JP3551472B2 - Exhaust gas purification catalyst - Google Patents

Exhaust gas purification catalyst Download PDF

Info

Publication number
JP3551472B2
JP3551472B2 JP15086694A JP15086694A JP3551472B2 JP 3551472 B2 JP3551472 B2 JP 3551472B2 JP 15086694 A JP15086694 A JP 15086694A JP 15086694 A JP15086694 A JP 15086694A JP 3551472 B2 JP3551472 B2 JP 3551472B2
Authority
JP
Japan
Prior art keywords
powder
catalyst
hours
exhaust gas
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15086694A
Other languages
Japanese (ja)
Other versions
JPH0775735A (en
Inventor
健 吉田
幹夫 村知
教夫 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP15086694A priority Critical patent/JP3551472B2/en
Publication of JPH0775735A publication Critical patent/JPH0775735A/en
Application granted granted Critical
Publication of JP3551472B2 publication Critical patent/JP3551472B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は、排ガス浄化用触媒に関し、より詳細には、高温耐熱性に優れた窒素酸化物吸収分解型触媒に関する。
【0002】
【従来の技術】
環境問題として大気汚染が取り上げられ、特に自動車の普及に伴い、その排気ガスが問題となり、種々の規制が適用された。このため、初期においてはエンジンの改良、リアクター方式、触媒方式等、種々の方式が適用されたが、現在では、排気ガス処理を最も効率よく行うことのできる触媒方式が主流となっている。
【0003】
自動車用触媒は、エンジン排気マニホールドに直に装着されているか又は車両の床下に装着されている。現在用いられている触媒コンバーターは「モリノス型」と呼ばれるものであり、これは、排気ガスの流れ方向に多数の貫通孔(セル)が形成されており、各セルの内面にウォシュコート層が設けられている。このウォシュコート層が、排気ガスを浄化する触媒の実質的部分である。
【0004】
触媒としては、白金(Pt)、ロジウム(Rh)、パラジウム(Pd)等の貴金属が知られており、これらはアルミナ(Al)のような多孔質で大きな表面積を有する担体表面に微粒子として分散している。排気ガスはアルミナの微細孔内に拡散し、触媒表面において触媒反応が行われる。このような触媒反応は貴金属粒子の表面において行われるため、この貴金属粒子はできるだけ小さい粒子であることが好ましい。
【0005】
しかし、従来の触媒は、600 ℃以上の高い温度領域では貴金属粒子が凝集し、触媒表面積が減少してしまう。また、1000℃以上の高温では、担体として現在用いられているγ−Alはα−Alに構造転移し、表面積が低下し、微細孔が消失してしまう。従って、このα化を防止するため、希土類元素を添加したものが開発されたが、このような触媒においても、その耐久性は800 ℃程度までが限界であり、それ以上の温度においては満足な結果は得られなかった。
【0006】
上記問題を解決するため、高結晶性を有するマグネトプラムバイト型層状アルミネート構造の担体が開発された(特開平2−78438号公報)。この担体はアルカリ土類金属酸化物とアルミニウム酸化物を含有してなり、高温下においてアルカリ土類金属と酸化アルミニウムの間の反応がなく、比表面積の低下及び活性の低下はみられない。しかし、層状アルミネートの構造をとっているため、活性種の活性そのものが低下してしまい、比表面積自体が小さくなり、十分な触媒機能が得られなくなってしまう。
【0007】
【発明が解決しようとする課題】
本発明は、従来の触媒担体の有する前記の如き欠点を解消し、十分な高温耐熱性を有する触媒を提供するものである。
【0008】
【課題を解決するための手段】
本発明者らは、上記の触媒担体の有する前記の問題点を解決すべく鋭意研究を重ねた結果、層状アルミネート構造の前駆体により無定形の非晶質構造を構成すると、比表面積が大きく、また構造の自由度のため活性種の低下がないので十分な触媒機能が得られることを見出し、本発明を完成した。
【0009】
本発明は、下式(I)
MexAly2 (I)
(上式中、Meはアルカリ金属、アルカリ土類金属及び希土類元素からなる群より選ばれる少なくとも1種の元素であり、y/x=4〜24であり、zはMe、x及びyにより決まる値である)
で表される、層状アルミネート構造の前駆体であり、かつ結晶化しない温度で熱処理された非晶質組成物からなる触媒担体に貴金属を担持させてなり、燃焼ガスをリーン−ストイキ交互に制御することにより、硫黄を含む排ガス中のNOxを前記触媒担体中のMeに吸蔵させて還元することに用いる排ガス浄化用触媒を提供する。
【0010】
本発明はまた、上記式 (I) におけるMeが2種類以上の元素からなり、前記元素は共に六配位のイオン半径が0.95Å以上であり、かつ前記元素の間のイオン半径の差が、最大のイオン半径を有する元素とこれよりイオン半径の小さな他の元素との間において0.3Å以上であることを特徴とする排ガス浄化用触媒を提供する。
【0011】
【作用】
本発明の排ガス浄化用触媒を用い、燃焼ガスをリーン−ストイキ交互に制御することにより、排ガス中のNOが吸蔵還元される。非晶質粉末中のNO吸蔵元素(Me)は優れたNO吸蔵能力を有し、AlにNO吸蔵元素を担持させてものと同等の性能を示す。しかも、上記式 (I)の非晶質触媒担体では、結晶化しない温度においてはNO吸蔵元素が担体のAlと安定な化合物を形成しないため、NO吸蔵能力が低下しない。
【0012】
また、 (I)の非晶質触媒担体においては、NO吸蔵元素が担体中に高分散状態で混入されているため、硫黄被毒時において硫酸塩の粒成長が起こりにくく、従って優れた分解再生性を有している。
【0013】
(I)の非晶質触媒担体において、NO吸蔵元素のイオン半径が大きい場合、このNO吸蔵元素が担体のAlの相変化を抑制するため、高温で高比表面積の粉末が得られる。さらに、イオン半径の差が一定以上である2種以上のNO吸蔵元素が存在することにより、層状アルミネートの結晶化が抑制され、このイオン半径の違いにより層状構造に歪みが生じ、その結果として比表面積の高い粉末が得られる。
【0014】
【課題を解決するための手段の捕捉説明】
(I)の触媒担体は、いわゆるゾル・ゲル法によって製造される。すなわち、アルミニウムアルコキシドと金属もしくは金属酸化物とを上記式の比で用い溶液とし、この溶液を還流下で攪拌してアルコキシドの加水分解と重縮合を行わせる。すると金属酸化物の粒子が生成して溶液はゾルとなる。さらに反応が進むと全体が固まったゲルとなる。このゲルを加熱することにより、上記式で表される非晶質組成物が得られる。
【0015】
(I)のアルミニウムとMeの含有比(Al/Me)は、モル比で4〜24であり、好ましくは9〜15、より好ましくは10〜13である。この比が24より大きいとNOx吸蔵元素が少なすぎて初期浄化能が40%以下となり、効果が低い。一方、この比が4より小さいと、硫黄被毒時において硫酸塩が多く形成し、耐久浄化能の低下が大きくなる。
【0016】
上記ゾル・ゲル法における加水分解は速く進行する。上記比が9〜15の範囲においては問題はないが、この範囲を越える場合、NO吸蔵元素の分散性が悪くなり、その結果、硫黄被毒時において硫酸塩の粒成長がおこりやくなる。そこで、加水分解速度を制御することによりNO吸蔵元素の分散性を高め、硫黄被毒時における硫酸塩の粒成長を抑え、耐久浄化能の低下を防ぐ。
【0017】
この加水分解速度の制御は、水の量の調節及び反応抑制剤の添加によって行われる。反応抑制剤としては、β−ジケトン(例えば2,4−ペンタジエン)、β−ケト酸エステル(例えばアセト酢酸エチル)、アルカノールアミン(例えばトリエタノールアミン)等を用いることができる。このような加水分解の制御により、4〜24の上記比の範囲でアルミニウムとMeを用いることが可能になる。
【0018】
こうしてゾル・ゲル法により得られた粉末を結晶化しない温度、例えば800〜1100℃において熱処理することにより、層状アルミネート構造の前駆体である (I) 触媒担体ガ得られる。
【0019】
担体に含有されるアルカリ金属、アルカリ土類金属及び希土類元素は特に限定されず各種のものを用いることができる。
本発明において、前記元素は2種以上の元素からなり、前記元素は共に六配位のイオン半径が0.95Å以上であり、かつ前記元素の間のイオン半径の差が、最大のイオン半径を有する元素と他の元素との間において0.3 Å以上であることが好ましい。このような元素の例及びそのイオン半径を以下の表1に示す。
【0020】
【表1】

Figure 0003551472
【0021】
(I)の触媒担体においては、イオン半径の大きな元素に対しイオン半径の小さな元素は10〜40%含まれることが好ましい。より比表面積の大きなものが得られるからである。
【0022】
(I)の触媒担体にPt等の貴金属を担持させることにより本発明の有効な窒素酸化物吸収分解型、高温耐熱性排ガス浄化用触媒が得られる。貴金属を担持させる方法は特に限定されず、従来用いられている方法、例えば含浸法、等を用いることができる。こうして形成された触媒は、燃焼ガスをリーン、ストイキを交互に制御することによりNOを吸収分解する。 (I)の触媒担体である無定形粉末中のBaもしくはKはリーン排ガス中でNOを吸収する性能に優れ、AlにBaもしくはKをコーティングしたものと同等の性能を示す。しかも1100℃以下であれば、高温に曝されてもBaもしくはKは安定な化合物を形成しないので、NO吸収能は低下しない。
【0023】
以下、本発明を実施例により説明するが、本発明はこれらに制限されるものではない。
実施例1
金属バリウム4.3g(0.031モル)を50mlの2−プロパノールの溶解した溶液を、80℃においてアルミニウムトリイソプロポキシド76.7g(0.376 モル)を250ml の2−プロパノールに溶解した溶液と混合した(Al/Ba=12)。この混合溶液を80℃において5時間還流攪拌し、その後この溶液にイオン交換水12.8mlと2−プロパノール55mlの混合溶液を80℃に保ちながら滴下した。滴下開始後80℃に保ちながら5時間攪拌し、次いで減圧乾燥し、白色粉末を得た。この粉末を大気中、800 ℃において5時間の焼成を行うことにより、比表面積226m/g を有する微細粉末を得た。またX線回折の結果、非晶質構造であることが確認された。
【0024】
実施例2
金属バリウムの代わりに、バリウムジイソプロポキシド(Ba(O−i−C) を8.0g(0.03 モル) 用いることを除き、実施例1と同様にして粉末を得た(Al/Ba12)。この粉末を大気中、800 ℃において5時間の焼成を行うことにより、比表面積230m/g を有する微細粉末を得た。またX線回折の結果、非晶質構造であることが確認された。
【0025】
実施例3
バリウムジイソプロポキシド6.4g(0.025モル) 、硝酸ランタン1.0g(0.0023 モル) 及び酢酸カリウム0.3g(0.0035 モル) を50mlの2−プロパノールに溶解した溶液を、80℃においてアルミニウムトリイソプロポキシド76.7g(0.376 モル) を250ml の2−プロパノールに溶解した溶液に混合し、その後の処理は実施例1と同様にして粉末を得た(Al/(Ba+La+K)=12)。この粉末を大気中、800 ℃において5時間の焼成を行うことにより、比表面積235m/g を有する微細粉末を得た。またX線回折の結果、非晶質構造であることが確認された。
【0026】
実施例4
バリウムジイソプロポキシド4.8g(0.019モル) 及び硝酸カルシウム2.0g(0.012モル) を50mlの2−プロパノールに溶解した溶液を、80℃においてアルミニウムトリイソプロポキシド76.7g(0.376 モル) を250ml の2−プロパノールに溶解した溶液に混合し、その後の処理は実施例1と同様にして粉末を得た(Al/(Ba+Ca)=12)。この粉末を大気中、800 ℃において5時間の焼成を行うことにより、比表面積218m/g を有する微細粉末を得た。またX線回折の結果、非晶質構造であることが確認された。
【0027】
実施例5
金属バリウム4.3g(0.031モル)を50mlの2−プロパノールの溶解した溶液を、80℃においてアルミニウムトリイソプロポキシド76.7g(0.376 モル)を250ml の2−プロパノールに溶解した溶液と混合した(Al/Ba=12)。この混合溶液を80℃において2時間還流攪拌し、その後2,4−ペンタジオン12.2g を添加し、さらに3時間還流攪拌を行った。次いでこの溶液を80℃に保ちながらイオン交換水42.7mlと2−プロパノール182ml の混合溶液を80℃に保ちながら滴下した。滴下開始後80℃に保ちながら5時間攪拌し、次いで減圧乾燥し、白色粉末を得た。この粉末を大気中、800 ℃において5時間の焼成を行うことにより、比表面積236m/g を有する微細粉末を得た。またX線回折の結果、非晶質構造であることが確認された。
【0028】
実施例6
バリウムジイソプロポキシド6.4g(0.025モル) 、硝酸ランタン1.0g(0.0023 モル) 及び酢酸カリウム0.3g(0.0035 モル) を50mlの2−プロパノールに溶解した溶液を、80℃においてアルミニウムトリイソプロポキシド76.7g(0.376 モル) を250ml の2−プロパノールに溶解した溶液に混合し(実施例3と同様)、その後の処理は実施例5と同様にして粉末を得た。この粉末を大気中、800 ℃において5時間の焼成を行うことにより、比表面積241m/g を有する微細粉末を得た。またX線回折の結果、非晶質構造であることが確認された。
【0029】
実施例7
バリウムジイソプロポキシド11.2g(0.044 モル) を50mlの2−プロパノールに溶解した溶液を、80℃においてアルミニウムトリイソプロポキシド53.4g(0.262 モル) を250ml の2−プロパノールに溶解した溶液と混合した(Al/Ba=6)。この混合溶液を80℃において2時間還流攪拌した後、2,4−ペンタジオン9.2gを添加し、さらに3時間還流攪拌を行った。次いでこの溶液を80℃に保ちながらイオン交換水31.4mlと2−プロパノール134ml の混合溶液を滴下した。滴下開始後80℃に保ちながら5時間攪拌し、次いで減圧乾燥し、白色粉末を得た。この粉末を大気中、800 ℃において5時間の焼成を行うことにより、比表面積153m/g を有する微細粉末を得た。またX線回折の結果、非晶質構造であることが確認された。
【0030】
実施例8
バリウムジイソプロポキシド3.7g(0.0145 モル) を50mlの2−プロパノールに溶解した溶液を、80℃においてアルミニウムトリイソプロポキシド71.1g(0.349 モル) を250ml の2−プロパノールに溶解した溶液と混合した(Al/Ba=24)。この混合溶液を80℃において2時間還流攪拌した後、2,4−ペンタジオン10.9g を添加し、さらに3時間還流攪拌を行った。次いでこの溶液を80℃に保ちながらイオン交換水38.7mlと2−プロパノール165ml の混合溶液を滴下した。滴下開始後80℃に保ちながら5時間攪拌し、次いで減圧乾燥し、白色粉末を得た。この粉末を大気中、800 ℃において5時間の焼成を行うことにより、比表面積228m/g を有する微細粉末を得た。またX線回折の結果、非晶質構造であることが確認された。
【0031】
上記実施例1〜8において得られた焼成後の粉末を250ml のジニトロジアミンPt硝酸塩水溶液(Pt量:0.003mol) 中に含浸し、室温において1時間攪拌機で攪拌した。このスラリーを遠心分離機により粉末と上澄液に分離し、上澄液を廃棄した。得られた粉末を120 ℃において12時間乾燥し、さらに250 ℃において1時間熱処理を行った。元素分析により、Ptは担体粉末に対し、1.02重量%担持されていた。
【0032】
こうして得られたPtを担持した粉末を以下の方法によりハニカム担体にコーティングした。
前記粉末100gにアルミナゾル3g 、硝酸アルミニウム40%水溶液50g 及び水108gを加えてスラリーを調製した。このスラリーにコージェライト製ハニカム担体(外容積1リットル)を浸漬し、過剰のスラリーを吹き払う方法によって前記スラリーをハニカム担体にコートし、120 ℃において3時間乾燥後、500 ℃において1時間電気炉で焼成し、触媒試料を得た。
【0033】
このようにして製造したハニカム触媒について、新品触媒の浄化性能及びモデルガス(リーン)800 ℃×24時間の耐久後の浄化性能を以下の条件において評価した。
【0034】
(1) モデルガス組成
▲1▼ リーン
CO:0.08%、C:800ppm、CO:12.0%、O: 4.5%、
O :3%、NO:1000ppm 、SO:50ppm 、N:残部
▲2▼ ストイキ
CO:1.05%、C:1000ppm 、CO:10.0%、O:変動
O :10%、NO:2000ppm 、SO:50ppm 、N:残部
(2) 空間速度:200000 h−1
【0035】
(3) 浄化率測定方法
ハニカムをセットしたステンレス管を管状炉内で加熱し、ハニカム内を300 ℃に保持した状態においてモデルガスをこのハニカム内に流す。そしてハニカム通過後のガスを分析する。リーン1分−ストイキ1分を2回繰り返した4分間のガス成分の平均量と4分間に流したモデルガス量から、浄化された量を算出する。こうして、300 ℃でのCO、HC、NOの平均浄化率を測定した。結果を以下の表2に示す。また、耐久後のBaSO生成量をX線回折ピーク強度により評価した。この結果も表2に示す。
【0036】
比較例1
比表面積150m/g のγアルミナに上記と同様にしてPtを担持させた。この粉末を25wt%Baとなるように調製した酢酸バリウム水溶液内に含浸し、1時間攪拌した後、遠心分離機により粉末を分離した。この粉末を120 ℃において12時間乾燥した後、500/℃において1時間の熱処理を行った。この粉末を上記と同様にしてハニカムにコートし、触媒試料を得た後、同様にして評価を行った。
【0037】
比較例2
金属バリウム21.8g(0.159 モル) を80mlの2−プロパノールに溶解した溶液を、80℃においてアルミニウムトリイソプロポキシド65.0g(0.319 モル) を250ml の2−プロパノールに溶解した溶液と混合した(Al/Ba=2)。この混合溶液を80℃において2時間還流攪拌した後、2,4−ペンタンジオン14.3g を添加し、さらに3時間還流攪拌を行った。この溶液にイオン交換水45.9mlと2−プロパノール195ml の混合溶液を80℃に保ちながら滴下した。滴下開始後80℃に保ちながら5時間攪拌し、次いで減圧乾燥し、白色粉末を得た。この粉末を大気中、800 ℃において5時間の焼成を行うことにより微細粉末を得た。この粉末の比表面積は34m/gであった。またX線回折の結果、BaO・Alが生成していることが明らかとなった。
【0038】
比較例3
実施例7においてバリウムイソプロポキシドを3.0g(0.0118 モル) 、アルミニウムイソプロポキシドを62.3g(0.305 モル) 、2,4−ペンタンジオンを9.5g、イオン交換水を33.9ml、そして2−プロパノールを145ml 用いることを除き、他は同様にして粉末を得た(Al/Ba=26)。この粉末を大気中、800 ℃において5時間の焼成を行うことにより微細粉末を得た。この粉末の比表面積は215m/g であった。またX線回折の結果、非晶質であった。
【0039】
上記比較例2及び3において得られた焼成後の粉末について、上記実施例と同様にしてPtを担持させ、ハニカムにコートし、触媒試料を得た後、同様にして評価した。比較例1〜3において得られた結果を表2に示す。
【0040】
【表2】
Figure 0003551472
【0041】
この結果より、本発明の触媒担体を用いて製造した触媒は初期浄化能が高く、かつ耐久後の浄化能も高く高温耐熱性に優れている。また、耐久後の硫酸塩の生成量が低く、優れた分解再生性を有している。
【0042】
実施例9
2,4−ペンタンジオン12.2g の代わりにアセト酢酸エチル5.3gを用いることを除き、実施例5と同様にして焼成粉末を得た。
【0043】
実施例10
アセト酢酸エチルの添加量を15.9g とすることを除き、実施例9と同様にして焼成粉末を得た。
【0044】
実施例11
アセト酢酸エチルの添加量を31.8g とすることを除き、実施例9と同様にして焼成粉末を得た。
【0045】
実施例12
アセト酢酸エチルの代わりにトリエタノールアミンを6.1g用いることを除き、実施例9と同様にして焼成粉末を得た。
【0046】
実施例13
トリエタノールアミンの添加量を18.2g とすることを除き、実施例12と同様にして焼成粉末を得た。
【0047】
実施例14
トリエタノールアミンの添加量を36.4g とすることを除き、実施例12と同様にして焼成粉末を得た。
【0048】
上記実施例9〜14において得られた焼成粉末の比表面積を測定し、その結果を以下の表3に示す。これらの粉末は、X線回折の結果、いずれも結晶性のピークはみられず、非晶質構造であることが確認された。
【0049】
【表3】
Figure 0003551472
【0050】
実施例15
金属バリウム12.9g(0.094 モル)を70mlの2−プロパノールに溶解した溶液を、80℃においてアルミニウムトリイソプロポキシド76.7g(0.376 モル)を250ml の2−プロパノールに溶解した溶液と混合した(Al/Ba=4)。この混合溶液を80℃において2時間還流攪拌し、その後2,4−ペンタジオン76.7g を添加し、さらに3時間還流攪拌を行った。次いでこの溶液を80℃に保ちながらイオン交換水42.7mlと2−プロパノール202ml の混合溶液を80℃に保ちながら滴下した。滴下開始後80℃に保ちながら5時間攪拌し、次いで減圧乾燥し、白色粉末を得た。この粉末を大気中、800 ℃において5時間の焼成を行うことにより、比表面積72m/gを有する微細粉末を得た。またX線回折の結果、非晶質構造であることが確認された。
【0051】
実施例16(水の添加量の効果)
実施例2において、水の添加量を変え、得られた粉末の比表面積及び同様にして調製した触媒の耐久後の結晶化時の生成相を調べ、その結果を以下の表4に示す。
【0052】
【表4】
Figure 0003551472
水の添加量は、原料中のアルキル基に対し、0.3 〜0.8 倍が好ましい。
【0053】
実施例17(Ba量の効果)
実施例2において、Baの添加量を変え,同様にして触媒化し、リーン4分−ストイキ1分の繰り返しにより300 ℃でのNOの平均浄化率を測定した。この結果を図1に示す。この図から明らかなように、NOの吸収容量が多く要求される条件においてはBa量の多い領域において特に優位性が認められる。
【0054】
実施例18
トリイソプロポキシアルミニウム204g(1モル) 、ジイソプロポキシバリウム17.0g(0.067 モル) 、エトキシナトリウム1.13g(0.017 モル) を2−プロパノール中で80℃において5時間攪拌した(Ba+Na/Al=12)。イオン交換水57.6ml含む200ml の2−プロパノール溶液を1ml/minで滴下し、加水分解を行った。次いで5時間加熱し、減圧乾燥した。こうして得られた粉末を1000℃において5時間焼成を行った。この焼成粉末は260m/g の比表面積を有しており、実施例1〜4で得られた粉末よりも高かった。
【0055】
実施例19
トリイソプロポキシアルミニウム204g(1モル) 、硝酸ルビジウム10.3g(0.07モル) 、ジイソプロポキシストロンチウム6.17g(0.03モル) を2−プロパノール中で80℃において5時間攪拌した(Rb+Sr/Al=10)。イオン交換水57.6ml含む200ml の2−プロパノール溶液を1ml/minで滴下し、加水分解を行った。次いで5時間加熱し、減圧乾燥した。こうして得られた粉末を1000℃において5時間焼成を行った。この焼成粉末は230m/g の比表面積を有していた。
【0056】
上記実施例18及び19において得られた粉末を担体として触媒化し、排気ガスの浄化率を測定した。すなわち、これらの粉末に硝酸アルミニウム及び水を加えてスラリーを調製した。このスラリーにコージェライト製ハニカム担体を浸漬し、余分についたスラリーを吹き払う方法によってスラリーをコートし、120 ℃において3時間乾燥後、500 ℃で1時間電気炉内で焼成した。次いでジニトロアミンPtの硝酸塩溶液に30分含浸し、粉末100gあたり1gのPtを担持させ、120 ℃において3時間乾燥後、250 ℃で1時間電気炉内で熱処理した。さらに、硝酸Rh水溶液に30分含浸し、粉末100gあたり1gのRhを担持させ、120 ℃において3時間乾燥後、250 ℃で1時間電気炉内で熱処理し、モノリックハニカム触媒を得た。
【0057】
こうして製造したハニカム触媒について新品触媒の浄化性能を以下の条件において上記のようにして測定した。
(1) 評価ガス組成(A/F(空燃比)=18)
CO:0.1 %、C:600ppm、H:0.05%、CO:11.5%、
: 3.5%、HO :10%、NO:2500ppm 、N:残部
(2) 空間速度:200000h −1
この結果を表5に示す。
【0058】
【表5】
Figure 0003551472
【0059】
さらに、この触媒をストイキ(A/F=14.5)の排気ガス中、900 ℃において10時間の耐久処理を行った後に、A/F=18の浄化率を測定した。この結果を以下の表6に示す。
【0060】
【表6】
Figure 0003551472
【0061】
【発明の効果】
本発明の触媒担体は、Al/Me=4〜24の比とすることにより層状アルミネート構造の前駆体の非晶質構造となり、比表面積が大きく、また構造の自由度により活性種の低下がなく、そのため十分な触媒機能を与える。この層状アルミネート構造の前駆体は他のアルミナ等の前駆体に比べて結晶化する温度が高いため十分な高温耐熱性を維持することができる。また、本発明の触媒担体の製造時において、加水分解速度を制御することにより、NO吸蔵元素が高分散状態で含まれる担体が得られ、硫黄被毒時における硫酸塩の粒成長が起こりにくく、分解再生性が良好である。さらに、NO吸蔵元素として、特定のイオン半径の差を有する2種以上の元素を用いることにより、より比表面積の高い担体が得られる。この担体にPt等を担持させることにより、高温耐熱性に優れたNO吸収分解型触媒が得られる。
【図面の簡単な説明】
【図1】本発明の触媒担体におけるBa量と、この担体より製造した触媒のNO浄化能との関係を示すグラフである。[0001]
[Industrial applications]
The present invention relates to an exhaust gas purifying catalyst , and more particularly, to a nitrogen oxide absorption-decomposition type catalyst excellent in high-temperature heat resistance.
[0002]
[Prior art]
Air pollution was taken up as an environmental problem, and particularly with the spread of automobiles, its exhaust gas became a problem, and various regulations were applied. For this reason, various systems such as an engine improvement, a reactor system, and a catalyst system were applied at an early stage, but at present, a catalyst system capable of performing exhaust gas treatment most efficiently is predominant.
[0003]
Automotive catalysts are mounted directly on the engine exhaust manifold or under the floor of the vehicle. Currently used catalytic converters are called “Molinos type”, which have a large number of through holes (cells) formed in the flow direction of exhaust gas, and a wash coat layer is provided on the inner surface of each cell. Have been. This washcoat layer is a substantial part of the catalyst for purifying the exhaust gas.
[0004]
As the catalyst, noble metals such as platinum (Pt), rhodium (Rh), and palladium (Pd) are known, and these are fine particles on a porous and large surface area carrier such as alumina (Al 2 O 3 ). As dispersed. The exhaust gas diffuses into the fine pores of the alumina, and a catalytic reaction occurs on the catalyst surface. Since such a catalytic reaction is performed on the surface of the noble metal particles, the noble metal particles are preferably as small as possible.
[0005]
However, in the conventional catalyst, the noble metal particles aggregate in a high temperature range of 600 ° C. or more, and the catalyst surface area decreases. At a high temperature of 1000 ° C. or higher, γ-Al 2 O 3 currently used as a carrier undergoes a structural transition to α-Al 2 O 3 , the surface area decreases, and micropores disappear. Therefore, in order to prevent this α-formation, a catalyst to which a rare earth element has been added has been developed. However, even with such a catalyst, the durability is limited to about 800 ° C., and at a temperature higher than 800 ° C. No results were obtained.
[0006]
In order to solve the above problem, a carrier having a magnetoplumbite type layered aluminate structure having high crystallinity has been developed (Japanese Patent Application Laid-Open No. 2-78438). This carrier contains an alkaline earth metal oxide and an aluminum oxide, and there is no reaction between the alkaline earth metal and the aluminum oxide at a high temperature, and the specific surface area and the activity are not reduced. However, because of the structure of the layered aluminate, the activity itself of the active species is reduced, the specific surface area itself is reduced, and a sufficient catalytic function cannot be obtained.
[0007]
[Problems to be solved by the invention]
The present invention solves the above-mentioned drawbacks of the conventional catalyst carrier and provides a catalyst having sufficient high-temperature heat resistance.
[0008]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to solve the above-mentioned problems of the catalyst support, and as a result, when an amorphous structure was formed by a precursor of a layered aluminate structure, the specific surface area was large. Further, the present inventors have found that a sufficient catalytic function can be obtained because the active species are not reduced due to the degree of freedom of the structure, and the present invention has been completed.
[0009]
The present invention relates to the following formula (I)
Me x Al y O 2 (I )
(In the above formula, Me is at least one element selected from the group consisting of alkali metals, alkaline earth metals, and rare earth elements, y / x = 4 to 24, and z is determined by Me, x, and y. Value)
Is a precursor of a layered aluminate structure represented by, and a noble metal is supported on a catalyst carrier made of an amorphous composition that has been heat-treated at a temperature that does not crystallize, and the combustion gas is alternately controlled in a lean-stoichiometric manner. This provides an exhaust gas purifying catalyst used for reducing NO x in sulfur-containing exhaust gas by storing it in Me in the catalyst carrier.
[0010]
In the present invention, Me in the above formula (I) may be composed of two or more kinds of elements, each of which has a hexacoordinate ionic radius of 0.95 ° or more, and a difference in ionic radius between the elements. The present invention provides an exhaust gas purifying catalyst characterized in that the difference between the element having the largest ion radius and the other element having a smaller ion radius is 0.3 ° or more.
[0011]
[Action]
Using the exhaust gas purifying catalyst of the present invention, the combustion gas lean - by controlling the stoichiometric alternately, NO x in the exhaust gas is occluded reduced. The NO x storage element (Me) in the amorphous powder has an excellent NO x storage capacity, and exhibits the same performance as when the NO x storage element is supported on Al 2 O 3 . In addition, in the amorphous catalyst carrier of the above formula (I) , the NO x occluding element does not form a stable compound with Al 2 O 3 of the carrier at a temperature at which crystallization does not occur, so that the NO x occluding ability does not decrease.
[0012]
Further, in the amorphous catalyst carrier of the formula (I) , since the NO x occluding element is mixed in a highly dispersed state in the carrier, grain growth of sulfate hardly occurs at the time of sulfur poisoning. It has decomposition and regeneration properties.
[0013]
In the amorphous catalyst carrier of the formula (I) , when the ionic radius of the NO x occluding element is large, the NO x occluding element suppresses the phase change of Al 2 O 3 of the carrier. Is obtained. Furthermore, the presence of two or more types of NO x occluding elements having a difference in ionic radius equal to or greater than a certain value suppresses crystallization of the layered aluminate, and the difference in ionic radius causes distortion in the layered structure. As a result, a powder having a high specific surface area can be obtained.
[0014]
[Description of capture of means for solving the problem]
The catalyst support of the formula (I) is produced by a so-called sol-gel method. That is, a solution is prepared by using an aluminum alkoxide and a metal or a metal oxide in the ratio of the above formula, and this solution is stirred under reflux to effect hydrolysis and polycondensation of the alkoxide. Then, metal oxide particles are generated and the solution becomes a sol. As the reaction proceeds further, the whole becomes a solidified gel. By heating this gel, an amorphous composition represented by the above formula is obtained.
[0015]
The content ratio (Al / Me ) of aluminum and Me of the formula (I) is 4 to 24, preferably 9 to 15, and more preferably 10 to 13 in molar ratio. If this ratio is larger than 24, the amount of NOx storage elements is too small, and the initial purification ability is 40% or less, and the effect is low. On the other hand, when this ratio is less than 4, a large amount of sulfate is formed at the time of sulfur poisoning, and the deterioration of the durability purifying ability becomes large.
[0016]
The hydrolysis in the sol-gel method proceeds rapidly. There is no problem if the above ratio is in the range of 9 to 15, but if it exceeds this range, the dispersibility of the NO x occluding element becomes poor, and as a result, grain growth of the sulfate tends to occur during sulfur poisoning. Therefore, by controlling the hydrolysis rate, the dispersibility of the NO x occluding element is enhanced, the grain growth of the sulfate during sulfur poisoning is suppressed, and the deterioration of the durability purifying ability is prevented.
[0017]
The hydrolysis rate is controlled by adjusting the amount of water and adding a reaction inhibitor. As the reaction inhibitor, β-diketone (for example, 2,4-pentadiene), β-keto acid ester (for example, ethyl acetoacetate), alkanolamine (for example, triethanolamine) and the like can be used. Such control of hydrolysis makes it possible to use aluminum and Me in the above ratio range of 4 to 24.
[0018]
Thus temperature not crystallized powder obtained by the sol-gel method, for example, by heat treatment at 800 to 1100 ° C., the resulting catalyst carrier gas of formula (I) which is a precursor of the layer-like aluminate structure.
[0019]
The alkali metal, alkaline earth metal and rare earth element contained in the carrier are not particularly limited, and various types can be used.
In the present invention, the element is composed of two or more elements, each of which has a hexacoordinate ionic radius of 0.95 ° or more, and a difference in ionic radius between the elements, the maximum ionic radius It is preferable that the distance between the element and the other element is 0.3 ° or more. Examples of such elements and their ionic radii are shown in Table 1 below.
[0020]
[Table 1]
Figure 0003551472
[0021]
In the catalyst support of the formula (I) , it is preferable that an element having a small ionic radius is contained in an amount of 10 to 40% of an element having a large ionic radius. This is because a material having a larger specific surface area can be obtained.
[0022]
By supporting a noble metal such as Pt on the catalyst carrier of the formula (I) , an effective nitrogen oxide absorption / decomposition type, high temperature heat resistant exhaust gas purifying catalyst of the present invention can be obtained. The method for supporting the noble metal is not particularly limited, and a conventionally used method, for example, an impregnation method or the like can be used. The catalyst thus formed is absorbed decomposes NO x by controlling the combustion gas lean, stoichiometric alternately. Ba or K amorphous powder is a catalyst carrier of the formula (I) is excellent in ability to absorb NO x in lean exhaust gas, shows the Al 2 to O 3 obtained by coating the Ba or K equivalent performance. In addition, when the temperature is 1100 ° C. or less, Ba or K does not form a stable compound even when exposed to a high temperature, so that the NO x absorption ability does not decrease.
[0023]
Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited thereto.
Example 1
A solution prepared by dissolving 4.3 g (0.031 mol) of metal barium in 50 ml of 2-propanol and a solution prepared by dissolving 76.7 g (0.376 mol) of aluminum triisopropoxide in 250 ml of 2-propanol at 80 ° C. (Al / Ba = 12). The mixed solution was refluxed and stirred at 80 ° C. for 5 hours, and then a mixed solution of 12.8 ml of ion-exchanged water and 55 ml of 2-propanol was added dropwise to the solution while maintaining the temperature at 80 ° C. After the dropwise addition, the mixture was stirred for 5 hours while maintaining the temperature at 80 ° C., and then dried under reduced pressure to obtain a white powder. This powder was fired in the air at 800 ° C. for 5 hours to obtain a fine powder having a specific surface area of 226 m 2 / g. As a result of X-ray diffraction, it was confirmed that the film had an amorphous structure.
[0024]
Example 2
A powder was obtained in the same manner as in Example 1 except that 8.0 g (0.03 mol) of barium diisopropoxide (Ba (OiC 3 H 7 ) 2 ) was used instead of metal barium. (Al / Ba12). This powder was fired at 800 ° C. in the air for 5 hours to obtain a fine powder having a specific surface area of 230 m 2 / g. As a result of X-ray diffraction, it was confirmed that the film had an amorphous structure.
[0025]
Example 3
A solution prepared by dissolving 6.4 g (0.025 mol) of barium diisopropoxide, 1.0 g (0.0023 mol) of lanthanum nitrate and 0.3 g (0.0035 mol) of potassium acetate in 50 ml of 2-propanol was used. At 80 ° C., 76.7 g (0.376 mol) of aluminum triisopropoxide were mixed with a solution of 250 ml of 2-propanol, and the subsequent treatment was carried out in the same manner as in Example 1 to obtain a powder (Al / ( Ba + La + K) = 12). This powder was fired at 800 ° C. in the air for 5 hours to obtain a fine powder having a specific surface area of 235 m 2 / g. As a result of X-ray diffraction, it was confirmed that the film had an amorphous structure.
[0026]
Example 4
A solution prepared by dissolving 4.8 g (0.019 mol) of barium diisopropoxide and 2.0 g (0.012 mol) of calcium nitrate in 50 ml of 2-propanol was used at 80 ° C. for 76.7 g of aluminum triisopropoxide (80 g). (0.376 mol) in a solution of 250 ml of 2-propanol, and the subsequent treatment was carried out in the same manner as in Example 1 to obtain a powder (Al / (Ba + Ca) = 12). This powder was fired at 800 ° C. in the air for 5 hours to obtain a fine powder having a specific surface area of 218 m 2 / g. As a result of X-ray diffraction, it was confirmed that the film had an amorphous structure.
[0027]
Example 5
A solution prepared by dissolving 4.3 g (0.031 mol) of metal barium in 50 ml of 2-propanol and a solution prepared by dissolving 76.7 g (0.376 mol) of aluminum triisopropoxide in 250 ml of 2-propanol at 80 ° C. (Al / Ba = 12). The mixed solution was refluxed and stirred at 80 ° C. for 2 hours, and thereafter, 12.2 g of 2,4-pentadione was added, and the mixture was further refluxed and stirred for 3 hours. Then, a mixed solution of 42.7 ml of ion-exchanged water and 182 ml of 2-propanol was added dropwise while maintaining the solution at 80 ° C. After the dropwise addition, the mixture was stirred for 5 hours while maintaining the temperature at 80 ° C., and then dried under reduced pressure to obtain a white powder. This powder was fired at 800 ° C. in the air for 5 hours to obtain a fine powder having a specific surface area of 236 m 2 / g. As a result of X-ray diffraction, it was confirmed that the film had an amorphous structure.
[0028]
Example 6
A solution prepared by dissolving 6.4 g (0.025 mol) of barium diisopropoxide, 1.0 g (0.0023 mol) of lanthanum nitrate and 0.3 g (0.0035 mol) of potassium acetate in 50 ml of 2-propanol was used. At 80 ° C., 76.7 g (0.376 mol) of aluminum triisopropoxide were mixed with a solution of 250 ml of 2-propanol (same as in Example 3). Got. This powder was fired at 800 ° C. in the air for 5 hours to obtain a fine powder having a specific surface area of 241 m 2 / g. As a result of X-ray diffraction, it was confirmed that the film had an amorphous structure.
[0029]
Example 7
A solution obtained by dissolving 11.2 g (0.044 mol) of barium diisopropoxide in 50 ml of 2-propanol was converted into 53.4 g (0.262 mol) of aluminum triisopropoxide in 250 ml of 2-propanol at 80 ° C. It was mixed with the dissolved solution (Al / Ba = 6). After refluxing and stirring this mixed solution at 80 ° C. for 2 hours, 9.2 g of 2,4-pentadione was added, and the solution was further refluxed and stirred for 3 hours. Then, a mixed solution of 31.4 ml of ion-exchanged water and 134 ml of 2-propanol was added dropwise while maintaining the solution at 80 ° C. After the dropwise addition, the mixture was stirred for 5 hours while maintaining the temperature at 80 ° C., and then dried under reduced pressure to obtain a white powder. This powder was fired in air at 800 ° C. for 5 hours to obtain a fine powder having a specific surface area of 153 m 2 / g. As a result of X-ray diffraction, it was confirmed that the film had an amorphous structure.
[0030]
Example 8
A solution prepared by dissolving 3.7 g (0.0145 mol) of barium diisopropoxide in 50 ml of 2-propanol was converted into 71.1 g (0.349 mol) of aluminum triisopropoxide in 250 ml of 2-propanol at 80 ° C. It was mixed with the dissolved solution (Al / Ba = 24). After refluxing and stirring this mixed solution at 80 ° C. for 2 hours, 10.9 g of 2,4-pentadione was added, and the mixture was further refluxed and stirred for 3 hours. Next, a mixed solution of 38.7 ml of ion-exchanged water and 165 ml of 2-propanol was added dropwise while keeping the solution at 80 ° C. After the dropwise addition, the mixture was stirred for 5 hours while maintaining the temperature at 80 ° C., and then dried under reduced pressure to obtain a white powder. This powder was fired at 800 ° C. in the air for 5 hours to obtain a fine powder having a specific surface area of 228 m 2 / g. As a result of X-ray diffraction, it was confirmed that the film had an amorphous structure.
[0031]
The fired powder obtained in Examples 1 to 8 was impregnated with 250 ml of an aqueous solution of dinitrodiamine Pt nitrate (Pt amount: 0.003 mol), and stirred at room temperature for 1 hour with a stirrer. This slurry was separated into a powder and a supernatant by a centrifuge, and the supernatant was discarded. The obtained powder was dried at 120 ° C. for 12 hours and heat-treated at 250 ° C. for 1 hour. According to elemental analysis, Pt was supported by 1.02% by weight based on the carrier powder.
[0032]
The thus-obtained Pt-supported powder was coated on a honeycomb carrier by the following method.
A slurry was prepared by adding 3 g of alumina sol, 50 g of a 40% aqueous solution of aluminum nitrate and 108 g of water to 100 g of the powder. A honeycomb carrier made of cordierite (1 liter outer volume) is immersed in the slurry, the slurry is coated on the honeycomb carrier by a method of blowing off excess slurry, dried at 120 ° C. for 3 hours, and then heated at 500 ° C. for 1 hour. And a catalyst sample was obtained.
[0033]
With respect to the honeycomb catalyst thus manufactured, the purification performance of a new catalyst and the purification performance after endurance at 800 ° C. for 24 hours of a model gas (lean) were evaluated under the following conditions.
[0034]
(1) Model gas composition ▲ 1 ▼ lean CO: 0.08%, C 3 H 8: 800ppm, CO 2: 12.0%, O 2: 4.5%,
H 2 O: 3%, NO : 1000ppm, SO 2: 50ppm, N 2: balance ▲ 2 ▼ stoichiometric CO: 1.05%, C 3 H 8: 1000ppm, CO 2: 10.0%, O 2: variation H 2 O: 10%, NO: 2000 ppm, SO 2 : 50 ppm, N 2 : balance (2) Space velocity: 200000 h −1
[0035]
(3) Purification rate measuring method A stainless steel tube in which a honeycomb is set is heated in a tubular furnace, and a model gas is flowed into the honeycomb while the inside of the honeycomb is maintained at 300 ° C. Then, the gas after passing through the honeycomb is analyzed. The purified amount is calculated from the average amount of gas components for 4 minutes in which 1 minute of lean-one minute of stoichiometry is repeated twice and the amount of model gas flowing for 4 minutes. Thus, CO at 300 ° C., HC, and measuring the average purification rate of NO x. The results are shown in Table 2 below. Further, the amount of BaSO 4 produced after the durability test was evaluated by the X-ray diffraction peak intensity. The results are also shown in Table 2.
[0036]
Comparative Example 1
Pt was carried on γ-alumina having a specific surface area of 150 m 2 / g in the same manner as described above. This powder was impregnated in a barium acetate aqueous solution prepared to have a concentration of 25 wt% Ba, stirred for 1 hour, and then separated by a centrifuge. This powder was dried at 120 ° C. for 12 hours, and then heat-treated at 500 / ° C. for 1 hour. This powder was coated on a honeycomb in the same manner as described above, and a catalyst sample was obtained.
[0037]
Comparative Example 2
A solution prepared by dissolving 21.8 g (0.159 mol) of metal barium in 80 ml of 2-propanol and a solution prepared by dissolving 65.0 g (0.319 mol) of aluminum triisopropoxide in 250 ml of 2-propanol at 80 ° C. (Al / Ba = 2). After refluxing and stirring this mixed solution at 80 ° C. for 2 hours, 14.3 g of 2,4-pentanedione was added, and the mixture was further refluxed and stirred for 3 hours. To this solution, a mixed solution of 45.9 ml of ion-exchanged water and 195 ml of 2-propanol was added dropwise while maintaining the temperature at 80 ° C. After the dropwise addition, the mixture was stirred for 5 hours while maintaining the temperature at 80 ° C., and then dried under reduced pressure to obtain a white powder. This powder was fired at 800 ° C. in the air for 5 hours to obtain a fine powder. The specific surface area of this powder was 34 m 2 / g. As a result of X-ray diffraction, it was found that BaO.Al 2 O 3 was generated.
[0038]
Comparative Example 3
In Example 7, 3.0 g (0.0118 mol) of barium isopropoxide, 62.3 g (0.305 mol) of aluminum isopropoxide, 9.5 g of 2,4-pentanedione, and 33 of ion-exchanged water were used. 2.9 ml and 145 ml of 2-propanol were used, except that powder was obtained in the same way (Al / Ba = 26). This powder was fired at 800 ° C. in the air for 5 hours to obtain a fine powder. The specific surface area of this powder was 215 m 2 / g. As a result of X-ray diffraction, it was amorphous.
[0039]
The fired powders obtained in Comparative Examples 2 and 3 were loaded with Pt in the same manner as in the above Examples, coated on honeycombs, and catalyst samples were obtained. Table 2 shows the results obtained in Comparative Examples 1 to 3.
[0040]
[Table 2]
Figure 0003551472
[0041]
From these results, the catalyst produced by using the catalyst carrier of the present invention has high initial purification ability, high purification ability after durability, and excellent high-temperature heat resistance. In addition, the amount of sulfate produced after durability is low, and it has excellent decomposition and regeneration properties.
[0042]
Example 9
A fired powder was obtained in the same manner as in Example 5, except that 5.3 g of ethyl acetoacetate was used instead of 12.2 g of 2,4-pentanedione.
[0043]
Example 10
A baked powder was obtained in the same manner as in Example 9, except that the amount of ethyl acetoacetate added was 15.9 g.
[0044]
Example 11
A baked powder was obtained in the same manner as in Example 9, except that the amount of ethyl acetoacetate added was 31.8 g.
[0045]
Example 12
A baked powder was obtained in the same manner as in Example 9, except that 6.1 g of triethanolamine was used instead of ethyl acetoacetate.
[0046]
Example 13
A baked powder was obtained in the same manner as in Example 12, except that the addition amount of triethanolamine was changed to 18.2 g.
[0047]
Example 14
A baked powder was obtained in the same manner as in Example 12, except that the addition amount of triethanolamine was 36.4 g.
[0048]
The specific surface areas of the calcined powders obtained in Examples 9 to 14 were measured, and the results are shown in Table 3 below. As a result of X-ray diffraction, none of these powders showed any crystalline peak, and it was confirmed that these powders had an amorphous structure.
[0049]
[Table 3]
Figure 0003551472
[0050]
Example 15
A solution prepared by dissolving 12.9 g (0.094 mol) of metal barium in 70 ml of 2-propanol and a solution prepared by dissolving 76.7 g (0.376 mol) of aluminum triisopropoxide in 250 ml of 2-propanol at 80 ° C. (Al / Ba = 4). This mixed solution was stirred under reflux at 80 ° C. for 2 hours, and then 76.7 g of 2,4-pentadione was added, and further stirred under reflux for 3 hours. Then, a mixed solution of 42.7 ml of ion-exchanged water and 202 ml of 2-propanol was added dropwise while maintaining the solution at 80 ° C. After the dropwise addition, the mixture was stirred for 5 hours while maintaining the temperature at 80 ° C., and then dried under reduced pressure to obtain a white powder. This powder was fired at 800 ° C. in the air for 5 hours to obtain a fine powder having a specific surface area of 72 m 2 / g. As a result of X-ray diffraction, it was confirmed that the film had an amorphous structure.
[0051]
Example 16 (Effect of water addition amount)
In Example 2, the amount of water was changed, and the specific surface area of the obtained powder and the generated phase during crystallization after the durability of the catalyst prepared in the same manner were examined. The results are shown in Table 4 below.
[0052]
[Table 4]
Figure 0003551472
The amount of water added is preferably 0.3 to 0.8 times the alkyl group in the raw material.
[0053]
Example 17 (Effect of Ba amount)
In Example 2, varying the amount of Ba, Similarly catalyzed lean 4 minutes - were measured average purification rate of the NO x at 300 ° C. By repeating the stoichiometric 1 minute. The result is shown in FIG. As it is apparent from this figure, in particular advantage is observed in the rich region Ba amount in conditions absorption capacity of the NO x is a number required.
[0054]
Example 18
204 g (1 mol) of aluminum triisopropoxy, 17.0 g (0.067 mol) of diisopropoxybarium and 1.13 g (0.017 mol) of sodium ethoxy were stirred at 80 ° C. for 5 hours in 2-propanol (Ba + Na). / Al = 12). 200 ml of 2-propanol solution containing 57.6 ml of ion-exchanged water was added dropwise at 1 ml / min to effect hydrolysis. Then, the mixture was heated for 5 hours and dried under reduced pressure. The powder thus obtained was calcined at 1000 ° C. for 5 hours. This calcined powder had a specific surface area of 260 m 2 / g, which was higher than the powders obtained in Examples 1 to 4.
[0055]
Example 19
204 g (1 mol) of aluminum triisopropoxy, 10.3 g (0.07 mol) of rubidium nitrate and 6.17 g (0.03 mol) of diisopropoxystrontium were stirred in 2-propanol at 80 ° C. for 5 hours (Rb + Sr). / Al = 10). 200 ml of 2-propanol solution containing 57.6 ml of ion-exchanged water was added dropwise at 1 ml / min to effect hydrolysis. Then, the mixture was heated for 5 hours and dried under reduced pressure. The powder thus obtained was calcined at 1000 ° C. for 5 hours. This calcined powder had a specific surface area of 230 m 2 / g.
[0056]
The powders obtained in Examples 18 and 19 were catalyzed as a carrier, and the purification rate of exhaust gas was measured. That is, a slurry was prepared by adding aluminum nitrate and water to these powders. A honeycomb carrier made of cordierite was immersed in the slurry, the slurry was coated by a method of blowing off excess slurry, dried at 120 ° C. for 3 hours, and then fired at 500 ° C. for 1 hour in an electric furnace. Then, it was impregnated with a nitrate solution of dinitroamine Pt for 30 minutes, loaded with 1 g of Pt per 100 g of powder, dried at 120 ° C. for 3 hours, and then heat-treated in an electric furnace at 250 ° C. for 1 hour. Further, the resultant was impregnated with an aqueous Rh nitrate solution for 30 minutes to carry 1 g of Rh per 100 g of the powder, dried at 120 ° C. for 3 hours, and then heat-treated in an electric furnace at 250 ° C. for 1 hour to obtain a monolithic honeycomb catalyst.
[0057]
The purification performance of the new catalyst was measured for the honeycomb catalyst thus manufactured under the following conditions as described above.
(1) Evaluation gas composition (A / F (air-fuel ratio) = 18)
CO: 0.1%, C 3 H 8: 600ppm, H 2: 0.05%, CO 2: 11.5%,
O 2 : 3.5%, H 2 O: 10%, NO: 2500 ppm, N 2 : balance (2) Space velocity: 200000h −1
Table 5 shows the results.
[0058]
[Table 5]
Figure 0003551472
[0059]
Further, after subjecting this catalyst to endurance treatment at 900 ° C. for 10 hours in stoichiometric (A / F = 14.5) exhaust gas, the purification rate of A / F = 18 was measured. The results are shown in Table 6 below.
[0060]
[Table 6]
Figure 0003551472
[0061]
【The invention's effect】
The catalyst carrier of the present invention has an amorphous structure of a precursor having a layered aluminate structure by setting the ratio of Al / Me = 4 to 24, has a large specific surface area, and a reduction in active species due to the degree of freedom of the structure. And thus provide sufficient catalytic function. Since the precursor having a layered aluminate structure has a higher crystallization temperature than other precursors such as alumina, it is possible to maintain sufficient high-temperature heat resistance. Further, during the production of the catalyst carrier of the present invention, by controlling the hydrolysis rate, a carrier containing the NO x storage element in a highly dispersed state is obtained, and the grain growth of sulfate during sulfur poisoning is less likely to occur. Good decomposition and reproducibility. Furthermore, a carrier having a higher specific surface area can be obtained by using two or more elements having a specific difference in ionic radius as the NO x storage element. By supporting the Pt or the like on the carrier, the absorption of NO x decomposition catalyst having excellent high-temperature heat resistance.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the amount of Ba in a catalyst carrier of the present invention and the NO x purification ability of a catalyst produced from the carrier.

Claims (2)

下式(I)
MexAly2 (I)
(上式中、Meはアルカリ金属、アルカリ土類金属及び希土類元素からなる群より選ばれる少なくとも1種の元素であり、y/x=4〜24であり、zはMe、x及びyにより決まる値である)
で表される、層状アルミネート構造の前駆体であり、かつ結晶化しない温度で熱処理された非晶質組成物からなる触媒担体に貴金属を担持させてなり、燃焼ガスをリーン−ストイキ交互に制御することにより、硫黄を含む排ガス中のNOxを前記触媒担体中のMeに吸蔵させて還元することに用いる排ガス浄化用触媒。
The following formula (I)
Me x Al y O 2 (I )
(In the above formula, Me is at least one element selected from the group consisting of alkali metals, alkaline earth metals, and rare earth elements, y / x = 4 to 24, and z is determined by Me, x, and y. Value)
Is a precursor of a layered aluminate structure represented by, and a noble metal is supported on a catalyst carrier made of an amorphous composition that has been heat-treated at a temperature that does not crystallize, and the combustion gas is alternately controlled in a lean-stoichiometric manner. By doing so, an exhaust gas purifying catalyst used to reduce NO x in sulfur-containing exhaust gas by storing it in Me in the catalyst carrier.
Meが2種類以上の元素からなり、前記元素は共に六配位のイオン半径が0.95Å以上であり、かつ前記元素の間のイオン半径の差が、最大のイオン半径を有する元素とこれよりイオン半径の小さな他の元素との間において0.3Å以上であることを特徴とする、請求項1記載の排ガス浄化用触媒。Me is composed of two or more types of elements, each of which has a hexacoordinate ionic radius of 0.95 ° or more, and a difference in ionic radius between the elements is an element having the largest ionic radius and an 2. The exhaust gas purifying catalyst according to claim 1, wherein the angle is 0.3 [deg.] Or more with another element having a small radius.
JP15086694A 1993-07-13 1994-07-01 Exhaust gas purification catalyst Expired - Lifetime JP3551472B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15086694A JP3551472B2 (en) 1993-07-13 1994-07-01 Exhaust gas purification catalyst

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP17329393 1993-07-13
JP5-173293 1993-07-13
JP15086694A JP3551472B2 (en) 1993-07-13 1994-07-01 Exhaust gas purification catalyst

Publications (2)

Publication Number Publication Date
JPH0775735A JPH0775735A (en) 1995-03-20
JP3551472B2 true JP3551472B2 (en) 2004-08-04

Family

ID=26480318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15086694A Expired - Lifetime JP3551472B2 (en) 1993-07-13 1994-07-01 Exhaust gas purification catalyst

Country Status (1)

Country Link
JP (1) JP3551472B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3664182B2 (en) * 1994-12-19 2005-06-22 トヨタ自動車株式会社 High heat-resistant exhaust gas purification catalyst and production method thereof
JP3861303B2 (en) * 1995-10-31 2006-12-20 トヨタ自動車株式会社 Exhaust gas purification catalyst
JP3494331B2 (en) 1996-02-02 2004-02-09 トヨタ自動車株式会社 Exhaust gas purification catalyst and method for producing the same
US6025297A (en) * 1996-11-14 2000-02-15 Toyota Jidosha Kabushiki Kaisha Catalyst for purifying exhaust gas and process for producing the same
JP3749391B2 (en) 1998-03-04 2006-02-22 トヨタ自動車株式会社 Exhaust gas purification catalyst and method for producing the same
KR20030060070A (en) * 2000-06-27 2003-07-12 도토기키 가부시키가이샤 Wash-hand basin and hand-washing device with the wash-hand basin
US7285259B2 (en) * 2001-05-23 2007-10-23 Ecaps Sintering resistant catalyst material and a method for the preparation thereof
JP4617867B2 (en) * 2004-12-21 2011-01-26 マツダ株式会社 Exhaust gas purification catalyst
JP5583425B2 (en) * 2009-02-13 2014-09-03 日揮触媒化成株式会社 Exhaust gas purification catalyst, method for producing exhaust gas purification catalyst, method for producing catalyst substrate, and honeycomb type catalyst substrate
KR101189238B1 (en) 2010-08-11 2012-10-09 기아자동차주식회사 NOx Storage and Reduction Catalyst, Preparation Method thereof, and NOx Removing System Comprising the Same

Also Published As

Publication number Publication date
JPH0775735A (en) 1995-03-20

Similar Documents

Publication Publication Date Title
US7229947B2 (en) Catalyst for hydrogen generation and catalyst for purifying of exhaust gas
JP3664182B2 (en) High heat-resistant exhaust gas purification catalyst and production method thereof
EP2104567B1 (en) Method of making a NOx storage material
JP3861303B2 (en) Exhaust gas purification catalyst
KR100879965B1 (en) Catalyst for purifying exhaust gas
US6191061B1 (en) Method of purifying exhaust gas and catalyst for purifying exhaust gas
JP3494147B2 (en) Exhaust gas purification catalyst, method for producing the same, and exhaust gas purification method
JPH0653229B2 (en) Exhaust gas purification catalyst
JP3551472B2 (en) Exhaust gas purification catalyst
JP2000079327A (en) NOx TRAP CATALYST FOR LEAN-BURN ENGINE
JP3297825B2 (en) Exhaust gas purification catalyst
JPH08131830A (en) Catalyst for purification of exhaust gas
JPH10165817A (en) Catalyst for cleaning of exhaust gas
JP3770416B2 (en) Method for producing exhaust gas purification catalyst
JP3739226B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP3817679B2 (en) Exhaust gas purification catalyst
JP3862177B2 (en) Exhaust gas purification catalyst
JPH09206599A (en) Catalyst for purification of exhaust gas
JP3149665B2 (en) Method for producing catalyst carrier
JPH11290686A (en) Exhaust gas cleaning catalyst
JPH0819738A (en) Catalyst carrier with high resistance to high temperature
JPH0889801A (en) Catalyst for purification of exhaust gas
JPH08294624A (en) Catalyst for purifying exhaust gas
JPH0724316A (en) Production of catalyst carrier
JPH08281105A (en) Clarification catalyst for combustion exhaust gas

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040419

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080514

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 10

EXPY Cancellation because of completion of term