JP2007136579A - Covered electrode wire for wire discharge machining, and manufacturing method thereof - Google Patents

Covered electrode wire for wire discharge machining, and manufacturing method thereof Download PDF

Info

Publication number
JP2007136579A
JP2007136579A JP2005331393A JP2005331393A JP2007136579A JP 2007136579 A JP2007136579 A JP 2007136579A JP 2005331393 A JP2005331393 A JP 2005331393A JP 2005331393 A JP2005331393 A JP 2005331393A JP 2007136579 A JP2007136579 A JP 2007136579A
Authority
JP
Japan
Prior art keywords
layer
wire
discharge machining
electrode wire
electric discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005331393A
Other languages
Japanese (ja)
Inventor
Sei Tsune
青 常
Hiromitsu Kuroda
洋光 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2005331393A priority Critical patent/JP2007136579A/en
Publication of JP2007136579A publication Critical patent/JP2007136579A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a covered electrode wire for wire discharge machining, having proper conductivity and discharge machining performance, and to provide a manufacturing method for it. <P>SOLUTION: This covered electrode wire 6 for wire discharge machining includes two or more covering layers 2, 3, 4, 5 on the outer periphery of a core material 1, where the wire is a quadrangle and rounded circular corner parts R are provided at the outer peripheral corner parts. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ワイヤ放電加工用電極線に係り、特に、被覆型のワイヤ放電加工用電極線に関するものである。   The present invention relates to an electrode wire for wire electric discharge machining, and more particularly to a coated electrode wire for wire electric discharge machining.

一般的なワイヤ放電加工用電極線として、Cu−Zn合金単体からなる断面円形の電極線が活用されている。この電極線は、加工速度、加工精度などの放電特性に優れていると共に、コスト的にも有利な特質を有している。このタイプの電極線の放電加工速度及び加工精度等をもっと向上させるには、電極線をZn濃度が高いCu−Zn合金で形成することが望ましい。しかしながら、Cu−Zn合金中のZn濃度が40重量%を超えると、伸線加工性が著しく低下し、電極線の製造が困難となるので、Zn濃度が40重量%以下のCu−Zn合金が使用されてきた。   As a general electrode wire for wire electric discharge machining, an electrode wire having a circular cross section made of a single Cu—Zn alloy is used. This electrode wire has excellent discharge characteristics such as processing speed and processing accuracy, and has advantageous characteristics in terms of cost. In order to further improve the electric discharge machining speed and machining accuracy of this type of electrode wire, it is desirable to form the electrode wire from a Cu—Zn alloy having a high Zn concentration. However, if the Zn concentration in the Cu-Zn alloy exceeds 40% by weight, the wire drawing processability is remarkably lowered and it becomes difficult to produce an electrode wire. Therefore, a Cu-Zn alloy having a Zn concentration of 40% by weight or less is obtained. Have been used.

近年、ワイヤ放電加工用電極線の高速加工性が重視されるようになっている。このため、Cu−2.0重量%Sn合金などのCu合金からなる心材の周りに、従来よりもZn濃度が高いCu−Zn合金層を被覆した被覆型の放電加工用電極線が提案されている(例えば、特許文献1参照)。   In recent years, high-speed workability of electrode wires for wire electric discharge machining has been emphasized. For this reason, a coated electric discharge machining electrode wire is proposed in which a Cu-Zn alloy layer having a higher Zn concentration than before is coated around a core material made of a Cu alloy such as a Cu-2.0 wt% Sn alloy. (For example, refer to Patent Document 1).

また、心材の表面にZn濃度の高い被覆層を形成する手法として、心材の表面にZnメッキを施す方法が種々提案されている(例えば、特許文献2参照)。   Further, as a method for forming a coating layer having a high Zn concentration on the surface of the core material, various methods for applying Zn plating to the surface of the core material have been proposed (for example, see Patent Document 2).

また、高温引張強度が高い銅合金のひとつとしてCu−Zr合金がある。このCu−Zr合金を用いた被覆型の放電加工用電極線として、Cu−0.05〜0.2重量%Zr合金からなる心材の外周に、Cu−38%〜50%重量Zn合金層を形成したものが挙げられる(例えば、特許文献3参照)。   Moreover, there exists a Cu-Zr alloy as one of the copper alloys with high high temperature tensile strength. As a coated electrode wire for electric discharge machining using this Cu-Zr alloy, a Cu-38% to 50% weight Zn alloy layer is formed on the outer periphery of a core material made of Cu-0.05 to 0.2% by weight Zr alloy. What was formed is mentioned (for example, refer patent document 3).

特開平5−339664号公報Japanese Patent Laid-Open No. 5-339664 特開平6−190635号公報JP-A-6-190635 特開平9−225748号公報Japanese Patent Laid-Open No. 9-225748

放電加工用電極線の温度は、放電加工中、一般に200℃〜400℃に上昇すると言われており、電極線自体に熱の負荷が加わる一方、加工速度および加工精度を上げるための張力負荷も加わることから、高温中での引張強度および導電性が高いことが要求されている。   It is said that the temperature of the electrode wire for electric discharge machining generally rises to 200 ° C. to 400 ° C. during electric discharge machining, and a thermal load is applied to the electrode wire itself, while tension load for increasing the machining speed and machining accuracy is also applied. Therefore, it is required to have high tensile strength and conductivity at high temperatures.

しかし、一般に用いられている被覆電極線は、高温強度および導電性が高くないため、加工速度をもっと上げようとすると断線が生じる。前述した特許文献3記載の放電加工用電極線は、高温引張強度が高いCu−Zr材料を心材に用いているため、高温引張強度は高まるものの、耐熱性に寄与する導電性および高いZn濃度を得るためのバランスが難しく、加工速度を大きく上げることができなかった。   However, generally used coated electrode wires are not high in strength and conductivity at high temperatures, and therefore disconnection occurs when the processing speed is further increased. Since the electrode wire for electric discharge machining described in Patent Document 3 uses a Cu-Zr material having a high high-temperature tensile strength as a core material, the high-temperature tensile strength is increased, but the conductivity contributing to heat resistance and the high Zn concentration are increased. The balance to obtain was difficult, and the processing speed could not be increased greatly.

また、前述した特許文献2記載の放電加工用電極線は、心材の表面にZn濃度の高い被覆層を有しているため、加工精度は向上するものの、Znメッキで形成した純Zn層の層厚が薄いことから放電加工時に純Zn層が瞬時に蒸発してしまい、放電加工速度の十分な向上は望めないといった問題があった。   In addition, since the electrode wire for electric discharge machining described in Patent Document 2 described above has a coating layer having a high Zn concentration on the surface of the core material, the processing accuracy is improved, but a layer of a pure Zn layer formed by Zn plating. Since the thickness is small, the pure Zn layer evaporates instantaneously during electric discharge machining, and there is a problem that a sufficient improvement in electric discharge machining speed cannot be expected.

以上の事情を考慮して創案された本発明の目的は、導電性および放電加工性能が良好なワイヤ放電加工用被覆電極線及びその製造方法を提供することにある。   An object of the present invention, which was created in view of the above circumstances, is to provide a coated electrode wire for wire electric discharge machining having good conductivity and electric discharge machining performance and a method for producing the same.

本発明は、従来材より導電性が良く、瞬時的な放電範囲が広く、高Zn濃度の被覆層を有する被覆電極線を提供するため、従来材と比べて放電性能、断線限界、放電加工速度が著しく向上され、良好な加工精度と面精度を有する放電加工用被覆電極線を提供することを目的とする。   The present invention provides a coated electrode wire that has better conductivity than the conventional material, has a wide instantaneous discharge range, and has a coating layer with a high Zn concentration. Therefore, compared with the conventional material, discharge performance, disconnection limit, electric discharge machining speed An object of the present invention is to provide a coated electrode wire for electric discharge machining that is improved significantly and has good machining accuracy and surface accuracy.

上記の目的を達成するために、請求項1の発明は、心材の外周に2層以上の被覆層を有するワイヤ放電加工用被覆電極線において、断面四角形で、外周角部にR状の円コーナー部を有することを特徴とするワイヤ放電加工用被覆電極線である。   In order to achieve the above-mentioned object, the invention of claim 1 is a coated electrode wire for wire electric discharge machining having two or more coating layers on the outer periphery of a core material. It is a covered electrode wire for wire electric discharge machining characterized by having a portion.

請求項2の発明は、上記心材を電極線のある側面に偏心して配置し、その偏心した側の側面を除く3つの側面を放電加工面とした請求項1記載のワイヤ放電加工用被覆電極線である。   According to a second aspect of the present invention, there is provided a coated electrode wire for wire electric discharge machining according to the first aspect, wherein the core material is eccentrically disposed on a side surface of the electrode wire, and three side surfaces excluding the side surface on the eccentric side are used as an electric discharge machining surface. It is.

請求項3の発明は、上記被覆層が内層側に純Zn層を外層側に合金層を有し、上記心材と純Zn層の界面及び純Zn層と合金層の界面に、Cu−Zn系金属間化合物の反応層をそれぞれ有する請求項1又は2記載のワイヤ放電加工用被覆電極線である。   According to a third aspect of the present invention, the coating layer has a pure Zn layer on the inner layer side and an alloy layer on the outer layer side, and a Cu-Zn system is formed at the interface between the core material and the pure Zn layer and at the interface between the pure Zn layer and the alloy layer. The coated electrode wire for wire electric discharge machining according to claim 1 or 2, wherein each has a reaction layer of an intermetallic compound.

請求項4の発明は、上記被覆層の層厚と電極線全体の長辺の長さaとの比は0.05〜0.25、上記各反応層の層厚t1、t2と電極線全体の長辺の長さaとの比が0.002〜0.005である請求項1から3いずれかに記載のワイヤ放電加工用被覆電極線である。   According to a fourth aspect of the present invention, the ratio of the layer thickness of the coating layer to the length a of the long side of the entire electrode wire is 0.05 to 0.25, the layer thicknesses t1 and t2 of the reaction layers and the entire electrode wire 4. The coated electrode wire for wire electrical discharge machining according to claim 1, wherein the ratio of the length a to the long side a is 0.002 to 0.005. 5.

請求項5の発明は、上記心材が偏心した側の被覆層の厚さt3が、その反対側の被覆層の厚さt4より薄く、t3/t4の比が0.2〜0.8である請求項1から4いずれかに記載のワイヤ放電加工用被覆電極線である。   In the invention of claim 5, the thickness t3 of the coating layer on the side where the core material is eccentric is thinner than the thickness t4 of the coating layer on the opposite side, and the ratio of t3 / t4 is 0.2 to 0.8. A coated electrode wire for wire electric discharge machining according to any one of claims 1 to 4.

請求項6の発明は、上記各反応層はZn濃度が傾斜した層であり、上記心材と上記純Zn層の界面の反応層は、Zn濃度が内側から外側に向かって連続的に増加し、逆に、純Zn層と上記合金層の界面の反応層は、Zn濃度が内側から外側に向かって連続的に減少する請求項1から5いずれかに記載のワイヤ放電加工用被覆電極線である。   The invention according to claim 6 is that each of the reaction layers is a layer in which the Zn concentration is inclined, and the reaction layer at the interface between the core material and the pure Zn layer has a Zn concentration continuously increasing from the inside toward the outside, Conversely, the reaction layer at the interface between the pure Zn layer and the alloy layer is the coated electrode wire for wire electric discharge machining according to any one of claims 1 to 5, wherein the Zn concentration continuously decreases from the inside toward the outside. .

請求項7の発明は、上記被覆層が、内層側に純Zn層を、外層側にCu−30〜46重量%Znという組成の合金層を有する請求項1から6いずれかに記載のワイヤ放電加工用被覆電極線である。   The invention according to claim 7 is the wire discharge according to any one of claims 1 to 6, wherein the coating layer has a pure Zn layer on the inner layer side and an alloy layer having a composition of Cu-30 to 46 wt% Zn on the outer layer side. This is a coated electrode wire for processing.

請求項8の発明は、上記各反応層がCu−60〜90重量%Znという組成の金属間化合物で構成される請求項3から7いずれかに記載のワイヤ放電加工用被覆電極線である。   The invention according to claim 8 is the coated electrode wire for wire electric discharge machining according to any one of claims 3 to 7, wherein each of the reaction layers is made of an intermetallic compound having a composition of Cu-60 to 90 wt% Zn.

請求項9の発明は、上記心材が、
純Cu、
Cu−0.02〜0.2重量%Zr合金、
Cu−0.15〜0.70重量%In合金、
Cu−0.15〜0.25重量%Sn−0.15〜0.25重量%In合金、
Cu−0.15〜0.70重量%Sn合金、
Cu−5〜30重量%Zn合金、
Cu−0.2〜20重量%Ag合金、
Cu−5〜30重量%ZnにZr、Cr、Mg、Al、Si、Fe、P、Ni、Ag、Snの内の少なくとも1種を添加した合金、
又はFe基合金、
で構成される請求項1から8いずれかに記載のワイヤ放電加工用被覆電極線である。
The invention of claim 9 is characterized in that the core material is
Pure Cu,
Cu-0.02-0.2 wt% Zr alloy,
Cu-0.15-0.70 wt% In alloy,
Cu-0.15-0.25 wt% Sn-0.15-0.25 wt% In alloy,
Cu-0.15-0.70 wt% Sn alloy,
Cu-5-30 wt% Zn alloy,
Cu-0.2-20 wt% Ag alloy,
An alloy obtained by adding at least one of Zr, Cr, Mg, Al, Si, Fe, P, Ni, Ag, and Sn to Cu-5 to 30 wt% Zn,
Or an Fe-based alloy,
A coated electrode wire for wire electric discharge machining according to any one of claims 1 to 8, comprising:

請求項10の発明は、心材の外周に2層以上の被覆層を有するワイヤ放電加工用被覆電極線の製造方法において、断面四角形の心材の外周に上記被覆層を形成した後、熱処理による拡散処理および表面処理を施すことで、心材と被覆層との界面及び被覆層同士の界面で原子を拡散させると共に、再配列させることによって、各界面にそれぞれ反応層を形成することを特徴とするワイヤ放電加工用被覆電極線の製造方法である。   The invention according to claim 10 is a method of manufacturing a coated electrode wire for wire electric discharge machining having two or more coating layers on the outer periphery of the core material, and after forming the coating layer on the outer periphery of the core material having a quadrangular cross section, a diffusion treatment by heat treatment And a surface treatment to diffuse atoms at the interface between the core material and the coating layer and between the coating layers, and to rearrange them, thereby forming a reaction layer at each interface. It is a manufacturing method of the coated electrode wire for processing.

請求項11の発明は、上記心材の外周に、先ず純Zn層を設け、その純Zn層の周りにCu−30〜46重量%Znという組成の合金層を設けた後、上記熱処理を施す請求項10記載のワイヤ放電加工用被覆電極線の製造方法である。   According to the eleventh aspect of the present invention, a pure Zn layer is first provided on the outer periphery of the core material, and an alloy layer having a composition of Cu-30 to 46 wt% Zn is provided around the pure Zn layer, and then the heat treatment is performed. Item 11. A method for producing a coated electrode wire for wire electrical discharge machining according to Item 10.

請求項12の発明は、良好な伸線加工を行うために、上記被覆層が被覆された心材に表面プラズマ熱処理を行い、表面の硬い高Zn濃度合金層だけを熱処理し、中の柔らかい心材は熱処理されないようにする請求項10又は11記載のワイヤ放電加工用被覆電極線の製造方法である。   The invention of claim 12 performs a surface plasma heat treatment on the core material coated with the coating layer in order to perform a good wire drawing process, heat-treats only the hard surface high Zn concentration alloy layer, The method for producing a coated electrode wire for wire electric discharge machining according to claim 10 or 11, wherein heat treatment is not performed.

請求項13の発明は、上記被覆層が被覆された心材を横方向に走行させ、プラズマ熱処理技術により、中間の溶融温度の低い純Zn層を短時間で融かし、中心の心材を重力の作用で下に沈ませて心材を電極線のある側面に偏心させ、心材周りに厚さが不均一な被覆層を形成する請求項10から12いずれかに記載のワイヤ放電加工用被覆電極線の製造方法である。   According to the invention of claim 13, the core material coated with the coating layer is caused to travel in the lateral direction, the pure Zn layer having a low intermediate melting temperature is melted in a short time by the plasma heat treatment technique, and the core material of the center is made of gravity. The coated electrode wire for wire electric discharge machining according to any one of claims 10 to 12, wherein the core material is sunk downward by operation to decenter the core material on a side surface of the electrode wire, and a coating layer having a non-uniform thickness is formed around the core material. It is a manufacturing method.

本発明に係るワイヤ放電加工用被覆電極線は、断面四角形の心材と純Zn層との界面および純Zn層とCu−Zn合金層との界面にそれぞれ反応層を設けた四角形電極線であるため、放電加工性能が良好となるという優れた効果を発揮する。   Since the coated electrode wire for wire electric discharge machining according to the present invention is a rectangular electrode wire in which a reaction layer is provided at the interface between the core material having a square cross section and the pure Zn layer and at the interface between the pure Zn layer and the Cu-Zn alloy layer. The excellent electrical discharge machining performance is exhibited.

以下本発明の実施の形態を添付図面により説明する。   Embodiments of the present invention will be described below with reference to the accompanying drawings.

本発明の好適一実施の形態に係るワイヤ放電加工用被覆電極線の横断面図を図1に示す。   FIG. 1 shows a cross-sectional view of a coated electrode wire for wire electric discharge machining according to a preferred embodiment of the present invention.

図1に示すように、本実施の形態に係るワイヤ放電加工用被覆電極線6は、心材1の外周に順に反応層4、純Zn層2、反応層5および合金層3を設けた断面四角形状の被覆電極線である。反応層4、純Zn層2、反応層5および合金層3が、2層以上の被覆層を構成する。また、電極線6は、その外周角部にR状の円コーナー部Rを有する。   As shown in FIG. 1, the coated electrode wire 6 for wire electric discharge machining according to the present embodiment has a square cross section in which a reaction layer 4, a pure Zn layer 2, a reaction layer 5, and an alloy layer 3 are sequentially provided on the outer periphery of the core material 1. It is a covered electrode wire having a shape. The reaction layer 4, the pure Zn layer 2, the reaction layer 5 and the alloy layer 3 constitute two or more coating layers. The electrode wire 6 has an R-shaped circular corner R at the outer peripheral corner.

被覆層の厚さは、一側(ある側面(図1中では下面))の被覆層の厚さt3が、三側(ある側面の反対側の面(図1中では上面))の被覆層t4より薄く(t3<t4)、t3/t4の比は0.2〜0.8の範囲で、加工精度及びワイヤの高温引張強度などの要求に応じて調整される。また、純Zn層2の層厚は合金層3よりも厚くされる。   The thickness of the coating layer is such that the thickness t3 of the coating layer on one side (a side surface (the lower surface in FIG. 1)) is the coating layer on the three side (the surface on the opposite side of the certain side surface (the upper surface in FIG. 1)). It is thinner than t4 (t3 <t4), and the ratio of t3 / t4 is in the range of 0.2 to 0.8, and is adjusted according to requirements such as processing accuracy and high-temperature tensile strength of the wire. Further, the pure Zn layer 2 is thicker than the alloy layer 3.

合金層3はCu−30〜46重量%Znという組成の合金で、および各反応層4,5はCu−60〜90重量%Znという組成の金属間化合物で構成され、高加工速度や高加工精度等の要求に応じて、各層4,5,3の成分、組成が調整される。   The alloy layer 3 is made of an alloy having a composition of Cu-30 to 46 wt% Zn, and the reaction layers 4 and 5 are made of an intermetallic compound having a composition of Cu-60 to 90 wt% Zn. The components and compositions of the layers 4, 5, and 3 are adjusted according to requirements such as accuracy.

被覆層の層厚と電極線6全体の長辺の長さ(電極線6のある側面に隣接する側面の高さ)aとの比は0.05〜0.25、反応層4,5の層厚t1、t2(電極線6全体の短辺b方向における層厚)と電極線6全体の長辺の長さaとの比が0.002〜0.005となるように、心材1のサイズおよび各層4,2,5,3の層厚が調整される。   The ratio of the thickness of the coating layer to the length of the long side of the entire electrode wire 6 (the height of the side surface adjacent to the side surface with the electrode wire 6) a is 0.05 to 0.25, and the reaction layers 4 and 5 The core material 1 is formed so that the ratio of the layer thickness t1, t2 (layer thickness in the short side b direction of the entire electrode wire 6) to the long side length a of the entire electrode wire 6 is 0.002 to 0.005. The size and the layer thickness of each layer 4, 2, 5, 3 are adjusted.

各反応層4,5の厚さ方向における内側から外側への距離P(P1〜P2,P3〜P4)とZn濃度の関係を図3(a),図3(b)に示すように、反応層4のZn濃度は、被覆層の内側から外側に向かってC1〜C2と連続的に増加する傾斜層となっている。また、図3(b)に示すように、反応層5のZn濃度は、被覆層の内側から外側に向かってC3〜C4と連続的に減少する傾斜層となっている。この結果、組織の観点から捉えると、電極線6は、心材1と各層2,3が反応層4,5を介して一体となった線材となる。   The relationship between the distance P (P1 to P2, P3 to P4) from the inside to the outside in the thickness direction of each reaction layer 4 and 5 and the Zn concentration is shown in FIGS. 3 (a) and 3 (b). The Zn concentration of the layer 4 is a gradient layer that continuously increases from C1 to C2 from the inside to the outside of the coating layer. Moreover, as shown in FIG.3 (b), the Zn density | concentration of the reaction layer 5 is a gradient layer which decreases continuously with C3-C4 toward the outer side from the inner side of a coating layer. As a result, from the viewpoint of the structure, the electrode wire 6 is a wire rod in which the core material 1 and the layers 2 and 3 are integrated via the reaction layers 4 and 5.

心材1の構成材は、導電率が高く、強度が高く、かつ高温強度が高い材料であれば、特に限定するものではなく、例えば、
純銅、
Cu−0.02〜0.2重量%Zr合金、
Cu−0.15〜0.70重量%In合金、
Cu−0.15〜0.25重量%Sn−0.15〜0.25重量%In合金、
Cu−0.15〜0.70重量%Sn合金、
Cu−5〜30重量%Zn合金、
Cu−0.2〜20重量%Ag合金、
Cu−5〜30重量%ZnにZr、Cr、Mg、Al、Si、Fe、P、Ni、Ag、Snの内の少なくとも1種を添加した合金、
又はFe基合金、
が挙げられる。
The constituent material of the core material 1 is not particularly limited as long as the material has high conductivity, high strength, and high temperature strength.
Pure copper,
Cu-0.02-0.2 wt% Zr alloy,
Cu-0.15-0.70 wt% In alloy,
Cu-0.15-0.25 wt% Sn-0.15-0.25 wt% In alloy,
Cu-0.15-0.70 wt% Sn alloy,
Cu-5-30 wt% Zn alloy,
Cu-0.2-20 wt% Ag alloy,
An alloy obtained by adding at least one of Zr, Cr, Mg, Al, Si, Fe, P, Ni, Ag, and Sn to Cu-5 to 30 wt% Zn,
Or an Fe-based alloy,
Is mentioned.

合金層3のZn濃度を32〜46重量%としたのは、Zn濃度が32%重量%未満だと放電加工速度を向上させる効果が十分に得られないためであり、Zn濃度が46%を超えると伸線加工性が著しく低下するためである。   The reason why the Zn concentration of the alloy layer 3 is set to 32 to 46% by weight is that when the Zn concentration is less than 32% by weight, the effect of improving the electric discharge machining speed cannot be sufficiently obtained. This is because the wire drawing workability is remarkably deteriorated.

被覆層の層厚と電極線6全体の長辺の長さaとの比を0.05〜0.25としたのは、0.05未満だと、放電加工時に被覆層のZnが瞬時に消耗してしまい、放電加工速度の十分な向上および加工精度の向上が期待できないためである。また、0.25を超えると、電極線6全体に占める被覆層の断面積が増加し、電極線6の高温強度および導電率の低下を招いてしまい、放電加工速度の十分な向上が期待できなくなるためである。   The ratio between the layer thickness of the coating layer and the length a of the long side of the entire electrode wire 6 is set to 0.05 to 0.25. This is because they are consumed, and a sufficient improvement in electric discharge machining speed and improvement in machining accuracy cannot be expected. On the other hand, if it exceeds 0.25, the cross-sectional area of the coating layer occupying the entire electrode wire 6 increases, leading to a decrease in the high-temperature strength and conductivity of the electrode wire 6, and a sufficient improvement in electric discharge machining speed can be expected. This is because it disappears.

四角形の電極線において、一側の被覆層の厚さt3は三側の被覆層t4より薄い。t3/t4の比を0.2〜0.8としたのは、t3/t4が0.8を超えると、電極線6全体に占める被覆層の断面積が増加し、電極線6の高温強度及導電率の低下を招いてしまい、放電加工速度の十分な向上及び加工精度の向上ができない為である。また、0.2未満だと、放電加工時、一側の被覆層のZnが瞬時に消耗してしまい、心材1の冷却効果の低下を招いてしまい、放電加工速度の十分な向上が期待できなくなる為である。   In the rectangular electrode line, the thickness t3 of the one-side coating layer is thinner than the three-side coating layer t4. The ratio of t3 / t4 was set to 0.2 to 0.8. When t3 / t4 exceeded 0.8, the cross-sectional area of the coating layer occupying the entire electrode wire 6 increased, and the high-temperature strength of the electrode wire 6 was increased. This is because the electrical conductivity is lowered and the electric discharge machining speed cannot be sufficiently improved and the machining accuracy cannot be improved. On the other hand, if it is less than 0.2, Zn in the coating layer on one side is consumed instantly during electric discharge machining, leading to a decrease in the cooling effect of the core material 1, and a sufficient improvement in electric discharge machining speed can be expected. This is because it disappears.

反応層4,5の層厚t1、t2と電極線6全体の長辺の長さaとの比をそれぞれ0.002〜0.005としたのは、0.002未満だと、心材1と被覆層を構成する各層2,3が十分に密着しなくなり、電極線6自体の引張強度の低下を招くためである。また、0.005を超えると(拡散を過剰に行うと)、伸線加工に伴って、脆い反応層4,5の部分で破断が生じて均一変形しなくなり、伸線時に断線が発生したり、電極線6自体の引張強度の低下を招くためである。   The ratio between the layer thicknesses t1 and t2 of the reaction layers 4 and 5 and the length a of the long side of the entire electrode wire 6 was 0.002 to 0.005, respectively. This is because the layers 2 and 3 constituting the coating layer are not sufficiently adhered, and the tensile strength of the electrode wire 6 itself is reduced. Further, if it exceeds 0.005 (if the diffusion is excessive), the brittle reaction layers 4 and 5 are broken at the portion of the brittle reaction layers 4 and 5 and are not uniformly deformed. This is because the tensile strength of the electrode wire 6 itself is reduced.

一方、本実施の形態に係るワイヤ放電加工用被覆電極線は、次のように製造される。   On the other hand, the covered electrode wire for wire electric discharge machining according to the present embodiment is manufactured as follows.

先ず、断面四角形の心材1の周りに、順に純Zn層2、合金層3を設けて被覆層を形成した後、様々な熱処理(拡散処理)および表面熱処理を施すことで、心材1と純Zn層2との界面、及び純Zn層2と合金層3との界面で原子を相互に拡散させると共に、再配列させる。これによって、心材1と純Zn層2、及び純Zn層2と合金層3の各界面に反応層4,5が形成され、ワイヤ放電加工用被覆電極線6が得られる。   First, a pure Zn layer 2 and an alloy layer 3 are provided around the core material 1 having a quadrangular cross section in order to form a coating layer, and then various heat treatments (diffusion treatment) and surface heat treatment are performed, whereby the core material 1 and the pure Zn material are treated. At the interface with the layer 2 and at the interface between the pure Zn layer 2 and the alloy layer 3, atoms are mutually diffused and rearranged. As a result, reaction layers 4 and 5 are formed at each interface between the core material 1 and the pure Zn layer 2 and between the pure Zn layer 2 and the alloy layer 3, and the coated electrode wire 6 for wire electric discharge machining is obtained.

熱処理方法としては、特別な短時間熱処理方法、例えば、表面プラズマ熱処理技術が必要である。具体的には、伸線加工できるように、表面の硬い高Zn濃度の銅合金だけを熱処理でき、中の柔らかい低Zn濃度の心材1は熱処理しないこと、また、Znの蒸発を防止することが可能な、短時間の熱処理技術(例えば、プラズマ熱処理や通電アニラ熱処理など)が必要である。ここで言うプラズマ熱処理(イオン衝撃熱処理とも言う)は、イオン浸炭、イオン窒化などの減圧雰囲気中で、陰極とした処理物と陽極の間に起こるグロー放電を利用した表面熱処理である。   As the heat treatment method, a special short-time heat treatment method, for example, a surface plasma heat treatment technique is required. Specifically, only a hard copper alloy having a high Zn concentration can be heat-treated so that the wire drawing can be performed, and the core material 1 having a soft low Zn concentration is not heat-treated, and Zn evaporation can be prevented. Possible short-time heat treatment techniques (for example, plasma heat treatment and energized annealing) are necessary. The plasma heat treatment (also referred to as ion bombardment heat treatment) referred to here is a surface heat treatment utilizing glow discharge that occurs between a treatment object serving as a cathode and an anode in a reduced pressure atmosphere such as ion carburization or ion nitriding.

また、被覆層が形成された心材1を横方向(水平方向)に走行させると共に、その表面をプラズマ熱処理技術を利用して熱処理するのに伴い、被覆層中間の溶融温度の低い純Zn層2を短時間で融かすことで、中心の心材1が重力の作用で下に少し沈み、図1に示したように心材1が電極線のある側面に偏心され、心材1の周りに厚さが不均一な被覆層を有する電極線6が得られる。   Further, as the core material 1 on which the coating layer is formed travels in the lateral direction (horizontal direction) and the surface thereof is heat-treated using a plasma heat treatment technique, the pure Zn layer 2 having a low melting temperature in the middle of the coating layer. Is melted in a short time, the central core material 1 sinks down slightly due to the action of gravity, and the core material 1 is eccentric to the side where the electrode wires are present as shown in FIG. An electrode wire 6 having a non-uniform coating layer is obtained.

最後に、この電極線6を伸線ダイスに通し、電極線6に適宜縮径加工(冷間伸線加工)を施して所望のサイズに形成することで、最終製品が得られる。縮径加工は、所望のサイズが得られるまで、電極線6に伸線ダイス加工及び熱処理を繰り返し実施するようにしてもよい。   Finally, the electrode wire 6 is passed through a wire drawing die, and the electrode wire 6 is appropriately reduced in diameter (cold wire drawing) to form a desired size, thereby obtaining a final product. In the diameter reduction processing, the electrode wire 6 may be repeatedly subjected to wire drawing die processing and heat treatment until a desired size is obtained.

本実施の形態に係るワイヤ放電加工用被覆電極線6は、導電性を向上させるため、電極線の断面形状を円形から四角形にして電極線の通電面積を大きくしている。これにより、導電性が良くなり、より低抵抗となる結果、高温で放電加工する時、従来の電極線と比べて生じる熱が減って温度が低くなり、電極線自体の熱的負担が減少される。よって、加工精度をさらに上げるために、加える張力負荷をさらに高めることができる。   In the covered electrode wire 6 for wire electric discharge machining according to the present embodiment, in order to improve conductivity, the cross-sectional shape of the electrode wire is changed from a circular shape to a quadrangular shape to increase the current-carrying area of the electrode wire. As a result, the electrical conductivity is improved and the resistance becomes lower. As a result, when electric discharge machining is performed at a high temperature, the heat generated compared to the conventional electrode wire is reduced, the temperature is lowered, and the thermal burden on the electrode wire itself is reduced. The Therefore, the tension load to be applied can be further increased in order to further increase the processing accuracy.

また、図2(a)に示すように、従来の電極線21は断面円形であるため、放電22が生じる箇所は電極線21と被加工物23が最も近接している部分だけであり、放電22は点放電である。従来の電極線21は、点放電で放電箇所が少ないため、放電加工速度の更なる高速化、放電の安定性(被加工物23の所定の位置に放電22を生じさせること)の点でやや難があった。これに対して、図2(b)に示すように、本実施の形態に係るワイヤ放電加工用被覆電極線6は断面四角形であるため、被加工物23に面する電極線6の3つの側面で放電22が生じ、放電22は面放電である。このワイヤ放電加工用被覆電極線6は、面放電で放電箇所が多いため、放電加工速度を更に高めることができると共に、放電の安定性もより高まる。電極線6の外周角部は円コーナー部Rとなっていることから、電極線6の外周角部において放電22が集中することはなく、面放電が可能となる。円コーナー部Rの面取り半径は、放電22が集中しない範囲で、電極線6のサイズに応じて適宜調整される。   Further, as shown in FIG. 2A, since the conventional electrode wire 21 has a circular cross section, the portion where the discharge 22 is generated is only the portion where the electrode wire 21 and the work piece 23 are closest to each other. 22 is a point discharge. Since the conventional electrode wire 21 has few discharge spots by point discharge, it is somewhat in terms of further increasing the electric discharge machining speed and the stability of the discharge (generating the discharge 22 at a predetermined position of the workpiece 23). There was a difficulty. On the other hand, as shown in FIG. 2 (b), the coated electrode wire 6 for wire electric discharge machining according to the present embodiment has a quadrangular cross section, and therefore, the three side surfaces of the electrode wire 6 facing the workpiece 23. A discharge 22 occurs, and the discharge 22 is a surface discharge. Since the coated electrode wire 6 for wire electric discharge machining has many discharge portions due to surface discharge, the electric discharge machining speed can be further increased and the discharge stability is further enhanced. Since the outer peripheral corner portion of the electrode wire 6 is a circular corner portion R, the discharge 22 does not concentrate at the outer peripheral corner portion of the electrode wire 6, and surface discharge is possible. The chamfer radius of the circular corner portion R is appropriately adjusted according to the size of the electrode wire 6 within a range where the discharge 22 does not concentrate.

また、ワイヤ放電加工用被覆電極線6は、被覆層の内層側に100%の高濃度Zn(純Zn層2)を有するため、優れた放電性能を持つ一方、放電加工の経過に伴って多量のZnが蒸発することにより、その蒸発時の気化熱で電極線6の冷却効果が向上して、電極線6に加わる熱の負担をもっと下げることができる。その結果、放電加工電流を増加させても、一般電極線より温度上昇を低く抑えることができ、電極線6の断線限界が向上するため、放電加工速度および加工精度の向上を図ることができる。   Moreover, since the coated electrode wire 6 for wire electric discharge machining has 100% high-concentration Zn (pure Zn layer 2) on the inner layer side of the coating layer, it has excellent electric discharge performance, while a large amount with the progress of electric discharge machining. By evaporating Zn, the cooling effect of the electrode wire 6 is improved by the heat of vaporization during the evaporation, and the burden of heat applied to the electrode wire 6 can be further reduced. As a result, even if the electric discharge machining current is increased, the temperature rise can be suppressed lower than that of the general electrode wire, and the breakage limit of the electrode wire 6 is improved, so that the electric discharge machining speed and machining accuracy can be improved.

また、放電加工する時、電極線6の一方側(電極線6における心材1が偏心した側の側面)は放電させないため、一方側に引張強度が低い被覆層を厚く被せる必要はないと考えると、一方側の被覆層を薄めにすることができる。しかし、心材1の高温冷却効果を向上させるには、適当な高Zn濃度の被覆層が必要なため、電極線6の残りの3つの側面、特にある側面の反対側の面に適切な厚さで被覆層を被せることで、電極線6の高温強度に寄与する導電性の向上を図ることができ、加工速度を大きく上げることができる。   In addition, when electric discharge machining is performed, one side of the electrode wire 6 (side surface of the electrode wire 6 on the side where the core material 1 is eccentric) is not discharged, so that it is not necessary to cover the one side with a coating layer having low tensile strength. The coating layer on one side can be made thinner. However, in order to improve the high-temperature cooling effect of the core material 1, a coating layer having an appropriate high Zn concentration is required, so that the thickness is appropriate on the remaining three side surfaces of the electrode wire 6, particularly on the surface opposite to a certain side surface. By covering with the coating layer, the conductivity that contributes to the high temperature strength of the electrode wire 6 can be improved, and the processing speed can be greatly increased.

また、心材1と純Zn層2との界面および純Zn層2と合金層3との界面に、それぞれ反応層4,5を設けることで、心材1と被覆層を構成する各層2,3間の密着性が良好となる。その結果、引張強度が向上し、放電加工性能が良好なワイヤ放電加工用被覆電極線6を得ることができる。   Further, by providing reaction layers 4 and 5 at the interface between the core material 1 and the pure Zn layer 2 and at the interface between the pure Zn layer 2 and the alloy layer 3, respectively, between the layers 2 and 3 constituting the core material 1 and the coating layer. The adhesiveness of is improved. As a result, the coated electrode wire 6 for wire electric discharge machining with improved tensile strength and good electric discharge machining performance can be obtained.

本実施の形態に係る電極線6によれば、導電性が良好な心材1を用い、この心材1の周りに純Zn層2を設けることで、放電加工性能が更に良好となる。また、放電加工時における外層側のCu−Zn合金層3及び反応層5の消耗によって純Zn層2が露出すると、この純Zn層2が放電するため、放電特性が良好となり、優れた加工精度が得られる。この時、純Zn層2は、Cu−Zn合金層3及び反応層5で被覆されていると共に、Cu−Zn合金層3よりも層厚が厚く、十分な層厚を有しているため、従来の電極線のように放電加工時に純Zn層2が瞬時に蒸発することはない。   According to the electrode wire 6 according to the present embodiment, the core material 1 having good conductivity is used, and the pure Zn layer 2 is provided around the core material 1, whereby the electric discharge machining performance is further improved. Further, when the pure Zn layer 2 is exposed due to the consumption of the Cu-Zn alloy layer 3 and the reaction layer 5 on the outer layer side during the electric discharge machining, the pure Zn layer 2 is discharged, so that the discharge characteristics are good and the excellent machining accuracy is achieved. Is obtained. At this time, the pure Zn layer 2 is covered with the Cu—Zn alloy layer 3 and the reaction layer 5, and is thicker than the Cu—Zn alloy layer 3, and has a sufficient layer thickness. The pure Zn layer 2 does not instantly evaporate during electric discharge machining as in the case of conventional electrode wires.

また、放電加工の経過に伴って純Zn層2は徐々に蒸発するが、その蒸発時の気化熱によって電極線6、特に心材1の冷却効果が向上する。このため、放電加工速度を上げるべく、放電加工電流を増加させても、一般の黄銅線よりも電極線6の温度上昇を低く抑えることができ、電極線6自体の熱的負担が減少する。その結果、電極線6自体の断線限界が向上するため、放電加工速度の向上を図ることができる。また、従来の断面円形の電極線よりも、断面四角形の本実施の形態に係る電極線6の方が放電範囲が広いことから、放電加工速度の向上を図ることが出来る。   In addition, the pure Zn layer 2 gradually evaporates with the progress of electric discharge machining, but the cooling effect of the electrode wire 6, particularly the core material 1 is improved by the heat of vaporization during the evaporation. For this reason, even if the electrical discharge machining current is increased in order to increase the electrical discharge machining speed, the temperature rise of the electrode wire 6 can be suppressed lower than that of a general brass wire, and the thermal burden on the electrode wire 6 itself is reduced. As a result, since the disconnection limit of the electrode wire 6 itself is improved, the electric discharge machining speed can be improved. In addition, since the electrode wire 6 according to the present embodiment having a quadrangular cross section has a wider discharge range than the conventional electrode wire having a circular cross section, the electric discharge machining speed can be improved.

以上、本発明の実施の形態は、上述した実施の形態に限定されるものではなく、他にも種々のものが想定されることは言うまでもない。   As mentioned above, it cannot be overemphasized that embodiment of this invention is not limited to embodiment mentioned above, and various things are assumed in addition.

次に、本発明について、実施例に基づいて説明するが、本発明はこれらの実施例に限定されるものではない。   Next, although this invention is demonstrated based on an Example, this invention is not limited to these Examples.

(実施例1)
長辺、短辺の長さが2.5mm、2.0mmで、Cu−0.16重量%Zrからなる心材の周りに、順に厚さ0.25mmの純Zn層、厚さ0.125mmのCu−35重量%Zn合金層を形成する。
Example 1
A pure Zn layer having a thickness of 0.25 mm and a thickness of 0.125 mm are sequentially formed around a core material made of Cu-0.16 wt% Zr with long and short sides of 2.5 mm and 2.0 mm. A Cu-35 wt% Zn alloy layer is formed.

次に、この被覆線材に伸線加工、熱処理を施し、心材の外周に、順に層厚t1の内側反応層、層厚t2の外側反応層を有するサイズa,bの四角形ワイヤ放電加工用電極線を作製した。ここで、被覆層の層厚と電極線全体の長辺の長さaとの比は0.23、反応層の層厚t1、t2と電極線全体の長辺の長さaとの比は0.002〜0.005、一側被覆層の厚さt3は三側の被覆層t4より薄い、t3/t4の比は0.5とした。   Next, the coated wire is subjected to wire drawing and heat treatment, and the rectangular wire electric discharge machining electrode wires of size a and b having an inner reaction layer of layer thickness t1 and an outer reaction layer of layer thickness t2 in order on the outer periphery of the core material. Was made. Here, the ratio of the layer thickness of the coating layer to the length a of the long side of the entire electrode line is 0.23, and the ratio of the layer thickness t1, t2 of the reaction layer to the length of the long side of the entire electrode line is The thickness t3 of the one-side coating layer is 0.002 to 0.005, which is thinner than the three-side coating layer t4, and the ratio t3 / t4 is 0.5.

(実施例2)
実施例1と同じ心材の周りに、順に厚さ0.20mmの純Zn層、厚さ0.125mmのCu−35重量%Zn合金層を形成する。その後は実施例1と同様にし、ワイヤ放電加工用電極線を作製した。ここで、被覆層の層厚と電極線全体の長辺の長さaとの比は0.20、反応層の層厚t1、t2と電極線全体の長辺の長さaとの比は0.002〜0.005、一側被覆層の厚さt3は三側の被覆層t4より薄い、t3/t4の比は0.5とした。
(Example 2)
A pure Zn layer having a thickness of 0.20 mm and a Cu-35 wt% Zn alloy layer having a thickness of 0.125 mm are sequentially formed around the same core material as in the first embodiment. Thereafter, an electrode wire for wire electric discharge machining was produced in the same manner as in Example 1. Here, the ratio of the layer thickness of the coating layer to the length a of the long side of the entire electrode line is 0.20, and the ratio of the layer thickness t1, t2 of the reaction layer to the length of the long side of the entire electrode line is The thickness t3 of the one-side coating layer is 0.002 to 0.005, which is thinner than the three-side coating layer t4, and the ratio t3 / t4 is 0.5.

(比較例1)
実施例1と同じ心材の周りに、順に厚さ0.40mmの純Zn層、厚さ0.125mmのCu−35重量%Zn合金層を形成する。その後は実施例1と同様にし、ワイヤ放電加工用電極線を作製した。ここで、被覆層の層厚と電極線全体の長辺の長さaとの比は0.295、反応層の層厚t1、t2と電極線全体の長辺の長さaとの比は0.002〜0.005、一側被覆層の厚さt3は三側の被覆層t4より薄い、t3/t4の比は0.5とした。
(Comparative Example 1)
A pure Zn layer having a thickness of 0.40 mm and a Cu-35 wt% Zn alloy layer having a thickness of 0.125 mm are sequentially formed around the same core material as in the first embodiment. Thereafter, an electrode wire for wire electric discharge machining was produced in the same manner as in Example 1. Here, the ratio of the layer thickness of the coating layer to the length a of the long side of the entire electrode line is 0.295, and the ratio of the layer thickness t1, t2 of the reaction layer to the length of the long side of the entire electrode line is The thickness t3 of the one-side coating layer is 0.002 to 0.005, which is thinner than the three-side coating layer t4, and the ratio t3 / t4 is 0.5.

(比較例2)
実施例1と同じ心材の周りに、順に厚さ0.04mmの純Zn層、厚さ0.02mmのCu−35重量%Zn合金層を形成する。その後は実施例1と同様にし、ワイヤ放電加工用電極線を作製した。ここで、被覆層の層厚と電極線全体の長辺の長さaとの比は0.045、反応層の層厚t1、t2と電極線全体の長辺の長さaとの比は0.002〜0.005、一側被覆層の厚さt3は三側の被覆層t4より薄い、t3/t4の比は0.5とした。
(Comparative Example 2)
A pure Zn layer having a thickness of 0.04 mm and a Cu-35 wt% Zn alloy layer having a thickness of 0.02 mm are sequentially formed around the same core material as in Example 1. Thereafter, an electrode wire for wire electric discharge machining was produced in the same manner as in Example 1. Here, the ratio of the layer thickness of the coating layer to the length a of the long side of the entire electrode wire is 0.045, and the ratio of the layer thickness t1, t2 of the reaction layer to the length of the long side of the entire electrode wire is The thickness t3 of the one-side coating layer was 0.002 to 0.005, thinner than the three-side coating layer t4, and the ratio t3 / t4 was 0.5.

(比較例3)
実施例1と同じ心材の周りに、順に厚さ0.20mmの純Zn層、厚さ0.02mmのCu−35重量%Zn合金層を形成する。その後は実施例1と同様にし、ワイヤ放電加工用電極線を作製した。ここで、被覆層の層厚と電極線全体の長辺の長さaとの比は0.20、反応層の層厚t1、t2と電極線全体の長辺の長さaとの比は0.001〜0.002、一側被覆層の厚さt3は三側の被覆層t4より薄い、t3/t4の比は0.5とした。
(Comparative Example 3)
A pure Zn layer having a thickness of 0.20 mm and a Cu-35 wt% Zn alloy layer having a thickness of 0.02 mm are sequentially formed around the same core material as in the first embodiment. Thereafter, an electrode wire for wire electric discharge machining was produced in the same manner as in Example 1. Here, the ratio of the layer thickness of the coating layer to the length a of the long side of the entire electrode line is 0.20, and the ratio of the layer thickness t1, t2 of the reaction layer to the length of the long side of the entire electrode line is The thickness t3 of the one-side coating layer was 0.001 to 0.002, thinner than the three-side coating layer t4, and the ratio t3 / t4 was 0.5.

(比較例4)
実施例1と同じ心材の周りに、順に厚さ0.20mmの純Zn層、厚さ0.02mmのCu−35重量%Zn合金層を形成する。その後は実施例1と同様にし、ワイヤ放電加工用電極線を作製した。ここで、被覆層の層厚と電極線全体の長辺の長さaとの比は0.20、反応層の層厚t1、t2と電極線全体の長辺の長さaとの比は0.005〜0.006、一側被覆層の厚さt3は三側の被覆層t4より薄い、t3/t4の比は0.5とした。
(Comparative Example 4)
A pure Zn layer having a thickness of 0.20 mm and a Cu-35 wt% Zn alloy layer having a thickness of 0.02 mm are sequentially formed around the same core material as in the first embodiment. Thereafter, an electrode wire for wire electric discharge machining was produced in the same manner as in Example 1. Here, the ratio of the layer thickness of the coating layer to the length a of the long side of the entire electrode line is 0.20, and the ratio of the layer thickness t1, t2 of the reaction layer to the length of the long side of the entire electrode line is The thickness t3 of the one-side coating layer is 0.005 to 0.006, which is thinner than the three-side coating layer t4, and the ratio t3 / t4 is 0.5.

(比較例5)
実施例1と同じ心材の周りに、順に厚さ0.20mmの純Zn層、厚さ0.125mmのCu−35重量%Zn合金層を形成する。その後は実施例1と同様にし、ワイヤ放電加工用電極線を作製した。ここで、被覆層の層厚と電極線全体の長辺の長さaとの比は0.20、反応層の層厚t1、t2と電極線全体の長辺の長さaとの比は0.002〜0.005、一側被覆層の厚さt3は三側の被覆層t4より薄い、t3/t4の比は0.2とした。
(Comparative Example 5)
A pure Zn layer having a thickness of 0.20 mm and a Cu-35 wt% Zn alloy layer having a thickness of 0.125 mm are sequentially formed around the same core material as in the first embodiment. Thereafter, an electrode wire for wire electric discharge machining was produced in the same manner as in Example 1. Here, the ratio of the layer thickness of the coating layer to the length a of the long side of the entire electrode line is 0.20, and the ratio of the layer thickness t1, t2 of the reaction layer to the length of the long side of the entire electrode line is The thickness t3 of the one-side coating layer is 0.002 to 0.005, which is thinner than the three-side coating layer t4, and the ratio t3 / t4 is 0.2.

(比較例6)
実施例1と同じ心材の周りに、順に厚さ0.20mmの純Zn層、厚さ0.125mmのCu−35重量%Zn合金層を形成する。その後は実施例1と同様にし、ワイヤ放電加工用電極線を作製した。ここで、被覆層の層厚と電極線全体の長辺の長さaとの比は0.20、反応層の層厚t1、t2と電極線全体の長辺の長さaとの比は0.002〜0.005、一側被覆層の厚さt3は三側の被覆層t4より薄い、t3/t4の比は0.9とした。
(Comparative Example 6)
A pure Zn layer having a thickness of 0.20 mm and a Cu-35 wt% Zn alloy layer having a thickness of 0.125 mm are sequentially formed around the same core material as in the first embodiment. Thereafter, an electrode wire for wire electric discharge machining was produced in the same manner as in Example 1. Here, the ratio of the layer thickness of the coating layer to the length a of the long side of the entire electrode wire is 0.20, and the ratio of the layer thickness t1, t2 of the reaction layer to the length of the long side of the entire electrode wire is The thickness t3 of the one-side coating layer was 0.002 to 0.005, thinner than the three-side coating layer t4, and the ratio t3 / t4 was 0.9.

(従来例1)
Cu−35重量%Zn合金の単体で、外径がφ0.35mmのワイヤ放電加工用電極線を作製した。
(Conventional example 1)
A wire electric discharge machining electrode wire having an outer diameter of φ0.35 mm made of a simple Cu-35 wt% Zn alloy was produced.

実施例1,2、比較例1〜6、及び従来例1における各電極線の心材組成(重量%)、Cu−Zn合金層の組成(重量%)、各層厚/a、加工精度及び放電加工試験時の放電加工速度を表1に示す。   The core material composition (wt%) of each electrode wire in Examples 1 and 2, Comparative Examples 1 to 6, and Conventional Example 1, the composition of Cu—Zn alloy layer (wt%), each layer thickness / a, machining accuracy, and electrical discharge machining Table 1 shows the electric discharge machining speed during the test.

ここで、加工精度は、従来例1の電極線の加工精度を1.0とした時の相対精度である。また、放電加工速度は、従来例1の電極線の放電加工速度を1.00とした時の相対速度である。   Here, the processing accuracy is a relative accuracy when the processing accuracy of the electrode wire of Conventional Example 1 is 1.0. The electric discharge machining speed is a relative speed when the electric discharge machining speed of the electrode wire of Conventional Example 1 is 1.00.

Figure 2007136579
Figure 2007136579

表1に示すように、実施例1,2の各電極線は、いずれも加工精度が3.0以上と高く、従来例1と比べて著しく向上した。また、放電加工速度はそれぞれ2.5,2.4といずれも2.0以上であり、従来例1と比べて放電加工速度が約140〜150%も向上した。   As shown in Table 1, each of the electrode wires of Examples 1 and 2 has a processing accuracy as high as 3.0 or more, which is significantly improved as compared with Conventional Example 1. In addition, the electric discharge machining speeds were 2.5 and 2.4, respectively, 2.0 or more, and the electric discharge machining speed was improved by about 140 to 150% as compared with Conventional Example 1.

これに対して、比較例1の電極線は、被覆層の層厚/aの値が限定範囲(0.05〜0.25)よりも大きい0.295であるため、放電加工速度を十分に向上させることができなかった。また、比較例2の電極線は、被覆層の層厚/aが限定範囲(0.05〜0.25)よりも小さい0.045であるため、放電加工速度が1.6しか得られず、放電加工速度を十分に向上させることができなかった。また、放電性能が良くないため、加工精度も1.5と低かった。   On the other hand, since the value of the thickness / a of the coating layer of the electrode wire of Comparative Example 1 is 0.295 which is larger than the limited range (0.05 to 0.25), the electric discharge machining speed is sufficiently high. Could not improve. Moreover, since the electrode thickness of Comparative Example 2 is 0.045 where the layer thickness / a of the coating layer is smaller than the limited range (0.05 to 0.25), only an electric discharge machining speed of 1.6 is obtained. The electric discharge machining speed could not be sufficiently improved. Moreover, since the discharge performance was not good, the processing accuracy was as low as 1.5.

比較例3,4の電極線は、反応層の層厚/aの値が限定範囲(0.002〜0.005)を満足していないため、伸線性が良好でなく、電極線の作製が不可能であった。よって、高温引張試験および放電加工試験を行うことができなかった。   In the electrode wires of Comparative Examples 3 and 4, since the layer thickness / a value of the reaction layer does not satisfy the limited range (0.002 to 0.005), the drawability is not good and the electrode wires can be produced. It was impossible. Therefore, a high temperature tensile test and an electric discharge machining test could not be performed.

比較例5,6の電極線は、被覆層の厚さt3/t4の値が限定範囲(0.2〜0.8)を満足していないため、放電加工速度及び加工精度を十分に向上させることができなかった。   In the electrode wires of Comparative Examples 5 and 6, since the value of the thickness t3 / t4 of the coating layer does not satisfy the limited range (0.2 to 0.8), the electric discharge machining speed and machining accuracy are sufficiently improved. I couldn't.

本発明の好適一実施の形態に係るワイヤ放電加工用被覆電極線の横断面図である。It is a cross-sectional view of a coated electrode wire for wire electric discharge machining according to a preferred embodiment of the present invention. 従来材及び本実施の形態に係るワイヤ放電加工用被覆電極線の、放電加工時の放電加工状態を示す横断面図である。図2(a)は従来のワイヤ放電加工用被覆電極線、図2(b)は本実施の形態に係るワイヤ放電加工用被覆電極線である。It is a cross-sectional view which shows the electric discharge machining state at the time of electric discharge machining of the conventional electrode and the coated electrode wire for wire electric discharge machining according to the present embodiment. 2A shows a conventional coated electrode wire for wire electrical discharge machining, and FIG. 2B shows a coated electrode wire for wire electrical discharge machining according to the present embodiment. 図1における各反応層のZn濃度分布を示す図である。図3(a)は内層側の反応層、図3(b)は外層側の反応層である。It is a figure which shows Zn concentration distribution of each reaction layer in FIG. 3A shows the reaction layer on the inner layer side, and FIG. 3B shows the reaction layer on the outer layer side.

符号の説明Explanation of symbols

1 心材
2 純Zn層(被覆層)
3 合金層(被覆層)
4,5 反応層(被覆層)
6 ワイヤ放電加工用被覆電極線
R 円コーナー部
1 Core material 2 Pure Zn layer (coating layer)
3 Alloy layer (coating layer)
4,5 reaction layer (coating layer)
6 Coated electrode wire for wire EDM R Round corner

Claims (13)

心材の外周に2層以上の被覆層を有するワイヤ放電加工用被覆電極線において、断面四角形で、外周角部にR状の円コーナー部を有することを特徴とするワイヤ放電加工用被覆電極線。   A covered electrode wire for wire electric discharge machining, having a coating electrode wire for wire electric discharge machining having two or more coating layers on an outer periphery of a core material, and having an R-shaped circular corner at an outer peripheral corner portion. 上記心材を電極線のある側面に偏心して配置し、その偏心した側の側面を除く3つの側面を放電加工面とした請求項1記載のワイヤ放電加工用被覆電極線。   The coated electrode wire for wire electric discharge machining according to claim 1, wherein the core material is eccentrically arranged on a side surface having the electrode wire, and three side surfaces excluding the side surface on the eccentric side are used as an electric discharge machining surface. 上記被覆層が内層側に純Zn層を外層側に合金層を有し、上記心材と純Zn層の界面及び純Zn層と合金層の界面に、Cu−Zn系金属間化合物の反応層をそれぞれ有する請求項1又は2記載のワイヤ放電加工用被覆電極線。   The coating layer has a pure Zn layer on the inner layer side and an alloy layer on the outer layer side, and a Cu-Zn intermetallic compound reaction layer is formed at the interface between the core material and the pure Zn layer and at the interface between the pure Zn layer and the alloy layer. The covered electrode wire for wire electric discharge machining according to claim 1 or 2, respectively. 上記被覆層の層厚と電極線全体の長辺の長さaとの比は0.05〜0.25、上記各反応層の層厚t1、t2と電極線全体の長辺の長さaとの比が0.002〜0.005である請求項1から3いずれかに記載のワイヤ放電加工用被覆電極線。   The ratio of the layer thickness of the coating layer to the length a of the long side of the entire electrode wire is 0.05 to 0.25, the layer thicknesses t1 and t2 of the reaction layers and the length a of the long side of the entire electrode wire The coated electrode wire for wire electric discharge machining according to any one of claims 1 to 3, wherein the ratio of the electrode wire is 0.002 to 0.005. 上記心材が偏心した側の被覆層の厚さt3が、その反対側の被覆層の厚さt4より薄く、t3/t4の比が0.2〜0.8である請求項1から4いずれかに記載のワイヤ放電加工用被覆電極線。   The thickness t3 of the coating layer on the side where the core material is eccentric is thinner than the thickness t4 of the coating layer on the opposite side, and the ratio of t3 / t4 is 0.2 to 0.8. A coated electrode wire for wire electric discharge machining as described in 1. 上記各反応層はZn濃度が傾斜した層であり、上記心材と上記純Zn層の界面の反応層は、Zn濃度が内側から外側に向かって連続的に増加し、逆に、純Zn層と上記合金層の界面の反応層は、Zn濃度が内側から外側に向かって連続的に減少する請求項1から5いずれかに記載のワイヤ放電加工用被覆電極線。   Each of the reaction layers is a layer in which the Zn concentration is inclined, and the reaction layer at the interface between the core material and the pure Zn layer has a Zn concentration that continuously increases from the inside toward the outside. The coated electrode wire for wire electric discharge machining according to any one of claims 1 to 5, wherein the reaction layer at the interface of the alloy layer has a Zn concentration that decreases continuously from the inside toward the outside. 上記被覆層が、内層側に純Zn層を、外層側にCu−30〜46重量%Znという組成の合金層を有する請求項1から6いずれかに記載のワイヤ放電加工用被覆電極線。   The coated electrode wire for wire electric discharge machining according to any one of claims 1 to 6, wherein the coating layer has a pure Zn layer on the inner layer side and an alloy layer having a composition of Cu-30 to 46 wt% Zn on the outer layer side. 上記各反応層がCu−60〜90重量%Znという組成の金属間化合物で構成される請求項3から7いずれかに記載のワイヤ放電加工用被覆電極線。   The coated electrode wire for wire electric discharge machining according to any one of claims 3 to 7, wherein each of the reaction layers is composed of an intermetallic compound having a composition of Cu-60 to 90 wt% Zn. 上記心材が、
純Cu、
Cu−0.02〜0.2重量%Zr合金、
Cu−0.15〜0.70重量%In合金、
Cu−0.15〜0.25重量%Sn−0.15〜0.25重量%In合金、
Cu−0.15〜0.70重量%Sn合金、
Cu−5〜30重量%Zn合金、
Cu−0.2〜20重量%Ag合金、
Cu−5〜30重量%ZnにZr、Cr、Mg、Al、Si、Fe、P、Ni、Ag、Snの内の少なくとも1種を添加した合金、
又はFe基合金、
で構成される請求項1から8いずれかに記載のワイヤ放電加工用被覆電極線。
The heartwood is
Pure Cu,
Cu-0.02-0.2 wt% Zr alloy,
Cu-0.15-0.70 wt% In alloy,
Cu-0.15-0.25 wt% Sn-0.15-0.25 wt% In alloy,
Cu-0.15-0.70 wt% Sn alloy,
Cu-5-30 wt% Zn alloy,
Cu-0.2-20 wt% Ag alloy,
An alloy obtained by adding at least one of Zr, Cr, Mg, Al, Si, Fe, P, Ni, Ag, and Sn to Cu-5 to 30 wt% Zn,
Or an Fe-based alloy,
The coated electrode wire for wire electric discharge machining according to any one of claims 1 to 8, which is constituted by:
心材の外周に2層以上の被覆層を有するワイヤ放電加工用被覆電極線の製造方法において、断面四角形の心材の外周に上記被覆層を形成した後、熱処理による拡散処理および表面処理を施すことで、心材と被覆層との界面及び被覆層同士の界面で原子を拡散させると共に、再配列させることによって、各界面にそれぞれ反応層を形成することを特徴とするワイヤ放電加工用被覆電極線の製造方法。   In the method of manufacturing a coated electrode wire for wire electric discharge machining having two or more coating layers on the outer periphery of the core material, the coating layer is formed on the outer periphery of the core material having a square cross section, and then subjected to diffusion treatment and surface treatment by heat treatment. Manufacturing of a coated electrode wire for wire electric discharge machining, wherein a reaction layer is formed at each interface by diffusing atoms at the interface between the core material and the coating layer and at the interface between the coating layers and rearranging the atoms. Method. 上記心材の外周に、先ず純Zn層を設け、その純Zn層の周りにCu−30〜46重量%Znという組成の合金層を設けた後、上記熱処理を施す請求項10記載のワイヤ放電加工用被覆電極線の製造方法。   The wire electric discharge machining according to claim 10, wherein a pure Zn layer is first provided on an outer periphery of the core material, an alloy layer having a composition of Cu-30 to 46 wt% Zn is provided around the pure Zn layer, and then the heat treatment is performed. For producing a coated electrode wire for use. 良好な伸線加工を行うために、上記被覆層が被覆された心材に表面プラズマ熱処理を行い、表面の硬い高Zn濃度合金層だけを熱処理し、中の柔らかい心材は熱処理されないようにする請求項10又は11記載のワイヤ放電加工用被覆電極線の製造方法。   A surface plasma heat treatment is performed on the core material coated with the coating layer in order to perform a good wire drawing process, and only the high-zinc alloy layer having a hard surface is heat-treated, and the soft core material in the core is not heat-treated. The manufacturing method of the covered electrode wire for wire electric discharge machining of 10 or 11. 上記被覆層が被覆された心材を横方向に走行させ、プラズマ熱処理技術により、中間の溶融温度の低い純Zn層を短時間で融かし、中心の心材を重力の作用で下に沈ませて心材を電極線のある側面に偏心させ、心材周りに厚さが不均一な被覆層を形成する請求項10から12いずれかに記載のワイヤ放電加工用被覆電極線の製造方法。   The core material coated with the above coating layer is run in the lateral direction, and a pure Zn layer having a low intermediate melting temperature is melted in a short time by plasma heat treatment technology, and the central core material is submerged by the action of gravity. The method for producing a coated electrode wire for wire electric discharge machining according to any one of claims 10 to 12, wherein the core material is eccentric to a side surface where the electrode wire is present, and a coating layer having a non-uniform thickness is formed around the core material.
JP2005331393A 2005-11-16 2005-11-16 Covered electrode wire for wire discharge machining, and manufacturing method thereof Pending JP2007136579A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005331393A JP2007136579A (en) 2005-11-16 2005-11-16 Covered electrode wire for wire discharge machining, and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005331393A JP2007136579A (en) 2005-11-16 2005-11-16 Covered electrode wire for wire discharge machining, and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2007136579A true JP2007136579A (en) 2007-06-07

Family

ID=38200049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005331393A Pending JP2007136579A (en) 2005-11-16 2005-11-16 Covered electrode wire for wire discharge machining, and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2007136579A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1995107A1 (en) 2007-05-23 2008-11-26 Laurel Precision Machines Co., Ltd. Safety management system
WO2016023326A1 (en) * 2014-08-13 2016-02-18 宁波博威麦特莱科技有限公司 High-precision zinc-based alloy electrode wire and preparation method therefor
KR20190023783A (en) 2017-08-30 2019-03-08 주식회사 풍국 Electrode wire for use in electric discharge machining process for preparing same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1995107A1 (en) 2007-05-23 2008-11-26 Laurel Precision Machines Co., Ltd. Safety management system
WO2016023326A1 (en) * 2014-08-13 2016-02-18 宁波博威麦特莱科技有限公司 High-precision zinc-based alloy electrode wire and preparation method therefor
JP2016538138A (en) * 2014-08-13 2016-12-08 寧波博威麦特莱科技有限公司Ningbo Powerway Materialise Co., Ltd. High-precision zinc-based alloy electrode wire and manufacturing method thereof
KR20190023783A (en) 2017-08-30 2019-03-08 주식회사 풍국 Electrode wire for use in electric discharge machining process for preparing same
KR102016538B1 (en) 2017-08-30 2019-08-30 주식회사 풍국 Electrode wire for use in electric discharge machining process for preparing same

Similar Documents

Publication Publication Date Title
JP5219316B1 (en) Copper platinum alloy wire for semiconductor device connection
JP2004339555A (en) Plating treatment material and its production method, terminal member for connector, and connector
JP4516753B2 (en) Wire for electrical discharge machining at high speed
KR101486028B1 (en) Electrode wire for electrical discharge machining
JP2004314303A (en) Structure of porous electrode wire for electric discharge machining
CN108885067B (en) Method for manufacturing steam cavity
KR20030025813A (en) Wire electrode for spark erosion cutting
JP2007136579A (en) Covered electrode wire for wire discharge machining, and manufacturing method thereof
JP2915623B2 (en) Electrical contact material and its manufacturing method
KR20170125986A (en) Copper alloy plate and heat dissipation parts for heat dissipation parts
JP2959872B2 (en) Electrical contact material and its manufacturing method
JPWO2015182786A1 (en) Electrical contact material, method of manufacturing electrical contact material, and terminal
JP2015106643A (en) Printed wiring board and method of manufacturing the same
JP2006159304A (en) Electrode wire for wire electric discharge machining and its manufacturing method
JP3852565B2 (en) Electrode wire for electric discharge machining
JP2001150247A (en) Electrode wire for wire electric discharge machining
JP3809740B2 (en) Electrode wire for electric discharge machining
JP4345497B2 (en) Electrode wire for wire electrical discharge machining
JP2003291030A (en) Electrode wire for wire electrical discharge machining
JP2004306239A (en) Electrode wire for wire electric discharge machining
JP2015167099A (en) Connector terminal and manufacturing method of the same
JP4323704B2 (en) Electrode wire for wire electrical discharge machining
JP4461268B2 (en) Semiconductor device component, manufacturing method thereof, and semiconductor device using the same
JP5439794B2 (en) Electronic device and manufacturing method thereof
JP4089551B2 (en) High-strength wire EDM electrode wire