JP2003291030A - Electrode wire for wire electrical discharge machining - Google Patents

Electrode wire for wire electrical discharge machining

Info

Publication number
JP2003291030A
JP2003291030A JP2002095316A JP2002095316A JP2003291030A JP 2003291030 A JP2003291030 A JP 2003291030A JP 2002095316 A JP2002095316 A JP 2002095316A JP 2002095316 A JP2002095316 A JP 2002095316A JP 2003291030 A JP2003291030 A JP 2003291030A
Authority
JP
Japan
Prior art keywords
wire
discharge machining
zinc
electrode wire
brass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002095316A
Other languages
Japanese (ja)
Inventor
Isao Izui
功夫 伊豆井
Shigemi Hasegawa
茂巳 長谷川
Masakazu Yoshimoto
雅一 吉本
Yoichiro Kimoto
洋一郎 木本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Cable Co Ltd
Original Assignee
Oki Electric Cable Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Cable Co Ltd filed Critical Oki Electric Cable Co Ltd
Priority to JP2002095316A priority Critical patent/JP2003291030A/en
Publication of JP2003291030A publication Critical patent/JP2003291030A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a structure of electrode wire for wire electrical discharge machining for manufacturing wire with reduced manufacturing processes and greatly improved machining speed as compared with conventional electrode wire and providing roughness of a finished surface and dimension accuracy equivalent to those by conventional electrode wire, and a method for manufacturing the same. <P>SOLUTION: Electrode wire for electrical discharge machining 1 has a core material 2 composed of brass containing 68-82 wt.% of Cu and rest of Zn and a copper-zinc alloy multi layer structure having concentration gradient with increasing zinc concentration as it gets apart from the core material 2. An outermost layer contains 95% or more zinc concentration and has a thickness of 8-16% of total outer diameter. The method for manufacturing the electrode wire for electrical discharge machining 1 comprises a first process to apply zinc plating of a thickness of 10-50 μm on brass wire of 0.5-1.3 mm containing 68-82% wt.% of Cu and rest of Zn, a second process to perform heat treatment by passing through a heating furnace of 500-2,000 mm length generating 800-900°C oxidation atmosphere at 3.0-10 m/min speed, and a third process to extend the wire thereafter. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明が属する技術分野】本発明は、ワイヤ放電加工機
に使用する電極線に関するもので、特に、従来のものに
比べて製造工程の減少と加工速度の大幅な向上を可能に
するワイヤ放電加工用電極線の構造とその製造方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrode wire used in a wire electric discharge machine, and more particularly to a wire electric discharge machine which can reduce the number of manufacturing processes and greatly improve the machining speed as compared with the conventional one. TECHNICAL FIELD The present invention relates to a structure of a manufacturing electrode wire and a manufacturing method thereof.

【0002】[0002]

【従来の技術】ワイヤ放電加工とは放電加工用電極線と
被加工物との間で放電現象を起こさせ、放電によって引
き起こされる熱エネルギーによって被加工物を切断して
いくもので、特にプレス金型等の複雑な形状を有する金
属加工に適している。このようなワイヤ放電加工におい
ては被加工物の表面の仕上り状態や寸法精度が良好であ
ることと加工時間が短いことが要求される。この電極線
として従来より広く使われているものに65/35黄銅
(65%Cu−35%Zn)がある。この構造よりも放
電加工速度を速くしようとする研究が様々な方法で行わ
れている。そのうちの一つとして黄銅組成中のZn濃度
を高くするというものがある。(伸銅技術研究会誌26
(1987))又、図2の(イ)、(ロ)示すよう
に、Zn濃度のより高い合金層をワイヤ表面に形成する
複合構造やその製造方法についても数多く提案されてい
る。(特公昭57−5648号他)
2. Description of the Related Art Wire electric discharge machining is a process in which an electric discharge phenomenon is caused between an electrode wire for electric discharge machining and a work piece, and the work piece is cut by thermal energy generated by the electric discharge. Suitable for metal processing with complicated shapes such as molds. In such wire electric discharge machining, it is required that the finished state of the surface of the workpiece and the dimensional accuracy be good and that the machining time be short. The electrode wire that has been widely used conventionally is 65/35 brass (65% Cu-35% Zn). Various methods have been studied to increase the electric discharge machining speed compared to this structure. One of them is to increase the Zn concentration in the brass composition. (Journal of Copper and Copper Technology 26
(1987)) Further, as shown in FIGS. 2A and 2B, many proposals have been made on a composite structure in which an alloy layer having a higher Zn concentration is formed on the wire surface and a manufacturing method thereof. (Japanese Patent Publication No. 57-5648 and others)

【0003】[0003]

【発明が解決しようとする課題】これらの種々の検討に
よって放電加工速度は比較の仕方によって差はあるが、
得られる被加工物の面粗さを同等にするような加工をし
た場合、65/35黄銅の1.5倍を超えるような放電
加工速度が得られている。しかし、コストパフォーマン
スの面から更なる加工速度の向上、コストダウン、ワイ
ヤの製造のし易さが望まれている。そしてこの加工速度
を向上するにも放電加工によって仕上げられた加工表面
の粗さや寸法精度が従来と比べて劣らないことも必要で
ある。又、製造する上では工程が少なく生産性の良いワ
イヤであることも工業的には欠かせない問題である。
According to these various studies, the electric discharge machining speed varies depending on the comparison method.
When machining is performed so that the surface roughness of the obtained workpiece is the same, an electric discharge machining speed exceeding 1.5 times that of 65/35 brass is obtained. However, from the viewpoint of cost performance, further improvement in processing speed, cost reduction, and ease of wire production are desired. Further, in order to improve the machining speed, it is necessary that the roughness and dimensional accuracy of the machined surface finished by electric discharge machining are not inferior to those in the past. In addition, it is an industrially indispensable problem that the wire has few steps and has good productivity in manufacturing.

【0004】[0004]

【課題を解決する為の手段】本発明は、これらの問題を
解決する為に、鋭意検討した結果、第1にCu68〜8
2wt%、残部Znの黄銅からなる中心心材2に中心心
材2から離れるに従って、亜鉛濃度を増加させて濃度勾
配を持たせた銅ー亜鉛合金の多層構造を形成し、その最
外層の亜鉛濃度が95%以上で、かつトータル外径の8
〜16%の厚さからなる放電加工用電極線1で、第2に
Cu68〜82wt%、残部Znからなる0.5〜1.
3mmの黄銅に10〜50μmの厚さの亜鉛めっきを施
す第1工程と、炉長500〜2,000mmの加熱炉で
800〜900℃の酸化雰囲気中で速度3.0〜10m
/minで通過させることによって熱処理を行う第2工
程と、その後に伸線を行う第3工程からなる放電加工用
電極線1の製造方法である。
In order to solve these problems, the present invention has made extensive studies and as a result, firstly Cu 68 to 8
As the central core material 2 made of brass with 2 wt% and the balance Zn is separated from the central core material 2, a multilayer structure of a copper-zinc alloy is formed in which the zinc concentration is increased to have a concentration gradient, and the zinc concentration of the outermost layer is 95% or more and 8 of the total outer diameter
In the electric discharge machining electrode wire 1 having a thickness of ˜16%, secondly, Cu of 68 to 82 wt% and the balance of 0.5 to 1.
The first step of galvanizing 3 mm brass to a thickness of 10 to 50 μm, and a heating furnace having a furnace length of 500 to 2,000 mm in an oxidizing atmosphere at 800 to 900 ° C. and a speed of 3.0 to 10 m.
It is a method for manufacturing the electrode wire 1 for electric discharge machining, which includes a second step of performing heat treatment by passing the electrode wire at a speed of / min and a third step of drawing the wire.

【0005】[0005]

【発明の実施の形態】以下、本発明の実施の形態につい
て説明する。はじめに、序論として、ワイヤの放電加工
速度を向上させるためにどのような構造が最適かについ
て我々は実験を積み重ねたものをまとめた結果は、下記
の通りである。 ワイヤの中心層は、導電率が高く、常温から400
℃の間で高強度の金属が良い。の中心層は、放電によ
って消耗されない部分であって、いわゆる放電特性を向
上させるためのZnは必ずしも必要ない。ただし、Cu
単体になると高導電率は得られるが、ワイヤの抗張力は
小さくなるので80/20や70/30黄銅等の黄銅合
金が適している。複合構造をしていない単一構造のワイ
ヤではZn濃度が高い方が加工速度の速い特性が得られ
るが、前述のような複合構造とすれば65/35黄銅よ
りも導電率の高い70/30黄銅、80/20黄銅の方
が放電加工速度が向上することが分かっている。 中心金属の周りには冷間伸線が可能で亜鉛濃度ので
きるだけ高い銅合金(Zn濃度40−50wt%)を外
径の約10%の厚さ、少なくとも7%以上に被覆するの
が良い。の亜鉛濃度の高い合金層については、放電加
工によってワイヤの消耗する部分は外径に対して表層か
ら約10%であることからこの部分だけについて亜鉛濃
度を高くすれば良い。ただし、実験によれば外径の10
%の厚さにZn100%の金属を被覆するのは効果がな
く、被覆するのはCu−Zn合金が良い。この層は放電
加工速度を向上させるためには非常に重要な部分で、厚
さが外径の7%未満では性能の向上は見られない。7%
以上の場合には放電加工速度の性能が格段に向上する
が、その厚さを10%以上としてもその効果はそれ以上
は上がらない。むしろ黄銅のβ層が多い亜鉛濃度40−
50%は伸線加工が難しい組成であり、放電加工速度を
向上させる効果がないのであれば、可能な限りむしろ薄
い方が好ましく7−12%が適切である。 最外層にZnを外径の1−15%の厚さで被覆する
のが良い。 の亜鉛めっきについては、外径の0.3
−15%という量を被覆するものであるが、これを付け
ることによって放電現象を励起させる触媒的な働きが得
られる。亜鉛めっきの厚さはこれ以上厚い場合、寸法精
度、被加工物への付着物、放電加工機の自動結線性に悪
影響を与える。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below. First, as an introduction, the following is the result of a compilation of experiments conducted by us regarding what kind of structure is optimal for improving the electric discharge machining speed of a wire. The central layer of the wire has high conductivity,
High-strength metal between ℃ is good. The central layer of is a part that is not consumed by discharge, and Zn for improving so-called discharge characteristics is not necessarily required. However, Cu
Although a high conductivity can be obtained when used alone, a brass alloy such as 80/20 or 70/30 brass is suitable because the tensile strength of the wire becomes small. In the case of a single-structure wire having no composite structure, the higher the Zn concentration is, the faster the processing speed can be obtained. With the composite structure as described above, the conductivity is 70/30 which is higher than that of 65/35 brass. It has been found that brass and 80/20 brass have a higher electric discharge machining rate. Around the central metal, a copper alloy capable of cold drawing and having a zinc concentration as high as possible (Zn concentration 40-50 wt%) is preferably coated to a thickness of about 10% of the outer diameter, at least 7% or more. With respect to the alloy layer having a high zinc concentration, the portion where the wire is consumed by electric discharge machining is about 10% from the surface layer with respect to the outer diameter, and therefore the zinc concentration may be increased only in this portion. However, according to the experiment, the outer diameter of 10
% Metal of Zn100% has no effect, and Cu-Zn alloy is good for coating. This layer is a very important part for improving the electric discharge machining speed, and when the thickness is less than 7% of the outer diameter, the performance is not improved. 7%
In the above case, the performance of the electric discharge machining speed is remarkably improved, but even if the thickness is set to 10% or more, the effect is not further improved. Rather, the β concentration of brass is high and the zinc concentration is 40-
50% is a composition in which wire drawing is difficult, and if there is no effect of improving the electric discharge machining speed, it is preferably as thin as possible, and 7-12% is suitable. The outermost layer is preferably coated with Zn in a thickness of 1-15% of the outer diameter. For galvanizing, the outer diameter is 0.3
It covers a quantity of -15%, but by adding this, a catalytic function for exciting the discharge phenomenon can be obtained. If the thickness of the galvanization is thicker than this, it adversely affects the dimensional accuracy, the deposit on the work piece, and the automatic connection property of the electric discharge machine.

【実施例1】まず、はじめに黄銅合金単体の場合の放電
加工特性について比較した実施例について説明する。ワ
イヤ外径0.3mm、ワーク材SKD−11,ワーク厚
60mm、放電加工機SX10を用いて粗加工条件によ
って加工を行い、10分間の加工でワイヤ断線が生じな
い場合にはIP(加工セッティング)を1ノッチずつ上
げていき各ワイヤの最大放電加工速度を求めた。その結
果を表1に示す。
Example 1 First, an example in which the electrical discharge machining characteristics of brass alloys alone were compared will be described. Wire outer diameter 0.3 mm, work material SKD-11, work thickness 60 mm, machining is performed under rough machining conditions using electric discharge machine SX10, and if wire breakage does not occur after 10 minutes of machining, IP (machining setting) Was increased by 1 notch and the maximum electric discharge machining speed of each wire was obtained. The results are shown in Table 1.

【0006】[0006]

【表1】 [Table 1]

【0007】この結果から、65/35黄銅が最も加工
速度が速いことが確認出来る。これは放電加工速度を速
くするにはZn濃度が高い方が良いといわれていること
を裏付けている。
From these results, it can be confirmed that 65/35 brass has the highest processing speed. This supports that it is said that the higher the Zn concentration is, the better the speed of the electric discharge machining is.

【実施例2】次に、実施例2として実施例1の中心金属
に亜鉛濃度の高い黄銅を被覆して同様に特性評価を行っ
た。中心金属に亜鉛濃度の高い黄銅を形成するために、
各種黄銅線0.9φの表面に亜鉛めっきを行い850℃
の酸化雰囲気中で加熱を行い熱拡散により高亜鉛濃度の
黄銅を被覆した。これを0.3φに伸線、焼鈍を行い、
試験用試料とした。実施例1と同様の条件で最大加工速
度の評価を行った結果を表2に示す。
[Example 2] Next, as Example 2, the central metal of Example 1 was coated with brass having a high zinc concentration and the characteristics were evaluated in the same manner. In order to form brass with high zinc concentration in the central metal,
Zinc plating on the surface of various brass wire 0.9φ 850 ℃
It was heated in an oxidizing atmosphere and coated with brass having a high zinc concentration by thermal diffusion. This is drawn to 0.3φ and annealed,
It was used as a test sample. The results of evaluation of the maximum processing speed under the same conditions as in Example 1 are shown in Table 2.

【0008】[0008]

【表2】 [Table 2]

【0009】表2の結果から分かるように高亜鉛層を形
成することによって放電加工速度は大幅に向上すること
と加工速度の傾向が実施例1の場合と逆になり65/3
5を中心金属に使用した場合が最も遅くなり、80/2
0を使用したものが最も速くなるという興味深い結果が
得られた。
As can be seen from the results shown in Table 2, by forming the high zinc layer, the electric discharge machining speed is significantly improved and the tendency of the machining speed is opposite to that of the first embodiment, and is 65/3.
80/2 is the slowest when 5 is used as the central metal
The interesting result was that using 0 was the fastest.

【実施例3】更に、実施例3として実施例2の構造のワ
イヤの最外層に亜鉛めっきを施したワイヤを評価した。
実施例2の構成のワイヤを0.9φで形成した後にこの
表面に電気めっきでZnを形成した。これを0.3φに
伸線、焼鈍を行い、試験用試料とした。実施例1及び2
と同様の条件で最大加工速度の評価を行った結果を表3
に示す。
Example 3 Further, as Example 3, a wire having the structure of Example 2 and having the outermost layer zinc-plated was evaluated.
After forming the wire of the structure of Example 2 with 0.9φ, Zn was formed on this surface by electroplating. This was drawn to 0.3φ and annealed to obtain a test sample. Examples 1 and 2
Table 3 shows the results of evaluation of the maximum processing speed under the same conditions as above.
Shown in.

【0010】[0010]

【表3】 [Table 3]

【0011】表3の結果からワイヤの最外層に亜鉛めっ
きを行うことによってどの組成のものも同様に加工速度
が上がることが明らかになった。亜鉛めっき厚について
は5μmの厚さで十分効果があることが分かる。したが
って0.3mmのワイヤ径に対して5μmの厚さである
のでワイヤ外径の約1.7%の亜鉛めっきが付いていれ
ば加工速度を向上させる効果がある。
From the results shown in Table 3, it was revealed that the galvanizing of the outermost layer of the wire similarly increases the processing speed for any composition. It can be seen that a zinc plating thickness of 5 μm is sufficiently effective. Therefore, since the thickness of the wire is 0.3 μm and the thickness is 5 μm, the working speed can be improved if the outer diameter of the wire is about 1.7% of zinc plating.

【実施例4】最後に、実施例4の製造方法は熱拡散を行
った後に亜鉛めっきを被覆したが、熱処理条件を選択す
ることによって別工程で亜鉛めっきを最外層に形成しな
くとも熱処理だけで形成が出来ることがわかった。80
/20黄銅0.775mmに亜鉛めっきを厚さ30μm
で被覆し、炉長1,000mmの加熱炉に酸化雰囲気中
で速度6.0m/minで通過させることによって熱処
理を行い、その後伸線を行い0.3mmのワイヤを得
た。70/30を中心金属に使用したものでは70/3
0黄銅0.775mmに亜鉛めっきを厚さ30μmで被
覆し、炉長1,000mmの加熱炉に酸化雰囲気中で速
度6.0m/minで通過させることによって熱処理を
行い、その後伸線を行い0.3mmのワイヤを得た。こ
のワイヤの加工速度は258.8mm/minで引張
強さは802.6MPa、伸び1.60%であった。こ
のワイヤの断面をEPMA(電子プローブマイクロアナ
ライザ)にて濃度分布を調べたところ下記の表4の結果
を示した。
[Fourth Embodiment] Finally, in the manufacturing method of the fourth embodiment, the zinc plating is applied after the thermal diffusion. However, by selecting the heat treatment conditions, the heat treatment is performed without forming the zinc plating in the outermost layer in another step. It turned out that it can be formed by. 80
/ 20 brass 0.775 mm with zinc plating 30 μm thick
Was heat-treated by passing it through a heating furnace having a furnace length of 1,000 mm at a speed of 6.0 m / min in an oxidizing atmosphere, and then wire drawing to obtain a wire of 0.3 mm. 70/3 when 70/30 is used as the central metal
0 Brass 0.775 mm is coated with zinc plating to a thickness of 30 μm, and heat treatment is performed by passing it through a heating furnace with a furnace length of 1,000 mm in an oxidizing atmosphere at a speed of 6.0 m / min, and then drawing wire 0 A wire of 0.3 mm was obtained. The processing speed of this wire was 258.8 mm 2 / min, the tensile strength was 802.6 MPa, and the elongation was 1.60%. When the concentration distribution of the cross section of this wire was examined by EPMA (Electron Probe Microanalyzer), the results shown in Table 4 below were shown.

【0012】[0012]

【表4】 [Table 4]

【0013】この結果から濃度勾配は、表層が亜鉛濃度
100%で中心に向かうほど亜鉛濃度が低くなっている
ことがわかる。こうした構造が実施例3の場合では熱処
理による拡散を行った後に表層に亜鉛めっきを行うとい
う2工程の製造過程を経ているものと比較してこの実施
例4では熱処理の1工程で目的とした構造が得られると
いう工業的に価値のある製造方法であることがわかる。
From these results, it can be seen that the concentration gradient is such that the zinc concentration becomes lower toward the center when the surface layer has a zinc concentration of 100%. In the case where this structure is the case of Example 3, in comparison with the structure in which the surface layer is zinc-plated after being diffused by heat treatment, the structure in Example 4 is the structure intended in one step of heat treatment. It can be seen that this is an industrially valuable manufacturing method in which

【0014】今迄、銅合金としては、銅ー亜鉛合金を代
表例に取り説明してきたが、これに限らず、銅ー錫、銅
ーマグネシウム、銅ー銀、銅ークロム合金等でも構わ
ず、本発明の範囲内であることはいうまでもない。
Up to now, a copper-zinc alloy has been described as a typical example of the copper alloy, but the copper alloy is not limited to this, and copper-tin, copper-magnesium, copper-silver, copper-chromium alloy, etc. may be used. It goes without saying that it is within the scope of the present invention.

【0015】[0015]

【発明の効果】以上説明の通り、本発明によれば製造工
程の減少と放電加工速度の大幅な向上をはかることが出
来るばかりでなく自動結線性にも優れた効果を発揮する
ことが出来、その工業的価値はきわめて大きい。
As described above, according to the present invention, not only the number of manufacturing steps can be reduced and the electric discharge machining speed can be greatly improved, but also excellent effects can be exhibited in the automatic wire connection. Its industrial value is extremely high.

【図面の簡単な説明】[Brief description of drawings]

【図1】(イ) 本発明のワイヤ放電加工用電極線1の
製造工程図である。 (ロ) 本発明のワイヤ放電加工用電極線1の構造断面
図である。
FIG. 1 (a) is a manufacturing process diagram of an electrode wire 1 for wire electric discharge machining of the present invention. (B) It is a structural cross-sectional view of an electrode wire 1 for wire electric discharge machining of the present invention.

【図2】(イ) 従来のワイヤ放電加工用電極線1′の
製造工程図である。 (ロ) 従来のワイヤ放電加工用電極線1′の構造断面
図である。
FIG. 2A is a manufacturing process diagram of a conventional wire electric discharge machining electrode wire 1 '. (B) It is a structural cross-sectional view of a conventional wire electric discharge machining electrode wire 1 '.

【符号の説明】[Explanation of symbols]

1 本発明のワイヤ放電加工用電極線 2 中心心材(Cu68〜82wt%、残部Znの
黄銅) 3A 銅ー亜鉛合金層 3B 銅ー亜鉛合金層 3C 銅ー亜鉛合金層 3D 銅ー亜鉛合金層 3E 銅ー亜鉛合金層(最外層)(亜鉛濃度:95%
以上、厚さトータル外径の8〜16%) 1′ 従来のワイヤ放電加工用電極線 2′ 中心心材(銅合金) 3′ 銅ー亜鉛合金層 4′ 亜鉛めっき層
1 Electrode Wire for Wire Electric Discharge Machining of the Present Invention 2 Core material (Cu 68 to 82 wt%, brass with Zn balance) 3A Copper-zinc alloy layer 3B Copper-zinc alloy layer 3C Copper-zinc alloy layer 3D Copper-zinc alloy layer 3E Copper -Zinc alloy layer (outermost layer) (Zinc concentration: 95%
8 to 16% of the total outer diameter) 1'Conventional wire electric discharge machining electrode wire 2'Central core material (copper alloy) 3'Copper-zinc alloy layer 4'Zinc plating layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉本 雅一 神奈川県川崎市中原区下小田中2丁目12番 8号 沖電線株式会社内 (72)発明者 木本 洋一郎 神奈川県川崎市中原区下小田中2丁目12番 8号 沖電線株式会社内 Fターム(参考) 3C059 AA01 AB05 DC01    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Masakazu Yoshimoto             2-12 Shimoodachu, Nakahara-ku, Kawasaki-shi, Kanagawa             No. 8 Oki Electric Cable Co., Ltd. (72) Inventor Yoichiro Kimoto             2-12 Shimoodachu, Nakahara-ku, Kawasaki-shi, Kanagawa             No. 8 Oki Electric Cable Co., Ltd. F-term (reference) 3C059 AA01 AB05 DC01

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】Cu68〜82wt%、残部Znの黄銅か
らなる中心心材2に中心心材2から離れるに従って、亜
鉛濃度を増加させて濃度勾配を持たせた銅ー亜鉛合金の
多層構造を形成し、その最外層の亜鉛濃度が95%以上
で、かつトータル外径の8〜16%の厚さからなること
を特徴とする放電加工用電極線1。
1. A multilayer structure of a copper-zinc alloy in which a zinc concentration is increased and a concentration gradient is given to a central core material 2 made of brass with 68 to 82 wt% Cu and the balance Zn, as the distance from the central core material 2 increases, The electrode wire 1 for electric discharge machining, wherein the outermost layer has a zinc concentration of 95% or more and a thickness of 8 to 16% of the total outer diameter.
【請求項2】Cu68〜82wt%、残部Znからなる
0.5〜1.3mmの黄銅に10〜50μmの厚さの亜
鉛めっきを施す第1工程と、炉長500〜2,000m
mの加熱炉で800〜900℃の酸化雰囲気中で速度
3.0〜10m/minで通過させることによって熱処
理を行う第2工程と、その後に伸線を行う第3工程から
なることを特徴とする放電加工用電極線1の製造方法。
2. A first step of zinc-plating brass having a thickness of 10 to 50 μm on brass of 0.5 to 1.3 mm consisting of 68 to 82 wt% Cu and the balance Zn, and a furnace length of 500 to 2,000 m.
m heating furnace in 800 to 900 ° C. in an oxidizing atmosphere at a rate of 3.0 to 10 m / min for heat treatment, and then a third step of wire drawing. A method for manufacturing an electrode wire 1 for electric discharge machining.
JP2002095316A 2002-03-29 2002-03-29 Electrode wire for wire electrical discharge machining Pending JP2003291030A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002095316A JP2003291030A (en) 2002-03-29 2002-03-29 Electrode wire for wire electrical discharge machining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002095316A JP2003291030A (en) 2002-03-29 2002-03-29 Electrode wire for wire electrical discharge machining

Publications (1)

Publication Number Publication Date
JP2003291030A true JP2003291030A (en) 2003-10-14

Family

ID=29238866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002095316A Pending JP2003291030A (en) 2002-03-29 2002-03-29 Electrode wire for wire electrical discharge machining

Country Status (1)

Country Link
JP (1) JP2003291030A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005074396A2 (en) * 2004-02-05 2005-08-18 Pung Kuk Edm Wire Manufacturing Co., Ltd Electrode wire with multi-coated layers for electrical discharge machining and method of manufacturing the same
JP2008535668A (en) * 2005-02-11 2008-09-04 テルモコンパクト Composite wire for electrical discharge machining
US20100163529A1 (en) * 2007-12-10 2010-07-01 Oki Electric Cab Le Co., Ltd. Electrode wire for wire electrodischarge machining, method of manufacturing the same, and system for manufacutring base wire for the same
JP2017035753A (en) * 2015-08-10 2017-02-16 元祥金屬工業股▲ふん▼有限公司 Electrode wire for electric discharge machining
JP2018516769A (en) * 2015-12-02 2018-06-28 ニンボー カンシアン マイクロ−エレクトロニクス テクノロジー カンパニー リミテッドNingbo Kangqiang Micro−Electronics Technology Co., Ltd. Scale-like microstructured electrode wire material and its production method and use

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005074396A2 (en) * 2004-02-05 2005-08-18 Pung Kuk Edm Wire Manufacturing Co., Ltd Electrode wire with multi-coated layers for electrical discharge machining and method of manufacturing the same
WO2005074396A3 (en) * 2004-02-05 2005-10-06 Pung Kuk Edm Wire Mfg Co Ltd Electrode wire with multi-coated layers for electrical discharge machining and method of manufacturing the same
JP2008535668A (en) * 2005-02-11 2008-09-04 テルモコンパクト Composite wire for electrical discharge machining
US20100163529A1 (en) * 2007-12-10 2010-07-01 Oki Electric Cab Le Co., Ltd. Electrode wire for wire electrodischarge machining, method of manufacturing the same, and system for manufacutring base wire for the same
JP2017035753A (en) * 2015-08-10 2017-02-16 元祥金屬工業股▲ふん▼有限公司 Electrode wire for electric discharge machining
JP2018516769A (en) * 2015-12-02 2018-06-28 ニンボー カンシアン マイクロ−エレクトロニクス テクノロジー カンパニー リミテッドNingbo Kangqiang Micro−Electronics Technology Co., Ltd. Scale-like microstructured electrode wire material and its production method and use
US10926345B2 (en) 2015-12-02 2021-02-23 Ningbo Kangqiang Micro-Electronics Technology Co., Ltd. Scale-style micro-texture electrode wire material and preparation method therefor and use thereof

Similar Documents

Publication Publication Date Title
JP3718529B2 (en) Method for producing porous electrode wire for electric discharge machining
JP5231486B2 (en) Electrode wire for electric discharge machining
JP2003291030A (en) Electrode wire for wire electrical discharge machining
JP3405069B2 (en) Electrode wire for electric discharge machining
JPS5914429A (en) Composite wire for wire-cut electric discharge machining electrode wire and manufacturing method thereof
JP2001150247A (en) Electrode wire for wire electric discharge machining
JP3087552B2 (en) Electrode wire for electric discharge machining
JPH06190635A (en) Manufacture of electrode wire for wire electric discharge machining device
JP2713350B2 (en) Electrode wire for wire electric discharge machining
JP2000107943A (en) Wire electronic discharge machining electrode line
JPS6171925A (en) Method of producing composite electrode wire for electrospark machining
JPS62218026A (en) Electrode wire for wire cut spark discharge machining
JPS59134624A (en) Composite electrode wire for electric discharge machining and preparation thereof
JP2006159304A (en) Electrode wire for wire electric discharge machining and its manufacturing method
KR20140100796A (en) Wire electrode for electro discharge machining and thesame methode
JP2002137123A (en) Electrode wire for wire electric discharge machining
KR100925000B1 (en) Electrode wire for electric discharge machining and manufacturing method thereof
JPS59110517A (en) Electrode wire for wire-cut electric discharge machining and its manufacturing method
JP2003039246A (en) Electrode wire for wire electric discharge machining
JP3948166B2 (en) Electrode wire for electric discharge machining
JPS59129625A (en) Electrode wire for wire cut electro-discharge machining and its manufacture
JP2001030008A (en) Manufacture of copper or copper alloy-iron combined wire
JP2004330352A (en) Electrode wire for wire electric discharge machining, and surface reforming method using the same
JPH11226817A (en) Manufacture of electrode wire for electric discharge machine
JP2004082246A (en) Electrode wire for wire electric discharge machining

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070403

A131 Notification of reasons for refusal

Effective date: 20070507

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070907