JP2004330352A - Electrode wire for wire electric discharge machining, and surface reforming method using the same - Google Patents

Electrode wire for wire electric discharge machining, and surface reforming method using the same Download PDF

Info

Publication number
JP2004330352A
JP2004330352A JP2003129125A JP2003129125A JP2004330352A JP 2004330352 A JP2004330352 A JP 2004330352A JP 2003129125 A JP2003129125 A JP 2003129125A JP 2003129125 A JP2003129125 A JP 2003129125A JP 2004330352 A JP2004330352 A JP 2004330352A
Authority
JP
Japan
Prior art keywords
wire
alloy
discharge machining
electric discharge
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003129125A
Other languages
Japanese (ja)
Other versions
JP4020003B2 (en
Inventor
Hiromitsu Kuroda
洋光 黒田
Masayoshi Aoyama
正義 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2003129125A priority Critical patent/JP4020003B2/en
Publication of JP2004330352A publication Critical patent/JP2004330352A/en
Application granted granted Critical
Publication of JP4020003B2 publication Critical patent/JP4020003B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrode wire for wire electric discharge machining and a surface reforming method using the same, which electrode wire has excellent discharge characteristics and can achieve the surface reforming of a workpiece. <P>SOLUTION: The electrode wire 10 for the wire electric discharge machining has at least one coating layer around a core material 11. A Ti or Ti alloy layer 12 is provided around the core material 11. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、ワイヤ放電加工用電極線、及びワイヤ放電加工用電極線を用いて被加工物の表面改質を行う方法に関するものである。
【0002】
【従来の技術】
ワイヤ放電加工用電極線として、Cu−Zn合金の電極線が活用されている。この電極線は、加工速度、加工精度などの放電特性に優れており、更にコスト的にも有利な特質を有している。
【0003】
これまで、このタイプの電極線としては、32〜36重量%のZnを含む単一合金線(Cu−35重量%Zn合金(65/35黄銅))が使用されてきたが、近年、ワイヤ放電加工用電極線においては、特に高速加工性が重視されるようになっている。このため、例えば、Cu−2.0重量%Sn合金、Cu−0.3重量%Sn合金などのCu合金で構成される心材の周りに、従来よりもZn濃度の高いCu−Zn合金層を被覆した被覆型の放電加工用電極線が提案されている(例えば、特許文献1参照)。
【0004】
また、放電加工によって被加工物の加工表面を改質する方法として、被加工物を加工液中に配置すると共に、加工液中にシリコンを粉末状態にして混入し、被加工物の加工表面に被膜を形成する方法が提案されている(例えば、特許文献2参照)。
【0005】
【特許文献1】
特開平5−339664号公報
【特許文献2】
特開平2−83119号公報
【0006】
【発明が解決しようとする課題】
従来の汎用の単一合金線(65/35黄銅線)や特許文献1記載の電極線は、加工速度の向上や被加工物の加工表面の精度向上を目的にしたものであって、被加工物の表面改質を行うことはできない。
【0007】
特許文献2記載の方法は、被加工物の加工表面に被膜を形成することができるものの、加工液中にシリコン粉末を混入する工程等を必要とするため、放電加工に要する工程数が多くなるという問題があった。また、特許文献2記載の方法は、シリコン粉末を加工液中に均一に分散させるための循環装置を必要とするため、装置コストの上昇を招くという問題があった。さらに、特許文献2記載の方法は、金型などを加工する型彫り加工機への適用を主眼としており、ワイヤ状(又は線状)の電極を用いるものではない。よって、微細加工が要求されるリードフレーム用金型や、厚物の被加工物に対して加工を行うことは困難であった。
【0008】
以上の事情を考慮して創案された本発明の目的は、放電特性が良好で、かつ、被加工物の表面改質が可能なワイヤ放電加工用電極線及びそれを用いた表面改質方法を提供することにある。
【0009】
【課題を解決するための手段】
上記目的を達成すべく、第1の発明に係るワイヤ放電加工用電極線は、心材の周りに少なくとも1層の被覆層を設けたワイヤ放電加工用電極線において、上記被覆層がTi又はTi合金層を有するものである。
【0010】
また、第2の発明に係るワイヤ放電加工用電極線は、心材の周りに少なくとも1層の被覆層を設けたワイヤ放電加工用電極線において、上記心材の外周にTi又はTi合金層を設けたものである。
【0011】
また、第3の発明に係るワイヤ放電加工用電極線は、心材の周りに少なくとも1層の被覆層を設けたワイヤ放電加工用電極線において、上記心材の外周にTi又はTi合金層を設け、そのTi又はTi合金層の外周にCu−Zn合金層を設けたものである。
【0012】
また、第4の発明に係るワイヤ放電加工用電極線は、心材の周りに少なくとも1層の被覆層を設けたワイヤ放電加工用電極線において、上記心材の外周にCu−Zn合金層を設け、そのCu−Zn合金層の外周にTi又はTi合金層を設けたものである。
【0013】
ここで、被覆層が、その最外層に純Zn層を有していてもよい。また、Cu−Zn合金層のZn濃度が32〜46重量%であることが好ましい。さらに、心材は、
純Cu線、
Cu−0.02〜0.2重量%Zr合金線、
Cu−0.15〜0.25重量%Sn−0.15〜0.25重量%In合金線、
Cu−0.15〜0.70重量%Sn合金線、
Cu−0.15〜0.70重量%In合金線、
Cu−5〜30重量%Zn合金線、
Cu−5〜30重量%ZnにZr、Cr、Si、Mg、Al、Fe、P、Ni、Ag、Snの内の少なくとも1種を添加してなる合金線、
Cu−0.2〜20重量%Ag合金線、
Fe基合金線、
銅被覆鋼線、
銅合金被覆鋼線、
又は銅及び銅合金被覆複合線で構成されることが好ましい。
【0014】
導電性が良好な心材の外周に、被覆層としてTi又はTi合金層を配することで、放電特性が良好で、かつ、被加工物の表面改質が可能なワイヤ放電加工用電極線が得られる。
【0015】
一方、本発明に係るワイヤ放電加工用電極線を用いた表面改質方法は、上述したワイヤ放電加工用電極線を用いて被加工物の放電加工を行い、被加工物とワイヤ電極との間に放電を生じさせ、その放電エネルギーによって、電極線の被覆層を構成するTi又はTi合金の単体又はその化合物で構成される被膜を被加工物の加工表面に形成し、被加工物の表面改質を行うものである。
【0016】
上述したワイヤ放電加工用電極線を用いて被加工物の放電加工を行うことで、良好な放電特性で放電加工を行うことができ、かつ、被加工物の表面改質を行うことができる。
【0017】
【発明の実施の形態】
以下、本発明の好適一実施の形態を添付図面に基いて説明する。
【0018】
本発明の好適一実施の形態に係るワイヤ放電加工用電極線の横断面図を図1に示す。
【0019】
図1に示すように、本実施の形態に係るワイヤ放電加工用電極線10は、心材11の外周に、Ti層(又はTi合金層)12を設けたものである。電極線10の被覆層は、Ti層12の単層で構成される。
【0020】
被覆層の層厚tと直径Dとの比(t/D)は、0.10〜0.20、好ましくは0.12〜0.15である。本実施の形態においては、被覆層はTi層12の1層であるため、t/DはTi層12の層厚と直径Dとの比と言い換えることができる。
【0021】
心材11は、
純Cu線、
Cu−0.02〜0.2重量%Zr合金線、
Cu−0.15〜0.25重量%Sn−0.15〜0.25重量%In合金線、
Cu−0.15〜0.70重量%Sn合金線、
Cu−0.15〜0.70重量%In合金線、
Cu−5〜30重量%Zn合金線、
Cu−5〜30重量%ZnにZr、Cr、Si、Mg、Al、Fe、P、Ni、Ag、Snの内の少なくとも1種を添加してなる合金線、
Cu−0.2〜20重量%Ag合金線、
Fe基合金線、
銅被覆鋼線、
銅合金被覆鋼線、
又は銅及び銅合金被覆複合線で構成される。ここで、Fe基合金としては、導電率の高いものが好ましい。これらの線材で心材11を構成することで、電極線10の導電率が向上し、放電特性を向上させることができる。
【0022】
次に、本実施の形態に係るワイヤ放電加工用電極線を用いた表面改質方法について説明する。
【0023】
上述した電極線10を用いて被加工物(図示せず)に対して放電加工(切断加工)を行う。放電加工は、被加工物を加工液中に配置した状態で行われる。加工液は、油(例えば灯油などの液状炭化水素)又はシリコン油などを主成分とするものである。
【0024】
次に、被加工物及び電極線10(ワイヤ電極)との間に電圧を印可することで、被加工物とワイヤ電極との間に放電が生じる。その放電エネルギーによって、電極線10の被覆層が蒸発し、被覆層を構成するTi(又はTi合金)の単体及び/又はその化合物で構成される被膜が、被加工物の加工表面に付着形成され、被加工物の表面改質がなされる。この被覆層のTiが蒸発する際、Tiと加工液とが反応してTi化合物、例えばTiC等が生成する。
【0025】
次に、本実施の形態の作用を説明する。
【0026】
本実施の形態に係る電極線10によれば、高導電性、高耐熱性を有する心材11の外周に、被覆層として優れた耐食性を有するTi層12を設けており、この電極線10を用いて放電加工を行うことで、放電加工時に、被覆層を構成するTi(又はTi合金)が消耗紛として被加工物(図示せず)の加工表面に移行し(付着し)、被加工物の加工表面に被膜が形成される。被膜を構成するTi化合物は硬度が非常に高く、耐摩耗性に優れていることから、被膜の形成によって被加工物の表面改質がなされ、被加工物表面の耐食性及び耐摩耗性が向上する。ここで、被加工物表面の被膜は、ワイヤ放電加工と同時に形成することができることから、容易、かつ、安価に表面改質を行うことができる。
【0027】
また、本実施の形態に係る電極線10は、従来のワイヤ放電加工用電極線と同様に、被加工物の複雑な微細加工及び厚物の被加工物の加工が可能である。よって、微細加工が要求されるリードフレーム用金型や、厚さが300mm以上の厚物の被加工物にも容易に適用することができる。
【0028】
以上より、本実施の形態に係る電極線10によれば、従来の電極線と同等以上の放電特性で放電加工を行うことができ、かつ、放電加工と同時に被加工物の表面改質処理も行うことができることから、表面改質処理工程の簡略化を図ることができ、生産性の大幅な向上を期待することができる。延いては、被加工物の生産コストの低減を図ることができる。
【0029】
本実施の形態に係る電極線10を用いた表面改質方法においては、被加工物の加工(切り出し)と同時に表面改質を行う場合について説明を行ってきたが、切り出しは行わず、表面改質のみを行うようにしてもよい。例えば、予め汎用の黄銅電極線等を用いて被加工物を切り出しておき、その切り出した被加工物の加工表面近傍を、本実施の形態に係る電極線10を用いて放電加工を行うことで、被加工物の表面改質のみを行うこともできる。
【0030】
次に、本発明の他の実施の形態を添付図面に基いて説明する。
【0031】
本発明の別の好適一実施形態に係るワイヤ放電加工用電極線の横断面図を図2に示す。尚、図1と同様の部材については同じ符号を付しており、これらの部材については詳細な説明を省略する。
【0032】
図2に示すように、本実施の形態に係るワイヤ放電加工用電極線20は、心材11の外周に、Ti層(又はTi合金層)22を設け、Ti層22の外周にCu−Zn合金層23を設けたものである。電極線20の被覆層は、Ti層22及びCu−Zn合金層23の2層で構成される。
【0033】
被覆層の層厚tと直径Dとの比(t/D)は、0.10〜0.20、好ましくは0.12〜0.15である。本実施の形態においては、被覆層はTi層22及びCu−Zn合金層23の2層であるため、各層23,24の層厚と直径Dとの比が存在する。Ti層22の層厚と直径Dとの比は、0.05〜0.10、好ましくは0.05〜0.08である。また、Cu−Zn合金層23の層厚と直径Dとの比は、0.05〜0.10、好ましくは0.07〜0.09である。ここで、Ti層22の層厚及びCu−Zn合金層23の層厚は、放電特性及び表面改質性の兼ね合いに応じて適宜決定されるものである。
【0034】
Cu−Zn合金層23を構成するCu−Zn合金のZn濃度を32〜46重量%としたのは、Zn濃度が32重量%未満だと電極線20の放電特性が著しく低下してしまうからである。また、Zn濃度が46重量%を超えると伸線加工性が著しく低下してしまい、伸線加工時に断線が生じるからである。
【0035】
本実施の形態に係る電極線20は、前実施の形態に係る電極線10の外周にCu−Zn合金層23を設けた構造である。本実施の形態に係る電極線20によれば、被覆層の外層側に放電特性に優れるCu−Zn合金層23を形成することで、電極線20の放電加工速度が大幅に向上する。また、被覆層の内層側にはTi層22が配されていることから、前実施の形態に係る電極線10と同様に、放電加工の際に被加工物の表面改質を行うことができる。
【0036】
本発明の更に別の好適一実施形態に係るワイヤ放電加工用電極線の横断面図を図3に示す。尚、図2と同様の部材については同じ符号を付しており、これらの部材については詳細な説明を省略する。
【0037】
図3に示すように、本実施の形態に係るワイヤ放電加工用電極線30は、前実施の形態に係る電極線20の被覆層の構造において、Ti層(又はTi合金層)22とCu−Zn合金層23の形成位置を逆にしたものである。
【0038】
本実施の形態に係る電極線30においても、前実施の形態に係る電極線20と同様に、電極線30の放電加工速度の向上及び放電加工の際における被加工物の表面改質を同時に達成することができる。
【0039】
一方、図1〜図3における電極線10,20,30の変形例を、図4〜図6に電極線40,50,60として示すように、被覆層の最外層として純Zn層44を有していてもよい。ここで、被覆層における純Zn層44の層厚と直径Dとの比は、0.01〜0.05、好ましくは0.01〜0.03である。この比が小さすぎると、つまり純Zn層44の層厚が薄すぎると、純Zn層44の良好な放電性能を十分に発揮させることができず、放電加工速度の向上が期待できない。また、この比が大きすぎると、つまり純Zn層44の層厚が厚すぎると、電極線全体に占める純Zn層44の断面積の割合が増加し、電極線自体の引張強度及び導電率の低下を招いてしまい、放電加工速度の向上が期待できなくなる。
【0040】
各電極線40,50,60は、被覆層の最外層に、所定の層厚の純Zn層44を有していることで、電極線10,20,30と比較して放電加工速度が更に向上する。また、当然ながら、純Zn層44の内層側にはTi層12,22が配されていることから、放電加工と同時に被加工物の表面改質処理を行うことができる。
【0041】
以上、本発明の実施の形態は、上述した実施の形態に限定されるものではなく、他にも種々のものが想定されることは言うまでもない。
【0042】
【実施例】
次に、本発明について、実施例に基いて説明するが、本発明はこれらの実施例に限定されるものではない。
【0043】
(実施例1)
心材として直径が4.0mmのCu−0.19Sn−0.2In合金線(単位:重量%)を用い、この心材を肉厚0.7mmのTiパイプ内に挿入した後、伸線加工と熱処理を繰り返して行うことで、線径が0.25mmの電極線を作製した。
【0044】
(実施例2)
心材として直径が4.0mmのCu−0.19Sn−0.2In合金線(単位:重量%)を用い、この心材を肉厚0.3mmのTiパイプ内に挿入して伸線加工を施し、線径を4.0mmに調整する。その線材を肉厚0.4mmのCu−35Zn合金パイプ(単位:重量%)内に挿入した後、伸線加工と熱処理を繰り返し行うことで、線径が0.25mmの電極線を作製した。
【0045】
(実施例3)
実施例1で作製した線径が0.25mmの電極線に、厚さ0.005mmの電気Znめっきを施した後、伸線加工を施して、線径が0.25mmの電極線を作製した。
【0046】
(比較例1)
心材として直径が4.0mmのCu−0.19Sn−0.2In合金線(単位:重量%)を用い、この心材を肉厚0.3mmのTiパイプ内に挿入して伸線加工を施し、線径を4.0mmに調整する。その線材を肉厚0.4mmのCu−30Zn合金パイプ(単位:重量%)内に挿入した後、伸線加工と熱処理を繰り返し行うことで、線径が0.25mmの電極線を作製した。
【0047】
(比較例2)
心材として直径が4.0mmのCu−0.19Sn−0.2In合金線(単位:重量%)を用い、この心材を肉厚0.3mmのTiパイプ内に挿入して伸線加工を施し、線径を4.0mmに調整する。その線材の外周に肉厚0.4mmのCu−48Zn合金層を熱間押出し被覆した後、伸線加工と熱処理を繰り返し行うことで、線径が0.25mmの電極線を作製した。
【0048】
(従来例1)
Cu−35Zn(単位:重量%)の合金単体で、直径が0.25mmの電極線を作製した。
【0049】
実施例1〜3、比較例1,2、及び従来例1の各電極線における心材組成、被覆層の構造、放電加工速度、及び耐食性を表1に示す。
【0050】
放電加工速度の測定は、実施例1〜3、比較例1,2、及び従来例1の各電極線を用いて、鋼材(SKD−11〔JIS規格〕)からなり、厚さ50mmの被加工物に対して放電加工を行うことで測定した。ここで、放電加工速度は、従来例1の電極線の放電加工速度を1.0としたときの相対値である。
【0051】
耐食性の評価は、加工後の各被加工物を王水中へ10分浸漬し、被加工物の腐食具合いを外観観察することで行った。ここで、耐食性の評価は、全く腐食が認められないものを○、腐食が著しいものを×とした。
【0052】
【表1】

Figure 2004330352
【0053】
表1に示すように、実施例1〜3の各電極線は、従来例1と比較して放電加工速度が10〜25%も向上していた。また、実施例1〜3の各電極線を用いて放電加工を行った被加工物と従来例1の電極線を用いて放電加工を行った被加工物とを比較すると、従来例1の電極線を用いて放電加工を行った被加工物は腐食が著しかった。これに対して、実施例1〜3の各電極線を用いて放電加工を行った被加工物は全く腐食が認められず、優れた耐食性を示した。このことから、実施例1〜3の各電極線を用いて被加工物の放電加工を行うことで、被加工物の表面に耐食性に優れた被膜を形成できることがわかる。
【0054】
比較例1の電極線は、耐食性は優れていたものの、被覆層におけるCu−Zn合金層のZn濃度が低すぎるため、放電加工速度の向上が殆ど認められなかった。また、比較例2の電極線は、Cu−Zn合金層のZn濃度が高すぎるため、伸線加工中に断線が生じ、電極線を作製することができなかった。
【0055】
【発明の効果】
以上要するに本発明によれば、放電特性が良好で、かつ、被加工物の表面改質が可能なワイヤ放電加工用電極線が得られるという優れた効果を発揮する。
【図面の簡単な説明】
【図1】本発明の好適一実施形態に係るワイヤ放電加工用電極線の横断面図である。
【図2】本発明の別の好適一実施形態に係るワイヤ放電加工用電極線の横断面図である。
【図3】本発明の更に別の好適一実施形態に係るワイヤ放電加工用電極線の横断面図である。
【図4】図1の変形例を示す横断面図である。
【図5】図2の変形例を示す横断面図である。
【図6】図3の変形例を示す横断面図である。
【符号の説明】
10 ワイヤ放電加工用電極線
11 心材
12 Ti層(Ti又はTi合金層)[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an electrode wire for wire electric discharge machining and a method for modifying the surface of a workpiece using the electrode wire for wire electric discharge machining.
[0002]
[Prior art]
As an electrode wire for wire electric discharge machining, an electrode wire of a Cu—Zn alloy is used. This electrode wire is excellent in discharge characteristics such as processing speed and processing accuracy, and has further advantageous characteristics in terms of cost.
[0003]
Until now, as this type of electrode wire, a single alloy wire (Cu-35 wt% Zn alloy (65/35 brass)) containing 32 to 36 wt% Zn has been used. In processing electrode wires, high-speed processability has been particularly emphasized. For this reason, for example, a Cu—Zn alloy layer having a higher Zn concentration than before is provided around a core material made of a Cu alloy such as a Cu-2.0 wt% Sn alloy or a Cu-0.3 wt% Sn alloy. A coated electrode wire for electric discharge machining has been proposed (see, for example, Patent Document 1).
[0004]
In addition, as a method of modifying the processing surface of the workpiece by electric discharge machining, the workpiece is arranged in a machining fluid, and silicon is mixed in a powder state in the machining fluid, and is mixed with the machining surface of the workpiece. A method for forming a coating has been proposed (for example, see Patent Document 2).
[0005]
[Patent Document 1]
JP-A-5-339664 [Patent Document 2]
JP-A-2-83119 [0006]
[Problems to be solved by the invention]
Conventional general-purpose single alloy wire (65/35 brass wire) and the electrode wire described in Patent Document 1 are intended to improve the processing speed and the accuracy of the processed surface of the workpiece, and The surface of the material cannot be modified.
[0007]
The method described in Patent Literature 2 can form a film on the processing surface of a workpiece, but requires a step of mixing silicon powder into a processing liquid, and thus requires a large number of steps for electric discharge machining. There was a problem. Further, the method described in Patent Literature 2 requires a circulation device for uniformly dispersing the silicon powder in the working fluid, and thus has a problem in that the cost of the device is increased. Further, the method described in Patent Document 2 is mainly applied to a die engraving machine for processing a mold or the like, and does not use a wire-shaped (or linear) electrode. Therefore, it has been difficult to process a lead frame mold or a thick workpiece requiring fine processing.
[0008]
In view of the above circumstances, an object of the present invention, which has been devised in consideration of the above circumstances, is to provide an electrode wire for wire electric discharge machining having good discharge characteristics and capable of surface modification of a workpiece, and a surface modification method using the same. To provide.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, an electrode wire for wire electric discharge machining according to the first invention is an electrode wire for wire electric discharge machining provided with at least one coating layer around a core material, wherein the coating layer is Ti or a Ti alloy. It has a layer.
[0010]
Further, the electrode wire for wire electric discharge machining according to the second invention is an electrode wire for wire electric discharge machining provided with at least one coating layer around a core material, wherein a Ti or Ti alloy layer is provided on the outer periphery of the core material. Things.
[0011]
Further, in the electrode wire for wire electric discharge machining according to the third invention, in the electrode wire for wire electric discharge machining provided with at least one coating layer around the core, a Ti or Ti alloy layer is provided on the outer periphery of the core. The Cu or Zn alloy layer is provided on the outer periphery of the Ti or Ti alloy layer.
[0012]
Further, in the electrode wire for wire electric discharge machining according to the fourth invention, in the electrode wire for wire electric discharge machining provided with at least one coating layer around the core, a Cu-Zn alloy layer is provided on the outer periphery of the core, A Ti or Ti alloy layer is provided on the outer periphery of the Cu-Zn alloy layer.
[0013]
Here, the coating layer may have a pure Zn layer as the outermost layer. Further, it is preferable that the Zn concentration of the Cu—Zn alloy layer is 32 to 46% by weight. In addition, the heartwood is
Pure Cu wire,
Cu-0.02-0.2% by weight Zr alloy wire,
Cu-0.15 to 0.25 wt% Sn-0.15 to 0.25 wt% In alloy wire,
Cu-0.15 to 0.70% by weight Sn alloy wire,
Cu-0.15 to 0.70 wt% In alloy wire,
Cu-5-30% by weight Zn alloy wire,
An alloy wire obtained by adding at least one of Zr, Cr, Si, Mg, Al, Fe, P, Ni, Ag, and Sn to Cu-5 to 30% by weight Zn;
Cu-0.2-20% by weight Ag alloy wire,
Fe-based alloy wire,
Copper-coated steel wire,
Copper alloy coated steel wire,
Or it is preferable to be comprised with a copper and a copper alloy covering composite wire.
[0014]
By arranging a Ti or Ti alloy layer as a coating layer on the outer periphery of a core material having good conductivity, an electrode wire for wire electric discharge machining having good discharge characteristics and capable of modifying the surface of a workpiece is obtained. Can be
[0015]
On the other hand, the surface modification method using the electrode wire for wire electric discharge machining according to the present invention performs the electric discharge machining of the workpiece using the electrode wire for wire electric discharge machining described above, and performs a process between the workpiece and the wire electrode. A discharge composed of a simple substance of Ti or a Ti alloy or a compound thereof constituting the coating layer of the electrode wire is formed on the processed surface of the workpiece by the discharge energy, and the surface of the workpiece is modified. Do the quality.
[0016]
By performing electrical discharge machining of a workpiece using the above-described electrode wire for wire electrical discharge machining, electrical discharge machining can be performed with good discharge characteristics, and surface modification of the workpiece can be performed.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a preferred embodiment of the present invention will be described with reference to the accompanying drawings.
[0018]
FIG. 1 shows a cross-sectional view of an electrode wire for wire electric discharge machining according to a preferred embodiment of the present invention.
[0019]
As shown in FIG. 1, an electrode wire 10 for wire electric discharge machining according to the present embodiment is provided with a Ti layer (or a Ti alloy layer) 12 on the outer periphery of a core material 11. The coating layer of the electrode wire 10 is constituted by a single layer of the Ti layer 12.
[0020]
The ratio (t / D) between the thickness t of the coating layer and the diameter D is 0.10 to 0.20, preferably 0.12 to 0.15. In the present embodiment, since the coating layer is one layer of the Ti layer 12, t / D can be rephrased as a ratio between the thickness of the Ti layer 12 and the diameter D.
[0021]
The heartwood 11 is
Pure Cu wire,
Cu-0.02-0.2% by weight Zr alloy wire,
Cu-0.15 to 0.25 wt% Sn-0.15 to 0.25 wt% In alloy wire,
Cu-0.15 to 0.70% by weight Sn alloy wire,
Cu-0.15 to 0.70 wt% In alloy wire,
Cu-5-30% by weight Zn alloy wire,
An alloy wire obtained by adding at least one of Zr, Cr, Si, Mg, Al, Fe, P, Ni, Ag, and Sn to Cu-5 to 30% by weight Zn;
Cu-0.2-20% by weight Ag alloy wire,
Fe-based alloy wire,
Copper-coated steel wire,
Copper alloy coated steel wire,
Or, it is composed of copper and copper alloy coated composite wire. Here, as the Fe-based alloy, an alloy having high conductivity is preferable. By constituting the core material 11 with these wires, the conductivity of the electrode wires 10 is improved, and the discharge characteristics can be improved.
[0022]
Next, a surface modification method using the electrode wire for wire electric discharge machining according to the present embodiment will be described.
[0023]
Electric discharge machining (cutting) is performed on a workpiece (not shown) using the above-described electrode wire 10. The electric discharge machining is performed in a state where the workpiece is arranged in the machining fluid. The working fluid is mainly composed of oil (for example, liquid hydrocarbon such as kerosene) or silicon oil.
[0024]
Next, by applying a voltage between the workpiece and the electrode wire 10 (wire electrode), a discharge is generated between the workpiece and the wire electrode. Due to the discharge energy, the coating layer of the electrode wire 10 evaporates, and a coating composed of a simple substance of Ti (or Ti alloy) and / or a compound thereof constituting the coating layer is formed on the processing surface of the workpiece. Then, the surface of the workpiece is modified. When the Ti in the coating layer evaporates, the Ti reacts with the working fluid to generate a Ti compound, for example, TiC.
[0025]
Next, the operation of the present embodiment will be described.
[0026]
According to the electrode wire 10 according to the present embodiment, a Ti layer 12 having excellent corrosion resistance is provided as a coating layer on the outer periphery of a core material 11 having high conductivity and high heat resistance. By performing the electric discharge machining, the Ti (or Ti alloy) constituting the coating layer migrates (adheres) as a consumable powder to the machining surface of the workpiece (not shown) during the electric discharge machining, and A film is formed on the processed surface. Since the Ti compound constituting the coating has extremely high hardness and excellent wear resistance, the surface of the workpiece is modified by forming the coating, thereby improving the corrosion resistance and wear resistance of the workpiece surface. . Here, since the film on the surface of the workpiece can be formed simultaneously with the wire electric discharge machining, the surface can be easily and inexpensively modified.
[0027]
Further, the electrode wire 10 according to the present embodiment can perform complicated fine processing of a workpiece and processing of a thick workpiece, similarly to the conventional electrode wire for wire electric discharge machining. Therefore, it can be easily applied to a lead frame mold requiring fine processing and a thick workpiece having a thickness of 300 mm or more.
[0028]
As described above, according to the electrode wire 10 according to the present embodiment, electric discharge machining can be performed with discharge characteristics equal to or higher than that of the conventional electrode wire, and the surface modification of the workpiece can be performed simultaneously with the electric discharge machining. Since it can be performed, the surface modification process can be simplified, and a significant improvement in productivity can be expected. As a result, the production cost of the workpiece can be reduced.
[0029]
In the surface modification method using the electrode wire 10 according to the present embodiment, the case where the surface modification is performed simultaneously with the processing (cutting) of the workpiece has been described, but the cutting is not performed and the surface modification is performed. Only quality may be performed. For example, the workpiece is cut out in advance using a general-purpose brass electrode wire or the like, and the vicinity of the processed surface of the cut out workpiece is subjected to electric discharge machining using the electrode wire 10 according to the present embodiment. Alternatively, only the surface modification of the workpiece can be performed.
[0030]
Next, another embodiment of the present invention will be described with reference to the accompanying drawings.
[0031]
FIG. 2 shows a cross-sectional view of an electrode wire for wire electric discharge machining according to another preferred embodiment of the present invention. The same members as those in FIG. 1 are denoted by the same reference numerals, and detailed description of these members will be omitted.
[0032]
As shown in FIG. 2, the electrode wire 20 for wire electric discharge machining according to the present embodiment is provided with a Ti layer (or a Ti alloy layer) 22 on the outer periphery of the core material 11 and a Cu—Zn alloy on the outer periphery of the Ti layer 22. The layer 23 is provided. The coating layer of the electrode wire 20 is composed of two layers, a Ti layer 22 and a Cu—Zn alloy layer 23.
[0033]
The ratio (t / D) between the thickness t of the coating layer and the diameter D is 0.10 to 0.20, preferably 0.12 to 0.15. In the present embodiment, since the coating layer is two layers of the Ti layer 22 and the Cu—Zn alloy layer 23, there is a ratio between the layer thickness of each of the layers 23 and 24 and the diameter D. The ratio between the thickness of the Ti layer 22 and the diameter D is 0.05 to 0.10, preferably 0.05 to 0.08. The ratio between the thickness of the Cu—Zn alloy layer 23 and the diameter D is 0.05 to 0.10, preferably 0.07 to 0.09. Here, the layer thickness of the Ti layer 22 and the layer thickness of the Cu—Zn alloy layer 23 are appropriately determined according to a balance between discharge characteristics and surface modification properties.
[0034]
The reason why the Zn concentration of the Cu—Zn alloy constituting the Cu—Zn alloy layer 23 is set to 32 to 46% by weight is that if the Zn concentration is less than 32% by weight, the discharge characteristics of the electrode wire 20 are significantly reduced. is there. On the other hand, if the Zn concentration exceeds 46% by weight, the wire drawing processability is remarkably reduced, and the wire is broken during the wire drawing process.
[0035]
The electrode wire 20 according to the present embodiment has a structure in which a Cu—Zn alloy layer 23 is provided on the outer periphery of the electrode wire 10 according to the previous embodiment. According to the electrode wire 20 according to the present embodiment, by forming the Cu—Zn alloy layer 23 having excellent discharge characteristics on the outer layer side of the coating layer, the electric discharge machining speed of the electrode wire 20 is greatly improved. Further, since the Ti layer 22 is provided on the inner layer side of the coating layer, the surface of the workpiece can be modified at the time of electric discharge machining, similarly to the electrode wire 10 according to the previous embodiment. .
[0036]
FIG. 3 shows a cross-sectional view of an electrode wire for wire electric discharge machining according to still another preferred embodiment of the present invention. The same members as those in FIG. 2 are denoted by the same reference numerals, and detailed description of these members will be omitted.
[0037]
As shown in FIG. 3, the electrode wire 30 for wire electric discharge machining according to the present embodiment has a structure in which the Ti layer (or Ti alloy layer) 22 and the Cu- The position where the Zn alloy layer 23 is formed is reversed.
[0038]
Also in the electrode wire 30 according to the present embodiment, similarly to the electrode wire 20 according to the previous embodiment, improvement of the electric discharge machining speed of the electrode wire 30 and surface modification of the workpiece at the time of electric discharge machining are simultaneously achieved. can do.
[0039]
On the other hand, as shown in a modified example of the electrode wires 10, 20, 30 in FIGS. 1 to 3 as electrode wires 40, 50, 60 in FIGS. 4 to 6, a pure Zn layer 44 is provided as the outermost layer of the coating layer. It may be. Here, the ratio between the layer thickness of the pure Zn layer 44 and the diameter D in the coating layer is 0.01 to 0.05, preferably 0.01 to 0.03. If this ratio is too small, that is, if the layer thickness of the pure Zn layer 44 is too thin, good discharge performance of the pure Zn layer 44 cannot be sufficiently exhibited, and an improvement in the electric discharge machining speed cannot be expected. If this ratio is too large, that is, if the thickness of the pure Zn layer 44 is too thick, the ratio of the cross-sectional area of the pure Zn layer 44 to the entire electrode wire increases, and the tensile strength and conductivity of the electrode wire itself increase. As a result, a decrease in the electric discharge machining speed cannot be expected.
[0040]
Each of the electrode wires 40, 50, and 60 has a pure Zn layer 44 having a predetermined thickness on the outermost layer of the coating layer, so that the electric discharge machining speed is further improved as compared with the electrode wires 10, 20, and 30. improves. In addition, since the Ti layers 12 and 22 are provided on the inner layer side of the pure Zn layer 44, the surface modification of the workpiece can be performed simultaneously with the electric discharge machining.
[0041]
As described above, the embodiments of the present invention are not limited to the above-described embodiments, and it is needless to say that various other embodiments are also possible.
[0042]
【Example】
Next, the present invention will be described based on examples, but the present invention is not limited to these examples.
[0043]
(Example 1)
A Cu-0.19Sn-0.2In alloy wire having a diameter of 4.0 mm (unit:% by weight) was used as a core material, and this core material was inserted into a Ti pipe having a thickness of 0.7 mm, followed by drawing and heat treatment. Was repeated to produce an electrode wire having a wire diameter of 0.25 mm.
[0044]
(Example 2)
A Cu-0.19Sn-0.2In alloy wire having a diameter of 4.0 mm (unit:% by weight) was used as a core material, and this core material was inserted into a 0.3 mm-thick Ti pipe and subjected to wire drawing. Adjust the wire diameter to 4.0 mm. After inserting the wire into a 0.4 mm-thick Cu-35Zn alloy pipe (unit: wt%), an electrode wire having a wire diameter of 0.25 mm was produced by repeatedly performing wire drawing and heat treatment.
[0045]
(Example 3)
The electrode wire having a wire diameter of 0.25 mm produced in Example 1 was subjected to electro-Zn plating with a thickness of 0.005 mm, and then subjected to wire drawing to produce an electrode wire having a wire diameter of 0.25 mm. .
[0046]
(Comparative Example 1)
A Cu-0.19Sn-0.2In alloy wire having a diameter of 4.0 mm (unit:% by weight) was used as a core material, and this core material was inserted into a 0.3 mm-thick Ti pipe and subjected to wire drawing. Adjust the wire diameter to 4.0 mm. After inserting the wire into a 0.4 mm thick Cu-30Zn alloy pipe (unit:% by weight), an electrode wire having a wire diameter of 0.25 mm was produced by repeatedly performing wire drawing and heat treatment.
[0047]
(Comparative Example 2)
A Cu-0.19Sn-0.2In alloy wire having a diameter of 4.0 mm (unit:% by weight) was used as a core material, and this core material was inserted into a 0.3 mm-thick Ti pipe and subjected to wire drawing. Adjust the wire diameter to 4.0 mm. A 0.4 mm-thick Cu-48Zn alloy layer was hot-extrusion-coated on the outer periphery of the wire, and then wire drawing and heat treatment were repeatedly performed to produce an electrode wire having a wire diameter of 0.25 mm.
[0048]
(Conventional example 1)
An electrode wire having a diameter of 0.25 mm was prepared using a single alloy of Cu-35Zn (unit: wt%).
[0049]
Table 1 shows the core material composition, the structure of the coating layer, the electric discharge machining speed, and the corrosion resistance in each of the electrode wires of Examples 1 to 3, Comparative Examples 1 and 2, and Conventional Example 1.
[0050]
The measurement of the electric discharge machining speed was performed by using the electrode wires of Examples 1 to 3, Comparative Examples 1 and 2, and Conventional Example 1 and made of a steel material (SKD-11 [JIS standard]) and having a thickness of 50 mm. It was measured by performing electrical discharge machining on the object. Here, the electric discharge machining speed is a relative value when the electric discharge machining speed of the electrode wire of Conventional Example 1 is 1.0.
[0051]
The corrosion resistance was evaluated by immersing each processed workpiece in aqua regia for 10 minutes and observing the appearance of the corrosion of the processed workpiece. Here, the evaluation of corrosion resistance was evaluated as ○ when no corrosion was observed, and as × when corrosion was remarkable.
[0052]
[Table 1]
Figure 2004330352
[0053]
As shown in Table 1, in each of the electrode wires of Examples 1 to 3, the electric discharge machining speed was improved by 10 to 25% as compared with Conventional Example 1. Further, when a workpiece subjected to electrical discharge machining using each of the electrode wires of Examples 1 to 3 and a workpiece subjected to electrical discharge machining using the electrode wire of Conventional Example 1 are compared, the electrode of Conventional Example 1 The workpiece subjected to electric discharge machining using the wire was significantly corroded. On the other hand, the workpieces subjected to electrical discharge machining using the electrode wires of Examples 1 to 3 showed no corrosion at all, and exhibited excellent corrosion resistance. From this, it is understood that a film excellent in corrosion resistance can be formed on the surface of the workpiece by performing electric discharge machining of the workpiece using each of the electrode wires of Examples 1 to 3.
[0054]
Although the electrode wire of Comparative Example 1 was excellent in corrosion resistance, the improvement of the electric discharge machining speed was hardly recognized because the Zn concentration of the Cu—Zn alloy layer in the coating layer was too low. In the electrode wire of Comparative Example 2, since the Zn concentration of the Cu—Zn alloy layer was too high, the wire was broken during the wire drawing, and the electrode wire could not be manufactured.
[0055]
【The invention's effect】
In short, according to the present invention, an excellent effect of obtaining an electrode wire for wire electric discharge machining having good discharge characteristics and capable of modifying the surface of a workpiece is obtained.
[Brief description of the drawings]
FIG. 1 is a transverse sectional view of an electrode wire for wire electric discharge machining according to a preferred embodiment of the present invention.
FIG. 2 is a cross sectional view of an electrode wire for wire electric discharge machining according to another preferred embodiment of the present invention.
FIG. 3 is a cross-sectional view of an electrode wire for wire electric discharge machining according to still another preferred embodiment of the present invention.
FIG. 4 is a transverse sectional view showing a modification of FIG.
FIG. 5 is a transverse sectional view showing a modification of FIG. 2;
FIG. 6 is a cross-sectional view showing a modification of FIG.
[Explanation of symbols]
Reference Signs List 10 electrode wire for wire electric discharge machining 11 core material 12 Ti layer (Ti or Ti alloy layer)

Claims (8)

心材の周りに少なくとも1層の被覆層を設けたワイヤ放電加工用電極線において、上記被覆層がTi又はTi合金層を有することを特徴とするワイヤ放電加工用電極線。An electrode wire for wire electric discharge machining comprising at least one coating layer provided around a core material, wherein the coating layer has a Ti or Ti alloy layer. 心材の周りに少なくとも1層の被覆層を設けたワイヤ放電加工用電極線において、上記心材の外周にTi又はTi合金層を設けたことを特徴とするワイヤ放電加工用電極線。An electrode wire for wire electric discharge machining comprising a core material and at least one coating layer provided thereon, wherein a Ti or Ti alloy layer is provided on an outer periphery of the core material. 心材の周りに少なくとも1層の被覆層を設けたワイヤ放電加工用電極線において、上記心材の外周にTi又はTi合金層を設け、そのTi又はTi合金層の外周にCu−Zn合金層を設けたことを特徴とするワイヤ放電加工用電極線。In an electrode wire for wire electric discharge machining having at least one coating layer provided around a core, a Ti or Ti alloy layer is provided on the outer periphery of the core, and a Cu-Zn alloy layer is provided on the outer periphery of the Ti or Ti alloy layer. An electrode wire for wire electric discharge machining. 心材の周りに少なくとも1層の被覆層を設けたワイヤ放電加工用電極線において、上記心材の外周にCu−Zn合金層を設け、そのCu−Zn合金層の外周にTi又はTi合金層を設けたことを特徴とするワイヤ放電加工用電極線。In an electrode wire for wire electric discharge machining provided with at least one coating layer around a core material, a Cu-Zn alloy layer is provided on the outer periphery of the core material, and a Ti or Ti alloy layer is provided on the outer periphery of the Cu-Zn alloy layer. An electrode wire for wire electric discharge machining. 上記被覆層が、その最外層に純Zn層を有する請求項1から4いずれかに記載のワイヤ放電加工用電極線。The electrode wire for wire electric discharge machining according to any one of claims 1 to 4, wherein the coating layer has a pure Zn layer as an outermost layer. 上記Cu−Zn合金層のZn濃度が32〜46重量%である請求項3から5いずれかに記載のワイヤ放電加工用電極線。The electrode wire according to any one of claims 3 to 5, wherein the Cu-Zn alloy layer has a Zn concentration of 32 to 46% by weight. 上記心材は、
純Cu線、
Cu−0.02〜0.2重量%Zr合金線、
Cu−0.15〜0.25重量%Sn−0.15〜0.25重量%In合金線、
Cu−0.15〜0.70重量%Sn合金線、
Cu−0.15〜0.70重量%In合金線、
Cu−5〜30重量%Zn合金線、
Cu−5〜30重量%ZnにZr、Cr、Si、Mg、Al、Fe、P、Ni、Ag、Snの内の少なくとも1種を添加してなる合金線、
Cu−0.2〜20重量%Ag合金線、
Fe基合金線、
銅被覆鋼線、
銅合金被覆鋼線、
又は銅及び銅合金被覆複合線、
で構成される請求項1から6いずれかに記載のワイヤ放電加工用電極線。
The above heartwood is
Pure Cu wire,
Cu-0.02-0.2% by weight Zr alloy wire,
Cu-0.15 to 0.25 wt% Sn-0.15 to 0.25 wt% In alloy wire,
Cu-0.15 to 0.70% by weight Sn alloy wire,
Cu-0.15 to 0.70 wt% In alloy wire,
Cu-5-30% by weight Zn alloy wire,
An alloy wire obtained by adding at least one of Zr, Cr, Si, Mg, Al, Fe, P, Ni, Ag, and Sn to Cu-5 to 30% by weight Zn;
Cu-0.2-20% by weight Ag alloy wire,
Fe-based alloy wire,
Copper-coated steel wire,
Copper alloy coated steel wire,
Or copper and copper alloy coated composite wire,
The electrode wire for wire electric discharge machining according to any one of claims 1 to 6, comprising:
請求項1から7いずれかに記載のワイヤ放電加工用電極線を用いて被加工物の放電加工を行い、被加工物とワイヤ電極との間に放電を生じさせ、その放電エネルギーによって、電極線の被覆層を構成するTi又はTi合金の単体又はその化合物で構成される被膜を被加工物の加工表面に形成し、被加工物の表面改質を行うことを特徴とするワイヤ放電加工用電極線を用いた表面改質方法。An electrical discharge machining of a workpiece is performed using the electrode wire for wire electrical discharge machining according to any one of claims 1 to 7, a discharge is generated between the workpiece and the wire electrode, and an electrode wire is formed by the discharge energy. An electrode for wire electric discharge machining, wherein a coating composed of a simple substance of Ti or Ti alloy or a compound thereof constituting a coating layer is formed on a processing surface of a workpiece, and the surface of the workpiece is modified. Surface modification method using wires.
JP2003129125A 2003-05-07 2003-05-07 Electrode wire for wire electric discharge machining and electric discharge machining method using the same Expired - Fee Related JP4020003B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003129125A JP4020003B2 (en) 2003-05-07 2003-05-07 Electrode wire for wire electric discharge machining and electric discharge machining method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003129125A JP4020003B2 (en) 2003-05-07 2003-05-07 Electrode wire for wire electric discharge machining and electric discharge machining method using the same

Publications (2)

Publication Number Publication Date
JP2004330352A true JP2004330352A (en) 2004-11-25
JP4020003B2 JP4020003B2 (en) 2007-12-12

Family

ID=33505070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003129125A Expired - Fee Related JP4020003B2 (en) 2003-05-07 2003-05-07 Electrode wire for wire electric discharge machining and electric discharge machining method using the same

Country Status (1)

Country Link
JP (1) JP4020003B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108188516A (en) * 2018-01-16 2018-06-22 湖州华科信息咨询有限公司 A kind of method that low-speed WEDM processing is carried out using wire electrode
CN109986153A (en) * 2019-03-07 2019-07-09 成都虹波实业股份有限公司 A kind of preparation method and application of wire electrode coating material, wire electrode

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108188516A (en) * 2018-01-16 2018-06-22 湖州华科信息咨询有限公司 A kind of method that low-speed WEDM processing is carried out using wire electrode
CN109986153A (en) * 2019-03-07 2019-07-09 成都虹波实业股份有限公司 A kind of preparation method and application of wire electrode coating material, wire electrode

Also Published As

Publication number Publication date
JP4020003B2 (en) 2007-12-12

Similar Documents

Publication Publication Date Title
US4935594A (en) Eroding electrode, in particular a wire electrode for the sparkerosive working
KR101486028B1 (en) Electrode wire for electrical discharge machining
JP2018516769A (en) Scale-like microstructured electrode wire material and its production method and use
JPH05192821A (en) Electric discharge working electrode and its manufacture
JP3389612B2 (en) Electrode wire for wire cut electric discharge machining
JP4285324B2 (en) Electrode wire for wire electric discharge machining and electric discharge machined product manufactured using the same
JP2004330352A (en) Electrode wire for wire electric discharge machining, and surface reforming method using the same
JP3405069B2 (en) Electrode wire for electric discharge machining
JP3627626B2 (en) Electrode wire for wire electrical discharge machining
JP3087552B2 (en) Electrode wire for electric discharge machining
JP2001052528A (en) Electrode wire for highly conductive wire electrical discharge machining
JP2003291030A (en) Electrode wire for wire electrical discharge machining
JP2007136579A (en) Covered electrode wire for wire discharge machining, and manufacturing method thereof
JP2004351588A (en) Electrode wire for wire electric discharge machining
JP2005254408A (en) Electrode wire for electric discharge machining, and manufacturing method thereof
JP2005028511A (en) Method for manufacturing wire electrode for wire electrical discharge machining
JPWO2004096468A1 (en) Composite rod, manufacturing method thereof, contact tip for arc welding and resistance welding electrode comprising the composite rod
JP2004306239A (en) Electrode wire for wire electric discharge machining
JPH11347847A (en) Electrode wire for wire electric discharge machining
JPH11320270A (en) Electrode wire with high strength and high conductivity for wire electric discharge machining
JP3948166B2 (en) Electrode wire for electric discharge machining
JPH02274849A (en) Production of oxide dispersion-strengthened copper alloy stock
JP3520767B2 (en) Method of manufacturing electrode wire for electric discharge machining
JP4323704B2 (en) Electrode wire for wire electrical discharge machining
JP2004009207A (en) Electrode wire for wire electric discharge machining

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050617

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070517

A131 Notification of reasons for refusal

Effective date: 20070619

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20070810

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20070904

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20070917

Free format text: JAPANESE INTERMEDIATE CODE: A61

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111005

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20121005

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20131005

LAPS Cancellation because of no payment of annual fees