JP4323704B2 - Electrode wire for wire electrical discharge machining - Google Patents
Electrode wire for wire electrical discharge machining Download PDFInfo
- Publication number
- JP4323704B2 JP4323704B2 JP2000299110A JP2000299110A JP4323704B2 JP 4323704 B2 JP4323704 B2 JP 4323704B2 JP 2000299110 A JP2000299110 A JP 2000299110A JP 2000299110 A JP2000299110 A JP 2000299110A JP 4323704 B2 JP4323704 B2 JP 4323704B2
- Authority
- JP
- Japan
- Prior art keywords
- wire
- discharge machining
- electric discharge
- electrode
- electrode wire
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、ワイヤ放電加工用電極線に係り、特に、外径が0.07mm以下の微細加工用極細電極線に関するものである。
【0002】
【従来の技術】
ワイヤカット放電加工用電極線(以下、ワイヤ放電加工用電極線と示す)としては、優れた伸線加工性及び経済性、高い引張強度、および良好な放電加工特性を備えていることが好ましいことから、従来、黄銅線が多用されてきた。一般的な黄銅線としては、Zn濃度が32〜36wt%のCu−Zn合金単体からなるCu−35Zn合金線(65/35黄銅線)が挙げられる。
【0003】
近年、生産性向上の観点から、ワイヤ放電加工用電極線における放電加工速度の更なる向上が望まれており、例えば、Cu−2.0wt%Sn、Cu−0.3wt%Sn、Cu−13wt%Zn、Cu−0.6wt%Ag、Cu−4.0wt%Zn−0.3wt%SnからなるCu合金線を心線とし、この心線の外周に高Zn濃度のCu−Zn合金被覆層を形成した複合電極線が提案されている。
【0004】
また、ワイヤ放電加工用電極線の内、外径が0.07mm以下の微細加工用極細電極線としては、タングステン線又はモリブデン線などが挙げられるが、最近では鋼線を心線とし、その心線外周にCu−Zn合金被覆層を設けた黄銅被覆鋼線が提案されている。
【0005】
【発明が解決しようとする課題】
ところで、放電加工中の放電加工用電極線においては、一般に、200〜400℃の高温になっており、電極線自体に熱的負荷が加わると共に、放電加工速度及び放電加工精度を向上させるために張力の負荷も加わっている。ここで、65/35黄銅線の、室温での引張強度は銅線の2倍程度であるものの、300℃前後の高温引張強度は銅線よりやや高い程度であるため、放電加工速度を更に向上させようとした場合、張力が高くなると共にジュール熱の発生量が更に多くなるため、断線が生じてしまう。即ち、65/35黄銅線は、高温引張強度が低いという問題があった。
【0006】
また、微細加工用極細電極線として用いられるタングステン線、モリブデン線、黄銅被覆鋼線などは、高温引張強度は高いものの、伸線加工性が良好でなく、また、導電率があまり良好でないために放電特性が劣るといった問題があった。
【0007】
以上の事情を考慮して創案された本発明の目的は、高温引張強度が高く、伸線加工性が良好で、かつ、放電特性が良好なワイヤ放電加工用電極線を提供することにある。
【0008】
【課題を解決するための手段】
上記目的を達成すべく本発明に係るワイヤ放電加工用電極線は、外径が0.07mm以下のワイヤ放電加工用電極線において、重量比で、Agを5〜15wt%、Mgを0.05〜2.0wt%含有し、かつ、残部がCu及び不可避不純物からなる合金で形成した心線の外周に、電極線の外径Dに対する層厚tの比(t/D)が0.05〜0.2のCu−Zn合金被覆層を形成したものである。
【0009】
以上の構成によれば、Cu−Ag系合金で心線を形成し、その心線の外周にCu−Zn合金被覆層を形成したもので電極線を形成することで、放電加工速度が速く、放電加工精度が良好で、かつ、断線のおそれが殆どない電極線を得ることができる。
【0010】
また、上記Cu−Zn合金被覆層がα相の単相組織又はα相とβ相の混合相組織で形成されることが好ましい。
【0011】
また、上記Cu−Zn合金被覆層の外周に、更にZn被覆層を有していてもよい。
【0012】
上記数値範囲を限定した理由を以下に述べる。
【0013】
心線の構成合金の一つであるCu-1.0〜35wt%Ag の、Ag含有量を1.0〜35wt%と規定したのは、1.0wt%未満の含有では高温引張強度の向上が望めず、逆に35wt%を超えて含有させると、導電率が低下すると共に、材料コストが上昇してしまうためである。
【0014】
さらに、心線を構成する合金が含有するMg量を0.05〜2.0wt%と規定したのは、0.05wt%未満の含有では高温引張強度の向上が望めず、逆に2.0wt%を超えて含有させると、導電率が低下すると共に、材料コストが上昇してしまうためである。
【0015】
電極線の外径Dに対するCu−Zn合金被覆層の層厚tの比(t/D)を0.05〜0.2としたのは、0.05未満では常温での強度が不足し、放電加工中に断線が生じるためであり、また、0.2よりも大きいと高速で放電加工を行うのに十分な導電率を達成できないためである。
【0016】
【発明の実施の形態】
以下、本発明の好適一実施の形態を添付図面に基いて説明する。
【0017】
本発明に係るワイヤ放電加工用電極線の横断面図を図1に、本発明に係るワイヤ放電加工用電極線の他の形態の横断面図を図2に示す。
【0018】
図1に示すように、本発明に係るワイヤ放電加工用電極線51は、重量比で、Agを1.0〜35wt%、好ましくは1.0〜20wt%、更に好ましくは2.0〜20wt%、特に好ましくは5.0〜15wt%、Mgを0.05〜2.0wt%、好ましくは0.05〜0.5wt%、特に好ましくは0.1〜0.3wt%含有し、かつ、残部がCu及び不可避不純物からなる合金を用いて心線52を形成し、この心線52の外周に、電極線の外径D1に対する層厚t1 の比(t1 /D1 )が0.05〜0.2となるようにCu−Zn合金被覆層3を形成したものである。
【0019】
また、図2に示すように、電極線51のCu−Zn合金被覆層3の外周にZn被覆層4を形成し、電極線61としてもよい。この場合、Cu−Zn合金被覆層3の層厚t2 は、電極線61の外径D2 に対する比(t2 /D2 )が0.05〜0.2のものである。
【0020】
Cu−Zn合金被覆層3を形成するCu−Zn合金としては、冷間加工が容易に可能であると共に、市場での入手性および経済性を考慮して、α相の単相組織又はα相とβ相の混合相組織からなり、Zn濃度が32〜46wt%のCu−Zn合金が好ましいが、α相の単相組織からなり、Zn濃度が32〜38wt%のCu−Zn合金が特に好ましい。
【0021】
Zn被覆層4の層厚は特に限定するものではないが、0.1〜5μmが好ましく、より好ましくは0.3〜1.0μmである。
【0022】
Zn被覆層4の構成材は、Zn、又は添加量が微量であればZn合金のいずれであってもよい。
【0023】
次に、本発明に係るワイヤ放電加工用電極線の製造方法について説明する。
【0024】
先ず、重量比で、Agを1.0〜35wt%、Mgを0.05〜2.0wt%含有し、かつ、残部がCu及び不可避不純物からなる合金溶湯を用いてビレットを鋳造形成する。
【0025】
次に、このビレットに熱間押出加工を施し、所定の直径(例えば、5〜8mm)の母線を形成する。その後、この母線を、Znを32〜38wt%含有し、かつ、残部がCu及び不可避不純物からなるCu−Zn合金管内に挿入し、熱処理および伸線加工を施し、所望の線径(例えば、0.07mm以下)のワイヤ放電加工用電極線51を得る。ここで、熱処理および伸線加工(冷間伸線加工)の工程は、必要に応じて適宜繰り返してもよい。また、最外層にZn被覆層4を有する電極線61を得るには、Cu−Zn合金管を更にZn管内に挿入すればよい。
【0026】
母線に対する熱処理としては、通電アニーラ又は焼鈍炉等による連続処理又はバッチ処理が挙げられる。また、熱処理条件は、特に限定するものではなく、Ag含有量、後工程の冷間伸線加工の加工条件、及びワイヤ放電加工用電極線に要求される特性等に応じて適宜選択されるものである。
【0027】
以上に説明した本発明に係るワイヤ放電加工用電極線51によれば、心線52を、導電性、熱伝導性、および耐熱特性に優れたCu−Ag−Mg系合金で構成することで、電極線51の、放電特性が良好となると共に温度上昇を抑制することができ、また、放電加工時の高温引張強度が高くなる。よって、放電加工速度が速く、かつ、放電加工精度が良好な放電加工を行うことができる。また、放電加工の際の加工電流の増加に伴うジュール熱の発生量が多くなっても、断線のおそれが殆どない。
【0028】
また、心線52の外周に、放電特性に優れたCu−Zn合金被覆層3を、電極線51の外径D1 に対する層厚t1 の比(t1 /D1 )が0.05〜0.2となるように被覆形成することで、常温強度と導電率のバランスが良好となり、放電加工速度を更に速くすることができる。
【0029】
さらに、Cu−Zn合金被覆層3の外周にZn被覆層4を形成することで、放電特性が更に良好な電極線61を得ることができる。
【0030】
すなわち、本発明の電極線51によれば、タングステン線、モリブデン線、黄銅被覆鋼線などの従来の微細加工用極細電極線と比較して、放電加工速度が速くなると共に、放電加工精度が良好となり、かつ、断線頻度が低くなる。
【0031】
次に、本発明の参考形態に係るワイヤ放電加工用電極線を添付図面に基いて説明する。
【0032】
本発明の参考形態に係るワイヤ放電加工用電極線の横断面図を図3、図4に示す。
【0033】
図3に示すように、本発明の参考形態に係るワイヤ放電加工用電極線71は、
重量比で、Znを10〜38wt%、好ましくは15〜35wt%、特に好ましくは17.5〜32.5wt%、Agを1.0〜35wt%、好ましくは1.0〜20wt%、更に好ましくは2.0〜20wt%、特に好ましくは5.0〜15wt%、Mgを0.05〜2.0wt%、好ましくは0.05〜0.5wt%、特に好ましくは0.1〜0.3wt%含有し、かつ、残部がCu及び不可避不純物からなる合金の心線で形成したものである。
【0034】
また、図4に示すように、本発明の参考形態に係るワイヤ放電加工用電極線81は、重量比で、Znを10〜38wt%、好ましくは15〜35wt%、特に好ましくは17.5〜32.5wt%、Agを1.0〜35wt%、好ましくは1.0〜20wt%、更に好ましくは2.0〜20wt%、特に好ましくは5.0〜15wt%、Mgを0.05〜2.0wt%、好ましくは0.05〜0.5wt%、特に好ましくは0.1〜0.3wt%含有し、かつ、残部がCu及び不可避不純物からなる合金を用いて心線42を形成し、この心線82の外周に、電極線の外径D4 に対する層厚t4 の比(t4 /D4 )が0.05〜0.2となるようにCu−Zn合金被覆層43を形成したものである。
【0035】
Cu−Zn合金被覆層43を形成するCu−Zn合金としては、前述したCu−Zn合金被覆層3と同じものを適用することができる。
【0036】
本発明の参考形態の電極線71および本発明の参考形態の電極線81においても、図2に示したように、最外層にZn被覆層4を形成してもよい。
【0037】
次に、本発明の参考形態および本発明の参考形態に係るワイヤ放電加工用電極線の製造方法について説明する。
【0038】
先ず、重量比で、Znを10〜38wt%、Agを1.0〜35wt%、Mgを0.05〜2.0wt%含有し、かつ、残部がCu及び不可避不純物からなる合金溶湯を用いてビレットを鋳造形成する。
【0039】
次に、このビレットに熱間押出加工を施し、所定の直径(例えば、5〜8mm)の母線を形成する。
【0040】
その後、この母線に熱処理および伸線加工を施し、所望の線径(例えば、0.07mm以下)のワイヤ放電加工用電極線71(図3参照)を得る。又は、この母線を、Znを32〜38wt%含有し、かつ、残部がCu及び不可避不純物からなるCu−Zn合金管内に挿入し、熱処理および伸線加工を施し、所望の線径(例えば、0.07mm以下)のワイヤ放電加工用電極線81(図4参照)を得る。ここで、熱処理および伸線加工(冷間伸線加工)の工程は、必要に応じて適宜繰り返してもよい。
【0041】
以上に説明した本発明の参考形態に係るワイヤ放電加工用電極線71によれば、電極線を、放電特性に優れたCu−Zn系合金と高温引張強度に優れたCu−Ag−Mg系合金の両方の特性を併せ持ったCu−Zn−Ag−Mg系合金の単体で構成することで、複合化することなく(複合電極線に形成することなく)、放電加工速度が速く、放電加工精度が良好で、かつ、断線のおそれが殆どない電極線となる。
【0042】
(参考例1)
Cu-10wt%Ag合金からなり、かつ、外径が7.1mmの心線を形成し、この心線を、Cu−35wt%Zn合金を用いて押出形成してなる外径が10mm、かつ、肉厚が1.2mmの管内に挿入し、複合管を形成する。
【0043】
次に、この複合管に冷間伸線加工を施し、φ7.9mmの複合線を形成する。この複合線に、軟化のための熱処理を施した後、伸線加工を施してφ0.07mm(70μm)、Cu−Zn合金被覆層の層厚が8.8μmのワイヤ放電加工用電極線を得る。
【0044】
(参考例2)
Cu-20wt%Zn-10wt%Ag合金からなり、かつ、外径が7.1mmの心線を用いる以外は実施例1と同様にして、φ0.07mm(70μm)、Cu−Zn合金被覆層の層厚が8.8μmのワイヤ放電加工用電極線を得る。
【0045】
(参考例3)
Cu-30wt%Zn-10wt%Ag合金からなり、かつ、外径が7.1mmの心線を形成し、この心線に、軟化のための熱処理を施した後、伸線加工を施してφ0.07mm(70μm)のワイヤ放電加工用電極線を得る。
【0046】
(実施例1)
Cu-10wt%Ag-0.2wt%Mg 合金からなり、かつ、外径が7.1mmの心線を用いる以外は参考例1と同様にして、φ0.07mm(70μm)、Cu−Zn合金被覆層の層厚が8.8μmのワイヤ放電加工用電極線を得る。
【0047】
(参考例4)
Cu-20wt%Zn-10wt%Ag-0.2wt%Mg 合金からなり、かつ、外径が7.1mmの心線を用いる以外は参考例1と同様にして、φ0.07mm(70μm)、Cu−Zn合金被覆層の層厚が8.8μmのワイヤ放電加工用電極線を得る。
【0048】
(参考例5)
Cu-30wt%Zn-10wt%Ag-0.2wt%Mg 合金を用いる以外は参考例3と同様にして、φ0.07mm(70μm)のワイヤ放電加工用電極線を得る。
【0049】
(比較例1)
鋼線からなり、かつ、外径が7.1mmの心線を用いる以外は実施例1と同様にして、φ0.07mm(70μm)、Cu−Zn合金被覆層の層厚が8.8μmのワイヤ放電加工用電極線を得る。
【0050】
この時、参考例1〜5および実施例1の各電極線は、伸線性が良好であったのに対して、比較例1の電極線は、心線が鋼線からなるため伸線性が良好でなく、電極線の製造作業(伸線作業)は困難であった。
【0051】
参考例1〜5および実施例1および比較例1の各電極線の、組成および放電加工特性について評価を行った。その評価結果を表1に示す。
【0052】
ここで、放電加工特性の評価は、放電加工試験機(AP−200:ソディック製)を用いて、板厚10mmの被加工物(JIS KD−20)を加工した時の放電加工速度および平均面粗度(μm)を測定したものである。放電加工速度比は、比較例1の放電加工速度を1.00とした時の相対値である。また、平均面粗度は、被加工物の加工面における平均表面粗さ(凹凸の平均深さ)である。
【0053】
【表1】
【0054】
実施例1および参考例1〜5の各電極線は、それぞれ導電性、熱伝導性、および耐熱特性に優れた電極線であるため、表1に示すように、比較例1の電極線と比較して、放電加工速度がそれぞれ20%、16%、17%、22%、17%、18%も上昇していた。つまり、実施例1および参考例1〜5の電極線を用いて放電加工を行うことで、比較例1の電極線を用いる場合よりも、放電加工速度が向上することが確認できた。
【0055】
また、比較例1の電極線の平均面粗度が0.70μmであったのに対して、参考例1〜5および実施例1の電極線の平均面粗度はそれぞれ0.58μm、0.60μm、0.59μm、0.59μm、0.58μm、0.57μm、であり、平均面粗度が約15%も小さくなっていた。つまり、実施例1および参考例1〜5の電極線を用いて放電加工を行うことで、比較例1の電極線を用いる場合よりも、被加工物の加工面がより平滑となり、放電加工精度が向上することが確認できた。
【0056】
以上、本発明の実施の形態は、上述した実施の形態に限定されるものではなく、他にも種々のものが想定されることは言うまでもない。
【0057】
【発明の効果】
以上要するに本発明によれば、Cu−Ag−Mg系合金で心線を形成し、その心線を用いて電極線を形成することで、放電加工速度が速く、放電加工精度が良好で、かつ、断線のおそれが殆どない電極線を得ることができるという優れた効果を発揮する。
【図面の簡単な説明】
【図1】 本発明に係るワイヤ放電加工用電極線の横断面図である。
【図2】 本発明に係るワイヤ放電加工用電極線の他の形態を示す横断面図である。
【図3】 本発明の参考形態に係るワイヤ放電加工用電極線の横断面図である。
【図4】 本発明の参考形態に係るワイヤ放電加工用電極線の横断面図である。
【符号の説明】
51,61,71,81 ワイヤ放電加工用電極線
52,82 心線
3,43 Cu−Zn合金被覆層
4 Zn被覆層
D1 ,D2 ,D3 電極線の外径
t1 ,t2 ,t3 Cu−Zn合金被覆層の層厚[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electrode wire for wire electric discharge machining, and more particularly to an ultrafine electrode wire for fine machining having an outer diameter of 0.07 mm or less.
[0002]
[Prior art]
As an electrode wire for wire cut electric discharge machining (hereinafter referred to as an electrode wire for wire electric discharge machining), it is preferable to have excellent wire drawing workability and economy, high tensile strength, and good electric discharge machining characteristics. Therefore, conventionally, brass wires have been frequently used. As a general brass wire, a Cu-35Zn alloy wire (65/35 brass wire) made of a Cu—Zn alloy simple substance having a Zn concentration of 32 to 36 wt% can be mentioned.
[0003]
In recent years, from the viewpoint of improving productivity, further improvement in the electric discharge machining speed in the electrode wire for wire electric discharge machining has been desired. For example, Cu-2.0 wt% Sn, Cu-0.3 wt% Sn, Cu-13 wt. Cu alloy wire made of% Zn, Cu-0.6 wt% Ag, Cu-4.0 wt% Zn-0.3 wt% Sn is a core wire, and a high Zn concentration Cu-Zn alloy coating layer is formed on the outer periphery of the core wire There has been proposed a composite electrode wire having a shape.
[0004]
In addition, among the electrode wires for wire electric discharge machining, the ultrafine electrode wires for microfabrication having an outer diameter of 0.07 mm or less include tungsten wires or molybdenum wires. A brass-coated steel wire having a Cu—Zn alloy coating layer provided on the outer periphery of the wire has been proposed.
[0005]
[Problems to be solved by the invention]
By the way, in the electrode wire for electric discharge machining in electric discharge machining, it is generally at a high temperature of 200 to 400 ° C. In order to apply a thermal load to the electrode wire itself and to improve electric discharge machining speed and electric discharge machining accuracy. Tension load is also added. Here, although the tensile strength at room temperature of the 65/35 brass wire is about twice that of the copper wire, the high temperature tensile strength around 300 ° C is slightly higher than that of the copper wire, so the electric discharge machining speed is further improved. When trying to make it, since tension | tensile_strength becomes high and the generation amount of Joule heat increases further, a disconnection will arise. That is, the 65/35 brass wire has a problem that the high-temperature tensile strength is low.
[0006]
In addition, tungsten wire, molybdenum wire, brass-coated steel wire, etc. used as ultrafine electrode wires for microfabrication have high tensile strength at high temperatures, but they are not good in wire drawing workability and are not very good in electrical conductivity. There was a problem that the discharge characteristics were inferior.
[0007]
An object of the present invention created in view of the above circumstances is to provide an electrode wire for wire electric discharge machining having high high-temperature tensile strength, good wire drawing workability, and good discharge characteristics.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, an electrode wire for wire electrical discharge machining according to the present invention is an electrode wire for wire electrical discharge machining having an outer diameter of 0.07 mm or less, and Ag is 5 to 15 wt% and Mg is 0.05 by weight. The ratio (t / D) of the layer thickness t to the outer diameter D of the electrode wire is 0.05 to the outer circumference of the core wire formed of an alloy containing -2.0 wt% and the balance being Cu and inevitable impurities. A Cu—Zn alloy coating layer of 0.2 is formed.
[0009]
According to the above configuration, by forming a core wire with a Cu-Ag-based alloy and forming an electrode wire with a Cu-Zn alloy coating layer formed on the outer periphery of the core wire , the electric discharge machining speed is high, An electrode wire having good electric discharge machining accuracy and almost no fear of disconnection can be obtained.
[0010]
The Cu—Zn alloy coating layer is preferably formed of an α-phase single phase structure or a mixed phase structure of α and β phases.
[0011]
Moreover, you may have a Zn coating layer further in the outer periphery of the said Cu-Zn alloy coating layer.
[0012]
The reason for limiting the above numerical range will be described below.
[0013]
The core content of Cu-1.0-35wt% Ag, which is one of the core wire alloys, is defined as 1.0-35wt%. If the content is less than 1.0wt%, the high temperature tensile strength can be improved. On the other hand, if the content exceeds 35 wt%, the electrical conductivity decreases and the material cost increases.
[0014]
Furthermore, the Mg content contained in the alloy constituting the core wire is defined as 0.05 to 2.0 wt%. If the content is less than 0.05 wt%, improvement in high-temperature tensile strength cannot be expected. If the content exceeds 50%, the electrical conductivity is lowered and the material cost is increased.
[0015]
The ratio of the layer thickness t of the Cu—Zn alloy coating layer to the outer diameter D of the electrode wire (t / D) was set to 0.05 to 0.2. This is because disconnection occurs during electric discharge machining, and when it is larger than 0.2, sufficient electrical conductivity for electric discharge machining cannot be achieved at high speed.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, a preferred embodiment of the invention will be described with reference to the accompanying drawings.
[0017]
FIG. 1 shows a cross-sectional view of a wire electric discharge machining electrode wire according to the present invention, and FIG. 2 shows a cross-sectional view of another embodiment of the wire electric discharge machining electrode wire according to the present invention.
[0018]
As shown in FIG. 1, the wire electric discharge
[0019]
In addition, as shown in FIG. 2, the
[0020]
As the Cu—Zn alloy forming the Cu—Zn
[0021]
The layer thickness of the
[0022]
The constituent material of the
[0023]
Next, the manufacturing method of the electrode wire for wire electric discharge machining which concerns on this invention is demonstrated.
[0024]
First, billets are cast-formed using a molten alloy containing 1.0 to 35 wt% Ag, 0.05 to 2.0 wt% Mg, and the balance of Cu and inevitable impurities.
[0025]
Next, the billet is hot-extruded to form a bus bar having a predetermined diameter (for example, 5 to 8 mm). Thereafter, this bus bar is inserted into a Cu—Zn alloy tube containing Zn in an amount of 32 to 38 wt% and the balance being made of Cu and inevitable impurities, and subjected to heat treatment and wire drawing to obtain a desired wire diameter (for example, 0 0.07 mm or less) is obtained. Here, the steps of heat treatment and wire drawing (cold wire drawing) may be repeated as necessary. In order to obtain the
[0026]
Examples of the heat treatment for the bus bar include continuous processing or batch processing using an energized annealer or an annealing furnace. The heat treatment conditions are not particularly limited, and are appropriately selected according to the Ag content, the cold drawing process conditions of the subsequent process, and the characteristics required for the electrode wire for wire electric discharge machining. It is.
[0027]
According to the
[0028]
In addition, the Cu—Zn
[0029]
Furthermore, by forming the
[0030]
That is, according to the
[0031]
Now it is described with reference to a wire electric discharge machining electrode wire according to a reference type state of the present invention in the accompanying drawings.
[0032]
A cross-sectional view of a wire electrical discharge machining electrode wire according to a reference type state of the present invention shown in FIGS. 3 and 4.
[0033]
As shown in FIG. 3, the
By weight, Zn is 10 to 38 wt%, preferably 15 to 35 wt%, particularly preferably 17.5 to 32.5 wt%, Ag is 1.0 to 35 wt%, preferably 1.0 to 20 wt%, and more preferably Is 2.0-20 wt%, particularly preferably 5.0-15 wt%, Mg 0.05-2.0 wt%, preferably 0.05-0.5 wt%, particularly preferably 0.1-0.3 wt% %, And the balance is formed of an alloy core wire made of Cu and inevitable impurities.
[0034]
Moreover, as shown in FIG. 4, the
[0035]
As the Cu—Zn alloy that forms the Cu—Zn
[0036]
Also in the
[0037]
Next, the reference form of the present invention and the method for manufacturing the electrode wire for wire electric discharge machining according to the reference form of the present invention will be described.
[0038]
First, by using a molten alloy containing 10 to 38 wt% Zn, 1.0 to 35 wt% Ag, 0.05 to 2.0 wt% Mg, and the balance of Cu and unavoidable impurities. Cast billets.
[0039]
Next, the billet is hot-extruded to form a bus bar having a predetermined diameter (for example, 5 to 8 mm).
[0040]
Thereafter, the bus bar is subjected to heat treatment and wire drawing to obtain a wire electric discharge machining electrode wire 71 (see FIG. 3) having a desired wire diameter (for example, 0.07 mm or less). Alternatively, this bus bar is inserted into a Cu—Zn alloy tube containing Zn in an amount of 32 to 38 wt% and the balance of Cu and inevitable impurities, and subjected to heat treatment and wire drawing to obtain a desired wire diameter (for example, 0 0.07 mm or less) of wire electric discharge machining electrode wire 81 (see FIG. 4). Here, the steps of heat treatment and wire drawing (cold wire drawing) may be repeated as necessary.
[0041]
According to the wire electric discharge
[0042]
(Reference Example 1)
A core wire made of a Cu-10 wt% Ag alloy and having an outer diameter of 7.1 mm is formed, and the core wire is formed by extrusion using a Cu-35 wt% Zn alloy, and the outer diameter is 10 mm. It is inserted into a tube having a wall thickness of 1.2 mm to form a composite tube.
[0043]
Next, cold drawing is performed on the composite pipe to form a composite wire having a diameter of φ7.9 mm. The composite wire is subjected to heat treatment for softening, and then subjected to wire drawing to obtain a wire electric discharge machining electrode wire having a diameter of 0.07 mm (70 μm) and a Cu—Zn alloy coating layer thickness of 8.8 μm. .
[0044]
(Reference Example 2)
In the same manner as in Example 1 except that a core wire made of a Cu-20 wt% Zn-10 wt% Ag alloy and having an outer diameter of 7.1 mm is used, the diameter of the Cu—Zn alloy coating layer is 0.07 mm (70 μm). An electrode wire for wire electric discharge machining having a layer thickness of 8.8 μm is obtained.
[0045]
(Reference Example 3)
A core wire made of Cu-30wt% Zn-10wt% Ag and having an outer diameter of 7.1 mm is formed. The core wire is subjected to a heat treatment for softening and then subjected to a wire drawing process to obtain φ0 0.07 mm (70 μm) wire electric discharge machining electrode wire is obtained.
[0046]
(Example 1)
Cu-Zn alloy coating layer, φ0.07 mm (70 μm), made of Cu-10wt% Ag-0.2wt% Mg alloy and using a core wire with an outer diameter of 7.1 mm in the same manner as Reference Example 1. An electrode wire for wire electric discharge machining having a layer thickness of 8.8 μm is obtained.
[0047]
( Reference Example 4 )
Φ0.07 mm (70 μm), Cu—, which is made of a Cu-20 wt% Zn-10 wt% Ag-0.2 wt% Mg alloy and uses a core wire having an outer diameter of 7.1 mm. An electrode wire for wire electric discharge machining having a Zn alloy coating layer thickness of 8.8 μm is obtained.
[0048]
( Reference Example 5 )
An electrode wire for wire electric discharge machining having a diameter of 0.07 mm (70 μm) is obtained in the same manner as in Reference Example 3 except that a Cu-30 wt% Zn-10 wt% Ag-0.2 wt% Mg alloy is used.
[0049]
(Comparative Example 1)
A wire having a diameter of 0.08 mm (70 μm) and a Cu—Zn alloy coating layer of 8.8 μm as in Example 1 except that a core wire made of steel wire and having an outer diameter of 7.1 mm is used. An electrode wire for electric discharge machining is obtained.
[0050]
At this time, each of the electrode wires of Reference Examples 1 to 5 and Example 1 had good drawability, whereas the electrode wire of Comparative Example 1 had good drawability because the core wire was made of a steel wire. In addition, the electrode wire manufacturing operation (drawing operation) was difficult.
[0051]
The composition and electric discharge machining characteristics of each electrode wire of Reference Examples 1 to 5, Example 1 and Comparative Example 1 were evaluated. The evaluation results are shown in Table 1.
[0052]
Here, the evaluation of the electric discharge machining characteristics is performed by using an electric discharge machining tester (AP-200: manufactured by Sodick) and the electric discharge machining speed and average surface when machining a workpiece (JIS KD-20) having a thickness of 10 mm. The roughness (μm) is measured. The electric discharge machining speed ratio is a relative value when the electric discharge machining speed of Comparative Example 1 is 1.00. The average surface roughness is an average surface roughness (average depth of irregularities) on the processed surface of the workpiece.
[0053]
[Table 1]
[0054]
Since each electrode wire of Example 1 and Reference Examples 1 to 5 is an electrode wire excellent in conductivity, thermal conductivity, and heat resistance characteristics, as shown in Table 1, it is compared with the electrode wire of Comparative Example 1. Thus, the electric discharge machining speed increased by 20%, 16%, 17%, 22%, 17%, and 18%, respectively. That is, it was confirmed that by performing the electric discharge machining using the electrode wires of Example 1 and Reference Examples 1 to 5 , the electric discharge machining speed was improved as compared with the case of using the electrode wire of Comparative Example 1.
[0055]
Moreover, while the average surface roughness of the electrode wire of Comparative Example 1 was 0.70 μm, the average surface roughness of the electrode wires of Reference Examples 1 to 5 and Example 1 was 0.58 μm, 0.8 mm, respectively. They were 60 μm , 0.59 μm, 0.59 μm, 0.58 μm, and 0.57 μm, and the average surface roughness was reduced by about 15%. That is, by performing electric discharge machining using the electrode wires of Example 1 and Reference Examples 1 to 5 , the machining surface of the workpiece becomes smoother than when the electrode wires of Comparative Example 1 are used, and electric discharge machining accuracy is achieved. Was confirmed to improve.
[0056]
As mentioned above, it cannot be overemphasized that embodiment of this invention is not limited to embodiment mentioned above, and various things are assumed in addition.
[0057]
【The invention's effect】
According to the brief present invention above, Cu- the core wire is formed with Ag-Mg-based alloy, its using core wire by forming the electrode wire, electrical discharge machining speed is fast, is good discharge machining precision, And the outstanding effect that the electrode wire which hardly has a possibility of a disconnection can be obtained is exhibited.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a wire electric discharge machining electrode wire according to the present invention.
FIG. 2 is a cross-sectional view showing another embodiment of an electrode wire for wire electric discharge machining according to the present invention.
FIG. 3 is a cross-sectional view of a wire electric discharge machining electrode wire according to a reference embodiment of the present invention .
FIG. 4 is a cross-sectional view of a wire electric discharge machining electrode wire according to a reference embodiment of the present invention .
[Explanation of symbols]
51,61,71,81 wire electric discharge
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000299110A JP4323704B2 (en) | 2000-08-24 | 2000-09-27 | Electrode wire for wire electrical discharge machining |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000259386 | 2000-08-24 | ||
JP2000-259386 | 2000-08-24 | ||
JP2000299110A JP4323704B2 (en) | 2000-08-24 | 2000-09-27 | Electrode wire for wire electrical discharge machining |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002137122A JP2002137122A (en) | 2002-05-14 |
JP4323704B2 true JP4323704B2 (en) | 2009-09-02 |
Family
ID=26598696
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000299110A Expired - Fee Related JP4323704B2 (en) | 2000-08-24 | 2000-09-27 | Electrode wire for wire electrical discharge machining |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4323704B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018043383A1 (en) * | 2016-08-30 | 2018-03-08 | 株式会社クラレ | High-dose field plastic scintillation fiber and method of manufacturing same |
-
2000
- 2000-09-27 JP JP2000299110A patent/JP4323704B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2002137122A (en) | 2002-05-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3389612B2 (en) | Electrode wire for wire cut electric discharge machining | |
KR20130027469A (en) | Electrode wire for electrical discharge machining | |
JP2008296298A (en) | Electrode wire for wire electric discharge machining | |
JP4323704B2 (en) | Electrode wire for wire electrical discharge machining | |
JP2006283181A (en) | Contact wire made from abrasion-resistant copper alloy and manufacturing method therefor | |
JP3627626B2 (en) | Electrode wire for wire electrical discharge machining | |
JP3087552B2 (en) | Electrode wire for electric discharge machining | |
JPS6143418B2 (en) | ||
JPH11320269A (en) | Electric discharge machining electrode wire | |
JP3809740B2 (en) | Electrode wire for electric discharge machining | |
JP3852565B2 (en) | Electrode wire for electric discharge machining | |
JP2001052528A (en) | Electrode wire for highly conductive wire electrical discharge machining | |
JP3948166B2 (en) | Electrode wire for electric discharge machining | |
JP2001269820A (en) | Method of manufacturing electrode wire for wire electric discharge machining | |
JP3941352B2 (en) | Electrode wire for wire electric discharge machining and manufacturing method thereof | |
JP4345497B2 (en) | Electrode wire for wire electrical discharge machining | |
JP4089551B2 (en) | High-strength wire EDM electrode wire | |
JPH0586427A (en) | Conductive extra fine copper wire | |
JP2002137123A (en) | Electrode wire for wire electric discharge machining | |
JP2003291030A (en) | Electrode wire for wire electrical discharge machining | |
JP4020003B2 (en) | Electrode wire for wire electric discharge machining and electric discharge machining method using the same | |
JPH06228686A (en) | Zinc base alloy wire and production of zinc alloy wire | |
JP2001219318A (en) | Electrode line for wire discharge machining and method of manufacturing the electrode line | |
JPH0724977B2 (en) | Method for manufacturing electrode wire for wire electric discharge machining | |
JP3875636B2 (en) | Electrode wire for wire electric discharge machine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051021 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070530 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071113 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080111 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20080219 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080418 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20080604 |
|
A912 | Removal of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20080627 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090501 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090605 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120612 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |