JP2011251394A - Electrode wire for electric discharge machining - Google Patents

Electrode wire for electric discharge machining Download PDF

Info

Publication number
JP2011251394A
JP2011251394A JP2010128357A JP2010128357A JP2011251394A JP 2011251394 A JP2011251394 A JP 2011251394A JP 2010128357 A JP2010128357 A JP 2010128357A JP 2010128357 A JP2010128357 A JP 2010128357A JP 2011251394 A JP2011251394 A JP 2011251394A
Authority
JP
Japan
Prior art keywords
electrode wire
electric discharge
wire
discharge machining
tensile strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010128357A
Other languages
Japanese (ja)
Other versions
JP5231486B2 (en
Inventor
Hideki Kasada
秀樹 笠田
Hiroshi Shoda
博 鎗田
Hideaki Shimoda
秀明 下田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Metal Industry Co Ltd
Original Assignee
Suzuki Metal Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Metal Industry Co Ltd filed Critical Suzuki Metal Industry Co Ltd
Priority to JP2010128357A priority Critical patent/JP5231486B2/en
Priority to KR1020127024816A priority patent/KR101486028B1/en
Priority to EP11789730.6A priority patent/EP2578343B1/en
Priority to PCT/JP2011/062302 priority patent/WO2011152327A1/en
Priority to CN201180015221.0A priority patent/CN102971102B/en
Publication of JP2011251394A publication Critical patent/JP2011251394A/en
Application granted granted Critical
Publication of JP5231486B2 publication Critical patent/JP5231486B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H1/00Electrical discharge machining, i.e. removing metal with a series of rapidly recurring electrical discharges between an electrode and a workpiece in the presence of a fluid dielectric
    • B23H1/04Electrodes specially adapted therefor or their manufacture
    • B23H1/06Electrode material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
    • C23C28/025Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only with at least one zinc-based layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/04Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of bars or wire
    • B21C37/042Manufacture of coated wire or bars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H7/00Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
    • B23H7/02Wire-cutting
    • B23H7/08Wire electrodes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/021Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer

Abstract

PROBLEM TO BE SOLVED: To provide an electrode wire for electric discharge machining capable of not only improving the cutting accuracy of a workpiece but also improving a machine speed by restraining reduction in tensile strength even if discharge energy is increased.SOLUTION: The electrode wire for the electric discharge machining is characterized in that the outer periphery of a conductor is covered with nickel (Ni) with a stainless steel wire as a conductor, and then, successively covered with copper (Cu) and zinc (Zn), and desirably, a thickness of the nickel (Ni) is 0.01-2.0 μm, and tensile strength at the ordinary temperature of the electrode wire is 1900-3200N/mm, and the tensile strength of the electrode wire at 400°C is 70% or higher of the tensile strength at the ordinary temperature.

Description

本発明は、放電加工用電極線に関する。   The present invention relates to an electrode wire for electric discharge machining.

半導体リードフレームの金型などに使用されている精密なワイヤ放電加工は、電極線の細径化が進んでいる。特に、線径0.1mm以下の細径放電加工用電極線は、高強度が必須であるため、芯線に高強度高炭素鋼線、その外周に放電加工性を良好にするCuとZnの合金被覆層、または、1層目にCu、2層目にZnの2層構造のものなどが、製品化され、流通している。   In precision wire electric discharge machining used for molds of semiconductor lead frames, etc., the diameter of electrode wires has been reduced. In particular, the high-strength high-strength high-carbon steel wire is essential for the electrode wire for small-diameter electric discharge machining with a wire diameter of 0.1 mm or less, and an alloy of Cu and Zn that improves electric discharge workability on the outer periphery of the core wire. A covering layer or a two-layer structure of Cu as the first layer and Zn as the second layer has been commercialized and distributed.

しかし、これらの電極線は放電加工時に高温に曝されるため、耐熱性の低い素材では、放電加工時に高い張力で加工ができなかった。そのため急激な高温化による爆発により電極線の振動が大きくなり、切断精度が悪くなるという問題点があった。   However, since these electrode wires are exposed to high temperatures during electric discharge machining, materials having low heat resistance cannot be processed with high tension during electric discharge machining. For this reason, there has been a problem that the vibration of the electrode wire is increased due to the explosion caused by the rapid increase in temperature, and the cutting accuracy is deteriorated.

放電加工用電極線に関しては、従来から種々の提案がなされており、例えば、特開平03−111126号公報(下記特許文献1)には、硬鋼線、ステンレス鋼線、黄銅線等の金属線の表面に銅の被覆層を形成し、さらにその上に亜鉛の被覆層を形成することにより、全被覆層の厚さが0.2〜20μmを有する2層構造の被覆層を形成し、上記被覆層のいずれか一方又は両層にわたって平均粒径が10μm以下の黒鉛粒子を分散してなることにより、放電加工による熱で銅が溶けて、被加工物に融着することがなく、安定した放電が得られ、加工速度を向上させることができる放電加工用電極線が記載されている。   Various proposals have been made regarding the electrode wire for electric discharge machining. For example, Japanese Patent Laid-Open No. 03-111126 (the following Patent Document 1) discloses a metal wire such as a hard steel wire, a stainless steel wire, or a brass wire. By forming a copper coating layer on the surface of this, and further forming a zinc coating layer thereon, a coating layer having a two-layer structure having a total coating layer thickness of 0.2 to 20 μm is formed. By dispersing graphite particles having an average particle diameter of 10 μm or less over one or both of the coating layers, copper is melted by heat from electric discharge machining, and is stable without being fused to the workpiece. An electrode wire for electric discharge machining is described in which electric discharge is obtained and the machining speed can be improved.

しかし、特許文献1の方法は、被覆中に黒鉛粒子を分散させる必要があり、製造工程が複雑で製造コストが高いという問題点があった。   However, the method of Patent Document 1 has a problem that it is necessary to disperse graphite particles in the coating, and the manufacturing process is complicated and the manufacturing cost is high.

また、特開平09−103922号公報(下記特許文献2)には、引張強さが200〜300Kgf/mm2 、線径が0.05〜0.20mmのステンレス鋼から成り、かつ導電率が1〜3%であることにより、被加工物の加工精度や表面粗さを飛躍的に向上でき、放電加工後の表面研磨工程を必要とせず、かつ、電極線の製造コストや放電加工機の維持管理コストを低減できるワイヤ放電加工用電極線が記載されている。 Japanese Patent Application Laid-Open No. 09-103922 (Patent Document 2 below) describes a stainless steel having a tensile strength of 200 to 300 Kgf / mm 2 and a wire diameter of 0.05 to 0.20 mm, and has an electrical conductivity of 1. By being ~ 3%, the machining accuracy and surface roughness of the workpiece can be dramatically improved, no surface polishing step after electric discharge machining is required, and the manufacturing cost of the electrode wire and the maintenance of the electric discharge machine are maintained. An electrode wire for wire electric discharge machining that can reduce the management cost is described.

しかし、特許文献2は、被覆を行わないステンレス鋼線を用いるため、放電加工性能が十分でないという問題点があった。   However, since Patent Document 2 uses a stainless steel wire that is not coated, there is a problem in that electric discharge machining performance is not sufficient.

特開平03−111126号公報Japanese Patent Laid-Open No. 03-111126 特開平09−103922号公報Japanese Patent Laid-Open No. 09-103922

本発明は、前述のような従来技術の問題点を解決し、放電エネルギーを増大させても引張強度の低下が抑制でき、被加工物の切断精度を向上させることができるうえ、加工速度を向上させることができる放電加工用電極線を提供することを課題とする。   The present invention solves the problems of the prior art as described above, can suppress the decrease in tensile strength even when the discharge energy is increased, can improve the cutting accuracy of the workpiece, and improve the processing speed. It is an object of the present invention to provide an electrode wire for electric discharge machining that can be made to occur.

本発明は、前述の課題を解決するために鋭意検討の結果なされたものであり、その要旨とするところは特許請求の範囲に記載した通りの下記内容である。
(1)ステンレス鋼線を芯線とし、該芯線の外周にニッケル(Ni)を被覆し、次いで銅(Cu)及び亜鉛(Zn)を順次被覆した電極線であって、引張強さが1900N/mm2以上であることを特徴とする放電加工用電極線。
(2)前記ニッケル(Ni)の厚さが0.01〜2.0μmであることを特徴とする(1)に記載の放電加工用電極線。
(3)前記電極線の常温における引張強さが1900〜3200N/mm2であって、該電極線の400℃における引張強さが、常温における引張強さの70%以上であることを特徴とする(1)または(2)に記載の放電加工用電極線。
(4)前記電極線の伸線加工後の断面外径がφ0.03mm〜0.1mmであることを特徴とする(1)〜(3)のいずれか一項に記載の放電加工用電極線。
(5)前記銅(Cu)及び亜鉛(Zn)を合金化する熱処理を施したことを特徴とする(1)〜(4)のいずれか一項に記載の放電加工用電極線。
(6)熱間引張加工により真直加工を施したことを特徴とする(1)〜(5)のいずれか一項に記載の放電加工用電極線。
The present invention has been made as a result of intensive studies in order to solve the above-described problems, and the gist of the present invention is the following contents as described in the claims.
(1) An electrode wire in which a stainless steel wire is used as a core wire, the outer periphery of the core wire is coated with nickel (Ni), and then copper (Cu) and zinc (Zn) are sequentially coated with a tensile strength of 1900 N / mm An electrode wire for electric discharge machining characterized by being 2 or more.
(2) The electrode wire for electric discharge machining according to (1), wherein the nickel (Ni) has a thickness of 0.01 to 2.0 μm.
(3) The tensile strength of the electrode wire at normal temperature is 1900-3200 N / mm 2 , and the tensile strength at 400 ° C. of the electrode wire is 70% or more of the tensile strength at normal temperature. The electrode wire for electric discharge machining according to (1) or (2).
(4) The electrode wire for electric discharge machining according to any one of (1) to (3), wherein an outer diameter of a cross section of the electrode wire after drawing is φ0.03 mm to 0.1 mm .
(5) The electrode wire for electric discharge machining according to any one of (1) to (4), wherein a heat treatment for alloying the copper (Cu) and zinc (Zn) is performed.
(6) The electrode wire for electric discharge machining as described in any one of (1) to (5), wherein straight processing is performed by hot tensile processing.

本発明によれば、放電エネルギーを増大させても引張強度の低下が抑制でき、被加工物の切断精度を向上させることができるうえ、加工速度を向上させることができる放電加工用電極線を提供することができるなど、産業上有用な著しい効果を奏する。   ADVANTAGE OF THE INVENTION According to this invention, even if it increases discharge energy, the fall of tensile strength can be suppressed, the cutting precision of a workpiece can be improved, and the electrode wire for electrical discharge machining which can improve a processing speed is provided. It has a significant industrially useful effect.

以下に本発明を実施するための最良の形態について説明する。図1は、本発明の放電加工用電極線を例示する断面図である。図1(a)に示すように、本発明の放電加工用電極線は、ステンレス鋼線を芯線1とし、該芯線1の外周にニッケル(Ni)2を被覆し、次いで銅(Cu)3及び亜鉛(Zn)4を順次被覆した電極線であって、引張強さが1900N/mm2以上であることを特徴とする。 The best mode for carrying out the present invention will be described below. FIG. 1 is a cross-sectional view illustrating an electrode wire for electric discharge machining according to the present invention. As shown in FIG. 1 (a), the electrode wire for electric discharge machining according to the present invention has a stainless steel wire as a core wire 1, the outer periphery of the core wire 1 is coated with nickel (Ni) 2, and then copper (Cu) 3 and It is an electrode wire coated with zinc (Zn) 4 in sequence, and has a tensile strength of 1900 N / mm 2 or more.

放電加工は、電極線に高い張力を張ることにより、安定した加工速度と、良好な切断精度が得られる。しかし、加工速度を高めるため、放電エネルギーを大きくすると、すなわち、電圧及び電流が大きいほど、電極線が加熱される。このため高強度の電極線を使用しても、耐熱性が悪いと、高い張力で加工することが出来ないため、安定した加工速度と、良好な切断精度を得ることができなくなる。   In the electric discharge machining, a stable machining speed and good cutting accuracy can be obtained by applying a high tension to the electrode wire. However, when the discharge energy is increased in order to increase the processing speed, that is, as the voltage and current are increased, the electrode wire is heated. For this reason, even if a high-strength electrode wire is used, if the heat resistance is poor, it cannot be processed with high tension, so that a stable processing speed and good cutting accuracy cannot be obtained.

本発明においては、芯線を耐熱性の優れたステンレス鋼線とすることにより、放電エネルギーを大きくしても高い張力が得られ、そして、加工速度の向上を図ることができる。本発明においては、ステンレス鋼の種類は問わないが、汎用性の観点からSUS304や、高強度化が図れる高窒素ステンレス鋼などのステンレス鋼が好ましい。   In the present invention, by making the core wire a stainless steel wire having excellent heat resistance, high tension can be obtained even when the discharge energy is increased, and the processing speed can be improved. In the present invention, the type of stainless steel is not limited, but stainless steel such as SUS304 and high nitrogen stainless steel that can be increased in strength is preferable from the viewpoint of versatility.

また、従来の電極線では、放電加工による電極線温度が上昇するため、電極線の送り速度低下させることができなかった。   Moreover, in the conventional electrode wire, since the electrode wire temperature by electric discharge machining rose, it was not possible to reduce the feed rate of the electrode wire.

本発明の放電加工用電極線は、電極線温度が上昇しても耐熱性に優れるので、電極線の送り速度を下げて、電極線の消耗の低減を図ることができる。   Since the electrode wire for electric discharge machining of the present invention is excellent in heat resistance even when the electrode wire temperature rises, the electrode wire feed rate can be lowered to reduce the consumption of the electrode wire.

また、従来の精密加工のための細径放電加工電極線の考え方は、芯線に高強度のものを適用し高強度を維持し、その外層に放電加工性を向上させるためのCuとZnの合金被覆層、または、1層目にCu、2層目にZnの2層構造のものなど被覆層を設けていた。すなわち、芯線で高強度化を図り、外層被覆で放電加工性の向上を図ることの2つの機能を組み合わせて造られたものである。   Also, the conventional idea of small-diameter EDM electrode wires for precision machining is to apply a high-strength core wire to maintain high strength, and an alloy of Cu and Zn to improve EDM in the outer layer A coating layer such as a coating layer or a two-layer structure of Cu as the first layer and Zn as the second layer was provided. That is, it is made by combining two functions of increasing the strength with the core wire and improving the electrical discharge processability with the outer layer coating.

この2つの機能だけでは、高強度化を図っても、放電加工時の高温になると高い張力で加工することができないため、安定した加工速度と、良好な切断精度を得ることができなかった。   With these two functions alone, even if the strength is increased, it is impossible to process with a high tension at a high temperature during electric discharge machining, and thus a stable machining speed and good cutting accuracy cannot be obtained.

前記課題を解決するため、本発明では、芯線は高強度化を図るだけでなく、高強度化と高耐熱性の2つの機能をもたせ、次いで芯材よりも熱拡散性が高く、且つ線膨張率の低い素材であるニッケル(Ni)を被覆し、放電により発生する熱を拡散し、膨張を低減することで歪みの抑制を図る。最外層に、放電加工性の向上を図るための素材である銅(Cu)及び亜鉛(Zn)の被覆をすることとした。即ち、本発明の放電加工用電極線は、強度維持機能、耐熱機能、歪み抑制機能、および放電加工の向上機能を合わせ持つ放電加工用電極線である。   In order to solve the above problems, in the present invention, the core wire has not only high strength but also two functions of high strength and high heat resistance, and then higher thermal diffusibility than the core material and linear expansion. Strain is suppressed by covering nickel (Ni), which is a low-rate material, diffusing heat generated by electric discharge, and reducing expansion. The outermost layer was coated with copper (Cu) and zinc (Zn), which are materials for improving electric discharge machinability. That is, the electrode wire for electric discharge machining according to the present invention is an electrode wire for electric discharge machining having a strength maintaining function, a heat resistance function, a distortion suppressing function, and an electric discharge machining improving function.

これにより前記課題となる被加工物の切断精度の向上や、放電エネルギーを大きくしても張力の低下が抑制される。すなわち放電加工性の向上。更に、電極線の送り速度を遅くしても、従来と同等量の切断が可能な、すなわち、経済性にも良い、放電加工電極線を提供することができる。   As a result, improvement in the cutting accuracy of the workpiece, which is the subject, and reduction in tension are suppressed even when the discharge energy is increased. That is, improvement of electrical discharge machining. Furthermore, even if the feeding speed of the electrode wire is slowed, an electric discharge machining electrode wire that can be cut in the same amount as in the conventional case, that is, good in economic efficiency can be provided.

また、放電により発生した熱の芯線への熱伝導を抑制するためには、前記ニッケル(Ni)の厚さは、0.01〜2.0μmとすることが好ましい。前記電極線の常温における引張強さは、1900〜3200N/mm2であって、該電極線の400℃における引張強さが、常温における引張強さの70%以上であることが好ましい。 Moreover, in order to suppress the heat conduction to the core wire of the heat which generate | occur | produced by discharge, it is preferable that the thickness of the said nickel (Ni) shall be 0.01-2.0 micrometers. The electrode wire has a tensile strength at normal temperature of 1900 to 3200 N / mm 2 , and the tensile strength at 400 ° C. of the electrode wire is preferably 70% or more of the tensile strength at normal temperature.

また、前記電極線の伸線加工後の断面外径は適用する放電加工装置の型式に合せてφ0.03mm〜0.1mmであることが好ましい。
また、前記銅(Cu)及び亜鉛(Zn)の被覆は、それぞれ独立の層でもよいが、図1(b)に示すように熱処理を施して合金化することにより密着性を高めることができる。
The outer diameter of the electrode wire after drawing is preferably 0.03 mm to 0.1 mm in accordance with the model of the electric discharge machine to be applied.
The copper (Cu) and zinc (Zn) coatings may be independent layers, but the adhesion can be improved by heat treatment and alloying as shown in FIG.

なお、前記電極線に熱間引張加工により真直加工を施すことにより、放電加工時の振動をさらに低減することができるだけでなく、自動結線を良好に行うことができる。   In addition, by performing straight processing on the electrode wire by hot tensile processing, not only can vibrations during electric discharge processing be further reduced, but also automatic connection can be satisfactorily performed.

本発明を下記条件で実施した結果を表1に示す。本実施例の基本的な製造プロセスは、芯材のステンレス鋼線或いは、高炭素鋼線を用い、必要機能を備えるための被覆を施したものに、強加工を行い製品線径まで仕上げ、更に真直熱処理を施したものである。下表の実施例は、線径0.05mmに仕上げたもので評価を行った。   The results of carrying out the present invention under the following conditions are shown in Table 1. The basic manufacturing process of the present embodiment is to use a stainless steel wire or a high carbon steel wire as a core material and apply a coating to provide a necessary function, and perform strong processing to finish the product wire diameter. It has been subjected to straight heat treatment. The examples in the table below were evaluated by finishing with a wire diameter of 0.05 mm.

発明例1〜8は、芯線にSUS304ステンレス鋼線(ステンレスA)もしくは窒素を添加したステンレス鋼(ステンレスB)を使用し、Niを被覆し、次いでCu、更に次いでZnを被覆し、拡散ありの場合は合金化熱処理したもので、それぞれ加工度を変えて強加工を実施し、引張強さの異なるもを作製した。尚、評価時のNiの厚みは0.01〜0.2μmとし、Cu及びZnを合金化したものの厚みは5μmになるようにした。発明例1〜10は、400℃における引張強度が常温における引張強度を100とした場合に比べて70%以上であり、かつ、加工速度は従来材である比較例4に比べて10%以上向上することが確認された。   Inventive Examples 1 to 8 use SUS304 stainless steel wire (stainless steel A) or stainless steel (stainless steel B) added with nitrogen as the core wire, and coat Ni, then Cu, and then Zn, In some cases, they were heat-treated by alloying, and each of them was subjected to strong processing at different degrees of processing to produce ones having different tensile strengths. In addition, the thickness of Ni at the time of evaluation was set to 0.01 to 0.2 μm, and the thickness of the alloyed Cu and Zn was set to 5 μm. Inventive Examples 1 to 10 have a tensile strength at 400 ° C. of 70% or more compared to the case where the tensile strength at room temperature is 100, and the processing speed is improved by 10% or more compared to Comparative Example 4 which is a conventional material. Confirmed to do.

比較例1〜4、および発明例1〜4は、拡散処理を行ったもので、比較例5〜8、および発明例5〜8は、拡散処理を行わなかったものである。比較例1は、Ni被覆を行わなかったため、加工速度が低かった。発明例1は、Ni被覆を行ったので、加工速度が高かった。発明例2は、Ni被覆の厚さが0.15μmであり、ステンレスAを用いて拡散処理を行ったものの中では、加工速度が最も高かった。   Comparative Examples 1 to 4 and Invention Examples 1 to 4 were subjected to diffusion treatment, and Comparative Examples 5 to 8 and Invention Examples 5 to 8 were not subjected to diffusion treatment. In Comparative Example 1, since the Ni coating was not performed, the processing speed was low. Inventive Example 1 was Ni-coated, so the processing speed was high. Invention Example 2 had a Ni coating thickness of 0.15 μm, and the processing speed was the highest among those subjected to diffusion treatment using stainless steel A.

発明例3は、Ni被覆の厚みが2μmであり芯線の断面積が小さいため、引張強さが低くなったが、加工速度は比較例8に比べて高かった。比較例2は、Ni被覆の厚みが3μmであり、芯線の断面積が小さくなり過ぎて引張強さが低く発明範囲外であり、そのため加工速度が比較例8より小さくなった。比較例3は、芯線の引張強さを低くして、加工速度が高かった発明例2と同じく、Ni被覆の厚さを0.15μmとしたが、加工速度が比較例8よりも低かった。発明例4は、ステンレスAよりも引張強さの高いステンレスBを用いたため、加工速度がステンレスAよりも更に高かった。   Invention Example 3 had a Ni coating thickness of 2 μm and a small cross-sectional area of the core wire, so the tensile strength was low, but the processing speed was higher than that of Comparative Example 8. In Comparative Example 2, the Ni coating thickness was 3 μm, the cross-sectional area of the core wire was too small, the tensile strength was low and outside the scope of the invention, and therefore the processing speed was lower than that of Comparative Example 8. In Comparative Example 3, the thickness of the Ni coating was set to 0.15 μm as in Invention Example 2 in which the tensile strength of the core wire was lowered and the processing speed was high, but the processing speed was lower than that in Comparative Example 8. Inventive example 4 used stainless steel B, which has a higher tensile strength than stainless steel A, so that the processing speed was higher than that of stainless steel A.

比較例4は、芯線が炭素鋼なので400℃における引張強さが低かった。比較例5は、Ni被覆を行わなかったため、加工速度が低かった。発明例5は、Ni被覆を行うことにより、加工速度が高かった。発明例6は、Ni被覆の厚さが0.15μmであり、ステンレスAを用いて拡散処理を行わなかったものの中では、加工速度が最も高かった。発明例7は、Ni被覆の厚みが2μmであり芯線の断面積が小さいため、引張強さが低くなったが、加工速度は比較例8に比べて高かった。   Since the core wire was carbon steel, the comparative example 4 had low tensile strength in 400 degreeC. In Comparative Example 5, since Ni coating was not performed, the processing speed was low. Invention Example 5 had a high processing speed by performing Ni coating. Invention Example 6 had a Ni coating thickness of 0.15 μm, and the processing speed was the highest among those in which stainless steel A was not used for diffusion treatment. Invention Example 7 had a Ni coating thickness of 2 μm and a small cross-sectional area of the core wire, so the tensile strength was low, but the processing speed was higher than that of Comparative Example 8.

比較例6は、Ni被覆の厚みが3μmであり、芯線の断面積が小さくなり過ぎて引張強さが低く発明範囲外であり、そのため加工速度が比較例8より小さくなった。比較例7は、芯線の引張強さを低くして、加工速度が高かった発明例6と同じく、Ni被覆の厚さを0.15μmとしたが、加工速度が比較例8よりも低かった。発明例8は、ステンレスAよりも引張強さの高いステンレスBを用いたため、加工速度がステンレスAよりも更に高かった。比較例8は、炭素鋼なので400℃における引張強さが低かった。以上の実施例により、本発明の効果が確認された。   In Comparative Example 6, the thickness of the Ni coating was 3 μm, the cross-sectional area of the core wire was too small, the tensile strength was low and outside the scope of the invention, and therefore the processing speed was smaller than that of Comparative Example 8. In Comparative Example 7, the thickness of the Ni coating was set to 0.15 μm as in Invention Example 6 in which the tensile strength of the core wire was reduced and the processing speed was high, but the processing speed was lower than that in Comparative Example 8. Inventive Example 8 used stainless steel B, which has a higher tensile strength than stainless steel A, so that the processing speed was higher than that of stainless steel A. Since Comparative Example 8 was a carbon steel, the tensile strength at 400 ° C. was low. The effects of the present invention were confirmed by the above examples.

Figure 2011251394
Figure 2011251394

本発明の放電加工用電極線を例示する断面図である。It is sectional drawing which illustrates the electrode wire for electrical discharge machining of this invention.

1 芯線
2 Ni被覆
3 Cu被覆
4 ZN被覆
5 Cu及びZn合金化被覆
1 Core wire 2 Ni coating 3 Cu coating 4 ZN coating 5 Cu and Zn alloying coating

Claims (6)

ステンレス鋼線を芯線とし、該芯線の外周にニッケル(Ni)を被覆し、次いで銅(Cu)及び亜鉛(Zn)を順次被覆した電極線であって、引張強さが1900N/mm2以上であることを特徴とする放電加工用電極線。 An electrode wire having a stainless steel wire as a core wire, the outer periphery of the core wire being coated with nickel (Ni), and then sequentially coated with copper (Cu) and zinc (Zn), and having a tensile strength of 1900 N / mm 2 or more An electrode wire for electric discharge machining, characterized in that there is. 前記ニッケル(Ni)の厚さが0.01〜2.0μmであることを特徴とする請求項1に記載の放電加工用電極線。   The electrode wire for electric discharge machining according to claim 1, wherein the nickel (Ni) has a thickness of 0.01 to 2.0 μm. 前記電極線の常温における引張強さが1900〜3200N/mm2であって、該電極線の400℃における引張強さが、常温における引張強さの70%以上であることを特徴とする請求項1または請求項2に記載の放電加工用電極線。 The tensile strength of the electrode wire at normal temperature is 1900 to 3200 N / mm 2 , and the tensile strength of the electrode wire at 400 ° C. is 70% or more of the tensile strength at normal temperature. The electrode wire for electric discharge machining according to claim 1 or 2. 前記電極線の伸線加工後の断面外径がφ0.03mm〜0.1mmであることを特徴とする請求項1〜3のいずれか一項に記載の放電加工用電極線。   The electrode wire for electric discharge machining according to any one of claims 1 to 3, wherein an outer diameter of a cross section of the electrode wire after wire drawing is 0.03 mm to 0.1 mm. 前記銅(Cu)及び亜鉛(Zn)を合金化する熱処理を施したことを特徴とする請求項1〜4のいずれか一項に記載の放電加工用電極線。   The electrode wire for electric discharge machining according to any one of claims 1 to 4, wherein a heat treatment for alloying the copper (Cu) and zinc (Zn) is performed. 熱間引張加工により真直加工を施したことを特徴とする請求項1〜5のいずれか一項に記載の放電加工用電極線。
The electrode wire for electric discharge machining according to any one of claims 1 to 5, wherein straight machining is performed by hot tensile machining.
JP2010128357A 2010-06-04 2010-06-04 Electrode wire for electric discharge machining Active JP5231486B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2010128357A JP5231486B2 (en) 2010-06-04 2010-06-04 Electrode wire for electric discharge machining
KR1020127024816A KR101486028B1 (en) 2010-06-04 2011-05-30 Electrode wire for electrical discharge machining
EP11789730.6A EP2578343B1 (en) 2010-06-04 2011-05-30 Electrode wire for electrical discharge machining
PCT/JP2011/062302 WO2011152327A1 (en) 2010-06-04 2011-05-30 Electrode wire for electrical discharge machining
CN201180015221.0A CN102971102B (en) 2010-06-04 2011-05-30 Electrode wire for electrical discharge machining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010128357A JP5231486B2 (en) 2010-06-04 2010-06-04 Electrode wire for electric discharge machining

Publications (2)

Publication Number Publication Date
JP2011251394A true JP2011251394A (en) 2011-12-15
JP5231486B2 JP5231486B2 (en) 2013-07-10

Family

ID=45066694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010128357A Active JP5231486B2 (en) 2010-06-04 2010-06-04 Electrode wire for electric discharge machining

Country Status (5)

Country Link
EP (1) EP2578343B1 (en)
JP (1) JP5231486B2 (en)
KR (1) KR101486028B1 (en)
CN (1) CN102971102B (en)
WO (1) WO2011152327A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022249336A1 (en) * 2021-05-26 2022-12-01 住友電気工業株式会社 Electric wire and method for manufacturing electric wire

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013009767A1 (en) * 2013-06-11 2014-12-11 Heinrich Stamm Gmbh Wire electrode for spark erosive cutting of objects
CN104191056B (en) * 2014-08-13 2016-06-29 宁波博威麦特莱科技有限公司 A kind of high accuracy zinc-containing alloy wire electrode and preparation method thereof
CN104400159A (en) * 2014-10-28 2015-03-11 苏州市宝玛数控设备有限公司 High-efficiency multilayer composite wire electrode
CN105057802A (en) * 2015-08-10 2015-11-18 江苏塞维斯数控科技有限公司 Heat-resisting tool for linear cutting machine tool
DE102017008325B4 (en) 2017-08-29 2021-10-28 Berkenhoff Gmbh Wire electrode for electrical discharge machining of an object
KR20190037736A (en) 2017-09-29 2019-04-08 주식회사 풍국 Printed wire electrode and manufacturing method thereof
CN108857286A (en) * 2018-08-01 2018-11-23 宁波康强微电子技术有限公司 Corrugated electric discharge machining electrode line and preparation method thereof
KR20200049183A (en) * 2018-10-31 2020-05-08 주식회사 풍국 Electric discharge machining wire electrode and manufacturing method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0366524A (en) * 1989-07-31 1991-03-22 Kanai Hiroyuki Electrode wire for electric discharge machining
JP2000107943A (en) * 1998-09-30 2000-04-18 Sodick Co Ltd Wire electronic discharge machining electrode line

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6171925A (en) * 1984-09-11 1986-04-12 Furukawa Electric Co Ltd:The Method of producing composite electrode wire for electrospark machining
JPS62148121A (en) * 1985-12-20 1987-07-02 Sumitomo Electric Ind Ltd Cut wire for electric discharge machining
JPH03111126A (en) 1989-09-27 1991-05-10 Kanai Hiroyuki Electrode wire for electric discharge machining
JPH09103922A (en) 1995-10-09 1997-04-22 Kanai Hiroaki Electrode wire for wire electric discharge machining
JP3319271B2 (en) * 1996-03-05 2002-08-26 日立電線株式会社 Electrode wire for electric discharge machining
WO2005097387A1 (en) * 2004-04-01 2005-10-20 Nv Bekaert Sa Electrode for high-speed electrical discharge machining
CN101505900A (en) * 2007-12-10 2009-08-12 冲电线株式会社 Electrode wire for wire electric discharging, method for manufacturing the electrode wire, and apparatus for manufacturing bus line thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0366524A (en) * 1989-07-31 1991-03-22 Kanai Hiroyuki Electrode wire for electric discharge machining
JP2000107943A (en) * 1998-09-30 2000-04-18 Sodick Co Ltd Wire electronic discharge machining electrode line

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022249336A1 (en) * 2021-05-26 2022-12-01 住友電気工業株式会社 Electric wire and method for manufacturing electric wire

Also Published As

Publication number Publication date
CN102971102A (en) 2013-03-13
WO2011152327A1 (en) 2011-12-08
KR101486028B1 (en) 2015-01-22
CN102971102B (en) 2014-12-17
EP2578343A4 (en) 2014-04-30
EP2578343B1 (en) 2016-06-01
EP2578343A1 (en) 2013-04-10
JP5231486B2 (en) 2013-07-10
KR20130027469A (en) 2013-03-15

Similar Documents

Publication Publication Date Title
JP5231486B2 (en) Electrode wire for electric discharge machining
JP6029778B1 (en) High-precision zinc-based alloy electrode wire and manufacturing method thereof
JP6089129B2 (en) Manufacturing method of electrode wire for electric discharge machining
CN104805484B (en) Production method for Cu-Ni/Ni-Ag double-composite coating extra-thin steel strip
JP2018516769A (en) Scale-like microstructured electrode wire material and its production method and use
WO2015033896A1 (en) Electrode wire for wire electric discharge machining, and method for producing same
JP2013035119A (en) Electrode wire for electric discharge machining and method of manufacturing the same
JP2018048405A (en) Electrode wire for electrical discharge machining and method for manufacturing the same
JP2008296298A (en) Electrode wire for wire electric discharge machining
JP3627626B2 (en) Electrode wire for wire electrical discharge machining
JP5467789B2 (en) Al-plated steel wire having good wire drawing workability and manufacturing method thereof
JP6119495B2 (en) Saw wire and core wire
CN101362232B (en) Electric spark cutting conductor and manufacture method thereof
JP2006159304A (en) Electrode wire for wire electric discharge machining and its manufacturing method
JP2012190615A (en) Aluminum coated thin steel wire for heat-resistant electric wire
JP2003291030A (en) Electrode wire for wire electrical discharge machining
JP2713350B2 (en) Electrode wire for wire electric discharge machining
JP2000107943A (en) Wire electronic discharge machining electrode line
KR20140100796A (en) Wire electrode for electro discharge machining and thesame methode
JP2005254408A (en) Electrode wire for electric discharge machining, and manufacturing method thereof
JP5464884B2 (en) Al-plated steel wire excellent in wire drawing workability and manufacturing method thereof
JP2001334415A (en) Electrode wire for wire cutting electric discharge machining
JP2004330352A (en) Electrode wire for wire electric discharge machining, and surface reforming method using the same
KR20200049183A (en) Electric discharge machining wire electrode and manufacturing method thereof
JP2005230992A (en) Method of manufacturing electrode wire for wire electric discharge machining

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130115

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20130115

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20130219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130321

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160329

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5231486

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250