended. Among them, isopropyl alcohol is desirable because it has characteristics close to water and the NO x storage material is particularly difficult to elute. Although an example in which the noble metal compound is dissolved has been described above, it is also possible to support the noble metal by immersing the catalyst carrier in a solution in which the noble metal compound is colloidally dispersed.
[0027]
The amount of the noble metal supported on the catalyst carrier can be arbitrarily selected within the range of 1.2 to 10% by weight of the noble metal. If the loading amount of the noble metal is less than 1.2% by weight , the NO x purification performance is lowered and is not practical. Even if the loading amount is more than 10% by weight, the NO x purification performance is saturated and the cost is increased.
[0028]
【Example】
Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples.
Example 1
(1) Preparation of catalyst carrier 16.0 g of cesium acetate and 153.3 g of aluminum triisopropoxide were dissolved in 480 ml of isopropyl alcohol. This solution was stirred under reflux at 80 ° C. for 2 hours, mixed with 14.5 g of 2,4-pentanedione, and further stirred for 3 hours. A mixed solution of 84.0 ml of ion-exchanged water and 100 ml of isopropyl alcohol was added dropwise thereto while maintaining the temperature at 80 ° C. And after stirring at 80 degreeC for 5 hours, it dried by heating at 120 degreeC under pressure reduction, and obtained white powder.
[0029]
This powder was calcined in the atmosphere at 800 ° C. for 5 hours to prepare a catalyst carrier powder. The specific surface area of this catalyst support powder was 161 m 2 / g. As a result of X-ray diffraction, Cs and Al constituted a composite oxide support, and Cs was highly dispersed in Al. Cs and Al are included as oxides in a molar ratio of Cs 2 O / Al 2 O 3 = 1/9.
[0030]
(2) Precious metal support A predetermined amount of the obtained catalyst carrier powder is mixed with isopropyl alcohol, and a predetermined amount of bisacetylacetonatoplatinum [Pt (C 5 H 7 O 2 ) 2 ] is mixed with isopropyl alcohol as a platinum source. The solution dissolved in was added and mixed with stirring for 1 hour. Thereafter, the solvent was separated by centrifugation, and the precipitate was gradually heated from room temperature to 120 ° C. and dried, and then heated to 500 ° C. in a nitrogen atmosphere to obtain a catalyst powder. The amount of Pt supported in the catalyst powder was measured by chemical analysis (ICP) and shown in Table 2 together with the calculated values. Further, the degree of dispersion was measured with a CO storage device, and the results are shown in Table 2.
[0031]
The catalyst powder and isopropyl alcohol were mixed to prepare a slurry. The honeycomb-shaped monolith aggregate was dipped in the slurry, pulled up to blow off excess slurry, dried at 120 ° C., and heat-treated at 500 ° C. to obtain an exhaust gas purification catalyst of this example.
(3) Evaluation test The obtained catalyst was mounted on a model gas durability apparatus, and the lean model gas shown in Table 1 was alternately flowed for 4 minutes and the rich model gas was alternately flown for 1 minute. An endurance test was conducted at 50,000 hr −1 for 5 hours. Thereafter, lean model gas and rich model gas were alternately flowed at SV = 100,000 hr −1 for 2 minutes each, and the NO x purification rate during lean was measured to obtain the purification rate after heat treatment.
[0032]
On the other hand, the catalyst was mounted on a model gas durability apparatus, and sulfur poisoning treatment was performed by circulating a poisoning treatment gas containing 200 ppm of SO 2 shown in Table 1 at 400 ° C. for 30 minutes. Then in the same manner as above to measure the NO x purification rate during the lean, was the NO x purification ratio after the sulfur poisoning process. Further, the amount of sulfur adhered in the catalyst after sulfur poisoning treatment was chemically analyzed, and these results are shown in Table 2.
[0033]
[Table 1]
Figure 0003770416
(Example 2)
Example 1 is the same as Example 1 except that the catalyst support powder obtained in Example 1 was used and dicarbonylbistriphenylphosphine platinum [Pt (CO) 2 (P (C 6 H 5 ) 3 ) 2 ] was used as the platinum source. Similarly, Pt was supported. The amount of Pt supported is 1.2% by weight.
[0034]
Table 2 shows the results obtained by catalyzing in the same manner as in Example 1 using the obtained catalyst powder and performing the evaluation test in the same manner.
Example 3
Example except that the catalyst support powder obtained in Example 1 was used and diphenylbistriethylphosphine platinum [Pt (C 6 H 5 ) 2 (P (C 2 H 5 ) 3 ) 2 ] was used as a platinum source. 1 was loaded with Pt. The amount of Pt supported is 1.2% by weight.
[0035]
Table 2 shows the results obtained by catalyzing in the same manner as in Example 1 using the obtained catalyst powder and performing the evaluation test in the same manner.
(Example 4)
Except that di-i-propoxy barium and aluminum triisopropoxide were used, Ba and Al were included as oxides in a molar ratio of BaO / Al 2 O 3 = 1/3 as in Example 1. A composite oxide support was prepared.
[0036]
Then, after carrying Pt in the same manner as in Example 1, a solution in which bisacetylacetonatodium [Rh (C 5 H 7 O 2 ) 2 ] was dissolved in isopropyl alcohol was used, and Rh was carried out in the same manner as the Pt carrying method. Was supported. The supported amounts of Pt and Rh are 1.2% by weight and 0.1% by weight, respectively.
Table 2 shows the results obtained by catalyzing in the same manner as in Example 1 using the obtained catalyst powder and performing the evaluation test in the same manner.
[0037]
(Example 5)
In the same manner as in Example 1 except that cesium acetate, di-i-propoxybarium and aluminum triisopropoxide were used, a molar ratio of Cs 2 O / BaO / Al 2 using Cs, Ba and Al as oxides. A composite oxide support containing O 3 = 1/1/6 was prepared.
[0038]
Then, Pd was supported in the same manner as the Pt support method of Example 1 except that a solution in which bisacetylacetonato palladium (Pd (C 5 H 7 O 2 ) 2 ) was dissolved in isopropyl alcohol was used. The amount of Pd supported is 10% by weight.
Table 2 shows the results obtained by catalyzing in the same manner as in Example 1 using the obtained catalyst powder and performing the evaluation test in the same manner.
[0039]
(Example 6)
In the same manner as in Example 1 except that potassium acetate, tetra-i-propoxytitanium and aluminum triisopropoxide were used, a molar ratio of K 2 O / TiO 2 / Al using K, Ti and Al as oxides. A composite oxide support containing 2 O 3 = 1/1/6 was prepared.
[0040]
Then, after supporting Pt in the same manner as in Example 1, a solution in which bisacetylacetonatodium (Rh (C 5 H 7 O 2 ) 2 ) was dissolved in 2-propyl alcohol was used in the same manner as the Pt supporting method. Rh was supported. The supported amounts of Pt and Rh are 2% by weight and 0.1% by weight, respectively.
Table 2 shows the results obtained by catalyzing in the same manner as in Example 1 using the obtained catalyst powder and performing the evaluation test in the same manner.
[0041]
(Example 7)
Except that potassium acetate, cerium acetate and aluminum triisopropoxide were used, K 2 O / CeO 2 / Al 2 O 3 = molar ratio using K, Ce and Al as oxides in the same manner as in Example 1. A composite oxide support containing 2/1/12 was prepared.
[0042]
Table 2 shows the results of carrying out the same catalytic test with the same amount of Pt supported in the same manner as in Example 1 and the same evaluation test.
(Comparative Example 1)
Except that a predetermined amount of the catalyst carrier powder obtained in Example 1 was mixed with water, and a predetermined amount of bisacetylacetonatoplatinum [Pt (C 5 H 7 O 2 ) 2 ] was added thereto as a platinum source. In the same manner as in Example 1, Pt was supported.
[0043]
Table 2 shows the results obtained by catalyzing in the same manner as in Example 1 using the obtained catalyst powder and performing the evaluation test in the same manner.
(Comparative Example 2)
Except that di-i-propoxy barium and aluminum triisopropoxide were used, Ba and Al were included as oxides in a molar ratio of BaO / Al 2 O 3 = 1/3 as in Example 1. A composite oxide support was prepared.
[0044]
Then, after supporting Pt in the same manner as in Comparative Example 1, it was further mixed with water and bisacetylacetonatodium [Rh (C 5 H 7 O 2 ) 2 ] was added, and Rh was supported in the same manner as the Pt supporting method. Supported. The amounts of Pt and Rh supported are 1.2% by weight and 0.1% by weight, respectively, as calculated values.
Table 2 shows the results obtained by catalyzing in the same manner as in Example 1 using the obtained catalyst powder and performing the evaluation test in the same manner.
[0045]
(Comparative Example 3)
In the same manner as in Example 1 except that cesium acetate, di-i-propoxybarium and aluminum triisopropoxide were used, a molar ratio of Cs 2 O / BaO / Al 2 using Cs, Ba and Al as oxides. A composite oxide support containing O 3 = 1/1/6 was prepared.
[0046]
Then, after adding the composite oxide carrier powder to water, bisacetylacetonato palladium (Pd (C 5 H 7 O 2 ) 2 ) is added, and Pd is supported in the same manner as the Pt support method of Comparative Example 1. did. The amount of Pd supported is 10% by weight.
Table 2 shows the results obtained by catalyzing in the same manner as in Example 1 using the obtained catalyst powder and performing the evaluation test in the same manner.
[0047]
(Comparative Example 4)
A predetermined amount of the catalyst carrier powder obtained in Example 1 was mixed with isopropyl alcohol, and Pt was supported in the same manner as in Example 1 except that an aqueous solution of dinitrodiamine platinum nitrate was added thereto as a platinum source. The amount of Pt supported is 1.2% by weight in the calculated value.
[0048]
Table 2 shows the results obtained by catalyzing in the same manner as in Example 1 using the obtained catalyst powder and performing the evaluation test in the same manner.
(Comparative Example 5)
Except that di-i-propoxy barium and aluminum triisopropoxide were used, Ba and Al were included as oxides in a molar ratio of BaO / Al 2 O 3 = 1/3 as in Example 1. A composite oxide support was prepared.
[0049]
Pt was supported in the same manner as in Example 1 except that a predetermined amount of the catalyst support powder composed of this composite oxide support was mixed with isopropyl alcohol, and a dinitrodiamine platinum nitrate aqueous solution was added thereto as a platinum source. Further, the catalyst carrier powder supporting Pt was mixed with isopropyl alcohol, and an aqueous rhodium nitrate solution was added thereto to similarly support Rh. The amounts of Pt and Rh supported are 1.2% by weight and 0.1% by weight, respectively, as calculated values.
[0050]
Table 2 shows the results obtained by catalyzing in the same manner as in Example 1 using the obtained catalyst powder and performing the evaluation test in the same manner.
(Comparative Example 6)
Except that potassium acetate, cerium acetate and aluminum triisopropoxide were used, K 2 O / CeO 2 / Al 2 O 3 = molar ratio using K, Ce and Al as oxides in the same manner as in Example 1. A composite oxide support containing 2/1/12 was prepared.
[0051]
Pt was supported in the same manner as in Example 1 except that a predetermined amount of the catalyst support powder composed of this composite oxide support was mixed with isopropyl alcohol, and a dinitrodiamine platinum nitrate aqueous solution was added thereto as a platinum source. The amount of Pt supported is 4% by weight calculated.
Table 2 shows the results obtained by catalyzing in the same manner as in Example 1 using the obtained catalyst powder and performing the evaluation test in the same manner.
[0052]
[Table 2]
Figure 0003770416
[0053]
(Evaluation)
From Table 2, it can be seen that the exhaust gas purifying catalyst obtained by the production method of the comparative example has a lower NO x purification rate after heat treatment than the examples, and is inferior in heat resistance. The amount of sulfur deposited is higher than in the examples, therefore the NO x purification ratio after sulfur poisoning treatment is low, the exhaust gas purifying catalyst obtained in Comparative Example is found to be inferior in resistance to sulfur poisoning.
[0054]
On the other hand, it is indirectly shown that the exhaust gas purifying catalyst obtained by the production method of the example is excellent in heat resistance and sulfur poisoning, and the dispersibility of the NO x storage material is maintained high. In addition, since the calculated value of the noble metal loading and the measured value coincide with each other and the noble metal shows a high degree of dispersion, it is clear that in the examples, problems due to elution of the NO x storage material are avoided, It is clear that this is an effect in which a noble metal is dissolved in isopropyl alcohol as a complex salt and the carrier is immersed therein and supported without using water.
[0055]
【The invention's effect】
That is, according to the production method of the present invention can be problems due to elution of the NO x storage material without reliably producing a homogeneous and high degree of dispersion in the NO x storage material contains a catalyst for purifying exhaust gas. Further, even when a noble metal is supported using a water absorption supporting method (without using water), the noble metal is supported with a high degree of dispersion without hindering the supporting. Therefore, an exhaust gas purifying catalyst excellent in heat resistance and sulfur poisoning resistance can be easily and stably produced.
[Brief description of the drawings]
FIG. 1 is a graph showing Cs elution amount and pH of a solution when a Cs—Al composite oxide support is immersed in ammonia water of each pH.

Claims (1)

NOx 吸蔵還元型の排ガス浄化用触媒の製造方法であって、
多孔質担体にアルカリ金属とアルカリ土類金属及び希土類元素の中から選ばれる少なくとも1種の元素からなるNOx 吸蔵材が原子サイズで均質分散した非晶質の複合酸化物担体を調製する第1工程と、
該複合酸化物担体中に均質分散した該NOx 吸蔵材が溶解しない溶剤に貴金属化合物が溶解又は分散された溶液に該複合酸化物担体を浸漬し、該複合酸化物担体に該貴金属を1.2重量%以上10重量%以下の量で担持する第2工程と、よりなることを特徴とする排ガス浄化用触媒の製造方法。
A method for producing a NO x storage reduction type exhaust gas purification catalyst,
The the NO x storage material comprising at least one element selected from among porous carrier alkali metal and alkaline earth metals and rare earth elements to prepare an amorphous composite oxide support having homogeneously dispersed in atomic size 1 Process,
The composite oxide the composite oxide support is immersed in a solvent in which the the NO x storage material does not dissolve was homogeneously dispersed in the carrier in a solution the noble metal compound is dissolved or dispersed, the noble metal in the composite oxide support 1. A method for producing an exhaust gas purifying catalyst, comprising: a second step of supporting in an amount of 2 wt% to 10 wt%.
JP33862595A 1995-12-26 1995-12-26 Method for producing exhaust gas purification catalyst Expired - Lifetime JP3770416B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33862595A JP3770416B2 (en) 1995-12-26 1995-12-26 Method for producing exhaust gas purification catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33862595A JP3770416B2 (en) 1995-12-26 1995-12-26 Method for producing exhaust gas purification catalyst

Publications (2)

Publication Number Publication Date
JPH09173839A JPH09173839A (en) 1997-07-08
JP3770416B2 true JP3770416B2 (en) 2006-04-26

Family

ID=18319945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33862595A Expired - Lifetime JP3770416B2 (en) 1995-12-26 1995-12-26 Method for producing exhaust gas purification catalyst

Country Status (1)

Country Link
JP (1) JP3770416B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69839225T2 (en) 1997-12-26 2009-03-05 Toyota Jidosha Kabushiki Kaisha, Toyota-shi PROCESS FOR PREPARING A CATALYST FOR CLEANING EXHAUST GASES
US6866834B2 (en) 2001-03-12 2005-03-15 Nissan Motor Co., Ltd. NOx reduction catalyst and NOx reduction system
KR100921108B1 (en) * 2007-11-01 2009-10-08 현대자동차주식회사 NOX storage and reduction catalyst

Also Published As

Publication number Publication date
JPH09173839A (en) 1997-07-08

Similar Documents

Publication Publication Date Title
JP3664182B2 (en) High heat-resistant exhaust gas purification catalyst and production method thereof
JP3741303B2 (en) Exhaust gas purification catalyst
JP3861303B2 (en) Exhaust gas purification catalyst
JP3494331B2 (en) Exhaust gas purification catalyst and method for producing the same
US20040157733A1 (en) Catalyst for hydrogen generation and catalyst for purification of exhaust gas
US6129898A (en) NOx trap catalyst for lean burn engines
JPH10286462A (en) Catalyst of purifying exhaust gas
JP3551472B2 (en) Exhaust gas purification catalyst
JP3430823B2 (en) Exhaust gas purification catalyst
JP3766568B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP3770416B2 (en) Method for producing exhaust gas purification catalyst
JP2010022892A (en) Catalyst for cleaning exhaust gas
JPH10165817A (en) Catalyst for cleaning of exhaust gas
JP4807620B2 (en) Exhaust gas purification catalyst and exhaust gas purification method using the same
JP3488999B2 (en) Exhaust gas purification catalyst composition, method for producing the same, and exhaust gas purification catalyst
JP3309711B2 (en) Exhaust gas purification catalyst and method for producing the same
JP4285122B2 (en) Method for producing exhaust gas purifying catalyst
JP4534749B2 (en) NOx storage material, method for supporting the same, and NOx storage reduction catalyst
JP2000325787A (en) Manufacture of exhaust gas cleaning catalyst
JP4048673B2 (en) Exhaust gas purification catalyst
JPH11290686A (en) Exhaust gas cleaning catalyst
JP3862177B2 (en) Exhaust gas purification catalyst
JPH09253491A (en) Catalyst for clarification of exhaust gas and its preparation
JPH09201532A (en) Catalyst for purifying exhaust gas
JP2001212459A (en) Catalyst and method for cleaning exhaust gas

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040423

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060202

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110217

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110217

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140217

Year of fee payment: 8

EXPY Cancellation because of completion of term