JP2011252414A - Cooling mechanism of oil motor for driving submerged pump - Google Patents

Cooling mechanism of oil motor for driving submerged pump Download PDF

Info

Publication number
JP2011252414A
JP2011252414A JP2010125801A JP2010125801A JP2011252414A JP 2011252414 A JP2011252414 A JP 2011252414A JP 2010125801 A JP2010125801 A JP 2010125801A JP 2010125801 A JP2010125801 A JP 2010125801A JP 2011252414 A JP2011252414 A JP 2011252414A
Authority
JP
Japan
Prior art keywords
oil
hydraulic
hydraulic oil
motor
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010125801A
Other languages
Japanese (ja)
Other versions
JP4540750B1 (en
Inventor
Kunihiko Yamada
邦彦 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kosaka Laboratory Ltd
Original Assignee
Kosaka Laboratory Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kosaka Laboratory Ltd filed Critical Kosaka Laboratory Ltd
Priority to JP2010125801A priority Critical patent/JP4540750B1/en
Application granted granted Critical
Publication of JP4540750B1 publication Critical patent/JP4540750B1/en
Priority to CN2011100520017A priority patent/CN102270902B/en
Priority to KR1020110021873A priority patent/KR101091328B1/en
Priority to BRPI1100937-3A priority patent/BRPI1100937A2/en
Publication of JP2011252414A publication Critical patent/JP2011252414A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/16Casings; Cylinders; Cylinder liners or heads; Fluid connections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/12Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis
    • F04B1/20Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis having rotary cylinder block
    • F04B1/22Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis having rotary cylinder block having two or more sets of cylinders or pistons
    • F04B1/24Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis having rotary cylinder block having two or more sets of cylinders or pistons inclined to the main shaft axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/08Cooling; Heating; Preventing freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B9/00Piston machines or pumps characterised by the driving or driven means to or from their working members
    • F04B9/08Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid
    • F04B9/10Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2210/00Working fluid
    • F05B2210/10Kind or type
    • F05B2210/11Kind or type liquid, i.e. incompressible
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/60Fluid transfer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S417/00Pumps

Abstract

PROBLEM TO BE SOLVED: To achieve a structure capable of keeping down a surface temperature of an oil motor 1 without decreasing cargo handling capacity of a pump body rotated and driven by a drive shaft 22.SOLUTION: An orifice 37 is provided between a periphery of an outlet port 31 and an upstream side edge of a flow-out side hydraulic pipe 17, in an end plate 35 provided with an inlet port 24 and the outlet port 31. At an upstream side portion than the orifice 37 and inside the end plate 35, a through-hole 36 is provided which has one end opened to an inner peripheral surface of the outlet port 31 and another end opened in a chamber 28 in a motor case 27. Through the through-hole 36, hydraulic oil at low temperature is fed into the chamber 28 to decrease a temperature of drain oil whose temperature has increased.

Description

この発明は、液体貨物輸送用船舶の貨物タンク内に設置するサブマージドポンプ装置を駆動する為のオイルモータの冷却機構の改良に関する。具体的には、このポンプ装置を駆動する性能を低下させる事無く、前記オイルモータを駆動する為の作動油の温度の上昇を抑えられる構造の実現を図るものである。   The present invention relates to an improvement in a cooling mechanism of an oil motor for driving a submerged pump device installed in a cargo tank of a ship for liquid cargo transportation. Specifically, it is intended to realize a structure that can suppress an increase in the temperature of hydraulic oil for driving the oil motor without reducing the performance of driving the pump device.

石油、石油精製品、各種液状化学製品等(以下、これらを「貨液」と称する)を船舶で大量輸送する場合には、輸送効率を向上させるべく、船舶に設けた複数の貨液タンクに、前記貨液を直接貯溜(バラ積み)して運搬する事が多い。言い換えれば、この貨液を、地上でも運搬可能な容器に積めたまま、船舶で輸送する様な方法を採用すると、輸送効率が悪化する。但し、この様に、船舶に設置した貨液タンクに貨液をバラ積みするには、この貨液タンクへの積み卸し作業が必要になる。この積み卸し作業のうち、卸し作業は、前記貨液タンクの底部に、サブマージドポンプと呼ばれる、貨液荷揚げ用のポンプを設置し、このサブマージドポンプにより、前記貨液タンク内の貨液を汲み上げる必要がある。貨液は可燃性のものや通電性を有するものが多い為、前記サブマージドポンプの回転駆動を電動モータにより行う事はできない。この為従来から、例えば特許文献1、2に記載されている様に、オイルモータ(油圧モータ)により、前記サブマージドポンプを回転駆動する事が行われている。   When mass transporting petroleum, refined petroleum products, various liquid chemical products, etc. (hereinafter referred to as “coin liquid”) by ship, in order to improve transport efficiency, it is necessary to install a plurality of coin liquid tanks on the ship. In many cases, the coin liquid is directly stored (separated). In other words, if a method of transporting this coin liquid by ship while being loaded in a container that can be transported even on the ground, the transport efficiency deteriorates. However, loading and unloading of coin liquid into the coin liquid tank installed on the ship in this way is required. Among the unloading operations, the unloading operation is performed by installing a pump for unloading coin liquid called a submerged pump at the bottom of the coin liquid tank, and the submerged pump removes the liquid liquid in the coin liquid tank. It is necessary to pump up. Since there are many combustible liquids and combustible liquids, the submerged pump cannot be rotationally driven by an electric motor. For this reason, conventionally, as described in Patent Documents 1 and 2, for example, the submerged pump is rotationally driven by an oil motor (hydraulic motor).

図5は、従来から知られている、オイルモータ1とポンプ本体2とを組み合わせた、貨液用の荷揚げ装置である、サブマージドポンプ装置の1例を示している。貨液3を貯溜する貨液タンク4は、甲板5とタンク底6との間にバルクヘッド7を掛け渡す事により構成している。この貨液タンク4の底部中央部は周囲部分よりも低くなった導液部8とし、この導液部8の最深部に向け前記ポンプ本体2の貨液吸入口9を開口させて、前記貨液タンク4内の貨液3のほぼ全量を吸い出せる様にしている。この貨液タンク4の底面を構成する前記タンク底6の上面(図示の例では、二重船底を構成する上板の上面)で前記導液部8を囲む部分に、ボトムサポート10を設けている。前記ポンプ本体2は、このボトムサポート10に昇降可能に案内されて、前記導液部8内に下半部を進入させ、前記貨液吸入口9をこの導液部8の底面に近接対向させる。この状態で前記ポンプ本体2は、前記オイルモータ1により回転駆動されて前記貨液3を吸入し、吐出管11を通じて前記貨液タンク4外に送り出す。   FIG. 5 shows an example of a submerged pump device that is a cargo liquid unloading device that combines an oil motor 1 and a pump main body 2 that are conventionally known. The coin liquid tank 4 for storing the coin liquid 3 is configured by passing a bulkhead 7 between a deck 5 and a tank bottom 6. The center part of the bottom of the coin liquid tank 4 is a liquid guiding part 8 which is lower than the surrounding part, and the coin liquid suction port 9 of the pump body 2 is opened toward the deepest part of the liquid guiding part 8 to Almost all the coin liquid 3 in the liquid tank 4 is sucked out. A bottom support 10 is provided at a portion surrounding the liquid introduction portion 8 on the upper surface of the tank bottom 6 constituting the bottom surface of the coin liquid tank 4 (the upper surface of the upper plate constituting the double ship bottom in the illustrated example). Yes. The pump body 2 is guided by the bottom support 10 so as to be able to move up and down, and the lower half portion is made to enter the liquid introduction part 8, and the coin liquid suction port 9 is made to face the bottom surface of the liquid introduction part 8. . In this state, the pump body 2 is rotationally driven by the oil motor 1 to suck the coin liquid 3 and send it out of the coin liquid tank 4 through the discharge pipe 11.

ポンプ本体2とオイルモータ1とは、このポンプ本体2の被駆動軸とこのオイルモータ1の駆動軸とをトルク伝達可能な状態で結合し、前記貨液タンク4内空間の下部に設置している。この状態で、前記オイルモータ1を作動させる為の作動油が、前記貨液タンク4内に貯溜された貨液3中に混入する事を確実に防止する必要がある。この為に、前記ポンプ本体2の上端部に筒状の外側ケース12の下端部を、液密を保持した状態で結合固定し、前記オイルモータ1をこの外側ケース12の内側に収納している。又、この外側ケース12の上端部にサポートパイプ13の下端部を、液密を保持した状態で結合固定して、前記ポンプ本体2及び前記オイルモータ1を、前記外側ケース12を介して吊り下げ支持可能としている。更に、前記サポートパイプ13は、中間部を前記バルクヘッド7に対し、中間サポート14により、昇降可能に支持し、上端部を、前記甲板5に固定されたデッキカバー15に結合している。   The pump body 2 and the oil motor 1 are connected to the driven shaft of the pump body 2 and the drive shaft of the oil motor 1 in a state where torque can be transmitted, and are installed in the lower part of the space inside the coin liquid tank 4. Yes. In this state, it is necessary to reliably prevent the working oil for operating the oil motor 1 from being mixed into the coin liquid 3 stored in the coin liquid tank 4. For this purpose, the lower end portion of the cylindrical outer case 12 is coupled and fixed to the upper end portion of the pump body 2 while maintaining liquid tightness, and the oil motor 1 is housed inside the outer case 12. . Further, the lower end portion of the support pipe 13 is coupled and fixed to the upper end portion of the outer case 12 while maintaining liquid tightness, and the pump body 2 and the oil motor 1 are suspended via the outer case 12. It can be supported. Further, the support pipe 13 supports an intermediate portion of the bulkhead 7 so as to be movable up and down by an intermediate support 14, and an upper end portion is coupled to a deck cover 15 fixed to the deck 5.

前記オイルモータ1は、特許請求の範囲に記載したエネルギ変換装置に相当するもので、前記サポートパイプ13内に配設された流入側油圧パイプ16を通じて送り込まれる高圧の作動油により駆動され、この作動油の圧力エネルギを、後述する駆動軸22を回転させる運動エネルギに変換する。又、前記オイルモータ1を駆動した後の作動油は、やはり前記サポートパイプ13内に配設された流出側油圧パイプ17を通じて取り出される。更に、このサポートパイプ13内には、ドレンパイプ18を配設している。このドレンパイプ18は、後述する様に、前記オイルモータ1内に存在する複数の摺動部から、このオイルモータ1の構成各部材を収めた、モータケース27内に漏れ出した作動油を還流させる為のものである。この為に前記ドレンパイプ18の下流端を、前記流出側油圧パイプ17の途中に接続している。   The oil motor 1 corresponds to the energy conversion device described in the claims, and is driven by high-pressure hydraulic oil fed through an inflow-side hydraulic pipe 16 disposed in the support pipe 13. The pressure energy of oil is converted into kinetic energy for rotating a drive shaft 22 described later. Further, the hydraulic oil after driving the oil motor 1 is taken out through the outflow side hydraulic pipe 17 also disposed in the support pipe 13. Further, a drain pipe 18 is disposed in the support pipe 13. As will be described later, the drain pipe 18 circulates hydraulic oil leaking into the motor case 27 containing the components constituting the oil motor 1 from a plurality of sliding portions existing in the oil motor 1. It is for making it happen. For this purpose, the downstream end of the drain pipe 18 is connected to the middle of the outflow side hydraulic pipe 17.

前記貨液タンク4内の貨液3を汲み出す際には、前記甲板5上に設けた、作動油タンク、送油ポンプ及び制御弁等を備えた、図示しない圧油供給源から前記オイルモータ1に高圧の作動油を、前記流入側油圧パイプ16を通じて送り込む。このオイルモータ1としては、例えば図6に示す様な斜軸型ピストンモータを使用している。この斜軸型ピストンモータの構造及び作用は公知であり、後述の実施の形態の説明部分でも簡単に説明する為、この部分では詳しい説明は省略する。   When pumping out the coin liquid 3 in the coin liquid tank 4, the oil motor is supplied from a pressure oil supply source (not shown) provided on the deck 5 and provided with a hydraulic oil tank, an oil feed pump, a control valve and the like. 1 is fed with high-pressure hydraulic oil through the inflow hydraulic pipe 16. As the oil motor 1, for example, an oblique axis type piston motor as shown in FIG. 6 is used. The structure and operation of this oblique shaft type piston motor are well known, and will be described briefly in the description part of the embodiment described later.

要するに前記オイルモータ1は、前記流入側油圧パイプ16を通じて送り込まれた高圧の作動油により、各シリンダ19、19内でピストン20、20を往復移動させる。すると、これら各ピストン20、20が、球面継手21、21を介して、前記駆動軸22の基端部(上端部)に固設した回転板23を回転させる。この結果、この回転板23と一体の駆動軸22が回転するので、この駆動軸22により、前記ポンプ本体2内の被駆動翼(羽根車)を回転させれば、このポンプ本体2が前記貨液タンク4内の貨液3を、前記貨液吸入口9から吸引し、前記吐出管11に押し出す。この吐出管11の上部は、前記デッキカバー15に結合支持されており、この吐出管11の上端部に上流端を結合された図示しない送液ホース(或は送液管)の下流端は、地上のタンク設備に通じている。前記吐出管11を通じて送り出される貨液3の量は、前記制御弁により、前記各シリンダ19、19内に送り込む作動油の圧力及び量を変える事により調節可能である。   In short, the oil motor 1 reciprocates the pistons 20 and 20 in the cylinders 19 and 19 by the high-pressure hydraulic oil fed through the inflow side hydraulic pipe 16. Then, the pistons 20 and 20 rotate the rotating plate 23 fixed to the base end portion (upper end portion) of the drive shaft 22 via the spherical joints 21 and 21. As a result, the drive shaft 22 integral with the rotating plate 23 rotates. If the driven blade (impeller) in the pump body 2 is rotated by the drive shaft 22, the pump body 2 is moved to the coin. The coin liquid 3 in the liquid tank 4 is sucked from the coin liquid suction port 9 and pushed out to the discharge pipe 11. The upper part of the discharge pipe 11 is coupled and supported to the deck cover 15, and the downstream end of a liquid supply hose (or liquid supply pipe) (not shown) whose upstream end is connected to the upper end of the discharge pipe 11 is Leads to ground tank facilities. The amount of the coin liquid 3 sent out through the discharge pipe 11 can be adjusted by changing the pressure and the amount of hydraulic oil sent into the cylinders 19 and 19 by the control valve.

上述の様な荷役作業の為のモータ本体2の運転時に、前記流入側油圧パイプ16から入口ポート24を通じて前記各シリンダ19、19内に送り込まれた高圧の作動油の一部は、これら各シリンダ19、19の内周面と前記各ピストン20、20の外周面との摺動部に存在する微小隙間や、これら各シリンダ19、19を設けたシリンダブロック25とポートプレート26との摺動部に存在する微小隙間を通じて、前記モータケース27の内部に存在する空間である、室28に漏出する。この室28内に漏出した作動油であるドレン油は、前記各摺動部並びに前記駆動軸22を回転自在に支持した軸受ユニット29を潤滑してから、前記モータケース27のドレンポート30に上流端を接続した、前記ドレンパイプ18に送り出される。このドレンパイプ18内に送り出された前記ドレン油は、前記各シリンダ19、19から出口ポート31を通じて前記流出側油圧パイプ17に送り出された作動油と共に、前記圧油供給源を構成する作動油タンクに戻されてから、再度作動油として循環使用される。   During the operation of the motor main body 2 for the cargo handling operation as described above, a part of the high-pressure hydraulic oil sent into the cylinders 19 and 19 through the inlet port 24 from the inflow side hydraulic pipe 16 is supplied to the cylinders. 19 and the minute gap which exists in the sliding part of the inner peripheral surface of said each piston 20 and 20, and the sliding part of cylinder block 25 which provided each of these cylinders 19 and 19 and port plate 26 Leaks into the chamber 28, which is a space existing inside the motor case 27, through a minute gap existing in the motor case 27. The drain oil, which is hydraulic oil leaking into the chamber 28, lubricates the bearing unit 29 that rotatably supports the sliding portions and the drive shaft 22, and then upstream to the drain port 30 of the motor case 27. It is sent out to the drain pipe 18 to which the end is connected. The drain oil sent into the drain pipe 18 is a hydraulic oil tank that constitutes the pressure oil supply source together with the hydraulic oil sent from the cylinders 19, 19 to the outlet hydraulic pipe 17 through the outlet port 31. Then, the oil is circulated again as hydraulic oil.

ところで、前記ドレン油を含み、前記作動油タンクに戻される作動油の温度は、前記流入側油圧パイプ16から前記入口ポート24を通じて前記各シリンダ19、19内に送り込まれる作動油の温度よりも高くなる。この理由は、潤滑に伴う摩擦熱の吸収と作動油の圧力低下に基づく温度上昇とによる。このうちの摩擦熱は、前記軸受ユニット29や、前記各シリンダ19、19の内周面と前記各ピストン20、20の外周面との摺動部を潤滑するのに伴って、前記軸受ユニット29部分やこれら各摺動部で発生する摩擦熱を吸収する事による。又、圧力低下による温度上昇は、前記各微小隙間を通過して前記室28内に漏出したドレン油の圧力が、前記入口ポート24から前記各シリンダ19、19内に送り込まれる作動油の圧力よりも低くなる事による。これら2通りの理由により、前記ドレンパイプ18を通じて前記作動油タンクに戻されるドレン油(作動油)の温度は、前記入口ポート24部分の作動油の温度よりも高くなる。   By the way, the temperature of the hydraulic oil including the drain oil and returned to the hydraulic oil tank is higher than the temperature of the hydraulic oil fed into the cylinders 19 and 19 from the inflow side hydraulic pipe 16 through the inlet port 24. Become. The reason for this is due to the absorption of frictional heat accompanying lubrication and the temperature rise due to the pressure drop of the hydraulic oil. Of these, the frictional heat lubricates the bearing unit 29 and the sliding portions between the inner peripheral surfaces of the cylinders 19 and 19 and the outer peripheral surfaces of the pistons 20 and 20. By absorbing the frictional heat generated at each part and each sliding part. Further, the temperature rise due to the pressure drop is caused by the pressure of the drain oil that has passed through the minute gaps and leaked into the chamber 28 from the pressure of the hydraulic oil fed into the cylinders 19 and 19 from the inlet port 24. It is because it becomes low. For these two reasons, the temperature of the drain oil (hydraulic oil) returned to the hydraulic oil tank through the drain pipe 18 becomes higher than the temperature of the hydraulic oil in the inlet port 24 portion.

特に、近年、荷役作業の能率化等の為、サブマージドポンプの運転を、従来に比べて高回転、高圧力で行う様になっている。これに伴って、前記ポンプ本体2を駆動する為のオイルモータ1に送り込む作動油の流入量が増加し、流入圧力が高くなっている。例えば、前記入口ポート24部分の圧力を22MPa程度、流量を193L/min程度として、前記駆動軸22の回転速度を3000min-1程度としている。この様な条件下では、ドレン油の流量は、前記入口ポート24から送り込まれる作動油の流入量の1%程度になる。そして、前記ドレン油の温度は、前記入口ポート24部分での(流入時)作動油の温度よりも、凡そ35℃程度高くなる。この様に温度上昇したドレン油が前記作動油タンク内に戻される結果、この作動油タンク内の作動油、延いてはこの作動油タンクから前記流入側油圧パイプ16を通じて前記ポンプ本体2に送り込まれる作動油の温度が、徐々に上昇する。 In particular, in recent years, in order to improve the efficiency of cargo handling work, the operation of the submerged pump is performed at a higher speed and higher pressure than in the past. Along with this, the inflow amount of hydraulic oil fed to the oil motor 1 for driving the pump body 2 is increased, and the inflow pressure is increased. For example, the pressure at the inlet port 24 is about 22 MPa, the flow rate is about 193 L / min, and the rotational speed of the drive shaft 22 is about 3000 min −1 . Under such conditions, the flow rate of the drain oil is about 1% of the inflow amount of the working oil fed from the inlet port 24. Then, the temperature of the drain oil is approximately 35 ° C. higher than the temperature of the hydraulic oil at the inlet port 24 portion (when flowing). As a result of the drain oil whose temperature has risen in this manner being returned to the hydraulic oil tank, the hydraulic oil in the hydraulic oil tank, and further from the hydraulic oil tank, is sent to the pump body 2 through the inflow side hydraulic pipe 16. The temperature of the hydraulic oil rises gradually.

前記作動油タンク内の作動油の温度が所定値以上になると、前記圧油供給源部分に設置したオイルクーラが作動して、前記作動油タンク内の作動油を冷却する。この様にオイルクーラが作動した状態では、前記入口ポート24部分での作動油の温度は、50〜60℃の範囲内で安定する。前記ドレン油の温度は、この50〜60℃から更に35℃程度上昇するので、このドレン油がその内面に接触する、前記オイルモータ1を構成するモータケース27の表面温度は、85〜95℃程度になる。NK(日本海事協会)鋼船規則S編15.3.2−8の規定で、サブマージドポンプ等の運転機器の表面温度は80℃以下に抑える事が要求されている。上述した運転状態では、前記モータケース27の表面温度が80℃を超える可能性があるので、これを抑える必要がある。前記オイルクーラの性能を向上させて、前記作動油タンク内の作動油の温度を低く(例えば30〜40℃程度に)抑える事も考えられる。但し、この様な方法では、前記オイルクーラを大型化する必要があるだけでなく、作動油の粘性抵抗が大きくなって、少ないエネルギで前記サブマージドポンプの性能を向上させる面からは不利になる。   When the temperature of the hydraulic oil in the hydraulic oil tank reaches a predetermined value or more, an oil cooler installed in the pressure oil supply source portion operates to cool the hydraulic oil in the hydraulic oil tank. When the oil cooler is thus operated, the temperature of the hydraulic oil at the inlet port 24 portion is stabilized within a range of 50 to 60 ° C. Since the temperature of the drain oil further increases from about 50 to 60 ° C. by about 35 ° C., the surface temperature of the motor case 27 constituting the oil motor 1 where the drain oil contacts the inner surface is 85 to 95 ° C. It will be about. The surface temperature of operating equipment such as submerged pumps is required to be suppressed to 80 ° C. or less according to the provisions of NK (Japan Maritime Association) Steel Ship Rules S Part 15.3.2-8. In the operation state described above, the surface temperature of the motor case 27 may exceed 80 ° C., and this needs to be suppressed. It is also conceivable to improve the performance of the oil cooler to keep the temperature of the hydraulic oil in the hydraulic oil tank low (for example, about 30 to 40 ° C.). However, such a method not only requires an increase in the size of the oil cooler, but also increases the viscous resistance of the hydraulic oil, which is disadvantageous in terms of improving the performance of the submerged pump with less energy. .

これらの事を考慮すれば、前記規定を満たす為には、前記ドレン油の温度上昇を低く抑える事が最も適切である。このドレン油の温度上昇を低く抑える事は、ドレン油の量を増加させる事で解決できる。例えば図6〜7に記載した構造の場合には、前記ポートプレート26に、例えば内径が0.7mm程度の小通孔32を、このポートプレート26に設けた前記入口ポート24と、前記室28とを連通させる状態で形成している。又、図8に記載した構造の場合には、流入側油圧パイプ16の途中からフラッシングパイプ33を分岐すると共に、このフラッシングパイプ33の下流端を室28に開口させて、フラッシングラインを構成している。又、このフラッシングラインの途中に、内径が0.7mm程度のオリフィス34を設置している。   Considering these things, it is most appropriate to keep the temperature rise of the drain oil low in order to satisfy the above regulations. Suppressing the temperature rise of the drain oil can be solved by increasing the amount of the drain oil. For example, in the case of the structure shown in FIGS. 6 to 7, the port plate 26 has a small through hole 32 having an inner diameter of about 0.7 mm, for example, the inlet port 24 provided in the port plate 26, and the chamber 28. And in a state of communicating with each other. In the case of the structure shown in FIG. 8, the flushing pipe 33 is branched from the middle of the inflow side hydraulic pipe 16, and the downstream end of the flushing pipe 33 is opened to the chamber 28 to form a flushing line. Yes. In the middle of the flushing line, an orifice 34 having an inner diameter of about 0.7 mm is provided.

これら何れの構造でも、前述した様な、各摺動部から室28に漏出するドレン油に加えて、一定量の作動油が、前記小通孔32、又は、前記オリフィス34を設けたフラッシングラインを通じて、前記室28に追加注入される。これら小通孔32やオリフィス34を通じてこの室28に追加注入される作動油にしても、圧力低下により温度上昇はするが、摩擦熱を吸収する事による温度上昇はない。この為、前記室28内に存在するドレン油の温度を下げて、ポンプ本体2を構成するモータケース27の表面温度を低く抑えられる。即ち、何れの構造でも、前記室28内に流入するドレン油の量は、前記流入側圧力パイプ16を通じて前記オイルモータ1に送られる作動油の流入量の4%程度になる。そして、この流入側圧力パイプ16を通じて送られる作動油の温度に対するドレン油の温度上昇を、20℃以下に抑えられる。この為、前述の様に、オイルクーラにより作動油タンク内の作動油の温度を50〜60℃に抑えれば、前記ドレン油の温度、延いてはモータケース27の表面温度を、70〜80℃程度に抑えられる。   In any of these structures, in addition to the drain oil leaking from the sliding portions to the chamber 28 as described above, a certain amount of hydraulic oil is supplied to the flushing line provided with the small through holes 32 or the orifices 34. Through the chamber 28. Even if hydraulic oil is additionally injected into the chamber 28 through these small through holes 32 and orifices 34, the temperature rises due to a pressure drop, but there is no temperature rise due to absorption of frictional heat. For this reason, the temperature of the drain oil existing in the chamber 28 can be lowered, and the surface temperature of the motor case 27 constituting the pump body 2 can be kept low. That is, in any structure, the amount of drain oil flowing into the chamber 28 is about 4% of the inflow amount of hydraulic oil sent to the oil motor 1 through the inflow side pressure pipe 16. And the temperature rise of drain oil with respect to the temperature of the hydraulic oil sent through this inflow side pressure pipe 16 is suppressed to 20 degrees C or less. Therefore, as described above, if the temperature of the hydraulic oil in the hydraulic oil tank is suppressed to 50 to 60 ° C. by the oil cooler, the temperature of the drain oil, and thus the surface temperature of the motor case 27 is set to 70 to 80. It can be suppressed to about ℃.

但し、上述の様な方法により、前記モータケース27の表面温度を下げると、このオイルモータ1に送り込まれる作動油のうちで、駆動軸22を回転させる為に利用されずに、ドレンパイプ18を通じて作動油タンクに戻される作動油の割合が多くなる。この結果、前記オイルモータ1の性能が低下する。具体的には、前記駆動軸22の回転速度が低下して、前記ポンプ本体2が吸引し、吐出する貨液3の量が少なくなる。即ち、サブマージドポンプの貨液移送能力が低下する。例えば、ドレン油の量が、前述の様に、定常の状態で作動油流入量の1%程度であった場合に、前記小通孔32や前記オリフィス34を通じて前記室28に作動油を追加注入し、この室28内に注入される作動油の合計量を4%程度にすると、この追加注入に伴って、前記オイルモータ1の回転速度は概略で3%程度低下する。   However, if the surface temperature of the motor case 27 is lowered by the above-described method, the hydraulic oil sent to the oil motor 1 is not used to rotate the drive shaft 22 and is passed through the drain pipe 18. The ratio of the hydraulic oil returned to the hydraulic oil tank increases. As a result, the performance of the oil motor 1 is degraded. Specifically, the rotational speed of the drive shaft 22 decreases, and the amount of coin liquid 3 that the pump body 2 sucks and discharges decreases. That is, the coin liquid transfer capability of the submerged pump is reduced. For example, when the amount of drain oil is about 1% of the inflow amount of hydraulic oil in a steady state as described above, additional hydraulic oil is injected into the chamber 28 through the small through hole 32 and the orifice 34. If the total amount of hydraulic oil injected into the chamber 28 is about 4%, the rotational speed of the oil motor 1 is reduced by about 3% with the additional injection.

前記貨液移送能力を確保すべく、前記オイルモータ1の回転速度を低下させない為には、前記圧油供給源から前記流入側圧力パイプ16を通じて前記オイルモータ1に送られる作動油の量を、前記小通孔32や前記オリフィス34を通じて前記室28に追加注入される作動油分だけ増やす必要がある。この様な方法により前記貨液移送能力を確保するには、前記圧油供給源を構成する送油ポンプの出力を増やさなければならない。特に図6〜8に示した構造の場合には、前述した通り、前記小通孔32や前記オリフィス34を通過した作動油の温度が、圧力低下により上昇する。   In order not to reduce the rotational speed of the oil motor 1 in order to ensure the liquid liquid transfer capability, the amount of hydraulic oil sent from the pressure oil supply source to the oil motor 1 through the inflow side pressure pipe 16 is It is necessary to increase by the amount of hydraulic oil additionally injected into the chamber 28 through the small through hole 32 and the orifice 34. In order to secure the coin liquid transfer capability by such a method, the output of the oil feed pump constituting the pressure oil supply source must be increased. In particular, in the case of the structure shown in FIGS. 6 to 8, as described above, the temperature of the hydraulic oil that has passed through the small through hole 32 and the orifice 34 rises due to a pressure drop.

即ち、前記流入側圧力パイプ16を通じて送られてくる作動油を、前記小通孔32や前記オリフィス34を通じて前記室28内に追加注入すると、例えば22MPa程度の高圧の作動油を、瞬間的に、例えば0.05MPa程度の室28の圧力に変化させる。この結果、前記作動油の圧力エネルギが熱エネルギに変化し、前記追加注入される作動油の温度が上昇する。
要するに前記図6〜8に示した2例の構造は何れも、軸受ユニット29や、シリンダ19、19とピストン20、20の摺動部等を潤滑して温度上昇しているドレン油に、圧力低下によって温度上昇した作動油を追加する事で、前記室28内に存在する作動油(ドレン油)の温度上昇を抑えるものである。この為、前記モータケース27の表面温度を十分に低下させる為に前記室28内に追加注入しなければならない作動油の必要量が多く、前記オイルモータ1の回転速度を低下させる程度が著しくなる。
That is, when hydraulic oil sent through the inflow side pressure pipe 16 is additionally injected into the chamber 28 through the small passage 32 or the orifice 34, high-pressure hydraulic oil of about 22 MPa, for example, is instantaneously For example, the pressure in the chamber 28 is changed to about 0.05 MPa. As a result, the pressure energy of the hydraulic oil changes to thermal energy, and the temperature of the additionally injected hydraulic oil increases.
In short, the structures of the two examples shown in FIGS. 6 to 8 are all applied to the drain oil whose temperature rises by lubricating the bearing unit 29 and the sliding portions of the cylinders 19 and 19 and the pistons 20 and 20. By adding the hydraulic oil whose temperature has increased due to the decrease, the temperature of the hydraulic oil (drain oil) existing in the chamber 28 is suppressed. For this reason, in order to sufficiently reduce the surface temperature of the motor case 27, a large amount of hydraulic oil has to be additionally injected into the chamber 28, and the degree to which the rotational speed of the oil motor 1 is reduced becomes significant. .

特公昭46−21541号公報Japanese Examined Patent Publication No. 46-21541 実公平7−44789号公報No. 7-44789

本発明は、上述の様な事情に鑑みて、サブマージドポンプを構成するポンプ本体の荷役能力を低下させずに、オイルモータ(モータケース)の表面温度を低く抑えられる構造を実現すべく発明したものである。   In view of the circumstances as described above, the present invention was invented to realize a structure capable of keeping the surface temperature of an oil motor (motor case) low without reducing the cargo handling capacity of the pump body constituting the submerged pump. Is.

本発明のサブマージドポンプ駆動用オイルモータの冷却機構は、前述の図6、8に示したサブマージドポンプ駆動用オイルモータの冷却機構と同様に、モータケースと、駆動軸と、入口ポート及び出口ポートと、エネルギ変換装置と、ドレンパイプとを備える。
前記駆動軸は、前記モータケースの一端部(下端部)内側に、軸受ユニット等により回転自在に支持されている。そして、前記モータケース外に突出した先端部により、ポンプ本体の被駆動部を回転駆動する。
又、前記入口ポート及び出口ポートは、それぞれが前記モータケースの他端部に設けられている。このうちの入口ポートは、圧油供給源の吐出口に通じる流入側油圧パイプの下流端を接続する。又、前記出口ポートは、この圧油供給源の作動油タンクに通じる流出側油圧パイプの上流端を接続する。
又、前記エネルギ変換装置は、前記入口ポート及び出口ポートと前記駆動軸の基端部との間に設けられて、この入口ポートからこの出口ポートに向けて流れる加圧された作動油の圧力エネルギを、前記駆動軸を回転させる運動エネルギに変換する。
更に、前記ドレンパイプは、前記モータケースの中間部に上流端を、前記作動油タンクに下流端を、それぞれ通じさせて、このモータケース内に漏出したドレン油をこの作動油タンクに戻す。尚、前記ドレンパイプの下流端は、前記流出側油圧パイプの途中に接続し、この流出側油圧パイプを介して前記ドレン油を前記作動油タンクに戻す様に構成する事が、前記ドレンパイプが徒に長くなるのを防止する為に好ましい。
The submerged pump driving oil motor cooling mechanism of the present invention is similar to the submerged pump driving oil motor cooling mechanism shown in FIGS. 6 and 8, and includes a motor case, a drive shaft, an inlet port, and an outlet. A port, an energy conversion device, and a drain pipe are provided.
The drive shaft is rotatably supported by a bearing unit or the like inside one end (lower end) of the motor case. Then, the driven portion of the pump body is rotationally driven by the tip portion protruding outside the motor case.
Each of the inlet port and the outlet port is provided at the other end of the motor case. Of these, the inlet port connects the downstream end of the inflow-side hydraulic pipe leading to the discharge port of the pressure oil supply source. The outlet port connects the upstream end of the outflow hydraulic pipe that leads to the hydraulic oil tank of the pressure oil supply source.
Further, the energy conversion device is provided between the inlet port and the outlet port and a base end portion of the drive shaft, and pressure energy of pressurized hydraulic oil flowing from the inlet port toward the outlet port. Is converted into kinetic energy for rotating the drive shaft.
Further, the drain pipe communicates the upstream end with the intermediate portion of the motor case and the downstream end with the hydraulic oil tank, and returns the drain oil leaked into the motor case to the hydraulic oil tank. The downstream end of the drain pipe is connected to the middle of the outflow hydraulic pipe, and the drain pipe is configured to return the drain oil to the hydraulic oil tank via the outflow hydraulic pipe. It is preferable in order to prevent people from becoming longer.

特に、本発明のサブマージドポンプ駆動用オイルモータの冷却機構に於いては、前記エネルギ変換装置の出口側から、前記出口ポート及び前記流出側油圧パイプを通じて前記作動油タンクに通じる、作動油戻し流路の途中に絞り部材を設けている。そして、この作動油戻し流路内の圧力を、この絞り部材よりも上流側(前記エネルギ変換装置側)で下流側(前記作動油タンク側)よりも、少しだけ高くしている。
更に、前記絞り部材よりも上流側と前記モータケースの内部空間との間に、前記出口ポートから前記作動油タンクに向けて前記戻し流路を流れる作動油の一部を前記内部空間に送り込む為の還流通路を設けている。
In particular, in the cooling mechanism of the oil motor for driving a submerged pump according to the present invention, the hydraulic oil return flow that leads from the outlet side of the energy conversion device to the hydraulic oil tank through the outlet port and the outlet hydraulic pipe. A throttle member is provided in the middle of the road. The pressure in the hydraulic oil return flow path is slightly higher on the upstream side (the energy conversion device side) than the throttle member and on the downstream side (the hydraulic oil tank side).
Furthermore, between the upstream side of the throttle member and the internal space of the motor case, in order to send a part of the hydraulic oil flowing in the return flow path from the outlet port toward the hydraulic oil tank to the internal space The reflux passage is provided.

この様な本発明を実施する場合、より具体的には、例えば請求項2に記載した発明の様に、前記絞り部材を、前記入口ポート及び前記出口ポートを設けた端板のうちで、この出口ポートの周縁部と流出側油圧パイプの上流側端面との間に挟持されたオリフィスとする。そして、前記還流通路を、前記端板の内部に設けられて、一端を前記出口ポートの内周面に、他端をモータケースの内部に、それぞれ開口させた通孔とする。
或は、請求項3に記載した発明の様に、前記絞り部材を、前記流出側油圧パイプの途中に設けられたオリフィスとする。そして、前記還流通路を、この流出側油圧パイプの途中でこのオリフィスよりも上流側部分から分岐してモータケース内に下流端を開口させた還流パイプとする。
この様な請求項3に記載した発明を実施する場合に、例えば請求項4に記載した発明の様に、前記還流パイプの途中に第二のオリフィスを設ける。
More specifically, when carrying out the present invention as described above, for example, as in the invention described in claim 2, the throttle member is arranged among the end plates provided with the inlet port and the outlet port. The orifice is sandwiched between the peripheral edge of the outlet port and the upstream end face of the outflow hydraulic pipe. The reflux passage is provided inside the end plate, and has a through hole that opens at one end to the inner peripheral surface of the outlet port and the other end to the inside of the motor case.
Alternatively, as in the invention described in claim 3, the throttle member is an orifice provided in the middle of the outflow side hydraulic pipe. The return passage is a return pipe that branches off from the upstream side of the orifice in the middle of the outflow hydraulic pipe and has a downstream end opened in the motor case.
When the invention described in claim 3 is carried out, a second orifice is provided in the middle of the reflux pipe, as in the invention described in claim 4, for example.

上述の様に構成する本発明のサブマージドポンプ駆動用オイルモータの冷却機構によれば、サブマージドポンプを構成するポンプ本体の荷役能力を低下させずに、オイルモータの表面温度を低く抑えられる。
即ち、本発明の構造によれば、戻し流路のうちで絞り部材の上流側から還流通路を介してモータケース内に送り込まれる作動油がこのモータケース内に存在するドレン油と混ざり合う事で、このモータケースの温度上昇が抑えられる。前記戻し流路の途中に前記絞り部材を設ける事で、この絞り部材の上流側から、前記還流通路を通じて前記モータケース内に送り込まれた作動油の温度が多少上昇はするが、その上昇量は僅少に抑えられる。その理由は、次の(1)(2)の通りである。
According to the cooling mechanism for an oil motor for driving a submerged pump according to the present invention configured as described above, the surface temperature of the oil motor can be kept low without reducing the cargo handling capacity of the pump body constituting the submerged pump.
That is, according to the structure of the present invention, the working oil fed into the motor case from the upstream side of the throttle member in the return passage through the return passage is mixed with the drain oil present in the motor case. The temperature rise of the motor case can be suppressed. By providing the throttle member in the middle of the return flow path, the temperature of the hydraulic oil sent into the motor case through the return passage from the upstream side of the throttle member slightly increases, but the amount of increase is Slightly reduced. The reason is as follows (1) (2).

(1) 前記絞り部材は、前記戻し流路を流れる作動油の一部を前記還流通路に分流させる為に、この絞り部材の上流側の圧力を下流側の圧力よりも少しだけ大きくすれば良い。従って、この絞り部材の上流側部分の圧力を高める程度は僅かで良い。
(2) エネルギ変換装置を通過して出口ポートから前記戻し流路に吐出される作動油の圧力は、流入側油圧パイプから前記エネルギ変換装置に送り込まれる作動油の圧力に比べて低い。従って、前記戻し流路の途中に絞り部材を設けても、元々この絞り部材の上流側に存在する作動油の圧力はあまり高くはない。
これら(1)(2)の理由により、前記絞り部材の上流側から前記還流通路を通じて前記モータケース内に送り込まれる作動油の圧力がこのモータケース内で低下する程度、延いてはこの作動油の温度が上昇する程度は僅少で済む。この為、前記還流通路からこのモータケース内に送り込まれる作動油により、前記ドレン油の温度を効果的に低下させられる。
(1) The throttle member only needs to slightly increase the pressure on the upstream side of the throttle member to be slightly lower than the pressure on the downstream side in order to divert part of the hydraulic oil flowing through the return flow path to the return passage. . Therefore, the degree to which the pressure in the upstream portion of the throttle member is increased may be small.
(2) The pressure of the working oil that passes through the energy conversion device and is discharged from the outlet port to the return flow path is lower than the pressure of the working oil sent to the energy conversion device from the inflow side hydraulic pipe. Therefore, even if a throttle member is provided in the middle of the return flow path, the pressure of the hydraulic oil originally present on the upstream side of the throttle member is not so high.
For these reasons (1) and (2), the pressure of the hydraulic oil fed into the motor case from the upstream side of the throttle member through the return passage is reduced to the extent that the pressure of the hydraulic oil is reduced in the motor case. The degree of temperature increase is negligible. For this reason, the temperature of the drain oil can be effectively lowered by the hydraulic oil fed into the motor case from the reflux passage.

上述の様に本発明の構造の場合には、戻し流路を通じて前記モータケース内に、ドレン油の温度を低下させる為に十分な量の作動油を送り込める。又、このドレン油の温度を低下させる為に、流入側油圧パイプから前記エネルギ変換装置に送り込む作動油は使用しない。即ち、このエネルギ変換装置を作動させてオイルモータの駆動軸を回転させる為、圧油供給源から、流入側油圧パイプを介して入口ポートに送り込む作動油のほぼ全量を、前記駆動軸を回転駆動する為に利用できる。この為、この作動油を有効利用して、この駆動軸の回転速度を十分に速くできる。   As described above, in the case of the structure of the present invention, a sufficient amount of hydraulic oil can be fed into the motor case through the return channel to reduce the temperature of the drain oil. Moreover, in order to lower the temperature of this drain oil, the working oil fed from the inflow side hydraulic pipe to the energy conversion device is not used. That is, in order to rotate the drive shaft of the oil motor by operating this energy conversion device, the drive shaft is rotationally driven with almost all of the hydraulic oil fed from the pressure oil supply source to the inlet port via the inflow side hydraulic pipe. Can be used to For this reason, the rotational speed of the drive shaft can be sufficiently increased by effectively using the hydraulic oil.

本発明の実施の形態の第1例を示す、オイルモータ部分の縦断面図。The longitudinal cross-sectional view of the oil motor part which shows the 1st example of embodiment of this invention. 図1のX部拡大図。The X section enlarged view of FIG. 本発明の実施の形態の第2例を示す、オイルモータ部分の縦断面図。The longitudinal cross-sectional view of the oil motor part which shows the 2nd example of embodiment of this invention. 同第3例を示す、オイルモータ部分の縦断面図。The longitudinal cross-sectional view of the oil motor part which shows the same 3rd example. サブマージドポンプを使用した荷役状況を示す縦断面図。The longitudinal cross-sectional view which shows the cargo handling condition using a submerged pump. 従前の構造の第1例を示す、オイルモータ部分の縦断面図。The longitudinal cross-sectional view of the oil motor part which shows the 1st example of the conventional structure. 図6のY部拡大図。The Y section enlarged view of FIG. 従前の構造の第2例を示す、オイルモータ部分の縦断面図。The longitudinal cross-sectional view of the oil motor part which shows the 2nd example of the conventional structure.

[実施の形態の第1例]
図1〜2は、請求項1、2に対応する、本発明の実施の形態の第1例を示している。尚、本例のサブマージドポンプ駆動用オイルモータの冷却機構の特徴は、入口ポート24及び出口ポート31を設けた端板35の一部に、この出口ポート31とモータケース27内とを連通する通孔36を設けると共に、この出口ポート31の下流端開口部にオリフィス37を設けた点にある。即ち、これら通孔36とオリフィス37とを設ける事により、前記出口ポート31内を流れる作動油の一部を前記モータケース27内に注入し、このモータケース27内に漏出した、各部を潤滑する等により温度上昇したドレン油の温度を低下させる点にある。その他の部分の構成及び作用は、前述の図6、8により説明した従前の構造と同様であるから、同等部分に関する説明は、省略若しくは簡略にし、以下、本例の特徴部分、及び、先に説明しなかった部分を中心に説明する。
[First example of embodiment]
1 and 2 show a first example of an embodiment of the present invention corresponding to claims 1 and 2. The cooling mechanism of the oil motor for driving the submerged pump in this example is characterized in that the outlet port 31 and the inside of the motor case 27 are communicated with a part of the end plate 35 provided with the inlet port 24 and the outlet port 31. The through hole 36 is provided, and the orifice 37 is provided at the downstream end opening of the outlet port 31. That is, by providing the through hole 36 and the orifice 37, a part of the hydraulic fluid flowing in the outlet port 31 is injected into the motor case 27, and each part leaked into the motor case 27 is lubricated. This is to reduce the temperature of the drain oil whose temperature has been increased due to the above. Since the configuration and operation of the other parts are the same as those of the previous structure described with reference to FIGS. 6 and 8, the description of the equivalent parts will be omitted or simplified. The description will focus on the parts that were not explained.

図示しない圧油供給源の吐出口に通じる流入側油圧パイプ16から前記入口ポート24内に送り込まれた高圧の作動油は、複数のシリンダ19、19のうちで、エネルギ変換装置38に関する作動油の入口側である、ピストン20が深く入り込んでいる、図1の左側のシリンダ19内に、次述するシリンダブロック25の回転に伴って、順次送り込まれる。そして、これら各シリンダ19、19内に嵌装されたピストン20、20を、これら各シリンダ19、19から順次押し出す。すると、これら各シリンダ19、19を設けたシリンダブロック25が、センタピン39を中心として回転する。この結果発生する前記各ピストン20、20の公転運動が、球面継手21、21を介して回転板23に伝わり、駆動軸22を回転させる。更にこの駆動軸22が、ポンプ本体2(図5参照)の被駆動軸を回転駆動して、荷役を行わせる。前記シリンダブロック25の回転に伴って、前記各シリンダ19、19内で押し出し方向に変位した前記各ピストン20、20が再びこれら各シリンダ19、19内に押し戻される際に、これら各シリンダ19、19内に送り込まれていた作動油が前記各ピストン20、20により、前記出口ポート31に向け押し出される。即ち、図1に示した前記各シリンダ19、19のうちで、ピストン20の嵌合深さが浅い、図1の右側のシリンダ19が、前記エネルギ変換装置38に関する作動油の出口側である。   The high-pressure hydraulic oil fed into the inlet port 24 from the inflow side hydraulic pipe 16 leading to the discharge port of the pressure oil supply source (not shown) is the hydraulic oil related to the energy conversion device 38 among the plurality of cylinders 19 and 19. The piston 20 which is on the inlet side is deeply inserted into the cylinder 19 on the left side in FIG. 1 as the cylinder block 25 is rotated as described below. The pistons 20 and 20 fitted in the cylinders 19 and 19 are sequentially pushed out from the cylinders 19 and 19, respectively. Then, the cylinder block 25 provided with the cylinders 19 and 19 rotates around the center pin 39. The revolving motion of the pistons 20 and 20 generated as a result is transmitted to the rotating plate 23 through the spherical joints 21 and 21 to rotate the drive shaft 22. Further, the drive shaft 22 rotationally drives the driven shaft of the pump body 2 (see FIG. 5) to perform cargo handling. As the cylinder block 25 rotates, the pistons 20 and 20 displaced in the pushing direction in the cylinders 19 and 19 are pushed back into the cylinders 19 and 19 again. The hydraulic oil that has been fed in is pushed out toward the outlet port 31 by the pistons 20 and 20. That is, among the cylinders 19, 19 shown in FIG. 1, the fitting depth of the piston 20 is shallow, and the right cylinder 19 in FIG. 1 is the hydraulic oil outlet side for the energy conversion device 38.

上述の様にして、前記エネルギ変換装置38の出口側から前記出口ポート31に押し出される作動油の圧力は、前記流入側油圧パイプ16から前記入口ポート24内に送り込まれる作動油の圧力よりも遥かに低いが、陽圧(正圧)である。そこで本例の場合には、前記通孔36とオリフィス37とを利用して、前記出口ポート31内を流れる作動油の一部を前記モータケース27内に注入し、このモータケース27内に漏出したドレン油の温度を低下させる様にしている。この為に本例の場合には、前記オリフィス37を、前記入口ポート24及び前記出口ポート31を設けた端板35のうちで、この出口ポート31の周縁部と流出側油圧パイプ17の上流側端面との間に挟持している。前記オリフィス37の内径は、これら出口ポート31及び流出側油圧パイプ17の内径よりも少しだけ小さい(前記通孔36の内径等、前記出口ポート31部分の作動油を前記モータケース27内に戻す流路の断面積等との関係で変わるが、例えば、この内径の60〜90%程度としている)。又、前記通孔36は、前記端板35の内部に、前記出口ポート31に対し傾斜方向に設けて、一端(上端、上流端)をこの出口ポート31の内周面に、他端(下端、下流端)を前記モータケース27の内部空間である室28に、それぞれ開口させている。   As described above, the pressure of the hydraulic oil pushed out from the outlet side of the energy conversion device 38 to the outlet port 31 is much higher than the pressure of the hydraulic oil fed into the inlet port 24 from the inflow side hydraulic pipe 16. Although it is very low, it is positive pressure (positive pressure). Therefore, in the case of this example, a part of the hydraulic fluid flowing in the outlet port 31 is injected into the motor case 27 using the through hole 36 and the orifice 37 and leaks into the motor case 27. The temperature of the drain oil is reduced. For this reason, in the case of this example, the orifice 37 is located on the upstream side of the peripheral portion of the outlet port 31 and the outlet side hydraulic pipe 17 in the end plate 35 provided with the inlet port 24 and the outlet port 31. It is clamped between the end faces. The inner diameter of the orifice 37 is slightly smaller than the inner diameters of the outlet port 31 and the outflow side hydraulic pipe 17 (the flow of returning the hydraulic oil in the outlet port 31 such as the inner diameter of the through hole 36 into the motor case 27. Although it varies depending on the relationship with the cross-sectional area of the road, for example, it is about 60 to 90% of this inner diameter). The through hole 36 is provided in the end plate 35 in an inclined direction with respect to the outlet port 31, and one end (upper end, upstream end) is formed on the inner peripheral surface of the outlet port 31 and the other end (lower end). , The downstream end) is opened in the chamber 28 which is the internal space of the motor case 27, respectively.

この様な構成を採用する事により本例のサブマージドポンプ駆動用オイルモータの冷却機構は、前記入口ポート24から前記エネルギ変換装置38内に送り込まれてこのエネルギ変換装置38の微小隙間から前記モータケース27内の室28に漏出し、更に軸受ユニット29等を潤滑する等に起因して温度上昇したドレン油の温度を、十分に低下させられる。即ち、本例の構造によれば、前記オリフィス37の上流側から、還流通路である前記通孔36を通じて前記モータケース27内の室28に送り込まれる作動油が、この室28内に存在する、前記温度上昇したドレン油と混ざり合う事で、このドレン油の温度を低下させる。この結果、このドレン油にその内面を曝らされた、前記モータケース27の温度上昇が抑えられる。尚、この様な、ドレン油が発生し、しかもその温度が上昇する理由は、図6に示した従前の構造の場合と同様であるから、重複する説明は省略する。何れにしても、前記出口ポート24から前記通孔36内に送り込まれる作動油の圧力は、前述した(1)(2)の様な理由によりあまり高くない為、この通孔36から前記室28内に送り込まれた作動油の温度上昇は極く僅かである。この結果、この通孔36からこの室28内に送り込まれる作動油により、前記ドレン油の温度を効果的に低下させられる。   By adopting such a configuration, the cooling mechanism of the oil motor for driving the submerged pump of this example is fed into the energy conversion device 38 from the inlet port 24, and from the minute gap of the energy conversion device 38, the motor The temperature of the drain oil that has leaked into the chamber 28 in the case 27 and has increased due to lubrication of the bearing unit 29 and the like can be sufficiently lowered. That is, according to the structure of this example, the hydraulic oil that is sent from the upstream side of the orifice 37 to the chamber 28 in the motor case 27 through the through hole 36 that is a return passage exists in the chamber 28. By mixing with the drain oil whose temperature has been increased, the temperature of the drain oil is lowered. As a result, the temperature rise of the motor case 27, whose inner surface is exposed to the drain oil, is suppressed. The reason why such drain oil is generated and its temperature rises is the same as in the case of the previous structure shown in FIG. In any case, the pressure of the hydraulic oil fed from the outlet port 24 into the through hole 36 is not so high for the reasons (1) and (2) described above. The temperature rise of the hydraulic oil fed into the inside is negligible. As a result, the temperature of the drain oil can be effectively lowered by the hydraulic oil fed into the chamber 28 from the through hole 36.

しかも本例の構造の場合には、前記ドレン油の温度を低下させる為に、前記流入側油圧パイプ16から前記入口ポート24を介して前記エネルギ変換装置38に送り込む作動油は使用しない。即ち、このエネルギ変換装置38を作動させてオイルモータ1の駆動軸22を回転させる為、前記圧油供給源から、前記流入側油圧パイプ16を介して前記入口ポート24に送り込む作動油のうち、前述した様な、各摺動部で発生する1%程度の漏洩分を除き、ほぼ全量を、前記駆動軸22を回転駆動する為に利用できる。この為、前記作動油を有効利用して、この駆動軸22の回転速度を十分に速くできる。要するに本例の構造によれば、前記圧油供給源の能力を特に高くしなくても、前記駆動軸22により回転駆動されるポンプ本体2(図5参照)の荷役能力を低下させずに、前記オイルモータ1(を構成するモータケース27)の表面温度を低く抑えられる。   Moreover, in the case of the structure of this example, the hydraulic oil fed from the inflow side hydraulic pipe 16 to the energy conversion device 38 via the inlet port 24 is not used in order to lower the temperature of the drain oil. That is, in order to operate the energy conversion device 38 and rotate the drive shaft 22 of the oil motor 1, among the hydraulic oils that are fed from the pressure oil supply source to the inlet port 24 via the inflow side hydraulic pipe 16, Except for the leakage of about 1% that occurs at each sliding portion as described above, almost the entire amount can be used for rotationally driving the drive shaft 22. For this reason, the rotational speed of the drive shaft 22 can be sufficiently increased by effectively using the hydraulic oil. In short, according to the structure of this example, without particularly reducing the capacity of the pressure oil supply source, without reducing the cargo handling capacity of the pump body 2 (see FIG. 5) driven to rotate by the drive shaft 22, The surface temperature of the oil motor 1 (the motor case 27 constituting the oil motor 1) can be kept low.

前記通孔36から前記室28に流入した作動油は、先に図6、8により説明した従前構造の場合と同様に、ドレン油と共に、ドレンパイプ18を通じて前記圧油供給源の作動油タンクに戻される。尚、このドレンパイプ18の下流端は、前記流出側油圧パイプ17のうちで、前記オリフィス37よりも下流側に接続しても、或は、直接前記作動油タンクに通じさせても良い。
又、前記オリフィス37の上流側に設けて、前記エネルギ変換装置38の出口部分から吐出された作動油を前記室28に送り込む通孔は、前記端板35の内部に代えて、ポートプレート26の内部に設ける事もできる。
The hydraulic oil flowing into the chamber 28 from the through hole 36 is supplied to the hydraulic oil tank of the pressure oil supply source through the drain pipe 18 together with the drain oil, as in the case of the conventional structure described above with reference to FIGS. Returned. In addition, the downstream end of the drain pipe 18 may be connected to the downstream side of the orifice 37 in the outflow side hydraulic pipe 17 or may be directly connected to the hydraulic oil tank.
Further, a through hole provided on the upstream side of the orifice 37 and for feeding the hydraulic oil discharged from the outlet portion of the energy conversion device 38 into the chamber 28 is replaced with the inside of the end plate 35, instead of the inside of the end plate 35. It can also be installed inside.

[実施の形態の第2例]
図3は、請求項1、3に対応する、本発明の実施の形態の第2例を示している。本例の場合には、絞り部材であるオリフィス37aを、流出側油圧パイプ17aの途中に設けている。即ち、この流出側油圧パイプ17aを、上流部分40と下流部分41とに分割し、これら両部分40、41同士を接続するフランジ同士の間に、前記オリフィス37aを挟持している。このオリフィス37aの内径は、前記両部分40、41の内径よりも少しだけ(例えばこの内径の60〜90%程度に)小さくしている。そして、還流通路である還流パイプ42の上流端を、流出側油圧パイプ17aのうちの上流部分40から分岐している。更に、この還流パイプ42の下流端を、モータケース27内の室28に通じさせている。尚、この還流パイプ42を設けた事に伴って、ドレンパイプ18aの上流端を、前記モータケース27の反対側の下部に接続している。
[Second Example of Embodiment]
FIG. 3 shows a second example of an embodiment of the present invention corresponding to claims 1 and 3. In the case of this example, the orifice 37a which is a throttle member is provided in the middle of the outflow side hydraulic pipe 17a. That is, the outflow side hydraulic pipe 17a is divided into an upstream portion 40 and a downstream portion 41, and the orifice 37a is sandwiched between flanges connecting these portions 40 and 41. The inner diameter of the orifice 37a is slightly smaller than the inner diameters of the portions 40 and 41 (for example, about 60 to 90% of the inner diameter). And the upstream end of the return pipe 42 which is a return passage is branched from the upstream part 40 of the outflow side hydraulic pipe 17a. Further, the downstream end of the reflux pipe 42 is communicated with the chamber 28 in the motor case 27. In addition, the upstream end of the drain pipe 18 a is connected to the lower part on the opposite side of the motor case 27 in connection with the provision of the reflux pipe 42.

この様な本例の場合も、上述した実施の形態の第1例の場合と同様に、入口ポート24からエネルギ変換装置38内に送り込まれてこのエネルギ変換装置38の微小隙間から前記モータケース27内の室28に漏出し、更に軸受ユニット29等を潤滑する等して温度上昇したドレン油の温度を、十分に低下させられる。又、圧油供給源の能力を特に高くしなくても、駆動軸22により回転駆動されるポンプ本体2の荷役能力を確保できる。   In the case of this example as well, as in the case of the first example of the above-described embodiment, the motor case 27 is fed from the inlet port 24 into the energy conversion device 38 and from the minute gap of the energy conversion device 38. It is possible to sufficiently reduce the temperature of the drain oil that has leaked into the inner chamber 28 and has increased in temperature by lubricating the bearing unit 29 and the like. Further, the cargo handling capacity of the pump body 2 driven to rotate by the drive shaft 22 can be ensured without particularly increasing the capacity of the pressure oil supply source.

[実施の形態の第3例]
図4は、請求項1、3、4に対応する、本発明の実施の形態の第3例を示している。本例の場合には、還流通路である還流パイプ42aとして上述した実施の形態の第2例のものよりも太いものを使用する代わりに、この還流パイプ42aの途中に第二のオリフィス43を設けている。そして、この第二のオリフィス43により、この還流パイプ42aを通じてモータケース27内に還流する作動油の流量を調節して(絞って)いる。又、流出側油圧パイプ17aの上流部分40と下流部分41との間に挟持したオリフィス37bの内径を、上述した第2例の場合よりも大きくしている。その他の部分の構成及び作用は、この実施の形態の第2例と同様であるから、同等部分には同一符号を付して、重複する説明を省略する。
[Third example of embodiment]
FIG. 4 shows a third example of an embodiment of the present invention corresponding to claims 1, 3, and 4. In the case of this example, a second orifice 43 is provided in the middle of the return pipe 42a instead of using a return pipe 42a which is a return passage, which is thicker than that of the second example of the embodiment described above. ing. The second orifice 43 adjusts (throttles) the flow rate of the working oil that flows back into the motor case 27 through the reflux pipe 42a. Further, the inner diameter of the orifice 37b sandwiched between the upstream portion 40 and the downstream portion 41 of the outflow side hydraulic pipe 17a is made larger than that in the case of the second example described above. Since the configuration and operation of the other parts are the same as those of the second example of this embodiment, the same parts are denoted by the same reference numerals, and redundant description is omitted.

図1〜2に示した実施の形態の第1例を実施する場合に於ける、具体的な、圧力、流量、寸法等の関係の1例に就いて説明する。
入口ポート24部分の圧力 : 22MPa
同じく流量 : 193L/min
出口ポート31部分の圧力 : 0.1MPa
同じく流量 : 191L/min
出口ポート31の下流端部分の内径 : 20mm
オリフィス37の内径 : 15mm
通孔36の内径 : 3.3mm
A specific example of the relationship between pressure, flow rate, dimensions, etc. in the case of implementing the first example of the embodiment shown in FIGS.
Pressure at the inlet port 24 portion: 22 MPa
Same flow rate: 193L / min
Pressure at the outlet port 31 portion: 0.1 MPa
Same flow rate: 191L / min
Inner diameter of the downstream end portion of the outlet port 31: 20 mm
Internal diameter of orifice 37: 15 mm
Inner diameter of through hole 36: 3.3 mm

以上の条件で、前記オリフィス37の上流側と下流側との間に、0.05MPaの圧力差が発生する。同程度の圧力差が、前記出口ポート31部分と室28内の作動油との間に発生する。そして、前記通孔36を通じてこの室28内に、3L/minの割合で作動油が流入する。この作動油の温度は、前記通孔36から前記室28内に吐出する瞬間に、圧力低下に伴って上昇する。但し、この温度上昇は、出口ポート31部分の圧力と前記室28部分との圧力差である、凡そ0.05MPa分の圧力低下に基づくものであり、極く僅少に抑えられる。この結果、エネルギ変換装置38の微小隙間からモータケース27内に漏出し、更に軸受ユニット29等を潤滑する等に起因して温度上昇したドレン油の、前記入口ポート24部分の作動油に対する温度上昇分を、20℃以下に抑えられる。従って、前述の様に、オイルクーラにより前記入口ポート24部分での作動油の温度を50〜60℃に維持すれば、モータケース27の表面の温度を、十分に80℃以下に抑えられる。   Under the above conditions, a pressure difference of 0.05 MPa is generated between the upstream side and the downstream side of the orifice 37. A similar pressure difference is generated between the outlet port 31 portion and the hydraulic oil in the chamber 28. Then, the hydraulic oil flows into the chamber 28 through the through hole 36 at a rate of 3 L / min. The temperature of the hydraulic oil rises with a decrease in pressure at the moment of discharging from the through hole 36 into the chamber 28. However, this temperature rise is based on a pressure drop of about 0.05 MPa, which is a pressure difference between the pressure at the outlet port 31 portion and the chamber 28 portion, and can be suppressed very little. As a result, the drain oil that has leaked into the motor case 27 from the minute gap of the energy conversion device 38 and has increased in temperature due to lubrication of the bearing unit 29 and the like is increased in temperature with respect to the hydraulic oil in the inlet port 24 portion. Minutes can be kept below 20 ° C. Therefore, as described above, if the temperature of the hydraulic oil at the inlet port 24 portion is maintained at 50 to 60 ° C. by the oil cooler, the surface temperature of the motor case 27 can be sufficiently suppressed to 80 ° C. or less.

図3に示した、実施の形態の第2例を実施する場合に於ける、具体的な、圧力、流量、寸法等の関係の1例に就いて説明する。
入口ポート24部分の圧力 : 22MPa
同じく流量 : 193L/min
出口ポート31部分の圧力 : 0.07MPa
同じく流量 : 191L/min
流出側油圧パイプ17aの上流部分40の内径 : 21.4mm
オリフィス37aの内径 : 19mm
還流パイプ42の内径 : 7mm
A specific example of the relationship between pressure, flow rate, dimensions, etc. in the case of implementing the second example of the embodiment shown in FIG. 3 will be described.
Pressure at the inlet port 24 portion: 22 MPa
Same flow rate: 193L / min
Pressure at the outlet port 31 portion: 0.07 MPa
Same flow rate: 191L / min
Inner diameter of the upstream portion 40 of the outflow side hydraulic pipe 17a: 21.4 mm
Orifice 37a inner diameter: 19 mm
The inner diameter of the reflux pipe 42: 7 mm

以上の条件で、前記オリフィス37aの上流側と下流側との間に、0.02MPaの圧力差が発生する。同程度の圧力差が、前記流出側油圧パイプ17aの上流部分40と室28内の作動油との間に発生する。そして、前記還流パイプ42を通じてこの室28内に、3L/minの割合で作動油が流入する。この作動油の温度に就いても、前記還流パイプ42から前記室28内に吐出する瞬間に、圧力低下に伴って上昇する。但し、この温度上昇は、前記出口ポート31部分と前記室28内との圧力差である、凡そ0.02MPa分の圧力低下に基づくものであり、極く僅少に抑えられる。この結果、エネルギ変換装置38の微小隙間からモータケース27内に漏出し、更に軸受ユニット29等を潤滑する等して温度上昇したドレン油の、前記入口ポート24部分の作動油に対する温度上昇分を、14.5℃程度に抑えられる。従って、前述の様に、オイルクーラにより前記入口ポート24部分での作動油の温度を50〜60℃に維持すれば、モータケース27の表面の温度を、十分に80℃以下に抑えられる。   Under the above conditions, a pressure difference of 0.02 MPa is generated between the upstream side and the downstream side of the orifice 37a. A similar pressure difference is generated between the upstream portion 40 of the outflow hydraulic pipe 17a and the hydraulic oil in the chamber 28. Then, hydraulic oil flows into the chamber 28 through the reflux pipe 42 at a rate of 3 L / min. Even at the temperature of the hydraulic oil, the pressure rises as the pressure drops at the moment of discharge from the reflux pipe 42 into the chamber 28. However, this temperature rise is based on a pressure drop of about 0.02 MPa, which is a pressure difference between the outlet port 31 portion and the inside of the chamber 28, and can be suppressed very little. As a result, the amount of drain oil that has leaked into the motor case 27 from the minute gap of the energy conversion device 38 and has increased in temperature by lubricating the bearing unit 29 or the like to the operating oil in the inlet port 24 portion is reduced. It is suppressed to about 14.5 ° C. Therefore, as described above, if the temperature of the hydraulic oil at the inlet port 24 portion is maintained at 50 to 60 ° C. by the oil cooler, the surface temperature of the motor case 27 can be sufficiently suppressed to 80 ° C. or less.

図4に示した、実施の形態の第3例を実施する場合に於ける、具体的な、圧力、流量、寸法等の関係の1例に就いて説明する。
入口ポート24部分の圧力 : 22MPa
同じく流量 : 193L/min
出口ポート31部分の圧力 : 0.15MPa
同じく流量 : 191L/min
流出側油圧パイプ17aの上流部分40の内径 : 21.4mm
オリフィス37bの内径 : 14mm
還流パイプ42の内径 : 16.1mm
第二のオリフィス43の内径 : 2.7mm
A specific example of the relationship of pressure, flow rate, dimensions, etc. in the case of implementing the third example of the embodiment shown in FIG. 4 will be described.
Pressure at the inlet port 24 portion: 22 MPa
Same flow rate: 193L / min
Pressure at the outlet port 31 portion: 0.15 MPa
Same flow rate: 191L / min
Inner diameter of the upstream portion 40 of the outflow side hydraulic pipe 17a: 21.4 mm
Inner diameter of orifice 37b: 14 mm
Inside diameter of the reflux pipe 42: 16.1 mm
Inner diameter of second orifice 43: 2.7 mm

以上の条件で、このオリフィス37aの上流側と下流側との間に、0.1MPaの圧力差が発生する。同程度の圧力差が、前記流出側油圧パイプ17aの上流部分40と室28内の作動油との間に発生する。そして、前記還流パイプ42を通じてこの室28内に、3L/minの割合で作動油が流入する。この作動油の温度に就いても、前記還流パイプ42aの途中の第二のオリフィス43を通過する際、圧力低下に伴って上昇する。但し、この温度上昇に就いても、出口ポート31部分の圧力と前記室28部分との圧力差である、凡そ0.1MPa分の圧力低下に基づくものであり、極く僅少に抑えられる。この結果、本実施例の場合も、ドレン油の、前記入口ポート24部分の作動油に対する温度上昇分を、14.5℃程度に抑えられる。従って、本実施例の場合も、前述した実施例1、2と同様の条件下で、モータケース27の表面の温度を、十分に80℃以下に抑えられる。   Under the above conditions, a pressure difference of 0.1 MPa is generated between the upstream side and the downstream side of the orifice 37a. A similar pressure difference is generated between the upstream portion 40 of the outflow hydraulic pipe 17a and the hydraulic oil in the chamber 28. Then, hydraulic oil flows into the chamber 28 through the reflux pipe 42 at a rate of 3 L / min. Even when the temperature of the hydraulic oil passes through the second orifice 43 in the middle of the reflux pipe 42a, it rises as the pressure decreases. However, this temperature rise is based on a pressure drop of about 0.1 MPa, which is the pressure difference between the pressure at the outlet port 31 portion and the chamber 28 portion, and can be suppressed very little. As a result, also in the present embodiment, the temperature rise of the drain oil relative to the hydraulic oil at the inlet port 24 portion can be suppressed to about 14.5 ° C. Therefore, also in the case of the present embodiment, the temperature of the surface of the motor case 27 can be sufficiently suppressed to 80 ° C. or less under the same conditions as in the first and second embodiments.

1 オイルモータ
2 ポンプ本体
3 貨液
4 貨液タンク
5 甲板
6 タンク底
7 バルクヘッド
8 導液部
9 貨液吸入口
10 ボトムサポート
11 吐出管
12 外側ケース
13 サポートパイプ
14 中間サポート
15 デッキカバー
16 流入側油圧パイプ
17、17a 流出側油圧パイプ
18、18a ドレンパイプ
19 シリンダ
20 ピストン
21 球面継手
22 駆動軸
23 回転板
24 入口ポート
25 シリンダブロック
26 ポートプレート
27 モータケース
28 室
29 軸受ユニット
30 ドレンポート
31 出口ポート
32 小通孔
33 フラッシングパイプ
34 オリフィス
35 端板
36 通孔
37、37a、37b オリフィス
38 エネルギ変換装置
39 センタピン
40 上流部分
41 下流部分
42、42a 還流パイプ
43 第二のオリフィス
DESCRIPTION OF SYMBOLS 1 Oil motor 2 Pump main body 3 Coin liquid 4 Coin liquid tank 5 Deck 6 Tank bottom 7 Bulkhead 8 Liquid introduction part 9 Coin liquid inlet 10 Bottom support 11 Discharge pipe 12 Outer case 13 Support pipe 14 Intermediate support 15 Deck cover 16 Inflow Side hydraulic pipe 17, 17a Outflow side hydraulic pipe 18, 18a Drain pipe 19 Cylinder 20 Piston 21 Spherical joint 22 Drive shaft 23 Rotating plate 24 Inlet port 25 Cylinder block 26 Port plate 27 Motor case 28 Chamber 29 Bearing unit 30 Drain port 31 Outlet Port 32 Small passage hole 33 Flushing pipe 34 Orifice 35 End plate 36 Through hole 37, 37a, 37b Orifice 38 Energy conversion device 39 Center pin 40 Upstream portion 41 Downstream portion 42, 42a Reflux pipe 43 Second orifice

この様な構成を採用する事により本例のサブマージドポンプ駆動用オイルモータの冷却機構は、前記入口ポート24から前記エネルギ変換装置38内に送り込まれてこのエネルギ変換装置38の微小隙間から前記モータケース27内の室28に漏出し、更に軸受ユニット29等を潤滑する等に起因して温度上昇したドレン油の温度を、十分に低下させられる。即ち、本例の構造によれば、前記オリフィス37の上流側から、還流通路である前記通孔36を通じて前記モータケース27内の室28に送り込まれる作動油が、この室28内に存在する、前記温度上昇したドレン油と混ざり合う事で、このドレン油の温度を低下させる。この結果、このドレン油にその内面を曝らされた、前記モータケース27の温度上昇が抑えられる。尚、この様な、ドレン油が発生し、しかもその温度が上昇する理由は、図6に示した従前の構造の場合と同様であるから、重複する説明は省略する。何れにしても、前記出口ポート31から前記通孔36内に送り込まれる作動油の圧力は、前述した(1)(2)の様な理由によりあまり高くない為、この通孔36から前記室28内に送り込まれた作動油の温度上昇は極く僅かである。この結果、この通孔36からこの室28内に送り込まれる作動油により、前記ドレン油の温度を効果的に低下させられる。 By adopting such a configuration, the cooling mechanism of the oil motor for driving the submerged pump of this example is fed into the energy conversion device 38 from the inlet port 24, and from the minute gap of the energy conversion device 38, the motor The temperature of the drain oil that has leaked into the chamber 28 in the case 27 and has increased due to lubrication of the bearing unit 29 and the like can be sufficiently lowered. That is, according to the structure of this example, the hydraulic oil that is sent from the upstream side of the orifice 37 to the chamber 28 in the motor case 27 through the through hole 36 that is a return passage exists in the chamber 28. By mixing with the drain oil whose temperature has been increased, the temperature of the drain oil is lowered. As a result, the temperature rise of the motor case 27, whose inner surface is exposed to the drain oil, is suppressed. The reason why such drain oil is generated and its temperature rises is the same as in the case of the previous structure shown in FIG. In any case, the pressure of the hydraulic oil fed from the outlet port 31 into the through hole 36 is not so high for the reasons (1) and (2) described above. The temperature rise of the hydraulic oil fed into the inside is negligible. As a result, the temperature of the drain oil can be effectively lowered by the hydraulic oil fed into the chamber 28 from the through hole 36.

Claims (4)

モータケースと、このモータケースの一端部内側に回転自在に支持されて、このモータケース外に突出した先端部によりポンプ本体の被駆動部を回転駆動する駆動軸と、それぞれがこのモータケースの他端部に設けられた、圧油供給源の吐出口に通じる流入側油圧パイプの下流端を接続する入口ポート及びこの圧油供給源の作動油タンクに通じる流出側油圧パイプの上流端を接続する出口ポートと、これら入口ポート及び出口ポートと前記駆動軸の基端部との間に設けられて、この入口ポートからこの出口ポートに向けて流れる加圧された作動油の圧力エネルギを、前記駆動軸を回転させる運動エネルギに変換するエネルギ変換装置と、前記モータケースの中間部に上流端を、前記作動油タンクに下流端を、それぞれ通じさせて、このモータケース内に漏出したドレン油をこの作動油タンクに戻すドレンパイプとを備えたサブマージドポンプ駆動用オイルモータの冷却機構に於いて、前記エネルギ変換装置の出口側から、前記出口ポート及び前記流出側油圧パイプを通じて前記作動油タンクに通じる、作動油戻し流路の途中に絞り部材を設けると共に、この絞り部材よりも上流側と前記モータケースの内部空間との間に、前記出口ポートから前記作動油タンクに向けて前記戻し流路を流れる作動油の一部を前記内部空間に送り込む為の還流通路を設けた事を特徴とするサブマージドポンプ駆動用オイルモータの冷却機構。   A motor case, a drive shaft that is rotatably supported inside one end portion of the motor case, and that rotates a driven portion of the pump body by a tip portion that protrudes outside the motor case. An inlet port provided at the end for connecting the downstream end of the inflow side hydraulic pipe leading to the discharge port of the pressure oil supply source and the upstream end of the outflow side hydraulic pipe leading to the hydraulic oil tank of this pressure oil supply source are connected. The pressure energy of the pressurized hydraulic fluid that is provided between the outlet port and the inlet port and the outlet port and the base end portion of the drive shaft and flows from the inlet port toward the outlet port is An energy conversion device that converts kinetic energy to rotate the shaft, and an upstream end connected to an intermediate portion of the motor case and a downstream end connected to the hydraulic oil tank, respectively. In a cooling mechanism of a submerged pump driving oil motor provided with a drain pipe for returning drain oil leaked into the hydraulic oil tank to the hydraulic oil tank, the outlet port and the outflow from the outlet side of the energy conversion device A throttle member is provided in the middle of the hydraulic oil return flow path that leads to the hydraulic oil tank through a side hydraulic pipe, and the operation is performed from the outlet port between the upstream side of the throttle member and the internal space of the motor case. A cooling mechanism for an oil motor for driving a submerged pump, wherein a recirculation passage is provided for sending a part of hydraulic oil flowing through the return flow path toward the oil tank into the internal space. 前記絞り部材が、前記入口ポート及び前記出口ポートを設けた端板のうちで、この出口ポートの周縁部と前記流出側油圧パイプの上流側端面との間に挟持されたオリフィスであり、前記還流通路が、前記端板の内部に設けられて、一端を前記出口ポートの内周面に、他端を前記モータケースの内部に、それぞれ開口させた通孔である、請求項1に記載したサブマージドポンプ駆動用オイルモータの冷却機構。   The throttle member is an orifice sandwiched between a peripheral portion of the outlet port and an upstream end surface of the outflow hydraulic pipe among the end plates provided with the inlet port and the outlet port, 2. The submerged according to claim 1, wherein the passage is a through hole provided in the end plate and having one end opened on the inner peripheral surface of the outlet port and the other end opened on the motor case. Cooling mechanism for oil motor for driving a pump. 前記絞り部材が、前記流出側油圧パイプの途中に設けられたオリフィスであり、前記還流通路が、この流出側油圧パイプの途中でこのオリフィスよりも上流側部分から分岐して前記モータケース内に下流端を開口させた還流パイプである、請求項1に記載したサブマージドポンプ駆動用オイルモータの冷却機構。   The throttle member is an orifice provided in the middle of the outflow hydraulic pipe, and the return passage is branched from the upstream portion of the orifice in the middle of the outflow hydraulic pipe and is downstream in the motor case. The cooling mechanism for an oil motor for driving a submerged pump according to claim 1, wherein the cooling mechanism is a reflux pipe having an open end. 前記還流パイプの途中に第二のオリフィスを設けている、請求項3に記載したサブマージドポンプ駆動用オイルモータの冷却機構。   The cooling mechanism for an oil motor for driving a submerged pump according to claim 3, wherein a second orifice is provided in the middle of the reflux pipe.
JP2010125801A 2010-06-01 2010-06-01 Oil motor cooling mechanism for submerged pump drive Active JP4540750B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010125801A JP4540750B1 (en) 2010-06-01 2010-06-01 Oil motor cooling mechanism for submerged pump drive
CN2011100520017A CN102270902B (en) 2010-06-01 2011-03-04 Cooling mechanism of submersible pump driving oil motor
KR1020110021873A KR101091328B1 (en) 2010-06-01 2011-03-11 Cooling device of an oil moter for driving a submerged pump
BRPI1100937-3A BRPI1100937A2 (en) 2010-06-01 2011-03-25 oil motor cooling mechanism for a submerged pump drive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010125801A JP4540750B1 (en) 2010-06-01 2010-06-01 Oil motor cooling mechanism for submerged pump drive

Publications (2)

Publication Number Publication Date
JP4540750B1 JP4540750B1 (en) 2010-09-08
JP2011252414A true JP2011252414A (en) 2011-12-15

Family

ID=42824766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010125801A Active JP4540750B1 (en) 2010-06-01 2010-06-01 Oil motor cooling mechanism for submerged pump drive

Country Status (4)

Country Link
JP (1) JP4540750B1 (en)
KR (1) KR101091328B1 (en)
CN (1) CN102270902B (en)
BR (1) BRPI1100937A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013173468A (en) * 2012-02-27 2013-09-05 Kurimoto Ltd Unloading system
JP2022015381A (en) * 2020-07-09 2022-01-21 株式会社電業社機械製作所 pump

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5891064B2 (en) * 2012-02-22 2016-03-22 Kyb株式会社 Hydraulic motor
CN109026740B (en) * 2018-07-27 2020-06-09 武汉船用机械有限责任公司 Hydraulic submerged sea water pump
EP4229301A1 (en) 2020-10-19 2023-08-23 Milwaukee Electric Tool Corporation Stick pump assembly

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5696180A (en) * 1979-11-21 1981-08-04 Ifield Eng Pty Oil pressure device
JPS5768569A (en) * 1980-10-15 1982-04-26 Honda Motor Co Ltd Swash plate type hydraulic apparatus
JPS5857596U (en) * 1981-10-16 1983-04-19 大晃機械工業株式会社 pump equipment
JPS63102974U (en) * 1986-12-22 1988-07-04
JPH0744789Y2 (en) * 1990-06-15 1995-10-11 三菱重工業株式会社 Submerged pump device
JPH08210242A (en) * 1995-02-01 1996-08-20 Hitachi Constr Mach Co Ltd Axial piston pump motor
JPH09256945A (en) * 1996-03-22 1997-09-30 Hitachi Constr Mach Co Ltd Axial-piston type hydraulic pump
JPH11257296A (en) * 1998-03-06 1999-09-21 Kosaka Laboratory Ltd Submerged cargo pump device reducing vibration noise

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2283603A1 (en) * 1998-10-01 2000-04-01 Paul W. Behnke Forced closed-loop cooling for a submersible pump motor
JP2004180477A (en) * 2002-11-29 2004-06-24 Honda Motor Co Ltd Cooling structure of motor in front and rear wheel drive vehicle
CN101413517A (en) * 2007-10-19 2009-04-22 衡阳市大力成泵业制造有限责任公司 Novel self-cooling submersible electric pump

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5696180A (en) * 1979-11-21 1981-08-04 Ifield Eng Pty Oil pressure device
JPS5768569A (en) * 1980-10-15 1982-04-26 Honda Motor Co Ltd Swash plate type hydraulic apparatus
JPS5857596U (en) * 1981-10-16 1983-04-19 大晃機械工業株式会社 pump equipment
JPS63102974U (en) * 1986-12-22 1988-07-04
JPH0744789Y2 (en) * 1990-06-15 1995-10-11 三菱重工業株式会社 Submerged pump device
JPH08210242A (en) * 1995-02-01 1996-08-20 Hitachi Constr Mach Co Ltd Axial piston pump motor
JPH09256945A (en) * 1996-03-22 1997-09-30 Hitachi Constr Mach Co Ltd Axial-piston type hydraulic pump
JPH11257296A (en) * 1998-03-06 1999-09-21 Kosaka Laboratory Ltd Submerged cargo pump device reducing vibration noise

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013173468A (en) * 2012-02-27 2013-09-05 Kurimoto Ltd Unloading system
JP2022015381A (en) * 2020-07-09 2022-01-21 株式会社電業社機械製作所 pump
JP7418929B2 (en) 2020-07-09 2024-01-22 株式会社電業社機械製作所 pump

Also Published As

Publication number Publication date
JP4540750B1 (en) 2010-09-08
CN102270902B (en) 2013-05-08
KR101091328B1 (en) 2011-12-07
BRPI1100937A2 (en) 2012-10-30
CN102270902A (en) 2011-12-07

Similar Documents

Publication Publication Date Title
JP4540750B1 (en) Oil motor cooling mechanism for submerged pump drive
US10465689B2 (en) Pump system for high pressure application
US9103342B2 (en) Underwater delivery unit
EP2022985A2 (en) Valiable displacement type gear pump
US8287255B2 (en) Variable displacement rotary pump
US20100247365A1 (en) Double gear pump
US10094291B2 (en) Gear pump intended, in particular, as a high pressure fuel pump
CN107636291A (en) Fuel pump components
US5215430A (en) Ignition-source free fuel pump
JP2007314045A (en) Vertical type power unit and outboard motor
CN104481875A (en) Screw compressor
US11143183B2 (en) Gear pump bearing with hybrid pad shutoff
JP2013241888A (en) Reciprocating pump
US6824350B2 (en) Hydrodynamic sealing system for centrifugal systems
US8979478B2 (en) Fully enclosed seal and bearing assembly for between-bearing pumps
JP2001059561A (en) Fluid machine incorporating rotary body
CN105090058A (en) Unpressurized LNG (Liquefied Natural Gas) immersed pump
JP3603678B2 (en) Fuel leakage prevention device for fuel supply device of internal combustion engine
JP5574753B2 (en) Gear pump for marine fuel oil supply
JP2021504618A (en) Bending shaft hydraulic pump with centrifugal support
US20220099103A1 (en) Mechanical Seal Including Recovery Port For Use With Pumps
JP4065212B2 (en) Tank truck handling equipment
KR102577037B1 (en) Relief Valve for Oil Pump
CN107399418A (en) Propulsion unit for carrier waterborne
JP6723759B2 (en) Lubricating oil supply structure and internal combustion engine system including the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100607

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20100607

TRDD Decision of grant or rejection written
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20100616

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100622

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100622

R150 Certificate of patent or registration of utility model

Ref document number: 4540750

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250