JP2011513744A - バックグラウンド補償を有する光音響サンプル検出器 - Google Patents

バックグラウンド補償を有する光音響サンプル検出器 Download PDF

Info

Publication number
JP2011513744A
JP2011513744A JP2010549228A JP2010549228A JP2011513744A JP 2011513744 A JP2011513744 A JP 2011513744A JP 2010549228 A JP2010549228 A JP 2010549228A JP 2010549228 A JP2010549228 A JP 2010549228A JP 2011513744 A JP2011513744 A JP 2011513744A
Authority
JP
Japan
Prior art keywords
signal
sample
pickup element
light beam
photoacoustic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010549228A
Other languages
English (en)
Inventor
イェロエン カルクマン
ケステレン ハンス ダブリュ ファン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips NV
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips NV, Koninklijke Philips Electronics NV filed Critical Koninklijke Philips NV
Publication of JP2011513744A publication Critical patent/JP2011513744A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/1702Systems in which incident light is modified in accordance with the properties of the material investigated with opto-acoustic detection, e.g. for gases or analysing solids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

サンプル混合物中のサンプルの濃度を検出する光音響検出器であり、光音響検出器は、サンプルの分子を励起するための光ビームを生成する光源と、サンプル混合物に圧力バリエーションを生成するために、光ビームの強度を変調させる光変調器であって、圧力バリエーションの振幅がサンプルの濃度の尺度である、光変調器と、圧力バリエーションを増幅するための音響共振器を有する音響セルと、を有する。更に、光音響検出器は、音響共振器内の圧力バリエーションを検出器信号に変換する共振ピックアップ素子と、1)圧力バリエーションによって引き起こされるサンプル信号、及び2)光ビームによるピックアップ素子の直接の励起によって引き起こされるバックグラウンド信号、を生成するように、検出器信号を処理する処理セクションと、を有する。音響セル及びピックアップ素子は、バックグラウンド信号とサンプル信号との間の位相差が約90°であるように構成される。

Description

本発明は、サンプル混合物中のサンプルの濃度を検出する光音響検出器であって、光源と、光変調器と、音響共振器を有する音響セルと、共振ピックアップ素子と、処理セクションと、を有する光音響検出器に関する。光源は、サンプルの分子を励起するための光ビームを生成する。光変調器は、サンプル混合物に圧力バリエーションを生成するために、光ビームの強度を変調させる。ここで、圧力バリエーションの振幅は、サンプルの濃度の尺度である。音響共振器は、圧力バリエーションを増幅する。ピックアップ素子は、圧力バリエーションを検出器信号に変換する。処理セクションは、圧力バリエーションによって引き起こされるサンプル信号を生成するように、検出器信号を処理する。
本発明は更に、このような光音響検出器を製造する方法に関する。
このような光音響検出器は、産業において微量気体モニタリングのために使用され、将来、呼吸テスト(喘息、アルコール、胃障害)又は空気汚染測定のためにも使用されることができる。
振幅変調される光音響検出の不利益は、変調レーザによって生成されるバックグラウンド信号が関心のあるサンプル信号と同じ周波数にあることである。これは、波長変調と対照的であり、波長変調の場合、レーザは、周波数fで変調され、信号は周波数2fで検出される。しかしながら、波長変調は、例えば青色ダイオードレーザによるNO検出の場合は可能でなく、この理由は、400nmのNO吸収スペクトルは、レーザダイオードの波長チューニングレンジよりずっと広いからである。最適な検出のために、音叉ピックアップ素子が、光経路に位置する場合、振幅変調された光の一部は、音叉の直接の励起を生じさせることができ、それによって、検出限界に対応する信号より大きい大きさのオーダでありうるバックグラウンド信号の生成をもたらす。バックグラウンド信号及びNO信号は、同一の周波数を有するので、バックグラウンド信号は、ハイパスフィルタを使用してフィルタリング除去されることができない。検出限界を犠牲にせずにバックグラウンド減算を使用するには、非常に安定した、知られているバックグラウンド及び/又はNO信号に対して小さいバックグラウンド信号を必要とする。
本発明の目的は、改善されたバックグラウンド補償を有する振幅変調される光音響検出器を提供することである。
本発明の第1の見地によれば、この目的は、冒頭の段落に従う光音響検出器であって、処理セクションが、圧力バリエーションによって引き起こされるサンプル信号及び光ビームによるピックアップ素子の直接の励起によって引き起こされるバックグラウンド信号を生成するように、検出器信号を処理するように構成され、音響セル及びピックアップ素子が、バックグラウンド信号とサンプル信号との間の位相差が約90°であるように構成される、光音響検出器を提供することによって達成される。
追加の信号強調を与える共振ピックアップ素子は、音響共振器と組み合わされて、ピックアップ素子における光吸収によって生成されるバックグラウンド信号に対する圧力波信号の位相シフトをもたらす。このメカニズムは、音響共振器の壁において生成されることができる、結果的に光音響信号の位相に近い位相を有するバックグラウンド信号とは異なる。例えば、光ビームの直径及び音響共振器の直径の適当な組み合わせによって、壁バックグラウンド信号は、ピックアップ素子のバックグラウンド信号と比較して小さくされることができる。必要に応じて、共振ピックアップ素子の使用によって得られる信号強調は、この目的のために多少妥協されることができる。
減算によるバックグラウンド修正のために必要な振幅の安定性とは対照的に、信号とバックグラウンドとの間の90°位相差に基づく方法は、位相の安定性のみを必要とする。バックグラウンド信号は、cosθとして相対角度に依存するので、バックグラウンド位相の大きいバリエーションのみが、重要なバックグラウンド信号を生じさせる。一旦サンプル信号とバックグラウンド信号との間に約90°の位相差が得られると、バックグラウンド信号は、位相センシティブな検出を使用して抑制されることができ、バックグラウンド信号のバリエーションは、もはやサンプル濃度検出の正確さに影響を与えなくなる。以下に説明されるように、サンプル信号とバックグラウンド信号との間の位相差を調整するためのいくつかの代替のやり方がある。
バックグラウンド位相バリエーションは、主にピックアップ素子の共振曲線によって決定され、光音響位相(PA位相)は、ピックアップ素子及び音響共振の双方によって決定される。その結果、共振の近くでは、バックグラウンド信号とNO信号との間には一定の位相差がある。製造プロセスにおいて、ピックアップ素子共振周波数と合致するように音響共振周波数をチューニングすることによって、バックグラウンド信号とサンプル信号との間の90°位相差が達成されることができ、ゆえにバックグラウンドの効果を低減することができる。代替として、セルは、製造後、ユーザによってピックアップ素子の共振周波数に調整されることができる。
本発明の一実施形態によれば、ピックアップ素子の共振周波数は、音響共振器の共振周波数に本質的に等しい。それら2つの共振周波数が等しい場合、位相差は90°である。共振周波数は、音響共振器の形状及びピックアップ素子の形状に依存する。ピックアップ素子の共振周波数は、例えば、製造プロセスの間、正しい長さの音叉を注意深く選択し又は生成することによって、確立されることができる。
好適には、光音響検出器は更に、位相差を調整する位相調整手段を有する。例えば、ピックアップ素子の表面上の光ビームの光学パワー分布が、調整可能である。
本願発明者は、音叉に関するバックグラウンド信号の位相が、金属電極上の光学パワー分布に非常にセンシティブに依存することに気付いた。音叉のとがった先を通る最大光学パワー送信について最適化の後、光学パワーの量は、電極上に特定の分布を有する。電極感度と共に、これは、特定の位相角をもつバックグラウンド信号を生じさせる。レーザビームのアライメントを調整することによって、バックグラウンド信号の位相は、サンプル信号位相におけるバックグラウンド信号がゼロであるように、調整されることができる。バックグラウンド位相は、サンプル信号に対して90°をなす。これは、光学送信の非常に小さい損失(〜1%)によって達成されることができ、従って、サンプル信号強度に影響を与えない。
代替として、音響共振器の共振周波数は、例えば音響セルにおけるバッファボリュームの長さを変更することによって、調整可能である。これは、例えば製造プロセスが、音響共振器及びピックアップ素子の共振特性にバリエーションを生じさせる場合、製造業者又はユーザが位相差を約90°にし、位相差を調整することを可能にする。
本発明の別の見地によれば、光音響検出器を製造する方法であって、サンプルを含まない音響セルにサンプル混合物を充填するステップと、サンプル混合物に圧力バリエーションを生成するために、光ビームの強度を変調するステップと、共振ピックアップ素子から検出器信号を取得するステップと、バックグラウンド信号とサンプル信号との間に約90°の位相差を得るために、サンプル信号が最小にされ、バックグラウンド信号が最大にされるように、音響セル及びピックアップ素子を構成するステップと、を含む、方法が提供される。
サンプル混合物がサンプルのゼロ又はほぼゼロの濃度を有する場合、サンプル信号は(ほぼ)ゼロであるべきであり、バックグラウンド信号は、検出器信号(の大部分)を占めるべきである。上述したように、音響セル及びピックアップ素子の構成は、それぞれ異なるやり方で実施されることができる。音響共振周波数がピックアップ素子共振周波数と合致するように、正しい長さの音叉を注意深く選択することによって、約90°の位相差を生じさせることができる。代替として、ピックアップ素子の表面上の光ビームの光学パワー分布が、調整されることができ、又は音響セルが、適切なバッファボリュームを備えることができる。
本発明のこれらの及び他の見地は、以下に記述される実施形態から明らかになり、それらを参照して説明される。
光音響検出器の一部分の斜視図。 バッファボリュームを有する光音響検出器の一実施形態を概略的に示す図。 本発明による光音響検出器のブロック図。 変調周波数のドリフトを補償する手段を有する光音響検出器のブロック図。 センサ感度のドリフトを補償する手段を有する光音響検出器のブロック図。
図1は、光音響検出器の一部分についての斜視図を示す。振幅変調されるレーザビーム11は、気体混合物14を通過する。気体混合物14は、低い濃度のサンプル分子15を含む。レーザビーム11は、サンプル分子の一部を励起する。励起状態から基底状態に戻るサンプル分子は、局所的な温度上昇を引き起こす。レーザ光11の変化する強度は、気体混合物14に圧力波を引き起こす。圧力波は、例えば圧電音叉10の形の、共振ピックアップ素子を使用して、音波として検出されることができる。音叉10は、水晶音叉でありうる。音響共振器12は、音波を増幅する。音叉10は、サウンド信号を検出器信号13に変換し、検出器信号13は、処理ユニットに導かれる。これについては、図3及び図4を参照して詳しく記述される。
音叉10の利点は、音叉10が圧力波を検出するのにより一層センシティブ且つ正確であることである。マイクロフォンに代わる音叉10の使用の不利益は、レーザビーム11による音叉10の直接の励起が、サンプル信号と同じ周波数でバックグラウンド信号を生成することである。本発明によれば、音叉10からの電気信号13は、圧力バリエーションを表すサンプル信号及びレーザビーム11による音叉10の直接の励起を表すバックグラウンド信号を生成するために使用される。処理セクションがこれらの2つの信号を生成するために、光音響検出器は、バックグラウンド信号とサンプル信号との間の位相差が約90°であるように、構成される。これは、例えば音響共振器12及び音叉10の個々の共振周波数が本質的に等しくなるような形状及び寸法を有する該音響共振器12及び音叉10を使用することによって、達成されることができる。例えば、検出器の製造プロセスにおいて、音叉10のとがった先の長さが、音響共振器12の共振周波数に非常に近い共振周波数を有する音叉10を得るように調整される。
好適には、光音響検出器は、製造プロセスの直後に位相差を調整する手段を有する。代替として、検出器が使用中である場合、調整は後で行われる。このような調整可能な検出器の一例は、図2に示され、以下に記述される。代替として、位相差は、音叉10の表面上の光ビーム11の光学パワー分布が、音叉10の共振周波数が音響共振器12の共振周波数と合致するようなものであるように、レーザビーム11をアラインメントすることによって、調整されることができる。本願発明者は、バックグラウンド信号の位相が水晶音叉の金属電極上の光学パワー分布に非常にセンシティブに依存することに気付いた。
図2は、バッファボリューム23を有する光音響検出器20の一実施形態を概略的に示す。図2の光音響検出器20は、図1に関してすでに上述したすべての構成要素を含む。原則として、共振ピックアップ素子10は、圧力センシティブなカンチレバー又はメンブレンを組み込んだ共振MEMSセンサとして、構成されることもできる。光音響検出器20は更に、調整可能な側壁24、気体引入口21及び気体出口22を有する2つのバッファボリューム23を有する。この光音響検出器は、例えば呼吸解析のために使用されることができる。ユーザが息を吐き出すと、吐き出された息が、気体引入口21を介して気体セルに入る。呼吸が、レーザビーム11、ピックアップ素子10及び音響共振器12を使用して解析され、気体出口22を介して光音響検出器20を去る。音響共振器12の両側に、音響共振器半径より大きい半径を有する小さい非共振ボリューム23が、加えられる。ボリューム23のうちの少なくとも一方の少なくとも1つの壁24の位置が、調整可能である。これらのボリューム23は、例えばセルの気体引入口21及び出口22に接続されることができる。これらのボリューム23の長さに依存して、それらは、音響共振器12に、弱く又はややより強く結合する。側壁24の位置を適当に選択することによって、音響共振周波数は、ピックアップ素子共振周波数にファインチューニングされることができる(ゆえに、位相差を90°にセットする)。例えば、音響共振器12が、光強度の振幅変調周波数に対応する音響波長の半分に等しい又はそれに近い長さを有する場合、付加のボリューム23の長さは、変調周波数に対応する波長の4分の1の長さ付近に調整されることができる。
図3は、本発明による光音響検出器のブロック図を示す。すでに上述した構成要素のいくつかに加えて、図3は、光ビーム11を生成する光源33及びレーザビーム11の強度を変調させる光変調器31を示す。光変調器は、光源33を駆動するレーザドライバ311及びレーザドライバ311に必要な周波数を供給する周波数発生器312を有する。図3に示される他の部分301−305は、光音響検出器20の処理セクションの構造的及び/又は機能的な構成要素を表す。図3は、単に、本発明による光音響の例示的な実施形態の概略図であることに留意すべきある。他の実施形態において、同様の機能が、代替手段によって及び別なやり方で、実施されることができる。
図3に示される実施形態において、増幅器301は、ピックアップ素子10によって生成される電気信号13を増幅する。増幅された信号は、第1の同期検出器302に向けられる。第1の同期検出器302は更に、(周波数発生器312からの)入力として変調周波数を有する。第1の同期検出器302は、検出器信号13の同相検出のために使用される。バックグラウンド信号の90°シフトされた位相により、第1の同期検出器302の出力信号は、サンプル濃度にのみ依存し、レーザ光11による音叉10の直接の励起には依存しない。90°位相シフタ304及び第2の同期検出器305は、(位相がずれた)バックグラウンド信号を検出器信号13から抽出するために使用される。同期検出器305からの信号は、信号及びバックグラウンドの90°位相差を最適化するために、製造プロセスにおいて使用されることができる。通常動作の間は、同期検出器302からの信号のみが、図3に示される実施形態において使用される。
図4は、パワー変調周波数のドリフトを補償する手段を有する光音響検出器20のブロック図を示す。水晶音叉ピックアップ素子10の高い品質係数のため、レーザのパワー変調周波数は、最適な変調周波数から容易にずれてドリフトしうる。位相のずれた信号が、この周波数を制御するために、有利に適用されることができる。これは、実際のサンプル測定が実施される前の最適化ルーチンにおいて、又は連続的にアクティブな電子制御ループの形で、実現されることができる。
最初に、共振の近くでは、バックグラウンド信号の位相は、変調周波数に強く依存する。バックグラウンド信号のみ測定する場合、レーザの変調周波数は、バックグラウンド信号が一定の位相の(及びゆえにサンプル信号に対して90°をなした)ままであるように、共振周波数に同調されることができる。代替として、最適な変調周波数は、(位相のずれた)バックグラウンド信号の最大から決定されることができる。
第2に、安定した電子制御ループが、図4に示されるように実現されることができる。レーザパワー変調用の周波数(数十kHz)は、第2の周波数発生器308によって、周波数f(数Hz乃至数十Hz)の(音叉)共振周波数付近で、数Hzの周波数変調振幅を有して、変調される。音叉10は、それが周波数変調に対する応答を渡すように、十分に「低い」Qを有するべきである。4000の典型的なQは、10Hz変調に適した30msの応答時間を得るために、例えば1000まで低減されるべきである。サンプル信号は、「同相」同期検出及び(fをフィルタアウトするための)ローパスフィルタリングの後、得られる。増幅器301は、(より低いQの)音叉10からの(低減された)信号及びノイズに追加のノイズを加えないものとすると、第1の同期検出器302の後のローパスフィルタ303により、信号対雑音は、元のレベルに戻されることができる。位相がずれた信号は、同期検出の後、基準としてfを使用して、第3の同期検出器307により、復調される。ちょうど共振において、フィードバック信号は、2*fであり、fで復調された信号は、ゼロである。(第2のローパスフィルタ306からの)ローパスフィルタリングされた出力は、周波数発生器用の入力として使用されるDC基準電圧309に対して、オフセットされたレベルを形成する。このような測定は、サンプル濃度を同時に測定しながら、実施されることができる。
図5は、センサ感度のドリフトを補償する手段を有する光音響検出器のブロック図を示す。図5は、図4のすべての構成要素を示し、加えて、レーザビーム11のパワーを測定するフォト検出器32及びセンサドリフト補償ユニット310を有する。バックグラウンド信号は、音叉10の品質係数/ピックアップ感度及び光ビームの強度に依存する。従って、バックグラウンド信号は、センサピックアップドリフトを決定するために、有利に使用されることができる。センサピックアップドリフト補償ユニット310は、基準光パワーに対してバックグラウンド信号を正規化するために、フォト検出器32からの検出されたレーザパワーを使用する。センサピックアップドリフト補償ユニットは、工場較正の間、初期バックグラウンド信号(基準光パワーで)で、正規化されたバックグラウンド信号を除算する。従って、サンプル測定中に使用されることができる補償係数が、得られる。
上述の実施形態は、本発明を説明するものであって、制限するものではなく、当業者であれば、添付の請求項の範囲を逸脱することなく、多くの代替の実施形態を設計することが可能であることが留意されるべきである。請求項において、括弧内に置かれた任意の参照符号は、請求項を制限するものとして解釈されるべきでない。「含む、有する」なる動詞及びその活用形の使用は、請求項に記述されるもの以外の構成要素又はステップの存在を除外しない。構成要素に先行する「a」又は「an」なる冠詞は、このような構成要素の複数の存在を除外しない。本発明は、幾つかの別個の構成要素を有するハードウェアによって、及び適切にプログラムされたコンピュータによって、実現されることが可能である。いくつかの手段を列挙する装置の請求項において、これらの手段のいくつかは、同じ一つのハードウェアアイテムによって具体化されることができる。特定の手段が相互に異なる従属請求項に列挙されているという単なる事実は、これらの手段の組み合わせが有利に使用されることができないことを示さない。

Claims (11)

  1. サンプル混合物中のサンプルの濃度を検出する光音響検出器であって、
    前記サンプルの分子を励起するための光ビームを生成する光源と、
    前記サンプル混合物に圧力バリエーションを生成するために、前記光ビームの強度を変調させる光変調器であって、前記圧力バリエーションの振幅が前記サンプルの濃度の尺度である、光変調器と、
    前記圧力バリエーションを増幅する音響共振器を有する音響セルと、
    前記音響共振器内の前記圧力バリエーションを検出器信号に変換する共振ピックアップ素子と、
    前記圧力バリエーションによって引き起こされるサンプル信号及び前記光ビームによる前記ピックアップ素子の直接の励起によって引き起こされるバックグラウンド信号を生成するように、前記検出器信号を処理する処理セクションと、
    を有し、前記音響セル及び前記ピックアップ素子は、前記バックグラウンド信号と前記サンプル信号との間の位相差が約90°であるように構成される、光音響検出器。
  2. 前記ピックアップ素子の共振周波数は、前記音響共振器の共振周波数に本質的に等しい、請求項1に記載の光音響検出器。
  3. 前記位相差を調整する位相調整手段を更に有する、請求項1に記載の光音響検出器。
  4. 前記位相調整手段は、前記ピックアップ素子の表面上の光ビームの光学パワー分布を調整する手段を有する、請求項3に記載の光音響検出器。
  5. 前記位相調整手段は、前記音響共振器の共振周波数を調整する手段を有する、請求項3に記載の光音響検出器。
  6. 前記音響セルは更に、少なくとも1つのバッファボリュームを有し、前記音響共振器の共振周波数を調整する前記手段が、少なくとも1つのバッファボリュームの長さを調整する、請求項5に記載の光音響検出器。
  7. 前記処理セクションは、前記ピックアップ素子の共振周波数と合致するように前記光変調器の変調周波数を調整する、請求項1に記載の光音響検出器。
  8. 前記光ビームのパワーを決定するパワーセンサを更に有し、
    前記処理セクションは更に、前記光ビームのパワー、前記バックグラウンド信号、並びに前記光ビーム及び前記バックグラウンド信号の基準値に基づいて、ある時間にわたる音叉感度の低下を決定する、請求項1に記載の光音響検出器。
  9. 前記処理セクションは、前記サンプル信号及び前記バックグラウンド信号を生成するために、位相センシティブな検出を行う手段を有する、請求項1に記載の光音響検出器。
  10. 前記共振ピックアップ素子は、圧電音叉である、請求項1に記載の光音響検出器。
  11. 請求項1乃至10のいずれか1項に記載の光音響検出器を製造する方法であって、
    前記サンプルを含まない前記音響セルにサンプル混合物を充填するステップと、
    前記サンプル混合物に圧力バリエーションを生成するために、前記光ビームの強度を変調させるステップと、
    前記共振ピックアップ素子から前記検出器信号を取得するステップと、
    前記バックグラウンド信号と前記サンプル信号との間の約90°の位相差を得るために、前記サンプル信号が最小にされ、前記バックグラウンド信号が最大にされるように、前記音響セル及び前記ピックアップ素子を構成するステップと、
    を含む方法。
JP2010549228A 2008-03-07 2009-03-02 バックグラウンド補償を有する光音響サンプル検出器 Withdrawn JP2011513744A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP08152494 2008-03-07
PCT/IB2009/050830 WO2009109897A1 (en) 2008-03-07 2009-03-02 Photo acoustic sample detector with background compensation

Publications (1)

Publication Number Publication Date
JP2011513744A true JP2011513744A (ja) 2011-04-28

Family

ID=40692210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010549228A Withdrawn JP2011513744A (ja) 2008-03-07 2009-03-02 バックグラウンド補償を有する光音響サンプル検出器

Country Status (5)

Country Link
US (1) US20110001964A1 (ja)
EP (1) EP2252874A1 (ja)
JP (1) JP2011513744A (ja)
CN (1) CN101960290A (ja)
WO (1) WO2009109897A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013181866A (ja) * 2012-03-02 2013-09-12 Tohoku Gakuin 共鳴型光音響映像装置及び方法
JP2013228394A (ja) * 2012-04-25 2013-11-07 Testo Ag 測定装置および測定方法
JP2019529932A (ja) * 2016-10-04 2019-10-17 オネラ(オフィス ナシオナル デチュドゥ エ ドゥ ルシェルシュ アエロスパシアル) 電気的測定回路、ガス検出器及びガス濃度を測定する方法
JP2020526738A (ja) * 2017-07-13 2020-08-31 サイマー リミテッド ライアビリティ カンパニー フッ素濃度を感知するための装置及び方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8378286B2 (en) 2010-07-16 2013-02-19 Ut-Battelle, Llc Acoustic enhancement for photo detecting devices
CN102680402B (zh) * 2011-11-15 2015-08-19 北京遥测技术研究所 石英音叉增强型光声谱气体池
CN103149681B (zh) * 2013-02-04 2015-07-01 山西大学 音叉式斩光器及使用该斩光器的痕量气体测量装置
CN103175791B (zh) * 2013-02-04 2015-03-04 山西大学 多石英晶振光谱测声器及采用该测声器的气体探测装置
CN103293107A (zh) * 2013-06-28 2013-09-11 中国科学院半导体研究所 基于石英音叉增强气体光声光谱的空气湿度动态检测装置
CN107064012B (zh) * 2017-04-11 2019-06-25 山西大学 基于拍频效应的石英增强光声光谱气体检测装置及方法
EP3791157A1 (en) * 2018-05-11 2021-03-17 Carrier Corporation Photoacoustic detection system

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4412445A (en) * 1981-08-27 1983-11-01 Optimetrics, Inc. Resonant spectrophone system noise elimination
DK160590C (da) * 1988-09-12 1991-09-16 Fls Airloq As Fremgangsmaade til detektering af en gasart ved hjaelp af fotoakustisk spektroskopi
US6526801B2 (en) * 2000-12-29 2003-03-04 Edwards Systems Technology, Inc. Method of compensating for drift in gas sensing equipment
US7805980B2 (en) * 2004-02-09 2010-10-05 William Marsh Rice University Selectivity enhancement in photoacoustic gas analysis via phase-sensitive detection at high modulation frequency
US7232512B2 (en) * 2004-08-25 2007-06-19 Honeywell International, Inc. System and method of sensitivity adjustment for an electrochemical sensor
JP5039137B2 (ja) * 2006-08-31 2012-10-03 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 改良されたフィードバック・ループをもつ空洞増強型光音響式微量気体検出器
EP2092323A1 (en) * 2006-11-10 2009-08-26 Koninklijke Philips Electronics N.V. Oscillator element for photo acoustic detector
US8327686B2 (en) * 2010-03-02 2012-12-11 Li-Cor, Inc. Method and apparatus for the photo-acoustic identification and quantification of analyte species in a gaseous or liquid medium

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013181866A (ja) * 2012-03-02 2013-09-12 Tohoku Gakuin 共鳴型光音響映像装置及び方法
JP2013228394A (ja) * 2012-04-25 2013-11-07 Testo Ag 測定装置および測定方法
JP2019529932A (ja) * 2016-10-04 2019-10-17 オネラ(オフィス ナシオナル デチュドゥ エ ドゥ ルシェルシュ アエロスパシアル) 電気的測定回路、ガス検出器及びガス濃度を測定する方法
JP7016354B2 (ja) 2016-10-04 2022-02-04 オネラ(オフィス ナシオナル デチュドゥ エ ドゥ ルシェルシュ アエロスパシアル) 電気的測定回路、ガス検出器及びガス濃度を測定する方法
JP2020526738A (ja) * 2017-07-13 2020-08-31 サイマー リミテッド ライアビリティ カンパニー フッ素濃度を感知するための装置及び方法
JP7085571B2 (ja) 2017-07-13 2022-06-16 サイマー リミテッド ライアビリティ カンパニー フッ素濃度を感知するための装置及び方法

Also Published As

Publication number Publication date
US20110001964A1 (en) 2011-01-06
CN101960290A (zh) 2011-01-26
WO2009109897A1 (en) 2009-09-11
EP2252874A1 (en) 2010-11-24

Similar Documents

Publication Publication Date Title
JP2011513744A (ja) バックグラウンド補償を有する光音響サンプル検出器
WO2018188429A1 (zh) 基于拍频效应的石英增强光声光谱气体检测装置及方法
CN101563595B (zh) 具有温度补偿的样品浓度检测器
Kosterev et al. QEPAS for chemical analysis of multi-component gas mixtures
JP4431622B2 (ja) 水晶により測定精度を向上させる光音響分光ガス検出方法及び検出器
JP5039137B2 (ja) 改良されたフィードバック・ループをもつ空洞増強型光音響式微量気体検出器
US20090249861A1 (en) Stable photo acoustic trace gas detector with optical power enhancement cavity
JP5117505B2 (ja) 改良された信号処理を持つ光音響検出器
US8594507B2 (en) Method and apparatus for measuring gas concentrations
CN107677610A (zh) 一种悬臂梁与光声池双共振增强型光声光谱检测系统及方法
JP2010502943A (ja) 可変光強度変調器をもつ光空洞により増強された光音響式微量気体検出器
CN113433072B (zh) 一种气体浓度传感器和气体浓度检测装置
US20080212100A1 (en) Sono-Photonic Gas Sensor
CN104280340B (zh) 基于led光源并采用电学调制相消法的气体探测装置及方法
US20080073536A1 (en) Gas detection method and gas detection device
CN108489905A (zh) 一种痕量气体浓度检测方法
US10876958B2 (en) Gas-detecting device with very high sensitivity based on a Helmholtz resonator
CN104614317A (zh) 一种双管并排式石英音叉增强型光声光谱检测装置
Ye et al. Calibration-free near-infrared methane sensor system based on BF-QEPAS
JPH03277945A (ja) ガス検知装置
WO2020188841A1 (ja) 円二色性測定装置および円二色性測定方法
JP2008151676A (ja) Esr装置
US20240201070A1 (en) Photoacoustic gas sensor, and method for producing same
JP2023554186A (ja) 光音響効果を介してレーザー放射を計測する装置
CN113267453A (zh) 无源音叉共振增强的全光纤三气体探测光声光谱系统及其探测方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120301

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20130603