JP6700822B2 - Microporous layer and fuel cell using the same - Google Patents

Microporous layer and fuel cell using the same Download PDF

Info

Publication number
JP6700822B2
JP6700822B2 JP2016021783A JP2016021783A JP6700822B2 JP 6700822 B2 JP6700822 B2 JP 6700822B2 JP 2016021783 A JP2016021783 A JP 2016021783A JP 2016021783 A JP2016021783 A JP 2016021783A JP 6700822 B2 JP6700822 B2 JP 6700822B2
Authority
JP
Japan
Prior art keywords
layer
gas diffusion
fuel cell
oxygen
microporous layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016021783A
Other languages
Japanese (ja)
Other versions
JP2017120754A (en
Inventor
佐藤 孝志
孝志 佐藤
西岡 綾子
綾子 西岡
忠利 黒住
忠利 黒住
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Publication of JP2017120754A publication Critical patent/JP2017120754A/en
Application granted granted Critical
Publication of JP6700822B2 publication Critical patent/JP6700822B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Description

本発明は、カーボン材料と撥水材料を含むマイクロポーラス層、ガス拡散層、膜電極接合体及び燃料電池に関する。   The present invention relates to a microporous layer containing a carbon material and a water repellent material, a gas diffusion layer, a membrane electrode assembly and a fuel cell.

固体高分子形燃料電池の膜電極接合体(Membrane Electrode Assembly)は、固体高分子膜の片面に、空気極触媒層付きガス拡散電極が、固体高分子膜の反対面にアノード用触媒層付きガス拡散電極が、固体高分子膜と触媒層とが接するように形成されている構造である。以下、本明細書において、膜電極接合体を「MEA」と呼ぶ場合がある。   Membrane Electrode Assembly of a polymer electrolyte fuel cell has a gas diffusion electrode with an air electrode catalyst layer on one surface of the polymer electrolyte membrane and a gas with an anode catalyst layer on the opposite surface of the polymer electrolyte membrane. The diffusion electrode has a structure in which the solid polymer membrane and the catalyst layer are in contact with each other. Hereinafter, in the present specification, the membrane electrode assembly may be referred to as “MEA”.

固体高分子形燃料電池(PEFC:Polymer Electrolyte Fuel Cell)は、膜電極接合体をセパレーターで挟みこみ、アノードに燃料、カソードに酸素を供給し、燃料と酸素を反応させ水を生成し、エネルギーを電気として取り出す形式の燃料電池である。   Polymer Electrolyte Fuel Cell (PEFC) sandwiches a membrane electrode assembly with a separator, supplies fuel to the anode and oxygen to the cathode, reacts the fuel and oxygen to generate water, and generates energy. It is a type of fuel cell that takes out electricity.

空気極ガス拡散層は、酸素を空気極触媒層に供給するために良好なガス透過性及び拡散性を備えていることが必要とされる。また、空気極触媒層で発生した電子が効率的にセパレーターへ輸送されるための導電性を備えていることが必要とされる。さらに、撥水性など生成される水を排出する機能を備えていることが必要とされる。   The cathode gas diffusion layer is required to have good gas permeability and diffusivity in order to supply oxygen to the cathode catalyst layer. Further, it is necessary to have conductivity so that the electrons generated in the air electrode catalyst layer can be efficiently transported to the separator. Further, it is required to have a function of discharging generated water such as water repellency.

これら燃料電池の評価に酸素ゲインがある。酸素ゲインは空気を用いた場合の電流−電位曲線(IVカーブ)と酸素を用いた場合のIVカーブの差を見たものである。空気の場合には、酸素と比べて性能が低くなるとともにガス拡散性、排水性などの影響を受け構造・材質も含めて検討する必要がある。その為、使い方によって性能が異なることもある。   There is an oxygen gain in the evaluation of these fuel cells. The oxygen gain is the difference between the current-potential curve (IV curve) when air is used and the IV curve when oxygen is used. In the case of air, the performance will be lower than that of oxygen, and it will be necessary to consider the structure and material, as it is affected by gas diffusivity and drainage. Therefore, the performance may vary depending on the usage.

実際の燃料電池では、空気の酸素利用率は50%程度である。これは供給された空気の酸素のうち50%が消費されていることである。空気に含まれる酸素割合は20%であるから、空気の利用率50%では酸素としては10%であり、触媒近傍ではもっと酸素濃度が低下していることが想定される。その為、酸素をより効率的に触媒層へ供給する試みがなされている。   In an actual fuel cell, the oxygen utilization rate of air is about 50%. This means that 50% of the oxygen in the supplied air is consumed. Since the proportion of oxygen contained in air is 20%, it is assumed that when the utilization rate of air is 50%, the oxygen content is 10%, and that the oxygen concentration is lower near the catalyst. Therefore, attempts have been made to supply oxygen to the catalyst layer more efficiently.

特許文献3には、酸素分離装置を燃料電池に組み込んだシステムが提案されている。酸素分離装置は確実に酸素を増やすことが可能であるが、燃料電池に設備を追加することからコスト増加や質量・体積増加となる。   Patent Document 3 proposes a system in which an oxygen separation device is incorporated in a fuel cell. The oxygen separation device can surely increase oxygen, but the addition of equipment to the fuel cell increases cost and mass/volume.

特許文献4には、カソード電極に空気から酸素を選択的に分離する酸素分離手段として酸素吸着カーボンが備えられた燃料電池が提案されている。ただし、大きな表面積のカーボン材料(例えば、BET比表面積500〜1000cm/g)が酸素を吸着することは知られており、すでに、燃料電池の触媒担体として利用されている。すなわち、特許文献4は、現状よりさらなる酸素富化を得るというものではない。 Patent Document 4 proposes a fuel cell in which a cathode electrode is provided with oxygen-adsorbing carbon as an oxygen separating means for selectively separating oxygen from air. However, it is known that a carbon material having a large surface area (for example, a BET specific surface area of 500 to 1000 cm 2 /g) adsorbs oxygen and has already been used as a catalyst carrier of a fuel cell. That is, Patent Document 4 does not intend to obtain more oxygen enrichment than the current situation.

特許文献5では、触媒担持カーボンと、高分子電解質とからなる触媒層を有する燃料電池用カソードであって、触媒層にテトラフェニルポルフィリナト−コバルト(II)−ベンジルイミダゾールが存在している燃料電池が提案されている。触媒が担持されている導電体の近傍に、前記ポルフィリン錯体が酸素吸着体として存在するので、触媒表面へ酸素分子の拡散経路が、触媒近傍に位置する酸素吸着体によって確保されるため、触媒層内の反応サイト近傍の反応ガスの濃度を従来よりも高くすることが可能であると説明されている。しかしながら、テトラフェニルポルフィリナト−コバルト(II)−ベンジルイミダゾールは、高価である。   Patent Document 5 discloses a fuel cell cathode having a catalyst layer composed of a catalyst-supporting carbon and a polymer electrolyte, in which tetraphenylporphyrinato-cobalt(II)-benzylimidazole is present in the catalyst layer. Is proposed. Since the porphyrin complex is present as an oxygen adsorbent in the vicinity of the conductor on which the catalyst is supported, the diffusion path of oxygen molecules to the catalyst surface is secured by the oxygen adsorbent located in the vicinity of the catalyst. It is described that it is possible to increase the concentration of the reaction gas in the vicinity of the reaction site in the inside of the inside. However, tetraphenylporphyrinato-cobalt(II)-benzylimidazole is expensive.

一方、酸化セリウムは3価と4価を定常状態でとりうる金属酸化物として知られている。より3価を安定に多くとらせるようにジルコニアと固溶させたセリアジルコニア(以下、「CZ」と記すことがある。)がある。CZは300℃以上の温度で酸素を吸放出する機能を有し、自動車排ガス触媒の助触媒として利用されている。   On the other hand, cerium oxide is known as a metal oxide that can assume trivalent and tetravalent states in a steady state. There is ceria zirconia (hereinafter sometimes referred to as "CZ") that is solid-dissolved with zirconia so that more trivalent compounds can be stably obtained. CZ has a function of absorbing and releasing oxygen at a temperature of 300° C. or higher, and is used as a promoter of an automobile exhaust gas catalyst.

特許文献1には、酸素吸放出能を有するCZを添加したマイクロポーラス層が開示されている。しかしながら、開示されているCZは、前述したように酸素吸放出能を発揮する温度が300℃以上である。この温度は、固体高分子形の燃料電池の作動温度(一般に70〜100℃程度)の範囲外である。   Patent Document 1 discloses a microporous layer to which CZ having oxygen absorbing/releasing ability is added. However, the disclosed CZ has a temperature of 300° C. or higher at which the oxygen storage/release ability is exhibited as described above. This temperature is outside the operating temperature range of a polymer electrolyte fuel cell (generally about 70 to 100° C.).

また、特許文献2には、膜電極接合体の過酸化水素による劣化抑制を目的として酸化セリウムを配合したマイクロポーラス層が開示されている。しかしながら、酸化セリウムは酸素吸放出能が低く、作動温度は非常に高い。   Further, Patent Document 2 discloses a microporous layer containing cerium oxide for the purpose of suppressing deterioration of the membrane electrode assembly by hydrogen peroxide. However, cerium oxide has a low ability to absorb and release oxygen, and its operating temperature is very high.

非特許文献1では、CZに固溶させる第3成分としてSnOまたはBiを選択し、以下の理由により酸素放出開始温度が低くなるとしている。SnOは典型的なn型半導体であり、Sn4+からSn2+への還元は容易に起こる。Ce4+の一部をSn4+で置換すると、酸素貯蔵放出能が向上する。Biについては、結晶格子中のCe4+やZr4+の一部を価数の小さいBi3+で置換すると、結晶全体の電気的中性を保つために格子内から酸化物イオン(O2−)が抜け、空格子点が必ず生成する。O2−は空格子点を介して動くことができるため、結晶内部からの拡散が起こりやすくなる。 In Non-Patent Document 1, SnO 2 or Bi 2 O 3 is selected as the third component to be solid-dissolved in CZ, and the oxygen release start temperature becomes low for the following reasons. SnO 2 is a typical n-type semiconductor, and reduction of Sn 4+ to Sn 2+ easily occurs. When a part of Ce 4+ is replaced with Sn 4+ , the oxygen storage/release capacity is improved. Regarding Bi 2 O 3 , when Ce 4+ or Zr 4+ in the crystal lattice is partially replaced with Bi 3+ having a small valence, oxide ions (O 2 - ) is omitted and vacancies are always generated. Since O 2− can move through the vacancies, diffusion from inside the crystal easily occurs.

中国特許第102479960号明細書Chinese Patent No. 10247960 特開2012−038479号公報JP 2012-038479 A 特許第4011203号公報Japanese Patent No. 4011203 特開2005−294107号公報JP, 2005-294107, A 特許第4311070号公報Japanese Patent No. 4311070

“Materials Integration” Vo1.26 No.01,2013,p.20−25"Materials Integration" Vo1.26 No. 01, 2013, p. 20-25

以上のように、触媒層に効率的に酸素を供給し高い発電性能を達成する試みはなされているが、システム的に大型化したり、固体高分子形燃料電池の作動条件で効率的に酸素が触媒層へ供給され難かったりするものであった。   As described above, attempts have been made to efficiently supply oxygen to the catalyst layer to achieve high power generation performance, but the system is upsized, and oxygen is efficiently supplied under the operating conditions of the polymer electrolyte fuel cell. It was difficult to supply to the catalyst layer.

そこで、本発明では上記課題に鑑み、固体高分子形燃料電池の作動温度領域で効率的に酸素を触媒層へ供給することにより高い発電性能を有する固体高分子形燃料電池を提供することを目的とする。   Therefore, in view of the above problems, it is an object of the present invention to provide a polymer electrolyte fuel cell having high power generation performance by efficiently supplying oxygen to the catalyst layer in the operating temperature range of the polymer electrolyte fuel cell. And

すなわち、本発明は以下の[1]〜[11]を含む。
[1]カーボン材料と、撥水材料と、0〜100℃に酸素吸蔵放出能を有する材料とを含有するマイクロポーラス層。
[2]前記酸素吸蔵放出能を有する材料が、スズ、マンガン、プラセオジム及びビスマスから選択される少なくとも1種の元素を含む酸化セリウムジルコニウムである前項[1]に記載のマイクロポーラス層。
[3]前記酸素吸蔵放出能を有する材料が基材に担持されており、該基材がアルミナ、シリカ、シリカアルミナ、チタニア、ゼオライト、ジルコニア及びマグネシアから選ばれる1種または2種以上の混合物である前項[1]または[2]に記載のマイクロポーラス層。
[4]前記酸素吸蔵放出能を有する材料は、遷移金属元素を担持している前項[1]〜[3]のいずれかに記載のマイクロポーラス層。
[5]前記カーボン材料が、炭素粒子または炭素繊維である前項[1]〜[4]のいずれかに記載のマイクロポーラス層。
[6]前記撥水材料が、フッ素樹脂である前項[1]〜[5]のいずれかに記載のマイクロポーラス層。
[7]前項[1]〜[6]に記載のマイクロポーラス層とガス拡散電極基材とが積層されているガス拡散層。
[8]固体高分子膜を介して配置された空気極触媒層と燃料極触媒層と、さらに前記空気極触媒層の外側に配置された前項[1]〜[6]のいずれかに記載のマイクロポーラス層を有する空気極ガス拡散層と、
燃料極触媒層の外側に配置された燃料極ガス拡散層とを有する、膜電極接合体。
[9]固体高分子膜を介して配置された空気極触媒層と燃料極触媒層と、さらに空気極触媒層の外側に配置された、前項[7]に記載の空気極ガス拡散層と、燃料極触媒層の外側に配置された燃料極ガス拡散層とを有する、膜電極接合体。
[10]前項[8]または[9]に記載の膜電極接合体を備えた燃料電池。
[11]前項[10]に記載の燃料電池の運転方法であって、該燃料電池中のマイクロポーラス層の温度を酸素吸蔵放出能を有する材料の酸素吸蔵放出温度以上に設定する燃料電池の運転方法。
That is, the present invention includes the following [1] to [11].
[1] A microporous layer containing a carbon material, a water repellent material, and a material having an oxygen storage/release capacity at 0 to 100°C.
[2] The microporous layer according to the above [1], wherein the material having an oxygen storage/release capacity is cerium zirconium oxide containing at least one element selected from tin, manganese, praseodymium and bismuth.
[3] The material having the oxygen storage/release capacity is supported on a substrate, and the substrate is one or a mixture of two or more selected from alumina, silica, silica-alumina, titania, zeolite, zirconia and magnesia. The microporous layer according to the item [1] or [2].
[4] The microporous layer according to any one of the above items [1] to [3], wherein the material having the oxygen storage/release capacity carries a transition metal element.
[5] The microporous layer according to any one of the above items [1] to [4], wherein the carbon material is carbon particles or carbon fibers.
[6] The microporous layer according to any one of items [1] to [5], wherein the water repellent material is a fluororesin.
[7] A gas diffusion layer in which the microporous layer according to the above [1] to [6] and a gas diffusion electrode substrate are laminated.
[8] The air electrode catalyst layer and the fuel electrode catalyst layer which are arranged via a solid polymer membrane, and the above-mentioned [1] to [6] which is arranged outside the air electrode catalyst layer. An air electrode gas diffusion layer having a microporous layer,
A membrane electrode assembly having a fuel electrode gas diffusion layer disposed outside a fuel electrode catalyst layer.
[9] An air electrode catalyst layer and a fuel electrode catalyst layer arranged via a solid polymer membrane, and an air electrode gas diffusion layer according to the above [7], which is arranged outside the air electrode catalyst layer, A membrane electrode assembly having a fuel electrode gas diffusion layer disposed outside a fuel electrode catalyst layer.
[10] A fuel cell including the membrane electrode assembly according to the above [8] or [9].
[11] The method for operating the fuel cell according to the above item [10], wherein the temperature of the microporous layer in the fuel cell is set to be equal to or higher than the oxygen storage/release temperature of a material having oxygen storage/release capacity. Method.

本発明のマイクロポーラス層を用いることにより、高い発電性能を有する固体高分子形燃料電池が得られる。   By using the microporous layer of the present invention, a polymer electrolyte fuel cell having high power generation performance can be obtained.

実施例1で製造した材料(1)のXRDパターンである。3 is an XRD pattern of the material (1) manufactured in Example 1. 比較例1で製造した材料(9)のXRDパターンである。9 is an XRD pattern of the material (9) manufactured in Comparative Example 1. 比較例2で製造した材料(10)のXRDパターンである。9 is an XRD pattern of the material (10) manufactured in Comparative Example 2.

本発明のマイクロポーラス層は、カーボン材料と、撥水材料と、0〜100℃に酸素吸蔵放出能を有する材料とを含有する。なお、マイクロポーラス層は、多孔質であってその孔径がマイクロメートルオーダーに分布するものである。   The microporous layer of the present invention contains a carbon material, a water repellent material, and a material having an oxygen storage/release capacity at 0 to 100°C. The microporous layer is porous and has pores distributed in the order of micrometers.

[酸素吸蔵放出能を有する材料]
前記マイクロポーラス層に用いる酸素吸蔵放出能を有する材料は、酸素放出開始温度が0〜100℃である。
[Materials that have the ability to store and release oxygen]
The material having an oxygen storage/release capacity used for the microporous layer has an oxygen release start temperature of 0 to 100°C.

酸素吸蔵放出能を有する材料としては金属酸化物が挙げられ、なかでも酸化セリウム(CeO)や、酸化セリウムを含む金属酸化物、たとえば、酸化セリウムジルコニウム(Ce(1−x)Zr)がよく知られている。ただし、これらの酸素放出開始温度は500℃以上である。 Examples of the material having an oxygen storage/release capacity include metal oxides. Among them, cerium oxide (CeO 2 ) and metal oxides containing cerium oxide, for example, cerium zirconium oxide (Ce (1-x) Zr X O 2 ) Is well known. However, the oxygen release start temperature is 500° C. or higher.

前記酸化セリウムジルコニウムに、スズ(Sn)、マンガン(Mn)、プラセオジム(Pr)、ビスマス(Bi)などの元素を含有させると、0〜100℃に酸素放出開始温度を有する金属酸化物を得ることができる。なかでも、スズ(Sn)、ビスマス(Bi)は、より酸素放出開始温度が低くなるので好ましい。   When elements such as tin (Sn), manganese (Mn), praseodymium (Pr), and bismuth (Bi) are added to the cerium-zirconium oxide, a metal oxide having an oxygen release starting temperature of 0 to 100° C. can be obtained. You can Among them, tin (Sn) and bismuth (Bi) are preferable because they have a lower oxygen release starting temperature.

例えば、スズ含有酸化セリウムジルコニウムは、一般式Ce(1-x-y)ZrxSny2で表される。この組成において、好ましくはx、yの値がそれぞれ、0.1≦x≦0.3、0.1≦y≦0.3の範囲にあるときに、スズが酸化セリウムジルコニウムに固溶しやすいため酸素吸蔵放出能が大きな、0〜100℃に酸素放出開始温度を有する材料を得ることができる。 For example, tin-containing cerium zirconium oxide is represented by the general formula Ce (1-xy) Zr x Sn y O 2 . In this composition, when the values of x and y are preferably in the ranges of 0.1≦x≦0.3 and 0.1≦y≦0.3, tin easily dissolves in cerium zirconium oxide. Therefore, a material having a large oxygen storage/release capacity and an oxygen release start temperature of 0 to 100° C. can be obtained.

また、ビスマス含有酸化セリウムジルコニウムは、一般式Ce(1-x-y)ZrxBiy2で表される。この組成において、好ましくはx、yの値がそれぞれ、0.1≦x≦0.4、0.1≦y≦0.3の範囲にあるときに、ビスマスが酸化セリウムジルコニウムに固溶しやすいため酸素吸蔵放出能が大きな、0〜100℃に酸素放出開始温度を有する材料を得ることができる。 Further, the bismuth-containing cerium zirconium oxide is represented by the general formula Ce (1-xy) Zr x Bi y O 2 . In this composition, preferably, when the values of x and y are in the ranges of 0.1≦x≦0.4 and 0.1≦y≦0.3, bismuth is likely to form a solid solution with cerium zirconium oxide. Therefore, a material having a large oxygen storage/release capacity and an oxygen release start temperature of 0 to 100° C. can be obtained.

また、酸素吸蔵能を高めるために、酸素吸蔵放出能を有する材料は、BET比表面積が、40m2
g以上であることが好ましく、70m2/g以上であることがより好ましい。
Further, in order to enhance the oxygen storage capacity, the material having the oxygen storage/release capacity has a BET specific surface area of 40 m 2 /
It is preferably at least g, and more preferably at least 70 m 2 /g.

BET比表面積を大きくして酸素吸蔵能を高めることができるため、前記酸素放出開始能を有する材料である金属酸化物は、基材に担持されていてもよい。   Since the BET specific surface area can be increased and the oxygen storage capacity can be enhanced, the metal oxide, which is the material having the oxygen release initiation capacity, may be supported on the base material.

前記基材としては、特に制限はないが、通常、高比表面積基材が用いられ、好ましくは、アルミナ(活性アルミナがより好ましい)、シリカ(活性シリカがより好ましい)、シリカアルミナ、チタニア、ゼオライト、ジルコニア及びマグネシアから選ばれる1種または2種以上、およびこれらの混合物が挙げられる。   The base material is not particularly limited, but a high specific surface area base material is usually used, and preferably alumina (active alumina is more preferred), silica (active silica is more preferred), silica alumina, titania, zeolite. , One or more selected from zirconia and magnesia, and mixtures thereof.

なかでも、前記酸素放出能を有する金属酸化物をアルミナまたはチタニアに担持すると、より酸素放出開始温度を低下させやすく特に好ましい。アルミナまたはチタニアの合計100質量部に対する前記酸素放出開始温度を有する金属酸化物の担持量は、1〜9質量部が好ましく。5〜40質量部がより好ましい。   Above all, it is particularly preferable to support the oxygen-releasing metal oxide on alumina or titania because the oxygen-releasing start temperature can be further lowered. The supported amount of the metal oxide having the above oxygen release starting temperature is preferably 1 to 9 parts by mass with respect to a total of 100 parts by mass of alumina or titania. It is more preferably 5 to 40 parts by mass.

さらに酸素放出開始温度を低下させるため、前記酸素放出能を有する金属酸化物またはそれを基材に担持させたものに、遷移金属元素をさらに担持させてもよい。該遷移金属元素としては、特に制限はないが、貴金属もしくは遷移金属酸化物を用いることができる。   In order to further lower the oxygen release initiation temperature, a transition metal element may be further supported on the metal oxide having the oxygen releasing ability or the metal oxide supported on the base material. The transition metal element is not particularly limited, but a noble metal or a transition metal oxide can be used.

貴金属としては、白金、パラジウム、銀及びそれらの合金が挙げられ、中でも白金が好ましい。前記貴金属は、担持させやすさからナノ粒子であることが好ましく、粒径が2〜20nmのときに酸素吸蔵能も高くなるのでより好ましい。   Examples of the noble metal include platinum, palladium, silver and alloys thereof, of which platinum is preferred. The noble metal is preferably nanoparticles in terms of easiness of being carried, and more preferable when the particle size is 2 to 20 nm because the oxygen storage capacity also becomes high.

前記貴金属の担持量は、前記基材100質量部に対して、0.01〜5質量部が好ましく、0.05〜1質量部がより好ましい。前記担持量は、0.01質量部以上であれば酸素放出開始温度を低くしやすく、1質量部あれば酸素放出開始温度を十分低くでき、さらに担持量を増やしてもよいが経済性を考慮すると5質量部以下が好ましい。   The supported amount of the noble metal is preferably 0.01 to 5 parts by mass, and more preferably 0.05 to 1 part by mass with respect to 100 parts by mass of the base material. If the loading amount is 0.01 parts by mass or more, the oxygen release starting temperature can be easily lowered, and if the loading amount is 1 part by mass, the oxygen release starting temperature can be sufficiently lowered. Then, 5 parts by mass or less is preferable.

前記遷移金属酸化物としては、たとえば、酸化コバルト、酸化マンガン、酸化クロム、酸化バナジウム、酸化チタン、酸化タングステン、酸化銅、酸化ニッケル、酸化亜鉛、酸化銀及び酸化カドミウムなどから選ばれる少なくとも1種が挙げられる。酸化物触媒の担持量は、前記基材100質量部に対して、5〜90質量部が好ましく、10〜50質量部がより好ましい。前記範囲であれば、酸素放出開始温度を低くしやすい。   Examples of the transition metal oxide include at least one selected from cobalt oxide, manganese oxide, chromium oxide, vanadium oxide, titanium oxide, tungsten oxide, copper oxide, nickel oxide, zinc oxide, silver oxide and cadmium oxide. Can be mentioned. The supported amount of the oxide catalyst is preferably 5 to 90 parts by mass, and more preferably 10 to 50 parts by mass with respect to 100 parts by mass of the base material. Within the above range, the oxygen release start temperature can be easily lowered.

<酸素吸蔵放出能の測定方法>
酸素吸蔵放出能は、触媒分析装置の昇温式脱離過程測定などを用いて測定できる。例えば、試料を大気ガスで400℃まで昇温した後、室温まで冷却する。次に、還元ガスで400℃まで昇温して、熱伝導検出器(TCD)と四重極型質量分析計(MS)で水素を測定する。水素消費が検出されるものが酸素吸蔵放出能を有する。水素消費が開始される温度を酸素放出開始温度として求める。本発明に用いる酸素吸蔵放出能を有する材料は、この酸素放出開始温度が、0〜100℃の範囲である。
<Measuring method of oxygen storage/release capacity>
The oxygen storage/release capacity can be measured using a temperature rising desorption process measurement of a catalyst analyzer. For example, the sample is heated to 400° C. with atmospheric gas and then cooled to room temperature. Next, the temperature is raised to 400° C. with a reducing gas, and hydrogen is measured with a thermal conductivity detector (TCD) and a quadrupole mass spectrometer (MS). A substance whose hydrogen consumption is detected has an oxygen storage/release capacity. The temperature at which hydrogen consumption starts is determined as the oxygen release start temperature. The material having an oxygen storage/release capacity used in the present invention has an oxygen release start temperature in the range of 0 to 100°C.

<酸素吸蔵放出能を有する材料の製造方法>
本発明に用いる酸素吸蔵放出能を有する材料の製造方法として、以下にスズ含有酸化セリウムジルコニウムを製造する方法を例にとって説明するが、異なる金属元素の原料を用いて同様に製造することができる。
<Method for producing material having oxygen storage/release capacity>
As a method for producing a material having an oxygen storage/release capacity used in the present invention, a method for producing tin-containing cerium zirconium oxide will be described below as an example, but the same production can be performed using raw materials of different metal elements.

セリウム、ジルコニウムまたはスズの各元素の供給原料としては、前記元素の、硝酸塩、オキシ硝酸塩、塩化物、オキシ塩化物、硫酸塩、オキシ硫酸塩、酢酸塩、クエン酸塩等、酸あるいは水に可溶な化合物が挙げられる。   As a raw material for supplying each element of cerium, zirconium or tin, nitrate, oxynitrate, chloride, oxychloride, sulfate, oxysulfate, acetate, citrate, etc. of the above elements can be used. Examples include soluble compounds.

所定量の前記原料を水もしくは酸性水溶液に溶解し、アルカリを滴下して沈殿物を得る。アルカリとしては、焼成において除去できるので、金属元素を含まないものが好ましい。たとえば、アンモニアが好ましい。沈殿物を分離・水洗を繰り返した後、乾燥し、前駆体を得る。この前駆体を焼成して、スズ含有酸化セリウムジルコニウムを製造する。その後、得られたスズ含有酸化セリウムジルコニウムを、乳鉢、ボールミル、ジェットミル等を用いて粉砕し、比表面積を大きくして用いるのが好ましい。   A predetermined amount of the raw material is dissolved in water or an acidic aqueous solution, and alkali is added dropwise to obtain a precipitate. The alkali is preferably one that does not contain a metal element because it can be removed by firing. For example, ammonia is preferred. After the precipitate is repeatedly separated and washed with water, it is dried to obtain a precursor. The precursor is fired to produce tin-containing cerium zirconium oxide. Thereafter, the obtained tin-containing cerium zirconium oxide is preferably crushed using a mortar, a ball mill, a jet mill or the like to increase the specific surface area and used.

前駆体の焼成条件は、組成によって異なるが、温度が300〜600℃、焼成時間が30分〜10時間であるのが好ましい。この範囲であれば、スズが酸化セリウムジルコニウムに固溶しやすい。焼成雰囲気については、大気中でも支障はない。還元雰囲気での焼成は、酸素放出開始温度を低下させ、酸素吸蔵放出能を高くすることができるので好ましい。詳細は、不明であるが、還元焼成したものは、イオン化ポテンシャルが低くなっており、そのことが、何らかの形で、酸素吸蔵放出能の機構に係わっていると考える。   Although the firing conditions of the precursor vary depending on the composition, it is preferable that the temperature is 300 to 600° C. and the firing time is 30 minutes to 10 hours. Within this range, tin is likely to form a solid solution with cerium zirconium oxide. There is no problem with the firing atmosphere even in the atmosphere. Baking in a reducing atmosphere is preferable because it can lower the oxygen release start temperature and increase the oxygen storage/release capacity. Although details are unknown, it is considered that the reduction-calcined product has a low ionization potential, which is somehow related to the mechanism of the oxygen storage/release capacity.

前記焼成雰囲気ガスとしては、水素でもよいが、窒素、アルゴンまたはヘリウムと水素との混合ガスが扱いやすく好ましい。水素ガスの濃度は、好ましくは1〜20体積%、より好ましくは1〜5体積%である。   The firing atmosphere gas may be hydrogen, but a mixed gas of nitrogen, argon or helium and hydrogen is preferable because it is easy to handle. The concentration of hydrogen gas is preferably 1 to 20% by volume, more preferably 1 to 5% by volume.

次に、前記酸素吸蔵放出能を有する材料をアルミナまたはチタニアに担持する方法について、スズ含有酸化セリウムジルコニウムをアルミナに担持する方法を例に挙げて説明するが、本発明への適用はこれらの組み合わせに限られない。   Next, the method of supporting the material having the oxygen storage and release capacity on alumina or titania will be described by taking the method of supporting tin-containing cerium zirconium oxide on alumina as an example, but the application to the present invention is a combination of these. Not limited to

所定量のセリウム、ジルコニウム及びスズの各元素を供給する原料と、アルミナとを水もしくは酸性水溶液に加え、次にアルカリを滴下して沈殿物を得る。その後、前記スズ含有酸化セリウムジルコニウムの製造方法と同様にして、この沈殿物を分離・水洗を繰り返した後、乾燥し、前駆体を得、これを焼成し、アルミナに担持されたスズ含有酸化セリウムジルコニウムを得ることができる。   A raw material for supplying a predetermined amount of each element of cerium, zirconium, and tin and alumina are added to water or an acidic aqueous solution, and then alkali is added dropwise to obtain a precipitate. Then, in the same manner as in the method for producing the tin-containing cerium zirconium oxide, the precipitate is repeatedly separated and washed with water, then dried to obtain a precursor, which is calcined, and the tin-containing cerium oxide supported on alumina is then obtained. Zirconium can be obtained.

次に、前記酸素吸蔵放出能を有する材料に遷移金属元素(貴金属)を担持する方法について、スズ含有酸化セリウムジルコニウムに白金を担持する方法を例にとって説明するが、本発明への適用はこれらの組み合わせに限られない。   Next, a method for supporting a transition metal element (noble metal) on the material having oxygen storage/release capacity will be described by taking a method for supporting platinum on tin-containing cerium zirconium oxide as an example, but the application to the present invention is not limited to these. It is not limited to the combination.

前記スズ含有酸化セリウムジルコニウムを、白金コロイド溶液に分散し、溶媒を留去して乾燥する。その後、コロイド溶液に含まれる分散剤等を分解除去するために、大気中で焼成する。焼成条件は、温度が200〜500℃、焼成時間が10分〜5時間であるのが好ましい。白金コロイド溶液の代わりに、塩化白金酸を溶解させ、還元処理してもよい。   The tin-containing cerium zirconium oxide is dispersed in a platinum colloidal solution, the solvent is distilled off, and the solution is dried. Then, in order to decompose and remove the dispersant and the like contained in the colloid solution, baking is performed in the atmosphere. The firing conditions are preferably a temperature of 200 to 500° C. and a firing time of 10 minutes to 5 hours. Instead of the platinum colloid solution, chloroplatinic acid may be dissolved and subjected to reduction treatment.

次に、前記酸素吸蔵放出能を有する材料に遷移金属元素(遷移金属酸化物)を担持する方法について、スズ含有酸化セリウムジルコニウムに四酸化三コバルトを担持する製造方法を例にとって説明するが、本発明への適用はこれらの組み合わせに限られない。   Next, a method for supporting a transition metal element (transition metal oxide) on the material having the oxygen storage/release capacity will be described by taking a manufacturing method for supporting tricobalt tetraoxide on tin-containing cerium zirconium oxide as an example. Application to the invention is not limited to these combinations.

硝酸コバルトを水に溶解し、前記スズ含有酸化セリウムジルコニウムを添加し撹拌する。その後、溶媒を留去し、前駆体を得、これを焼成する。焼成条件は、温度が300〜600℃、焼成時間が30分〜10時間であるのが好ましい。   Cobalt nitrate is dissolved in water, the tin-containing cerium zirconium oxide is added, and the mixture is stirred. Then, the solvent is distilled off to obtain a precursor, which is fired. The firing conditions are preferably a temperature of 300 to 600° C. and a firing time of 30 minutes to 10 hours.

前記担持は、複数回行ってもよく、また、異なる種類の遷移金属元素(例えば、貴金属と遷移金属酸化物)を担持させてもよい。   The loading may be carried out a plurality of times, and different types of transition metal elements (for example, a noble metal and a transition metal oxide) may be loaded.

<マイクロポーラス層>
本発明のマイクロポーラス層は、前記0〜100℃に酸素吸蔵放出能を有する材料を含有し、さらにカーボン材料と撥水材料を含むマイクロポーラス層である。
<Microporous layer>
The microporous layer of the present invention is a microporous layer containing the material having an oxygen storage/release capacity at 0 to 100° C. and further containing a carbon material and a water repellent material.

前記マイクロポーラス層は、一般的に用いられる添加物を必要に応じて加えてもよい。前記マイクロポーラス層のガス拡散性能は、ガーレーを測定することにより、評価できる。ここで、ガーレーとは、日本工業規格JISP8117で規定された方法で測定される透気抵抗度である。
一般に、ガーレーが低いと、セパレーター側から触媒層側への酸素供給が悪く、発電効率が低い。ガーレーが高い方が好ましいが、ガーレーが高いマイクロポーラス層はクラック等が入りやすく強度が低い。そのため、本発明のマイクロポーラス層のガーレーは、5〜40秒が好ましく、10〜30秒がより好ましく、15〜25秒がさらに好ましい。
The microporous layer may be added with commonly used additives as needed. The gas diffusion performance of the microporous layer can be evaluated by measuring Gurley. Here, the Gurley is the air resistance measured by the method specified in Japanese Industrial Standard JISP8117.
Generally, when the Gurley is low, the oxygen supply from the separator side to the catalyst layer side is poor and the power generation efficiency is low. High Gurley is preferable, but a microporous layer having a high Gurley is liable to be cracked and has low strength. Therefore, the Gurley of the microporous layer of the present invention is preferably 5 to 40 seconds, more preferably 10 to 30 seconds, still more preferably 15 to 25 seconds.

本発明のマイクロポーラス層の導電率は高いほど好ましく、50S/cm以上が好ましく、80S/cm以上がより好ましい。   The higher the conductivity of the microporous layer of the present invention is, the more preferable it is, 50 S/cm or more is preferable, and 80 S/cm or more is more preferable.

一般に固体高分子形燃料電池内には液体の水が存在し、そのため燃料電池の動作温度は水の凝固点から沸点(0〜100℃)の間である。そのため、本発明では、酸素吸蔵放出能を有する材料として0〜100℃で酸素吸蔵放出能を有するものを用いる。   Generally, liquid water is present in a polymer electrolyte fuel cell, and therefore the operating temperature of the fuel cell is between the freezing point of water and the boiling point (0 to 100° C.). Therefore, in the present invention, a material having an oxygen storage/release ability at 0 to 100° C. is used as the material having the oxygen storage/release ability.

0〜100℃に酸素吸蔵放出能を有する材料は、酸素濃度の高いセパレーター側では酸素を貯蔵し、マイクロポーラス層内で酸素を伝搬し、酸素濃度の低い触媒層側では酸素を放出する。そのため、触媒層への供給が増大し、発電効率を高めることができる。   A material having an oxygen storage/release capacity at 0 to 100° C. stores oxygen on the separator side having a high oxygen concentration, propagates oxygen in the microporous layer, and releases oxygen on the catalyst layer side having a low oxygen concentration. Therefore, the supply to the catalyst layer is increased and the power generation efficiency can be improved.

また、前記酸素吸蔵放出能を有する材料は、親水性であるためマイクロポーラス層内を湿潤化することができる。そのため、適当量添加することにより、低加湿、さらには無加湿カソードカスにおいて、発電効率を高めることができる。   Further, since the material having the oxygen storage/release capacity is hydrophilic, the inside of the microporous layer can be moistened. Therefore, by adding an appropriate amount, it is possible to enhance the power generation efficiency in low-humidification and even in non-humidified cathode dust.

前記酸素吸蔵放出能を有する材料のマイクロポーラス層中の含有量は、10〜60質量%が好ましく、15〜50質量%がより好ましく、20〜40質量%がさらに好ましい。前記範囲であれば、酸素放出開始温度を低くしやすく、マイクロポーラス層の強度およびガーレーを適度に保ちやすい。   The content of the oxygen storage/release material in the microporous layer is preferably 10 to 60% by mass, more preferably 15 to 50% by mass, and further preferably 20 to 40% by mass. Within the above range, the oxygen release starting temperature can be easily lowered, and the strength and Gurley of the microporous layer can be easily maintained appropriately.

<カーボン材料>
本発明に用いるカーボン材料としては、特に制限はなく、導電性炭素粒子、アモルファスカーボン、黒鉛、グラフェンなどの炭素粒子、導電性炭素繊維、カーボンナノチューブなどの炭素繊維の少なくとも一種もしくは混合物が用いられる。
<Carbon material>
The carbon material used in the present invention is not particularly limited, and at least one kind or mixture of conductive carbon particles, carbon particles such as amorphous carbon, graphite, and graphene, conductive carbon fibers, and carbon fibers such as carbon nanotubes can be used.

たとえば、前記導電性炭素粒子としては、通常、平均粒子径5nm〜200nmのものを用いるとよい。チャンネルブラック、ファーネスブラック(例えばCABOT社製のバルカンXC72)、ケッチェンブラック(例えばライオン(株)製のKetjen Black EC)、アセチレンブラック(例えば電気化学工業(株)製のデンカブラック)、ランカブラック等のカーボンブラックなどが挙げられる。   For example, as the conductive carbon particles, it is usually preferable to use particles having an average particle size of 5 nm to 200 nm. Channel black, furnace black (for example, Vulcan XC72 manufactured by CABOT), Ketjen black (for example, Ketjen Black EC manufactured by Lion Co., Ltd.), acetylene black (for example, Denka black manufactured by Denki Kagaku Co., Ltd.), Ranka black, etc. Carbon black, etc.

前記導電性炭素粒子は、マイクロポーラス層の導電率を高めることができる。マイクロポーラス層中の導電性炭素粒子の含有量は、0.1〜20質量%が好ましく、1〜10質量%がより好ましく、2〜7質量%がさらに好ましい。この範囲であれば、ガーレーを適度に保ちやすい。   The conductive carbon particles can increase the conductivity of the microporous layer. 0.1-20 mass% is preferable, as for content of the electroconductive carbon particle in a microporous layer, 1-10 mass% is more preferable, 2-7 mass% is further more preferable. Within this range, it is easy to keep the Gurley moderately.

前記黒鉛としては、特に限定されないが、天然黒鉛、人造黒鉛等を用いることができる。天然黒鉛は鱗状黒鉛、鱗片状黒鉛及び土状黒鉛に分けられる。人造黒鉛としては、人造黒鉛電極を破砕したもの、非酸化性雰囲気下において石油系重質油、石炭系重質油、石油系コークス、石炭系コークス、ピッチ系炭素繊維を1500〜3200℃で黒鉛化したもの、メソフェーズ小球体などが含まれる。   The graphite is not particularly limited, but natural graphite, artificial graphite or the like can be used. Natural graphite is divided into scaly graphite, scaly graphite and earthy graphite. As artificial graphite, crushed artificial graphite electrodes, petroleum-based heavy oil, coal-based heavy oil, petroleum-based coke, coal-based coke, pitch-based carbon fiber in a non-oxidizing atmosphere at 1500 to 3200° C. Included are mesophase microspheres.

このような黒鉛は、マイクロポーラス層の導電率を高め、空隙を形成しガス拡散性を高めることができる。マイクロポーラス層中の黒鉛の含有量は、5〜90質量%が好ましく、10〜70質量%がより好ましく、15〜50質量%がさらに好ましい。この範囲であれば、マイクロポーラス層の強度を適度に保ちやすい。   Such graphite can increase the conductivity of the microporous layer, form voids, and improve the gas diffusivity. The content of graphite in the microporous layer is preferably 5 to 90% by mass, more preferably 10 to 70% by mass, and even more preferably 15 to 50% by mass. Within this range, it is easy to keep the strength of the microporous layer moderate.

前記導電性炭素繊維は、分散しやすい繊維径、繊維長のものを用いることが好ましい。平均繊維径は、20〜500nmが好ましく、100〜300nmがより好ましい。平均繊維長は、2〜100μmが好ましく、5〜30μmがより好ましい。例えば、気相成長法炭素繊維が挙げられる。これらを1種又は2種以上を混合して用いることができる。   As the conductive carbon fiber, it is preferable to use one having a fiber diameter and a fiber length that facilitate dispersion. The average fiber diameter is preferably 20 to 500 nm, more preferably 100 to 300 nm. The average fiber length is preferably 2 to 100 μm, more preferably 5 to 30 μm. For example, vapor grown carbon fiber may be used. These can be used alone or in combination of two or more.

前記導電性炭素繊維は、マイクロポーラス層の導電率を高め、クラック発生を抑制することができる。マイクロポーラス層中の導電性炭素繊維の含有量は、0〜50質量%が好ましく、2〜35質量%がより好ましく、5〜20質量%がさらに好ましい。この範囲であれば、ガーレーを適度に保ちやすい。   The conductive carbon fiber can increase the conductivity of the microporous layer and suppress the occurrence of cracks. 0-50 mass% is preferable, as for content of the electrically conductive carbon fiber in a microporous layer, 2-35 mass% is more preferable, and 5-20 mass% is further more preferable. Within this range, it is easy to keep the Gurley moderately.

<撥水材料>
前記撥水材料としては、フッ素系樹脂などが用いられる。フッ素系樹脂は、フッ素を含有し、重量平均分子量が10万〜1000万程度のポリマーであれば、好ましく本発明に用いることができる。フッ素系樹脂としては、公知又は市販のものを使用できる。例えば、ポリテトラフルオロエチレン樹脂(PTFE)、フッ化エチレンプロピレン樹脂(FEP)、パーフルオロアルコキシ樹脂(PFA)、テトラフルオロエチレン−エチレン共重合体(ETFE)等が挙げられる。これらを、1種又は2種以上を混合して用いることができる。
<Water repellent material>
A fluororesin or the like is used as the water repellent material. The fluorine-based resin can be preferably used in the present invention as long as it is a polymer containing fluorine and having a weight average molecular weight of about 100,000 to 10,000,000. As the fluorine-based resin, known or commercially available products can be used. Examples thereof include polytetrafluoroethylene resin (PTFE), fluorinated ethylene propylene resin (FEP), perfluoroalkoxy resin (PFA), and tetrafluoroethylene-ethylene copolymer (ETFE). These can be used alone or in combination of two or more.

マイクロポーラス層中のフッ素系樹脂の含有量は、1〜60質量%が好ましく、5〜50質量%がより好ましく、10〜40質量%がさらに好ましい。この範囲であれば、ガーレーを適度に保ちやすい。   The content of the fluororesin in the microporous layer is preferably 1 to 60% by mass, more preferably 5 to 50% by mass, and further preferably 10 to 40% by mass. Within this range, it is easy to keep the Gurley moderately.

このようにフッ素系樹脂を含有することにより、マイクロポーラス層に高い撥水性を付与できると共に、導電性炭素粒子等を強固に結着できるため、優れた撥水性を長期に亘り維持させることができる。   By containing the fluorine-based resin in this manner, high water repellency can be imparted to the microporous layer, and conductive carbon particles and the like can be firmly bound, so that excellent water repellency can be maintained for a long period of time. ..

<マイクロポーラス層の製造方法>
本発明のマイクロポーラス層は、例えば、保持シート上に、マイクロポーラス層形成用インクを塗工し、マイクロポーラス層を形成する。その後、保持シートから、マイクロポーラス層を剥がして得ることができる。
<Method of manufacturing microporous layer>
The microporous layer of the present invention is formed, for example, by applying a microporous layer forming ink on a holding sheet to form a microporous layer. Then, it can be obtained by peeling the microporous layer from the holding sheet.

次に、前記マイクロポーラス層形成用インクについて説明する。マイクロポーラス層形成用インクには、前記0〜100℃に酸素吸蔵放出能を有する材料、前記カーボン材料、前記撥水材料及び溶剤が含まれている。さらに、それら材料を溶媒中に分散させるために、前記インクに分散剤が含有されていることが好ましい。   Next, the ink for forming the microporous layer will be described. The ink for forming a microporous layer contains the material having an oxygen storage/release capacity at 0 to 100° C., the carbon material, the water repellent material, and a solvent. Further, in order to disperse those materials in a solvent, it is preferable that the ink contains a dispersant.

前記溶剤としては、特に限定されず、例えば、水、メタノール、エタノール、1−プロパノール、2−プロパノール、1−ブタノール、2−ブタノール、3−ブタノール、エチレングリコール、プロピレングリコール等の炭素数1〜4程度の1〜3価のアルコール等が好適に挙げられる。これらの溶剤は1種単独または2種以上混合して使用できる。取り扱いやすさから水が好ましい。   The solvent is not particularly limited and, for example, water, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 3-butanol, ethylene glycol, propylene glycol and the like having 1 to 4 carbon atoms. Preferable examples thereof include about 1 to 3 valent alcohols. These solvents may be used alone or in combination of two or more. Water is preferable because it is easy to handle.

分散剤としては、公知又は市販のものが使用できる。水系分散剤としては、例えば、ポリオキシエチレンアルキレンアルキルエーテル、ポリエチレングリコールアルキルエーテル、ポリオキシエチレン脂肪酸エステル、酸性基含有構造変性ポリアクリレート等が挙げられる。具体的には、オクチルフェノキシポリエトキシエタノールとして、ACROS ORGANICS社製のTriton X−100が挙げられる。   As the dispersant, known or commercially available dispersants can be used. Examples of the aqueous dispersant include polyoxyethylene alkylene alkyl ether, polyethylene glycol alkyl ether, polyoxyethylene fatty acid ester, and acidic group-containing structure-modified polyacrylate. Specific examples of octylphenoxypolyethoxyethanol include Triton X-100 manufactured by ACROS ORGANICS.

分散性は多くしても分散性は向上しないし、残存すると、マイクロポーラス層の導電性が低下する。分散剤の溶剤への添加量は、溶剤中の酸素吸蔵放出能を有する材料、カーボン材料、撥水材料などマイクロポーラス層形成材料の合計100質量部に対して、1〜30質量部が好ましく、3〜20質量部がより好ましく、5〜15質量部がさらに好ましい。   Even if the dispersibility is increased, the dispersibility is not improved, and when the dispersibility remains, the conductivity of the microporous layer is lowered. The amount of the dispersant added to the solvent is preferably 1 to 30 parts by mass with respect to a total of 100 parts by mass of the material having the oxygen storage/release capacity in the solvent, the carbon material, and the water repellent material. 3 to 20 parts by mass is more preferable, and 5 to 15 parts by mass is further preferable.

マイクロポーラス層形成用インクの製造方法は、例えば、マイクロポーラス層の所定の含有量になるように、酸素吸蔵放出能を有する材料、カーボン材料、撥水材料を秤量し、これら材料を、分散剤を溶解した溶剤に、超音波などを用いて分散させる。   The method for producing an ink for forming a microporous layer is, for example, a material having an oxygen storage/release ability, a carbon material, and a water repellent material are weighed so that a predetermined content of the microporous layer is obtained, and these materials are mixed with a dispersant. Is dispersed in a solvent in which is dissolved by using ultrasonic waves or the like.

前記マイクロポーラス層形成用インクを塗工する方法は、特に限定されず、すでに公知となっている方法により行うことができる。例えばナイフコーター、バーコーター、ブレードコーター、スプレー、ディップコーター、スピンコーター、ロールコーター、ダイコーター、カーテンコーター、スクリーン印刷等の一般的な方法を適用できる。   The method for applying the ink for forming the microporous layer is not particularly limited, and any known method can be used. For example, general methods such as knife coater, bar coater, blade coater, sprayer, dip coater, spin coater, roll coater, die coater, curtain coater, screen printing and the like can be applied.

前記乾燥は、風乾してもよいし、乾燥機、真空乾燥機等で乾燥してもよい。風乾では、一晩程度乾燥する。乾燥機では、通常、大気中にて、80〜150℃で行う。乾燥時間は、乾燥温度等に応じて適宜決定され、通常5〜60分である。その後、得られた乾燥物を焼成する。   The drying may be air drying, or may be dried with a dryer, a vacuum dryer or the like. With air drying, it is dried overnight. In a dryer, it is usually performed in the air at 80 to 150°C. The drying time is appropriately determined according to the drying temperature and the like, and is usually 5 to 60 minutes. Then, the obtained dried product is fired.

この焼成処理によって、界面活性剤を完全に除去し、マイクロポーラス層に含まれるフッ素系樹脂を熱融着させる。本発明のマイクロポーラス層に優れた撥水性とガス透過性を与える。   By this baking treatment, the surfactant is completely removed, and the fluororesin contained in the microporous layer is thermally fused. It imparts excellent water repellency and gas permeability to the microporous layer of the present invention.

前記焼成は、管状炉、上蓋型炉、トンネル炉、箱型炉、台車炉などの熱処理で行うことができる。 焼成温度は、特に限定的ではなく、例えば、大気中にて、150〜450℃、好ましくは200〜300℃である。   The calcination can be performed by a heat treatment using a tubular furnace, an upper lid furnace, a tunnel furnace, a box furnace, a truck furnace, or the like. The firing temperature is not particularly limited and is, for example, 150 to 450° C., preferably 200 to 300° C. in the atmosphere.

焼成時間は、焼成温度により適宜決定されるが、通常5〜120分程度、好ましくは15〜60分である。   The firing time is appropriately determined depending on the firing temperature, but is usually about 5 to 120 minutes, preferably 15 to 60 minutes.

<ガス拡散層>
本発明のガス拡散層は、前記マイクロポーラス層をガス拡散電極基材の片面上に形成されたものである。中でも安価であるため、ガス拡散電極基材としてカーボンペーパーを用い、これにマイクロポーラス層を、に貼りつけたものが好ましい。
<Gas diffusion layer>
The gas diffusion layer of the present invention comprises the microporous layer formed on one surface of a gas diffusion electrode substrate. Among them, it is preferable that carbon paper is used as the gas diffusion electrode base material and a microporous layer is attached to the carbon paper because it is inexpensive.

前記拡散層のガーレーは、は、前記マイクロポーラス層と同様に、5〜40秒が好ましく、10〜30秒がより好ましく、15〜25秒がさらに好ましい。   The Gurley of the diffusion layer is preferably 5 to 40 seconds, more preferably 10 to 30 seconds, and even more preferably 15 to 25 seconds, like the microporous layer.

前記ガス拡散層の導電率は、前記マイクロポーラス層と同様に、50S/cm以上が好ましく、80S/cm以上がより好ましい。   The electric conductivity of the gas diffusion layer is preferably 50 S/cm or more, more preferably 80 S/cm or more, as in the case of the microporous layer.

前記ガス拡散層におけるマイクロポーララス層の目付量は、0.5〜20mg/cmが好ましく、1〜10mg/cmより好ましく、1.5〜5mg/cmがさらに好ましい。 Basis weight of Micropolar lath layer in the gas diffusion layer is preferably 0.5-20 / cm 2, preferably from 1-10 mg / cm 2, more preferably 1.5 to 5 mg / cm 2.

前記ガス拡散電極基材としては、導電性を有し、かつ、多孔質のものであれば、特に限定されず、公知又は市販のものを用いることができる。例えば、カーボンペーパー、カーボンクロス、カーボン不織布(カーボンフェルト)、カーボン織布等が挙げられる。中でも、安価であることから、カーボンペーパーが好ましい。カーボンペーパーの厚みは、通常50μm〜1000μm、好ましくは100μm〜400μmである。たとえば、ケミックス(株)製TGP−Hシリーズが挙げられる。   The gas diffusion electrode base material is not particularly limited as long as it has conductivity and is porous, and known or commercially available materials can be used. Examples thereof include carbon paper, carbon cloth, carbon non-woven fabric (carbon felt), and carbon woven fabric. Of these, carbon paper is preferable because it is inexpensive. The thickness of the carbon paper is usually 50 μm to 1000 μm, preferably 100 μm to 400 μm. For example, TGP-H series manufactured by Chemix Co., Ltd. may be mentioned.

ガス拡散電極基材は、撥水性を向上させるため、予め撥水処理を施すことが好ましい。撥水処理としては、例えば、導電性多孔質基材をポリテトラフルオロエチレンエマルジョン等の水分散体中に浸漬させた後、乾燥及び焼成する。前記エマルジョン中のポリテトラフルオロエチレンの含有量は水100質量部に対して、1〜30質量部が好ましく、2〜20質量部がより好ましい。   The gas diffusion electrode substrate is preferably subjected to water repellent treatment in advance in order to improve water repellency. As the water repellent treatment, for example, the conductive porous substrate is immersed in an aqueous dispersion such as polytetrafluoroethylene emulsion, and then dried and baked. The content of polytetrafluoroethylene in the emulsion is preferably 1 to 30 parts by mass, more preferably 2 to 20 parts by mass with respect to 100 parts by mass of water.

<ガス拡散層の製造方法>
本発明のガス拡散層の製造方法は、限定されるものではないが、
(i)ガス拡散電極基材にマイクロポーラス層形成用インクを塗布する。
もしくは、
(ii)―1 保持シートに、マイクロポーラス層形成用インクを塗布し、マイクロポーラス層を形成する。
(ii)―2 保持シートから、マイクロポーラス層を剥がす。
(ii)―3 マイクロポーラス層を、ガス拡散電極基材と貼りあわせる。
などの方法を用いて製造することができる。
なかでも、前記(i)は、簡便でかつマイクロポーラス層とガス拡散電極基材との剥離、クラックなどが少ない安定したガス拡散電極が製造できるので好ましい。カーボンペーパーなどの前記ガス拡散電極基材は、予め撥水処理を施されたものであってもよい。
<Method for manufacturing gas diffusion layer>
The method for producing the gas diffusion layer of the present invention is not limited,
(I) A microporous layer forming ink is applied to the gas diffusion electrode substrate.
Or
(Ii)-1 A microporous layer forming ink is applied to a holding sheet to form a microporous layer.
(Ii)-2 The microporous layer is peeled off from the holding sheet.
(Ii)-3 The microporous layer is attached to the gas diffusion electrode substrate.
And the like.
Above all, the above (i) is preferable because it is simple and a stable gas diffusion electrode with less peeling and cracks between the microporous layer and the gas diffusion electrode base material can be manufactured. The gas diffusion electrode base material such as carbon paper may be previously subjected to water repellent treatment.

[膜電極接合体]
本発明の膜電極接合体は、固体高分子膜と、それを挟むように配置された空気極触媒層と燃料極触媒層と、さらに空気極触媒層の外側に配置された空気極ガス拡散層と、燃料極触媒層の外側に配置された燃料極ガス拡散層からなり、前記マイクロポーラス層または前記ガス拡散層を空気極ガス拡散層として用いる。
[Membrane electrode assembly]
The membrane electrode assembly of the present invention comprises a solid polymer membrane, an air electrode catalyst layer and a fuel electrode catalyst layer which are arranged so as to sandwich the solid polymer membrane, and an air electrode gas diffusion layer which is arranged outside the air electrode catalyst layer. And a fuel electrode gas diffusion layer disposed outside the fuel electrode catalyst layer, and the microporous layer or the gas diffusion layer is used as an air electrode gas diffusion layer.

前記固体高分子膜は、公知又は市販のものを使用することができる。例えば、基材上に水素イオン伝導性高分子電解質を含有する溶液を塗工し、乾燥することによっても製造したものが挙げられる。水素イオン伝導性高分子電解質としては、パーフルオロスルホン酸系高分子を用いた固体高分子膜または炭化水素系高分子を用いた固体高分子膜などが挙げられる。また、高分子微多孔膜に液体電解質を含浸させた膜または多孔質体に高分子電解質を充填させた膜などを用いてもよい。   A publicly known or commercially available solid polymer film can be used. For example, those produced by applying a solution containing a hydrogen ion conductive polymer electrolyte onto a substrate and drying the solution are also included. Examples of the hydrogen ion conductive polymer electrolyte include a solid polymer membrane using a perfluorosulfonic acid polymer and a solid polymer membrane using a hydrocarbon polymer. Further, a membrane in which a polymer microporous membrane is impregnated with a liquid electrolyte or a membrane in which a porous body is filled with a polymer electrolyte may be used.

前記空気極ガス拡散層は、本発明のマイクロポーラス層または本発明のガス拡散層を空気極ガス拡散層として用いる。燃料極ガス拡散層は、公知又は市販のガス拡散層を用いることができる。燃料極ガス拡散層は、ガス拡散電極基材をそのまま用いることができる。また、前記マイクロポーラス層または前記ガス拡散層を燃料極ガス拡散層として用いてもよい。   The air electrode gas diffusion layer uses the microporous layer of the present invention or the gas diffusion layer of the present invention as the air electrode gas diffusion layer. As the fuel electrode gas diffusion layer, a known or commercially available gas diffusion layer can be used. The gas diffusion electrode substrate can be used as it is for the fuel electrode gas diffusion layer. Further, the microporous layer or the gas diffusion layer may be used as the fuel electrode gas diffusion layer.

前記空気極触媒層および前記燃料極触媒層は、公知又は市販の触媒層を使用することができる。これら触媒層は、一般に触媒と高分子電解質と電子伝導性粒子とを含んでいる。また、その他添加物を必要に応じて、含んでいてもよい。空気極触媒としては、一般に、白金が用いられる。燃料極触媒としては、一般に、白金もしくは白金合金が用いられる。白金合金は、白金とルテニウム、パラジウム、ニッケル、モリブデン、イリジウム、鉄及びコバルトよりなる群から選ばれる少なくとも1種の金属からなる。これら触媒層の目付量は、0.01〜1.0mg/cmが好ましく、0.02〜0.7mg/cmがより好ましく、0.05〜0.5mg/cmがさらに好ましい。 Known or commercially available catalyst layers can be used for the air electrode catalyst layer and the fuel electrode catalyst layer. These catalyst layers generally contain a catalyst, a polymer electrolyte, and electron conductive particles. Moreover, you may contain the other additive as needed. Platinum is generally used as the air electrode catalyst. Platinum or a platinum alloy is generally used as the fuel electrode catalyst. The platinum alloy is composed of platinum and at least one metal selected from the group consisting of ruthenium, palladium, nickel, molybdenum, iridium, iron and cobalt. Basis weight of the catalyst layer is preferably 0.01 to 1.0 mg / cm 2, more preferably 0.02~0.7mg / cm 2, more preferably 0.05 to 0.5 / cm 2.

前記膜電極接合体の製造方法は、特に限定されず、すでに公知になっている方法により、行うことができる。例えば、固体高分子膜を挟むように空気極触媒層と燃料極触媒層を配置し、空気極触媒層の外側にマイクロポーラス層が触媒層と接するように空気極ガス拡散層を配置し、燃料極触媒層の外側に燃料極ガス拡散層を配置する。その後、ホットプレス等の熱プレス処理をすることにより製造することができる。   The method for producing the membrane electrode assembly is not particularly limited, and it can be performed by a known method. For example, an air electrode catalyst layer and a fuel electrode catalyst layer are arranged so as to sandwich a solid polymer membrane, and an air electrode gas diffusion layer is arranged outside the air electrode catalyst layer so that the microporous layer is in contact with the catalyst layer. A fuel electrode gas diffusion layer is arranged outside the electrode catalyst layer. Then, it can be manufactured by performing a hot pressing process such as hot pressing.

[固体高分子形燃料電池]
本発明の固体高分子形燃料電池は、前記膜電極接合体に公知又は市販のセパレータを設けることにより、形成することができる。
前記固体高分子形燃料電池に供給する燃料としては、アノードでプロトンを発生することができるものであれば特に限定はされず、水素、メタノールなどのアルコール類、グルコースなどの糖類が挙げられ、水素またはメタノールが好ましい。燃料には水が混入しても構わず、燃料をガスで供給する場合は、水は水蒸気であることが好ましい。
[Polymer Fuel Cell]
The polymer electrolyte fuel cell of the present invention can be formed by providing the membrane electrode assembly with a known or commercially available separator.
The fuel to be supplied to the polymer electrolyte fuel cell is not particularly limited as long as it can generate protons at the anode, hydrogen, alcohols such as methanol, saccharides such as glucose, hydrogen, Alternatively, methanol is preferred. Water may be mixed in the fuel, and when the fuel is supplied as a gas, the water is preferably steam.

前記固体高分子形燃料電池に供給する酸化剤としては、酸素が好ましく、カソードに供給する酸素濃度は特に制限されない。ガスで供給する場合は、酸化剤に窒素や水蒸気が混入しても構わない。また、酸素ガスを貯蔵するタンクや供給するシステムが必要なくなるので、カソードに供給するガスとしては、空気を用いるのが好ましい。燃料および酸化剤をガスで供給する場合、これらガスは、大気圧のガスであっても加圧したガスであっても構わない。   Oxygen is preferably used as the oxidant supplied to the polymer electrolyte fuel cell, and the oxygen concentration supplied to the cathode is not particularly limited. When the gas is supplied, nitrogen or water vapor may be mixed in the oxidizer. Further, it is preferable to use air as the gas to be supplied to the cathode because a tank for storing the oxygen gas and a system for supplying the oxygen gas are not required. When the fuel and the oxidant are supplied as gases, these gases may be atmospheric pressure gas or pressurized gas.

本発明のガス拡散層は、0〜100℃に酸素吸蔵放出能を有する材料の粉末を含んでいる。おそらく、酸素吸蔵放出能は、セパレーター側から触媒層への酸素伝搬機能として発揮され、電池特性を向上させると推定される。そのため、触媒量を低減しても酸化剤として空気を用いた運転が可能となる。また、運転温度を、酸素吸蔵放出能を有する材料の酸素吸蔵放出温度に設定すると、前記燃料電池の発電効率を高めることができ好ましい。   The gas diffusion layer of the present invention contains powder of a material having an oxygen storage/release capacity at 0 to 100°C. Presumably, the oxygen storage/release capacity is exerted as a function of oxygen propagation from the separator side to the catalyst layer, and is presumed to improve the battery characteristics. Therefore, it is possible to operate using air as the oxidant even if the amount of catalyst is reduced. Further, it is preferable that the operating temperature is set to the oxygen storage/release temperature of the material having the oxygen storage/release capacity because the power generation efficiency of the fuel cell can be increased.

本発明のガス拡散電極は無機金属化合物粒子を含んでいることが好ましい。無機金属化合物からなる部分は親水性が高いので、燃料電池運転時に水分を保持しやすい。そのため、本発明のガス拡散電極を用いた燃料電池を運転する場合、低加湿または無加湿での運転が可能となり、さらに、ガス加湿器を使用しないシステムにすることや、燃料電池運転時の湿度の調整を簡略化することが可能になる。   The gas diffusion electrode of the present invention preferably contains inorganic metal compound particles. Since the portion made of an inorganic metal compound has high hydrophilicity, it is easy to retain water during fuel cell operation. Therefore, when operating the fuel cell using the gas diffusion electrode of the present invention, it is possible to operate with low humidification or no humidification, further, a system without using a gas humidifier, the humidity during fuel cell operation It is possible to simplify the adjustment of.

<前記燃料電池を備えた物品の具体例>
前記燃料電池を備えることができる物品の具体例としては、電気を使用する物品であれば特に限定されず、ビル、家屋、テント等の建築物、蛍光灯、LED等、有機EL、街灯、屋内照明、信号機等の照明器具、機械、車両そのものを含む自動車用機器、家電製品、農業機器、電子機器、携帯電話等を含む携帯情報端末、美容機材、可搬式工具、風呂用品トイレ用品等の衛生機材、家具、玩具、装飾品、掲示板、クーラーボックス、屋外発電機などのアウトドア用品、教材、造花、オブジェ、心臓ペースメーカー用電源、ペルチェ素子を備えた加熱および冷却器用の電源が挙げられる。電気を安定的に使用するためには、前記燃料電池には二次電池やキャパシタと組み合わせたシステムであることが好ましい。
<Specific examples of articles provided with the fuel cell>
Specific examples of articles that can include the fuel cell are not particularly limited as long as they use electricity, and include buildings, houses, tents and other structures, fluorescent lights, LEDs, organic EL, street lights, indoors, etc. Lighting, lighting equipment such as traffic lights, machinery, automobile equipment including vehicles themselves, home appliances, agricultural equipment, electronic equipment, portable information terminals such as mobile phones, beauty equipment, portable tools, sanitary goods such as toiletries Equipment, furniture, toys, decorations, bulletin boards, coolers, outdoor equipment such as generators, teaching materials, artificial flowers, objects, power supplies for cardiac pacemakers, heating and cooling power supplies with Peltier elements. In order to use electricity stably, it is preferable that the fuel cell is a system combined with a secondary battery or a capacitor.

以下に実施例を示し、本発明をより具体的に説明する。なお、これらは説明のための例示であって、本発明はこれらによって何ら制限されるものではない。   Hereinafter, the present invention will be described more specifically with reference to Examples. It should be noted that these are merely examples for explanation, and the present invention is not limited thereto.

(実施例1)
硝酸セリウム(III)六水和物 (和光純薬製)1.384gと硝酸ジルコニル二水和物(和光純薬製)0.213gを、pH2.0の硝酸水溶液500mLに溶解させた。室温で撹拌しながら、純水で5倍に希釈した28%アンモニア水(和光純薬製)を滴下し、pH10.5とした。その後、12時間撹拌を継続した。
(Example 1)
Cerium (III) nitrate hexahydrate (manufactured by Wako Pure Chemical Industries, Ltd.) 1.384 g and zirconyl nitrate dihydrate (manufactured by Wako Pure Chemical Industries, Ltd.) 0.213 g were dissolved in 500 mL of a nitric acid aqueous solution having a pH of 2.0. While stirring at room temperature, 28% ammonia water (manufactured by Wako Pure Chemical Industries) diluted 5 times with pure water was added dropwise to adjust the pH to 10.5. Then, stirring was continued for 12 hours.

撹拌を停止し、静置した後、上澄み部分を取り除き、濃塩酸(和光純薬製)加えpHを2とした。そこに、塩化すず(II)二水和物(和光純薬製)0.225gを、濃塩酸0.225gに溶解させた液を加えた。室温で撹拌しながら、純水で5倍に希釈した28%アンモニア水(和光純薬製)を滴下し、pH10.5とした。その後、12時間撹拌を継続した。   After stirring was stopped and the mixture was allowed to stand, the supernatant was removed, and concentrated hydrochloric acid (manufactured by Wako Pure Chemical Industries, Ltd.) was added to adjust the pH to 2. A solution prepared by dissolving 0.225 g of tin(II) chloride dihydrate (manufactured by Wako Pure Chemical Industries) in 0.225 g of concentrated hydrochloric acid was added thereto. While stirring at room temperature, 28% ammonia water (manufactured by Wako Pure Chemical Industries) diluted 5 times with pure water was added dropwise to adjust the pH to 10.5. Then, stirring was continued for 12 hours.

撹拌を停止し、減圧濾過をした。その後、ろ液のpHが7になるまで、ろ過残渣の水洗を繰り返した。得られた濾過残渣を、80℃で減圧乾燥した後、乳鉢で細かく粉砕し、粉末を得た。   The stirring was stopped and vacuum filtration was performed. Then, the filtration residue was repeatedly washed with water until the pH of the filtrate became 7. The obtained filtration residue was dried under reduced pressure at 80° C. and then finely pulverized in a mortar to obtain a powder.

この粉末を、マッフル炉で、大気中で焼成した。処理条件は、炉内を昇温速度10℃/minで400℃まで昇温し、その後400℃で6時間保持し、室温まで冷却した。得られた粉末を取り出して、乳鉢で細かく粉砕し、スズ含有セリアジルコニア粉末「材料(1)ともいう。」を得た。材料(1)を用いて、後述の各評価を行った。   This powder was fired in the atmosphere in a muffle furnace. Regarding the treatment conditions, the inside of the furnace was heated up to 400° C. at a temperature rising rate of 10° C./min, then held at 400° C. for 6 hours and cooled to room temperature. The obtained powder was taken out and finely pulverized in a mortar to obtain tin-containing ceria-zirconia powder “also referred to as material (1)”. Each evaluation described later was performed using the material (1).

(実施例2)
実施例1と同様にして、スズ含有セリアジルコニア前駆体粉末を得た。この粉末を、管状炉に入れ、水素を4体積%含む水素と窒素の混合ガス雰囲気下で焼成した。処理条件は、炉内を昇温速度10℃/minで600℃まで昇温し、600℃で2時間保持し、室温まで冷却した。得られた粉末を取り出して、乳鉢で細かく粉砕し、スズ含有セリアジルコニア粉末「材料(2)ともいう。」を得た。材料(2)を用いて、後述の各評価を行った。
(Example 2)
In the same manner as in Example 1, tin-containing ceria-zirconia precursor powder was obtained. This powder was placed in a tubular furnace and fired in a mixed gas atmosphere of hydrogen and nitrogen containing 4% by volume of hydrogen. Regarding the treatment conditions, the inside of the furnace was heated to 600° C. at a temperature rising rate of 10° C./min, held at 600° C. for 2 hours, and cooled to room temperature. The obtained powder was taken out and finely pulverized in a mortar to obtain tin-containing ceria-zirconia powder “also referred to as material (2)”. Each evaluation described below was performed using the material (2).

(実施例3)
実施例1と同様にして、スズ含有セリアジルコニア粉末を得た。硝酸コバルト六水和物(和光純薬製)0.5gを純水50mLに溶解させた。この水溶液に、該スズ含有セリアジルコニア粉末2.5gを加え、超音波洗浄機で分散させた。
(Example 3)
In the same manner as in Example 1, tin-containing ceria zirconia powder was obtained. 0.5 g of cobalt nitrate hexahydrate (manufactured by Wako Pure Chemical Industries, Ltd.) was dissolved in 50 mL of pure water. To this aqueous solution, 2.5 g of the tin-containing ceria zirconia powder was added and dispersed with an ultrasonic cleaner.

この分散液を、エバポレーターで、80℃に加熱しながら、水をゆっくり留去させた。得られた固形分残渣を、乳鉢で細かく潰した。その後、この粉末を、マッフル炉で、大気中で焼成した。処理条件は、炉内を昇温速度10℃/minで400℃まで昇温し、その後400℃で6時間保持し、室温まで冷却した。得られた粉末を取り出して、乳鉢で細かく粉砕し、四酸化三コバルト担持スズ含有セリアジルコニア粉末「材料(3)ともいう。」を得た。材料(3)を用いて、後述の各評価を行った。   While the dispersion was heated to 80° C. by an evaporator, water was slowly distilled off. The obtained solid residue was finely crushed in a mortar. Then, this powder was fired in the atmosphere in a muffle furnace. Regarding the treatment conditions, the inside of the furnace was heated up to 400° C. at a temperature rising rate of 10° C./min, then held at 400° C. for 6 hours, and cooled to room temperature. The obtained powder was taken out and finely ground in a mortar to obtain tricobalt tetraoxide-supported tin-containing ceria-zirconia powder “also referred to as material (3)”. Each evaluation described below was performed using the material (3).

(実施例4)
実施例1と同様にして、スズ含有セリアジルコニア粉末を得た。純水90mlに、該スズ含有セリアジルコニア粉末2.5gを加え、超音波洗浄機で分散させた。この分散液に、白金濃度4.5質量%のジニトロジアンミン白金硝酸溶液(田中貴金属製)0.06gとエタノール(和光純薬製)0.75mLを加えた。この溶液を、フラスコに入れ、窒素気流下、攪拌、還流しながら、95℃で、7時間保持した。撹拌を停止し、減圧濾過した。得られた濾過物を、80℃で減圧乾燥した後、乳鉢で細かく粉砕し、白金担持すず含有セリアジルコニア粉末「材料(4)ともいう。」を得た。材料(4)を用いて、後述の各評価を行った。
(Example 4)
In the same manner as in Example 1, tin-containing ceria zirconia powder was obtained. 2.5 g of the tin-containing ceria-zirconia powder was added to 90 ml of pure water and dispersed with an ultrasonic cleaner. To this dispersion, 0.06 g of dinitrodiammine platinum nitric acid solution (manufactured by Tanaka Kikinzoku) having a platinum concentration of 4.5% by mass and 0.75 mL of ethanol (manufactured by Wako Pure Chemical Industries, Ltd.) were added. This solution was put into a flask and kept at 95° C. for 7 hours while stirring and refluxing under a nitrogen stream. The stirring was stopped and the mixture was filtered under reduced pressure. The obtained filtered product was dried under reduced pressure at 80° C. and then finely pulverized in a mortar to obtain platinum-supported tin-containing ceria-zirconia powder “also referred to as material (4)”. Each evaluation described below was performed using the material (4).

(実施例5)
純水250mlに、活性アルミナAA101(日本軽金属製)4.2gを加え、ホモジナイザーで分散させ、28%アンモニア水15mLを加えた。この分散液に、硝酸セリウム(III)六水和物 (和光純薬製)1.384gと硝酸ジルコニル二水和物(和光純薬製)0.213gを純水100mLに溶解させた液を、室温で撹拌しながら、滴下した。その後、12時間撹拌を継続した後、濃塩酸(和光純薬製)加えpHを2とした。これに、塩化すず(II)二水和物(和光純薬製)0.225gを、濃塩酸0.225gに溶解させた液を加えた。室温で撹拌しながら、純水で5倍に希釈した28%アンモニア水(和光純薬製)を滴下し、pH10.5とした。
(Example 5)
To 250 ml of pure water, 4.2 g of activated alumina AA101 (made by Nippon Light Metal Co., Ltd.) was added and dispersed by a homogenizer, and 15 mL of 28% ammonia water was added. A solution prepared by dissolving 1.384 g of cerium (III) nitrate hexahydrate (manufactured by Wako Pure Chemical Industries, Ltd.) and 0.213 g of zirconyl nitrate dihydrate (manufactured by Wako Pure Chemical Industries, Ltd.) in 100 mL of pure water was added to the dispersion. It was added dropwise with stirring at room temperature. Then, after continuing stirring for 12 hours, concentrated hydrochloric acid (manufactured by Wako Pure Chemical Industries, Ltd.) was added to adjust the pH to 2. To this, a solution prepared by dissolving 0.225 g of tin(II) chloride dihydrate (manufactured by Wako Pure Chemical Industries) in 0.225 g of concentrated hydrochloric acid was added. While stirring at room temperature, 28% ammonia water (manufactured by Wako Pure Chemical Industries) diluted 5 times with pure water was added dropwise to adjust the pH to 10.5.

その後12時間撹拌をした後、減圧濾過した。ろ液のpHが7になるまで、ろ過残差の水洗を繰り返した。得られた濾過残渣を、80℃で減圧乾燥した後、乳鉢で細かく粉砕し、粉末を得た。この粉末を、マッフル炉で、大気中で焼成した。処理条件は、炉内を昇温速度10℃/minで400℃まで昇温し、その後400℃で6時間保持し、室温まで冷却した。得られた粉末を取り出して、乳鉢で細かく粉砕し、アルミナ担体スズ含有セリアジルコニア粉末「材料(5)ともいう。」を得た。材料(5)を用いて、後述の各評価を行った。   Then, the mixture was stirred for 12 hours and then filtered under reduced pressure. The filtration residue was washed with water repeatedly until the pH of the filtrate became 7. The obtained filtration residue was dried under reduced pressure at 80° C. and then finely pulverized in a mortar to obtain a powder. This powder was fired in the atmosphere in a muffle furnace. Regarding the treatment conditions, the inside of the furnace was heated up to 400° C. at a temperature rising rate of 10° C./min, then held at 400° C. for 6 hours, and cooled to room temperature. The obtained powder was taken out and finely pulverized in a mortar to obtain an alumina carrier tin-containing ceria zirconia powder “also referred to as material (5)”. Each evaluation described later was performed using the material (5).

(実施例6)
活性アルミナAA101(日本軽金属製)の代わりに、酸化チタンF6(昭和電工製)を用いた以外は、実施例5と同様にして、チタニア担体スズ含有セリアジルコニア粉末「材料(6)ともいう。」を得た。材料(6)を用いて、後述の各評価を行った。
(Example 6)
In the same manner as in Example 5 except that titanium oxide F6 (manufactured by Showa Denko) was used instead of activated alumina AA101 (manufactured by Nippon Light Metal Co., Ltd.), titania carrier tin-containing ceria zirconia powder "also referred to as material (6)". Got Each evaluation described below was performed using the material (6).

(実施例7)
実施例5と同様にして、アルミナ担体スズ含有セリアジルコニア粉末を得た。硝酸コバルト六水和物 (和光純薬製)0.5gを純水50mLに溶解させた溶液に、該アルルミナ担体スズ含有セリアジルコニア粉末2.5gを加え、超音波洗浄機を用いて分散させた。この分散液を、エバポレーターで、80℃に加熱しながら、水をゆっくり留去した。得られた固形分残渣を、乳鉢で細かく潰した。その後、この粉末を、マッフル炉で、大気中で焼成した。処理条件は、炉内を昇温速度10℃/minで400℃まで昇温し、その後400℃で6時間保持し、室温まで冷却した。得られた粉末を取り出して、乳鉢で細かく粉砕し、アルミナ担体四酸化三コバルト担持スズ含有セリアジルコニア粉末「材料(7)ともいう。」を得た。材料(7)を用いて、後述の各評価を行った。
(Example 7)
In the same manner as in Example 5, an alumina carrier tin-containing ceria zirconia powder was obtained. To a solution prepared by dissolving 0.5 g of cobalt nitrate hexahydrate (manufactured by Wako Pure Chemical Industries, Ltd.) in 50 mL of pure water, 2.5 g of tin-containing ceria-zirconia powder containing alumina carrier was added and dispersed using an ultrasonic cleaner. .. While the dispersion was heated to 80° C. by an evaporator, water was slowly distilled off. The obtained solid residue was finely crushed in a mortar. Then, this powder was fired in the atmosphere in a muffle furnace. Regarding the treatment conditions, the inside of the furnace was heated up to 400° C. at a temperature rising rate of 10° C./min, then held at 400° C. for 6 hours, and cooled to room temperature. The obtained powder was taken out and finely pulverized in a mortar to obtain an alumina carrier tricobalt tetraoxide-supported tin-containing ceria-zirconia powder “also referred to as material (7)”. Each evaluation described below was performed using the material (7).

(実施例8)
硝酸セリウム(III)六水和物 (和光純薬製)1.384gと硝酸ジルコニル二水和物(和光純薬製)0.213gを、pH2.0の硝酸水溶液500mLに溶解させた。室温で撹拌しながら、純水で5倍に希釈した28%アンモニア水(和光純薬製)を滴下し、pH10.5とした。その後、12時間撹拌を継続した。
(Example 8)
Cerium (III) nitrate hexahydrate (manufactured by Wako Pure Chemical Industries, Ltd.) 1.384 g and zirconyl nitrate dihydrate (manufactured by Wako Pure Chemical Industries, Ltd.) 0.213 g were dissolved in 500 mL of a nitric acid aqueous solution having a pH of 2.0. While stirring at room temperature, 28% ammonia water (manufactured by Wako Pure Chemical Industries) diluted 5 times with pure water was added dropwise to adjust the pH to 10.5. Then, stirring was continued for 12 hours.

撹拌を停止し、静置した後、上澄み部分を取り除き、濃塩酸(和光純薬製)加えpHを2とした。そこに、硝酸ビスマス五水和物(和光純薬製)0.341gを、濃硝酸0.341gに溶解させた液を加えた。室温で撹拌しながら、純水で5倍に希釈した28%アンモニア水(和光純薬製)を滴下し、pH10.5とした。その後、12時間撹拌を継続した。   After stirring was stopped and the mixture was allowed to stand, the supernatant was removed, and concentrated hydrochloric acid (manufactured by Wako Pure Chemical Industries, Ltd.) was added to adjust the pH to 2. A solution prepared by dissolving 0.341 g of bismuth nitrate pentahydrate (manufactured by Wako Pure Chemical Industries) in 0.341 g of concentrated nitric acid was added thereto. While stirring at room temperature, 28% ammonia water (manufactured by Wako Pure Chemical Industries) diluted 5 times with pure water was added dropwise to adjust the pH to 10.5. Then, stirring was continued for 12 hours.

撹拌を停止し、減圧濾過をした。その後、ろ液のpHが7になるまで、ろ過残渣の水洗を繰り返した。得られた濾過残渣を、80℃で減圧乾燥した後、乳鉢で細かく粉砕し、粉末を得た。   The stirring was stopped and vacuum filtration was performed. Then, the filtration residue was repeatedly washed with water until the pH of the filtrate became 7. The obtained filtration residue was dried under reduced pressure at 80° C. and then finely pulverized in a mortar to obtain a powder.

この粉末を、マッフル炉で、大気中で焼成した。処理条件は、炉内を昇温速度10℃/minで400℃まで昇温し、その後400℃で6時間保持し、室温まで冷却した。得られた粉末を取り出して、乳鉢で細かく粉砕し、ビスマス含有セリアジルコニア粉末「材料(8)ともいう。」を得た。材料(8)を用いて、後述の各評価を行った。   This powder was fired in the atmosphere in a muffle furnace. Regarding the treatment conditions, the inside of the furnace was heated up to 400° C. at a temperature rising rate of 10° C./min, then held at 400° C. for 6 hours, and cooled to room temperature. The obtained powder was taken out and finely pulverized in a mortar to obtain a bismuth-containing ceria-zirconia powder “also referred to as material (8)”. Each evaluation described later was performed using the material (8).

(比較例1)
硝酸セリウム(III)六水和物 (和光純薬製)1.384gと硝酸ジルコニル二水和物(和光純薬製)0.213gを、pH2.0の硝酸水溶液500mLに溶解させた。室温で撹拌しながら、純水で5倍に希釈した28%アンモニア水(和光純薬製)を滴下し、pH10.5とした。
その後12時間撹拌し、減圧濾過をした。ろ液のpHが7になるまで、ろ過残渣の水洗を繰り返した。得られた濾過残渣を、80℃で減圧乾燥した後、乳鉢で細かく粉砕し、粉末を得た。この粉末を、マッフル炉で、大気中で焼成した。処理条件は、炉内を昇温速度10℃/minで400℃まで昇温し、その後400℃で6時間保持し、室温まで冷却した。得られた粉末を取り出して、乳鉢で細かく粉砕し、セリアジルコニア粉末「材料(9)ともいう。」を得た。材料(9)を用いて、後述の各評価を行った。
(Comparative Example 1)
Cerium (III) nitrate hexahydrate (manufactured by Wako Pure Chemical Industries, Ltd.) 1.384 g and zirconyl nitrate dihydrate (manufactured by Wako Pure Chemical Industries, Ltd.) 0.213 g were dissolved in 500 mL of a nitric acid aqueous solution having a pH of 2.0. While stirring at room temperature, 28% ammonia water (manufactured by Wako Pure Chemical Industries) diluted 5 times with pure water was added dropwise to adjust the pH to 10.5.
Then, the mixture was stirred for 12 hours and filtered under reduced pressure. The filtration residue was repeatedly washed with water until the pH of the filtrate became 7. The obtained filtration residue was dried under reduced pressure at 80° C. and then finely pulverized in a mortar to obtain a powder. This powder was fired in the atmosphere in a muffle furnace. Regarding the treatment conditions, the inside of the furnace was heated up to 400° C. at a temperature rising rate of 10° C./min, then held at 400° C. for 6 hours, and cooled to room temperature. The obtained powder was taken out and finely pulverized in a mortar to obtain a ceria-zirconia powder “also referred to as material (9)”. Each evaluation described below was performed using the material (9).

(比較例2)
大気中での焼成処理条件を、炉内を昇温速度10℃/minで800℃まで昇温し、その後800℃で2時間保持し、室温まで冷却した以外は、実施例1と同様にして、スズ含有セリアジルコニア粉末「材料(10)ともいう。」を得た。材料(10)を用いて、後述の各評価を行った。
(Comparative example 2)
Baking treatment conditions in the atmosphere were the same as in Example 1 except that the temperature inside the furnace was raised to 800° C. at a temperature rising rate of 10° C./min, the temperature was held at 800° C. for 2 hours, and the temperature was cooled to room temperature. , Tin-containing ceria-zirconia powder “also referred to as material (10)” was obtained. Each evaluation described below was performed using the material (10).

<粉末X線回折>
パナリティカル社製 X‘Pert PRO MRDを用いて、試料の粉末X線回折分析を行った。
下記の条件で測定した。
X線出力(Cu−Kα):45kV、40mA
走査軸:θ/2θ
測定範囲(2θ):10.00°〜89.98°
Cu‐KαをX線光源とした、材料(1)の粉末X線回折(XRD)パターンを図1に示す。材料(9)の粉末X線回折(XRD)パターンを図2に示す。材料(10)の粉末X線回折(XRD)パターンを図3に示す。
<Powder X-ray diffraction>
The powder X-ray diffraction analysis of the sample was performed using X'Pert PRO MRD manufactured by PANalytical.
The measurement was performed under the following conditions.
X-ray output (Cu-Kα): 45kV, 40mA
Scanning axis: θ/2θ
Measuring range (2θ): 10.00° to 89.98°
The powder X-ray diffraction (XRD) pattern of the material (1) using Cu-Kα as the X-ray light source is shown in FIG. The powder X-ray diffraction (XRD) pattern of material (9) is shown in FIG. The powder X-ray diffraction (XRD) pattern of material (10) is shown in FIG.

図1のパターンは、図2のパターンより高角度側にシフトしている。材料(1)は、セリウムとジルコニウムとスズが固溶した酸化物であり、材料(9)は、セリウムとジルコニウム固溶した酸化物であると同定された。図3のパターンにおいては、図1のパターンと異なるピークが観察され、固溶しなかったスズ酸化物と同定された。   The pattern of FIG. 1 is shifted to a higher angle side than the pattern of FIG. The material (1) was identified as an oxide in which cerium, zirconium, and tin were solid-solved, and the material (9) was identified as an oxide in which cerium and zirconium were solid-solved. In the pattern of FIG. 3, a peak different from the pattern of FIG. 1 was observed, and it was identified as tin oxide that did not form a solid solution.

<BET比表面積測定>
試料を0.15g採取し、全自動BET比表面積測定装置マックソーブ(マウンテック社製)で比表面積測定を行った。前処理時間および前処理温度は、それぞれ30分および200℃に設定した。
材料(1)〜材料(10)のTPRから求めたBET法にて算出された比表面積を表1に示す。材料(1)〜材料(9)のBET法で算出される比表面積は、いずれにおいても70m/g以上であった。材料(10)のBET法で算出される比表面積は、70m/gより小さかった。
<BET specific surface area measurement>
0.15 g of a sample was sampled, and the specific surface area was measured with a full-automatic BET specific surface area measuring device Macsorb (manufactured by Mountech Co., Ltd.). The pretreatment time and pretreatment temperature were set to 30 minutes and 200° C., respectively.
Table 1 shows the specific surface areas calculated by the BET method obtained from the TPRs of the materials (1) to (10). The specific surface areas of materials (1) to (9) calculated by the BET method were all 70 m 2 /g or more. The specific surface area of the material (10) calculated by the BET method was smaller than 70 m 2 /g.

<水素−昇温還元(TPR)>
H2−TPRは、触媒分析装置BEL―CAT(日本ベル製)によって測定した。前処理として、試料を、ヘリウムガス流通中、室温で10分保持した後、ガスを酸素に切り替え、昇温速度10℃/分で200℃まで昇温し、30分保持し、0℃まで降温した。測定として、ガスをアルゴンに切り替え10分保持した後、ガスを水素を5体積%含む水素とアルゴン窒素の混合ガスに切り替え、昇温速度5℃/分で500℃まで昇温し、30分保持した。この間に消費する水素を四重極質量分析計(MS)と熱伝導度検出器(TCD)で連続的に測定した。
<Hydrogen-Temperature Reduction (TPR)>
H2-TPR was measured by a catalyst analyzer BEL-CAT (manufactured by Nippon Bell). As a pretreatment, the sample was kept at room temperature for 10 minutes while flowing helium gas, then the gas was switched to oxygen, the temperature was raised to 200° C. at a temperature rising rate of 10° C./min, and the sample was kept for 30 minutes and cooled to 0° C. did. As a measurement, after switching the gas to argon and holding it for 10 minutes, switching the gas to a mixed gas of hydrogen and argon nitrogen containing 5% by volume of hydrogen, raising the temperature to 500° C. at a heating rate of 5° C./minute, and holding it for 30 minutes. did. The hydrogen consumed during this period was continuously measured by a quadrupole mass spectrometer (MS) and a thermal conductivity detector (TCD).

材料(1)〜材料(10)のTPRから求めた酸素放出開始温度を表1に示す。材料(1)〜材料(8)の酸素放出開始温度は、0〜100℃の範囲であり、材料(9)〜材料(10)の酸素放出開始温度は、100℃よりも高い。   Table 1 shows the oxygen release initiation temperatures obtained from the TPRs of the materials (1) to (10). The oxygen release start temperature of materials (1) to (8) is in the range of 0 to 100°C, and the oxygen release start temperature of materials (9) to (10) is higher than 100°C.

<イオン化ポテンシャル>
理研計器(株)製光電子分光装置MODEL AC−2を用いて、イオン化ポテンシャルを測定した。
測定装置のサンプル台の紫外線照射部分に、スパチュラーにて、材料(1)〜材料(10)を敷き詰めて測定した。下記測定条件で、紫外線の励起エネルギーを、4.5から5.7eVへと、低い方から高い方に向かってスキャンした。
設定光量:500nW
計数時間:15秒
スキャン間隔:0.1eV
<Ionization potential>
The ionization potential was measured using a photoelectron spectrometer MODEL AC-2 manufactured by Riken Keiki Co., Ltd.
The materials (1) to (10) were spread with a spatula on the UV irradiation portion of the sample table of the measuring device, and the measurement was performed. Under the following measurement conditions, the excitation energy of ultraviolet rays was scanned from 4.5 to 5.7 eV from the lower side to the higher side.
Set light intensity: 500nW
Counting time: 15 seconds Scan interval: 0.1 eV

このとき放出される光電子を計測し、縦軸に規格化光電子収率(Yield^n)、横軸に励起エネルギー(eV)として、グラフを作成した。ここで規格化光電子収率(Yield^n)とは、単位光量当たりの光電子収率のn乗のことをいう。nの値は0.5とした。電子放出が始まるまでの励起エネルギーと電子放出が始まった後の励起エネルギーとを該測定装置で指定した。該グラフから、光電子放出が始まるしきい値を算出し、該しきい値をイオン化ポテンシャルとした。   The photoelectrons emitted at this time were measured, and a graph was created with the normalized photoelectron yield (Yield^n) on the vertical axis and the excitation energy (eV) on the horizontal axis. Here, the normalized photoelectron yield (Yield^n) means the n-th power of the photoelectron yield per unit amount of light. The value of n was 0.5. The excitation energy until the electron emission started and the excitation energy after the electron emission started were designated by the measuring device. From the graph, a threshold value at which photoelectron emission starts was calculated, and the threshold value was used as an ionization potential.

材料(1)〜材料(10)のTPRから求めたイオン化ポテンシャルを表1に示す。
材料(2)および材料(3)イオン化ポテンシャルは、材料(1)および材料(4)〜材料(10)より低い。
Table 1 shows the ionization potentials obtained from the TPRs of the materials (1) to (10).
Material (2) and material (3) have lower ionization potentials than materials (1) and materials (4) to (10).

[マイクロポーラス層付きガス拡散層とその評価]
<マイクロポーラス層形成用インクの製造>
小型ミキサーで、ケッチェンブラックECP600JD(ライオン(株)製)0.15gと、VGCF(昭和電工(株)製)0.45gを混ぜ、次に予め乳鉢粉砕した鱗状黒鉛FBF(中越黒鉛製造所(株)製)1.2gを加えて混ぜ、さらに材料(1)1.2gを加えて混ぜた。この混合物1.4gと、分散剤トリトンX−100(和光純薬(株)製)8質量部と溶剤ソルフィット(協和化工(株)製)2質量部からなる混合物3.6gと、フッ素系樹脂(ナフィオン(NAFION(登録商標))を含有する水溶液(5%ナフィオン(NAFION(登録商標))水溶液、和光純薬(株)製))1gを混合した。さらに、前記分トリトンX−100を8質量部とソルフィット2質量部からなる混合物を、塗工に適した粘度になるように適量加え、マイクロポーラス層形成用インク(1)「塗工液(1)ともいう。」を得た。
[Gas diffusion layer with microporous layer and its evaluation]
<Production of ink for forming microporous layer>
In a small mixer, 0.15 g of Ketjen Black ECP600JD (manufactured by Lion Corporation) and 0.45 g of VGCF (manufactured by Showa Denko KK) were mixed, and then mortar was crushed in advance to obtain scaly graphite FBF (Chuetsu Graphite Mill ( 1.2 g) (manufactured by Co., Ltd.) was added and mixed, and further 1.2 g of the material (1) was added and mixed. 1.4 g of this mixture, 3.6 g of a mixture consisting of 8 parts by mass of the dispersant Triton X-100 (manufactured by Wako Pure Chemical Industries, Ltd.) and 2 parts by mass of solvent Solfit (manufactured by Kyowa Kako Co., Ltd.), and a fluorine-based compound. 1 g of a resin (aqueous solution containing NAFION (registered trademark) (5% NAFION (registered trademark) aqueous solution, manufactured by Wako Pure Chemical Industries, Ltd.)) was mixed. Further, a proper amount of a mixture of 8 parts by mass of Triton X-100 and 2 parts by mass of Solfit was added so as to have a viscosity suitable for coating, and the ink for forming a microporous layer (1) "coating liquid ( Also referred to as 1)."

材料(2)〜材料(10)を用い、上記と同様にして、それぞれ塗工液(2)〜塗工液(10)を調製した。   Using the materials (2) to (10), coating solutions (2) to (10) were prepared in the same manner as above.

<マイクロポーラス層付きガス拡散層の製造>
次に、予め撥水性を施したカーボンペーパーGP−H―H−060(ケミックス(株)製)の表面に、自動塗工装置PI−1210(テスター産業製)を用いて、アプリケーターで塗工液(1)を塗工した。室温乾燥後、360℃で30分加熱することにより、マイクロポーラス層付きガス拡散電極(1)(以下「ガス拡散層」と呼ぶこともある。)を得た。マイクロポーラス層付きガス拡散電極の目付量は、MPL膜付GDLのガーレー数が20sec±5sec/100mlになるように、調節した。塗工液(2)〜塗工液(10)を用い、上記と同様にして、それぞれマイクロポーラス層付きガス拡散層(2)「ガス拡散層(2)ともいう。」〜マイクロポーラス層付きガス拡散層(10)「ガス拡散層(10)ともいう。」を製造した。
<Production of gas diffusion layer with microporous layer>
Next, using an automatic coating device PI-1210 (manufactured by Tester Sangyo) on the surface of carbon paper GP-H-H-060 (manufactured by Chemix Co., Ltd.) that has been previously made water repellent, a coating liquid is applied with an applicator. (1) was applied. After drying at room temperature, it was heated at 360° C. for 30 minutes to obtain a gas diffusion electrode (1) with a microporous layer (hereinafter sometimes referred to as “gas diffusion layer”). The basis weight of the gas diffusion electrode with the microporous layer was adjusted so that the Gurley number of the GDL with the MPL film was 20 sec±5 sec/100 ml. Using the coating liquid (2) to the coating liquid (10), in the same manner as above, the gas diffusion layer (2) with a microporous layer (also referred to as "gas diffusion layer (2)") to the gas with a microporous layer. Diffusion layer (10) A "gas diffusion layer (10)" was produced.

<マイクロポーラス層の目付量の測定>
ガス拡散層(1)のマイクロポーラス層の目付量(mg/cm)は、ガス拡散層(1)の質量とガス拡散電極基材の質量の差を、単位面積あたりの面積で除して求めた。
<Measurement of basis weight of microporous layer>
The basis weight (mg/cm 2 ) of the microporous layer of the gas diffusion layer (1) is obtained by dividing the difference between the mass of the gas diffusion layer (1) and the mass of the gas diffusion electrode substrate by the area per unit area. I asked.

上記と同様にして、それぞれガス拡散層(2)〜ガス拡散層(10)のマイクロポーラス層の目付量を、測定した。測定したマイクロポーラス層の目付量を、表2に示す。ガス拡散層(1)〜ガス拡散層(10)のマイクロポーラス層の目付量は、1.5〜5mg/cmであった。 Similarly to the above, the basis weights of the microporous layers of the gas diffusion layer (2) to the gas diffusion layer (10) were measured. Table 2 shows the measured areal weight of the microporous layer. The basis weight of the microporous layers of the gas diffusion layer (1) to the gas diffusion layer (10) was 1.5 to 5 mg/cm 2 .

<ガーレーの測定>
ガス拡散層(1)のガーレー(秒)を、No323−AUTO自動ガーレー式デンソメーター(安田精機製作所製)を用いて、測定した。
<Measurement of Gurley>
The Gurley (second) of the gas diffusion layer (1) was measured using a No323-AUTO automatic Gurley type densometer (manufactured by Yasuda Seiki Seisakusho).

上記と同様にして、それぞれガス拡散層(2)〜ガス拡散層(10)のガーレーを、測定した。測定したガーレー数を、表2に示す。ガス拡散層(1)〜ガス拡散層(10)のガーレー数は、15〜25秒であった。   Gurley of each of the gas diffusion layer (2) to the gas diffusion layer (10) was measured in the same manner as above. Table 2 shows the measured Gurley numbers. The Gurley number of the gas diffusion layer (1) to the gas diffusion layer (10) was 15 to 25 seconds.

<導電率の測定>
ガス拡散層(1)の抵抗値(Ω)を、ロレスターGP MCP−T610(三菱化学アナリテック(株)製)により測定し、得られた抵抗値を導電率(S/cm)に換算した。
<Measurement of conductivity>
The resistance value (Ω) of the gas diffusion layer (1) was measured by LORESTER GP MCP-T610 (manufactured by Mitsubishi Chemical Analytech Co., Ltd.), and the obtained resistance value was converted into conductivity (S/cm).

上記と同様にして、それぞれガス拡散層(2)〜ガス拡散層(10)の導電率を、測定した。測定した導電率を、表2に示す。ガス拡散層(1)〜ガス拡散層(10)の導電率は、80S/cm以上であった。   In the same manner as above, the conductivity of each of the gas diffusion layer (2) to the gas diffusion layer (10) was measured. The measured conductivity is shown in Table 2. The conductivity of the gas diffusion layer (1) to the gas diffusion layer (10) was 80 S/cm or more.

[燃料電池用膜電極接合体の製造とその発電特性の評価]
<空気極触媒層形成用インクの製造>
燃料電池用触媒Pt/C(田中貴金属工業製TEC10E50E)90.0mgと、高分子電解質(ナフィオン(NAFION(登録商標))を含有する水溶液(5%ナフィオン(NAFION(登録商標))水溶液、和光純薬製))0.75gと、純水3.75mLと、イソプロパノール(純正化学製)3.75mLを加えた液を作製した。この液を、氷水中で30分間超音波処理することにより、空気極触媒層形成用インクを製造した。
[Manufacture of membrane electrode assembly for fuel cell and evaluation of its power generation characteristics]
<Production of ink for forming air electrode catalyst layer>
An aqueous solution containing a fuel cell catalyst Pt/C (TEC 10E50E manufactured by Tanaka Kikinzoku Kogyo TEC10E50E) 90.0 mg and a polymer electrolyte (Nafion (NAFION (registered trademark)) (5% NAFION (registered trademark) aqueous solution, Wako Pure) 0.75 g, manufactured by Yakuhin Co., Ltd., 3.75 mL of pure water, and 3.75 mL of isopropanol (manufactured by Junsei Kagaku) were added. The liquid was subjected to ultrasonic treatment for 30 minutes in ice water to produce an ink for forming an air electrode catalyst layer.

<空気極触媒層付きガス拡散層の製造>
ガス拡散層(1)のマイクロポーラス層表面に、自動スプレー塗布装置(サンエイテック(株)製)により、80℃で、空気極触媒層形成用インクを塗布して、空気極触媒層付きガス拡散層(1)を製造した。空気極触媒層付きガス拡散層の触媒層の目付量は、0.1mg/cmとした。
<Production of gas diffusion layer with air electrode catalyst layer>
On the surface of the microporous layer of the gas diffusion layer (1), an air electrode catalyst layer forming ink was applied at 80° C. by an automatic spray coating device (manufactured by San-Ai Tech Co., Ltd.), and gas diffusion with an air electrode catalyst layer was performed. Layer (1) was produced. The basis weight of the catalyst layer of the gas diffusion layer with the air electrode catalyst layer was 0.1 mg/cm 2 .

ガス拡散層(2)〜ガス拡散層(10)を用い、上記と同様にして、それぞれ空気極触媒層付きガス拡散層(2)〜空気極触媒層付きガス拡散層(10)を製造した。   Using the gas diffusion layer (2) to the gas diffusion layer (10), the gas diffusion layer with the air electrode catalyst layer (2) to the gas diffusion layer with the air electrode catalyst layer (10) were manufactured in the same manner as above.

<燃料極触媒層形成用インクの製造>
純水50mlに、燃料電池用白金担持カーボン触媒(田中貴金属工業製TEC10E70TPM)0.6gと、高分子電解質(ナフィオン(NAFION(登録商標))を含有する水溶液(5%ナフィオン(NAFION(登録商標))水溶液、和光純薬製))5gとを入れた液を作製した。この液を、60分間超音波処理することにより、燃料極触媒層形成用インクを調製した。
<Production of ink for forming fuel electrode catalyst layer>
An aqueous solution (5% Nafion (registered trademark)) containing 0.6 g of a platinum-supported carbon catalyst for fuel cells (TEC10E70TPM manufactured by Tanaka Kikinzoku Kogyo) and a polymer electrolyte (NAFION (registered trademark)) in 50 ml of pure water. ) Aqueous solution, manufactured by Wako Pure Chemical Industries, Ltd.)) and 5 g were prepared. The liquid was subjected to ultrasonic treatment for 60 minutes to prepare an ink for forming a fuel electrode catalyst layer.

<燃料極空気極触媒層付きガス拡散層の製造>
カーボンペーパーTGP−H−060(東レ(株)製)を、アセトン(和光純薬(株)製)に30秒間浸漬して脱脂した後、乾燥させ、次いで10質量%のポリテトラフルオロエチレン(PTFE)水溶液に30秒間浸漬した。その後、室温で乾燥し、さらに大気中で350℃1時間加熱することにより、カーボンペーパー内部にPTFEが分散し撥水性を有するアノード用ガス拡散電極を得た。燃料極ガス拡散層の片面に、自動スプレー塗布装置(サンエイテック(株)製)により、80℃で、燃料極触媒層形成用インクを塗布して、燃料極触媒層付きガス拡散層を製造した。燃料極触媒層付きガス拡散層の触媒層の目付量は、1.0mg/cmとした。
<Manufacture of gas diffusion layer with fuel electrode air electrode catalyst layer>
Carbon paper TGP-H-060 (manufactured by Toray Industries, Inc.) was immersed in acetone (manufactured by Wako Pure Chemical Industries, Ltd.) for 30 seconds to degrease it, then dried, and then 10% by mass of polytetrafluoroethylene (PTFE). ) Immersed in the aqueous solution for 30 seconds. Then, it was dried at room temperature and further heated in the air at 350° C. for 1 hour to obtain a water-repellent anode gas diffusion electrode in which PTFE was dispersed in the carbon paper. On one surface of the fuel electrode gas diffusion layer, an ink for forming a fuel electrode catalyst layer was applied at 80° C. by an automatic spray coating device (manufactured by Sanei Tech Co., Ltd.) to produce a gas diffusion layer with a fuel electrode catalyst layer. .. The basis weight of the catalyst layer of the gas diffusion layer with the fuel electrode catalyst layer was 1.0 mg/cm 2 .

<膜電極接合体の製造>
固体高分子膜としてナフィオン(NAFION(登録商標))膜(NR−212、DuPont社製)を準備した。前記アノード用触媒層付きガス拡散電極と前記空気極触媒層付きガス拡散層(1)のそれぞれの触媒層を、この固体高分子膜を挟んで触媒層面が対面するように配置した。ホットプレス機を用いて、温度140℃、圧力1MPa、7分間これらを熱圧着し、膜電極接合体(1)を作製した。
<Production of membrane electrode assembly>
A Nafion (NAFION (registered trademark)) film (NR-212, manufactured by DuPont) was prepared as a solid polymer film. The respective catalyst layers of the gas diffusion electrode with the catalyst layer for the anode and the gas diffusion layer (1) with the air electrode catalyst layer were arranged such that the catalyst layer surfaces face each other with the solid polymer membrane sandwiched therebetween. Using a hot press machine, these were thermocompression-bonded at a temperature of 140° C. and a pressure of 1 MPa for 7 minutes to prepare a membrane electrode assembly (1).

空気極触媒層付きガス拡散層(2)〜空気極触媒層付きガス拡散層(10)を用い、上記と同様にして、それぞれ膜電極接合体(2)〜膜電極接合体(10)を製造した。   Using the gas diffusion layer with an air electrode catalyst layer (2) to the gas diffusion layer with an air electrode catalyst layer (10), a membrane electrode assembly (2) to a membrane electrode assembly (10) are produced respectively in the same manner as above. did.

<固体高分子形燃料電池の作製>
膜電極接合体(1)を、2つのシール材(ガスケット)、2つのガス流路付きセパレーター、2つの集電板および2つのラバーヒーターで挟んでボルトで固定し、締め付けて、単セル固体高分子形燃料電池(1)(以下「燃料電池(1)」ともいう。)(セル面積:25cm)を作製した。
<Preparation of polymer electrolyte fuel cell>
The membrane electrode assembly (1) is sandwiched between two sealing materials (gaskets), two separators with gas passages, two current collectors and two rubber heaters, and then fixed with bolts and tightened to obtain a single cell solid height. A molecular fuel cell (1) (hereinafter also referred to as “fuel cell (1)”) (cell area: 25 cm 2 ) was produced.

膜電極接合体(2)〜膜電極接合体(10)を用い、上記と同様にして、それぞれ燃料電池(2)〜燃料電池(10)を製造した。   Using the membrane electrode assembly (2) to the membrane electrode assembly (10), the fuel cell (2) to the fuel cell (10) were manufactured in the same manner as above.

<発電特性の評価>
燃料電池(1)において、セル温度は80℃、アノードの湿度は露点77℃に調節し、カソードは加湿しなかった。アノード側に燃料として水素ガスを、利用率が70%になるように供給した。カソード側に空気を、利用率が40%になるように供給した。燃料電池(1)の電流―電圧(I−V)特性を評価した。
<Evaluation of power generation characteristics>
In the fuel cell (1), the cell temperature was adjusted to 80° C., the humidity of the anode was adjusted to dew point 77° C., and the cathode was not humidified. Hydrogen gas was supplied to the anode side as a fuel so that the utilization rate would be 70%. Air was supplied to the cathode side so that the utilization rate was 40%. The current-voltage (IV) characteristic of the fuel cell (1) was evaluated.

上記と同様にして、燃料電池(2)〜燃料電池(10)の電流―電圧(I−V)特性を評価した。0.7Vにおける電流密度(mA/cm)を、表3に示す。 In the same manner as above, the current-voltage (IV) characteristics of the fuel cell (2) to the fuel cell (10) were evaluated. The current density (mA/cm 2 ) at 0.7 V is shown in Table 3.

Claims (10)

カーボン材料と、撥水材料と、素吸蔵放出能を有する材料とを含有し、
前記酸素吸蔵放出能を有する材料が、
0〜100℃に酸素放出開始温度を有し、且つ、
スズ、マンガン、プラセオジム及びビスマスから選択される少なくとも1種の元素を含む酸化セリウムジルコニウムである
燃料電池用マイクロポーラス層。
Containing carbon material, water repellent material, a material having a oxygen storage and release capacity,
The material having the ability to store and release oxygen is
Has an oxygen release initiation temperature of 0 to 100° C., and
Cerium zirconium oxide containing at least one element selected from tin, manganese, praseodymium and bismuth
Microporous layer for fuel cells .
前記酸素吸蔵放出能を有する材料が基材に担持されており、該基材がアルミナ、シリカ、シリカアルミナ、チタニア、ゼオライト、ジルコニア及びマグネシアから選ばれる1種または2種以上の混合物である請求項1記載の燃料電池用マイクロポーラス層。 The material having the oxygen storage/release capacity is supported on a substrate, and the substrate is one or a mixture of two or more selected from alumina, silica, silica-alumina, titania, zeolite, zirconia and magnesia. microporous layer for a fuel cell according to 1. 前記酸素吸蔵放出能を有する材料は、遷移金属元素を担持している請求項1〜のいずれかに記載の燃料電池用マイクロポーラス層。 The oxygen storage material having a releasing capacity for a fuel cell microporous layer according to any one of claims 1 to 2 carrying a transition metal element. 前記カーボン材料が、炭素粒子または炭素繊維である請求項1〜のいずれかに記載の燃料電池用マイクロポーラス層。 The carbon material, fuel cell microporous layer according to any one of claims 1 to 3 carbon particles or carbon fibers. 前記撥水材料が、フッ素樹脂である請求項1〜のいずれかに記載の燃料電池用マイクロポーラス層。 The water-repellent material, fuel cell microporous layer according to any one of claims 1 to 4, which is a fluororesin. 請求項1〜に記載の燃料電池用マイクロポーラス層とガス拡散電極基材とが積層されているガス拡散層。 Fuel cell microporous layer and the gas diffusion electrode base material and the gas diffusion layer are laminated according to claim 1-5. 固体高分子膜を介して配置された空気極触媒層と燃料極触媒層と、
さらに前記空気極触媒層の外側に配置された、請求項1〜のいずれかに記載の燃料電池用マイクロポーラス層を有する空気極ガス拡散層と、
燃料極触媒層の外側に配置された燃料極ガス拡散層と
を有する、膜電極接合体。
An air electrode catalyst layer and a fuel electrode catalyst layer arranged via a solid polymer membrane,
Was further disposed on the outside of the air electrode catalyst layer, and the cathode gas diffusion layer having a fuel microporous layer battery according to any one of claims 1 to 5
A membrane electrode assembly having a fuel electrode gas diffusion layer disposed outside a fuel electrode catalyst layer.
固体高分子膜を介して配置された空気極触媒層と燃料極触媒層と、
さらに前記空気極触媒層の外側に配置された、請求項に記載のガス拡散層である空気極ガス拡散層と、
燃料極触媒層の外側に配置された燃料極ガス拡散層と
を有する、膜電極接合体。
An air electrode catalyst layer and a fuel electrode catalyst layer arranged via a solid polymer membrane,
Was further disposed on the outside of the air electrode catalyst layer, and the cathode gas diffusion layer is a gas diffusion layer according to claim 6,
A membrane electrode assembly having a fuel electrode gas diffusion layer disposed outside a fuel electrode catalyst layer.
請求項8記載の膜電極接合体を備えた燃料電池。 A fuel cell comprising the membrane electrode assembly according to claim 8. 請求項に記載の燃料電池の運転方法であって、該燃料電池中のマイクロポーラス層の温度を、前記酸素吸蔵放出能を有する材料の酸素放出開始温度以上に設定する燃料電池の運転方法。
The operating method of the fuel cell according to claim 9 , wherein the temperature of the microporous layer in the fuel cell is set to be equal to or higher than the oxygen release start temperature of the material having the oxygen storage/release capacity.
JP2016021783A 2015-12-28 2016-02-08 Microporous layer and fuel cell using the same Expired - Fee Related JP6700822B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015256771 2015-12-28
JP2015256771 2015-12-28

Publications (2)

Publication Number Publication Date
JP2017120754A JP2017120754A (en) 2017-07-06
JP6700822B2 true JP6700822B2 (en) 2020-05-27

Family

ID=59272230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016021783A Expired - Fee Related JP6700822B2 (en) 2015-12-28 2016-02-08 Microporous layer and fuel cell using the same

Country Status (1)

Country Link
JP (1) JP6700822B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220231304A1 (en) * 2021-01-21 2022-07-21 Jntg Co., Ltd. Gas Diffusion Layer Comprising Microporous Layer Including Carbon Having Partially Graphitized Structure and Radical Scavenger Additive, and Fuel Cell Employing the Same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001170484A (en) * 1999-12-17 2001-06-26 Matsushita Electric Ind Co Ltd Catalyst for purifying exhaust gas and exhaust gas purifying device equipped with the same
JP2006212585A (en) * 2005-02-07 2006-08-17 Babcock Hitachi Kk Filter for purifying exhaust gas and method for manufacturing the same
JP2009026501A (en) * 2007-07-17 2009-02-05 Nissan Motor Co Ltd Electrolyte membrane-electrode assembly
KR20160129913A (en) * 2008-03-27 2016-11-09 우미코레 아게 운트 코 카게 Continuous diesel soot control with minimal back pressure penality using conventional flow substrates and active direct soot oxidation catalyst disposed thereon
JP5400431B2 (en) * 2009-03-05 2014-01-29 トヨタ自動車株式会社 Exhaust gas purification catalyst and method for producing the same
JP5223849B2 (en) * 2009-11-27 2013-06-26 トヨタ自動車株式会社 Fuel cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220231304A1 (en) * 2021-01-21 2022-07-21 Jntg Co., Ltd. Gas Diffusion Layer Comprising Microporous Layer Including Carbon Having Partially Graphitized Structure and Radical Scavenger Additive, and Fuel Cell Employing the Same
US11799090B2 (en) * 2021-01-21 2023-10-24 Jntg Co., Ltd. Gas diffusion layer comprising microporous layer including carbon having partially graphitized structure and radical scavenger additive, and fuel cell employing the same

Also Published As

Publication number Publication date
JP2017120754A (en) 2017-07-06

Similar Documents

Publication Publication Date Title
JP5855023B2 (en) Method for producing catalyst carrier, method for producing composite catalyst, composite catalyst, and fuel cell using the same
KR101823158B1 (en) Anode-side catalyst composition for fuel cell and membrane electrode assembly (mea) for solid polymer-type fuel cell
WO2010131536A1 (en) Catalyst electrode, fuel cell, air cell and method for generating electric power
CN101884127A (en) Method for producing electrode material for fuel cell, electrode material for fuel cell, and fuel cell using the electrode material for fuel cell
US20140349212A1 (en) Oxygen reduction catalyst and method for producing same
JP5034172B2 (en) Gas diffusion layer for fuel cell and fuel cell using the same
KR102054609B1 (en) Carbon powder for fuel cell and catalyst, electrode catalyst layer, membrane electrode assembly and fuel cell using the carbon powder for fuel cell
US20160099473A1 (en) Catalyst particle, support-type catalyst particle, and uses thereof
JP2010092609A (en) Microporous layer and gas diffusion layer with the same
KR20170098298A (en) Porous adhesive network in electrochemical devices
JP4977911B2 (en) Electrode catalyst powder for air electrode of hydrogen-air / solid polymer electrolyte type reversible cell, electrode-electrolyte membrane assembly (MEA) having air electrode and reversible cell using the same
JP5669432B2 (en) Membrane electrode assembly, fuel cell, and fuel cell activation method
KR101720886B1 (en) Method for operating fuel cell, and electric-power generating device
KR101840141B1 (en) Oxygen reducing catalyst, application thereof, and method for producing same
US20100279202A1 (en) Electrode catalyst and oxygen reduction electrode for cathode using the same
JP6700822B2 (en) Microporous layer and fuel cell using the same
JP5326585B2 (en) Method for producing metal catalyst-supported carbon powder
JP2018104256A (en) Ceria, microporous layer, and polymer electrolyte fuel cell
JP2006086037A (en) Electrocatalyst for fuel cell and electrocatalyst layer for fuel cell using it
JP2005270687A (en) Catalyst-carrying carbon material and its production method
JP2007250214A (en) Electrode catalyst and its manufacturing method
JP2018104258A (en) Method for selecting substitution atom of ceria, and ceria in which a part of cerium atom is substituted
JP2006179412A (en) Fuel cell electrode catalyst layer and fuel cell using the same
JP2018104257A (en) Method for selecting substitutional atom of ceria, and ceria in which some cerium atoms are substituted
JP2018104255A (en) Ceria, microporous layer, and polymer electrolyte fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191108

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20191108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200501

R150 Certificate of patent or registration of utility model

Ref document number: 6700822

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees