JP5219316B1 - Copper platinum alloy wire for semiconductor device connection - Google Patents

Copper platinum alloy wire for semiconductor device connection Download PDF

Info

Publication number
JP5219316B1
JP5219316B1 JP2012217879A JP2012217879A JP5219316B1 JP 5219316 B1 JP5219316 B1 JP 5219316B1 JP 2012217879 A JP2012217879 A JP 2012217879A JP 2012217879 A JP2012217879 A JP 2012217879A JP 5219316 B1 JP5219316 B1 JP 5219316B1
Authority
JP
Japan
Prior art keywords
copper
wire
platinum
mass
bonding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012217879A
Other languages
Japanese (ja)
Other versions
JP2014070252A (en
Inventor
裕之 天野
道孝 三上
純一 岡崎
拓也 濱本
中島伸一郎
勉 山下
修一 三苫
甲介 小野
斌 劉
裕之 執行
Original Assignee
田中電子工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 田中電子工業株式会社 filed Critical 田中電子工業株式会社
Priority to JP2012217879A priority Critical patent/JP5219316B1/en
Application granted granted Critical
Publication of JP5219316B1 publication Critical patent/JP5219316B1/en
Publication of JP2014070252A publication Critical patent/JP2014070252A/en
Active legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/43Manufacturing methods
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05617Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/05624Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • H01L2224/438Post-treatment of the connector
    • H01L2224/43848Thermal treatments, e.g. annealing, controlled cooling
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/45565Single coating layer
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/45599Material
    • H01L2224/456Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45644Gold (Au) as principal constituent
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/45599Material
    • H01L2224/456Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45663Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/45664Palladium (Pd) as principal constituent
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48799Principal constituent of the connecting portion of the wire connector being Copper (Cu)
    • H01L2224/488Principal constituent of the connecting portion of the wire connector being Copper (Cu) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48817Principal constituent of the connecting portion of the wire connector being Copper (Cu) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950 °C
    • H01L2224/48824Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00011Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]

Abstract

【課題】ボールボンディング用銅細線において、セカンド接合性を向上すると共にボールボンディングのチップ割れを防止し、ルーピング性を向上する。
【解決手段】高純度銅(Cu)に白金(Pt)を0.1〜2.0質量%、非金属元素としてイオウ(S)が1〜10質量ppm、酸素(O)が10〜150質量および必要により、リン(P)が1〜5質量ppm含有する溶融銅白金合金から連続鋳造により素線を形成する過程で、偏析により白金を含まない銅の極薄層が形成され、大気雰囲気中で酸化されて伸線加工後のワイヤ表層に6〜2nmの酸化膜を形成する。
ビッカース硬さが77〜105Hvのボンディングワイやとして、均一な酸化膜はセカンド接合性を向上し、マトリックス添加元素によりボールボンディング時の動的強度を抑制してアルミスプラッシュを防止し、リーニングを生じない静的強度を維持する。
【選択図】図3
In a copper fine wire for ball bonding, second bondability is improved, chip cracking of ball bonding is prevented, and looping property is improved.
SOLUTION: Platinum (Pt) is 0.1 to 2.0 mass% in high purity copper (Cu), sulfur (S) is 1 to 10 mass ppm and oxygen (O) is 10 to 150 mass as a nonmetallic element. And if necessary, in the process of forming a strand by continuous casting from a molten copper platinum alloy containing 1 to 5 mass ppm of phosphorus (P), an ultrathin layer of copper not containing platinum is formed by segregation, An oxide film having a thickness of 6 to 2 nm is formed on the surface layer of the wire after being oxidized and drawn.
As a bonding wire with a Vickers hardness of 77 to 105 Hv, a uniform oxide film improves the second bondability, the matrix additive element suppresses the dynamic strength during ball bonding, prevents aluminum splash, and does not cause leaning Maintain static strength.
[Selection] Figure 3

Description

本発明は、半導体素子上のパッド電極と外部電極とを超音波併用熱圧着方式で接続するために用いる銅合金細線に関するもので、特に、純度99.995質量%以上の銅(Cu)リッチマトリックス中に白金(Pt)を少量固溶した銅−白金合金細線に関するものである。   The present invention relates to a copper alloy fine wire used for connecting a pad electrode on a semiconductor element and an external electrode by a thermocompression bonding method using ultrasonic waves, and in particular, a copper (Cu) rich matrix having a purity of 99.995% by mass or more. The present invention relates to a copper-platinum alloy fine wire in which a small amount of platinum (Pt) is dissolved.
近年の金価格の高騰に伴い、これまでの4N金の合金細線に代わって銅合金細線が再び注目を集め始めている。
これまでの銅合金細線に適用されるこれまでの超音波併用熱圧着ボンディング方法は、アルミパッド上の銅合金ボンディングワイヤを窒素ガス雰囲気あるいは水素混入窒素ガス雰囲気等の非酸化性雰囲気を保ちながらアーク入熱でワイヤ先端を加熱溶融し、表面張力によりボールを形成させた後に、150〜300℃の範囲内で加熱した半導体素子の電極上にワイヤのボール部を上方から超硬ツールで押しつけ、その荷重および超硬ツールからの超音波振動のエネルギーにより銅合金細線とアルミパッドとを接合するものである。
超音波印加の効果は、銅合金細線の変形を助長するための接合面積の拡大と、銅白金合金細線の表面に形成された100ナノメートル(nm)弱の表面酸化膜を破壊・除去することにより、銅(Cu)等の金属原子を下面に露出させ、相対して接するボンディングパッドとの界面に塑性流動を発生させ、互いに密着する新生面を漸増させながら、両者を原子間結合させることにある。
また、これまでの銅合金細線に適用される超音波によるウェッジボンディング方法は、ループが描かれたボンディングワイヤをリードフレーム上の導体配線の位置に持ってきて、その後、ボンディングワイヤの上から超硬ツールでボンディングワイヤをリードフレーム上の導体配線に押し付けながら常温のまま超音波振動を付与してワイヤをリードフレームの導体にウェッジ接合する。次いで、ワイヤがクランプされ、超硬ツールとともにボンディングワイヤが上昇して切断される。
これらの第一ボンディングと第二ボンディングを行うことにより、半導体素子とリードフレームとが相互接続される。
As the price of gold has soared in recent years, copper alloy fine wires have begun to attract attention again in place of the conventional 4N gold alloy fine wires.
The conventional ultrasonic combined thermocompression bonding method applied to the conventional copper alloy thin wire is to arc the copper alloy bonding wire on the aluminum pad while maintaining a non-oxidizing atmosphere such as nitrogen gas atmosphere or hydrogen-containing nitrogen gas atmosphere. After the wire tip is heated and melted by heat input and a ball is formed by surface tension, the ball portion of the wire is pressed from above onto the electrode of the semiconductor element heated within the range of 150 to 300 ° C. with a carbide tool. The copper alloy fine wire and the aluminum pad are joined by the load and the energy of ultrasonic vibration from the carbide tool.
The effect of applying ultrasonic waves is to enlarge the bonding area to promote deformation of the copper alloy fine wire and to destroy and remove the surface oxide film of less than 100 nanometers (nm) formed on the surface of the copper platinum alloy fine wire. By exposing metal atoms such as copper (Cu) to the lower surface, plastic flow is generated at the interface with the bonding pads that are in contact with each other, and the new surfaces that are in close contact with each other are gradually increased to bond the two atoms together. .
In addition, the conventional ultrasonic wedge bonding method applied to copper alloy fine wires brings the bonding wire on which the loop is drawn to the position of the conductor wiring on the lead frame, and then the carbide wire is applied from above the bonding wire. While pressing the bonding wire against the conductor wiring on the lead frame with a tool, ultrasonic vibration is applied at room temperature, and the wire is wedge-bonded to the conductor of the lead frame. The wire is then clamped and the bonding wire is raised and cut with the carbide tool.
By performing these first bonding and second bonding, the semiconductor element and the lead frame are interconnected.
これまで銅(Cu)中に白金(Pt)等の貴金属元素を固溶した銅リッチ合金細線としては以下のものがあるが、銅(Cu)中の酸素(O)を制御することができないため、銅合金細線の表面に酸化ムラが生じ、セカンドボンディングがうまく行えないという課題があった。
すなわち、酸化膜の濃淡が形成されていて濃い酸化膜のところは、超音波振動を付与しても酸化膜が分解されないので、接合面積を広くして接合強度を確保しなければならず、20μmより細い線径になるとセカンド接合強度が安定しないという課題があった。
Until now, there are the following copper-rich alloy fine wires in which noble metal elements such as platinum (Pt) are dissolved in copper (Cu), but oxygen (O) in copper (Cu) cannot be controlled. However, there was a problem that uneven oxidation occurred on the surface of the copper alloy fine wire and second bonding could not be performed well.
That is, since the oxide film is not decomposed even when ultrasonic vibration is applied, the oxide film is not decomposed in the dark oxide film where the density of the oxide film is formed. Therefore, the bonding area must be widened to ensure the bonding strength. There is a problem that the second joint strength is not stable when the wire diameter is smaller.
このような例として、先ず、特公平5-20493号公報 (後述する特許文献1) がある。これは、マグネシウム(Mg)、ハフニウム(Hf)等、白金(Pt)を含め24元素(希土類元素を1元素とした)を銅(Cu)に0.01〜2重量%含有させることにより、「合金中のH、O、N、Cを固定し、H、O、NおよびCOガスの発生を抑制する(同公報2頁右上欄)」ものである。しかしながら、銅リッチ合金細線の表面の酸化膜をコントロールする技術はなんら開示されていない。 As such an example, first, there is Japanese Patent Publication No. 5-20493 (Patent Document 1 described later). This is because when magnesium (Mg), hafnium (Hf), etc., platinum (Pt) and 24 elements (rare earth elements as one element) are contained in copper (Cu) in an amount of 0.01 to 2% by weight. It fixes H, O, N, and C in the alloy and suppresses the generation of H 2 , O 2 , N 2, and CO gas (upper right column on page 2 of the publication). However, there is no disclosure of a technique for controlling the oxide film on the surface of the copper-rich alloy fine wire.
また、特開2008-085320号公報(後述する特許文献2)がある。これは、Mg及びPの少なくとも1種を総計で10〜700質量ppm、Ag、Pd、Pt、及びAuの少なくとも1種を総計で10〜5,000質量ppm、酸素を6〜30質量ppmの範囲で高純度銅に含有することを特徴とする半導体装置用銅合金ボンディングワイヤ(同公報請求項2)であり、ワイヤボール表面の酸化膜の酸素を制御してボール接合形状及び接合強度を改善しようとするものである。
この先行技術も先の先行技術と同様に、銅リッチ合金に含まれる酸素(O)を添加元素によってコントロールしようとするものであり、銅合金細線表面の酸化膜をコントロールする技術はなんら開示されていない。
Further, there is JP 2008-085320 A (Patent Document 2 described later). This is because at least one of Mg and P is 10 to 700 mass ppm in total, at least one of Ag, Pd, Pt, and Au is 10 to 5,000 mass ppm in total, and oxygen is 6 to 30 mass ppm. It is a copper alloy bonding wire for semiconductor devices (claim 2) characterized in that it is contained in high-purity copper in a range, and the oxygen of the oxide film on the surface of the wire ball is controlled to improve the ball bonding shape and bonding strength It is something to try.
Similar to the prior art, this prior art is also intended to control oxygen (O) contained in a copper-rich alloy by an additive element, and any technique for controlling an oxide film on the surface of a copper alloy thin wire has been disclosed. Absent.
以上の例に見るとおり、これまでの銅合金ボンディングワイヤは、所定の合金化成分を配合することにより、銅(Cu)マトリックス中から非金属成分である酸素(O)を排除しようとするものであった。
その結果、銅合金細線表面の酸化膜は、通常の化学的エッチングや還元性雰囲気の高温熱処理で取り除くのが一般的であった。このため、表面が清浄な銅合金細線表面がその後熱処理されたり、大気中で放置されたりすると、さまざまな酸化膜が形成され、銅合金細線表面の酸化膜が安定しないという課題は解決されないままであった。
As seen in the above examples, the conventional copper alloy bonding wires are intended to exclude oxygen (O), which is a nonmetallic component, from the copper (Cu) matrix by blending a predetermined alloying component. there were.
As a result, the oxide film on the surface of the copper alloy thin wire is generally removed by normal chemical etching or high-temperature heat treatment in a reducing atmosphere. For this reason, if the surface of the copper alloy fine wire with a clean surface is subsequently heat-treated or left in the atmosphere, various oxide films are formed, and the problem that the oxide film on the surface of the copper alloy fine wire is not stable remains unresolved. there were.
特公平5-20493号公報Japanese Patent Publication No. 5-20493 特開2008-085320号公報JP 2008-085320 A
本発明は、銅白金合金細線表面の酸化膜を薄く均一な一定厚みに形成しておくことにより、セカンド接合性に優れ、長期間の接合安定性にも優れた銅白金合金ボンディングワイヤを提供すること、及びボールボンディングによるファースト接合性におけるチップ割れやアルミスプラッシュ防止、リーニング性の向上を解決課題とする。 The present invention provides a copper platinum alloy bonding wire having excellent second bondability and excellent long-term bonding stability by forming a thin and uniform oxide film on the surface of a copper platinum alloy thin wire. The problem to be solved is to prevent chip cracking and aluminum splash in the first bondability by ball bonding and to improve the leaning property.
本発明者らは、銅白金二元合金細線をその素線から連続鋳造すると、その極表面層中には、銅(Cu)が析出して白金(Pt)濃度は極端に低く、その後表面から中心部に向かって増加する構造となる傾向にあることを発見した。そして、この極表面層中の銅(Cu)を大気中で酸化すると、すぐに一定厚さの酸化銅を形成するが、銅白金二元合金細線の内部には白金(Pt)の存在によって酸化の進行が妨げられることがわかった。このようにして形成された極表面層中の銅(Cu)の酸化膜は、白金(Pt)の添加量によって厚さをコントロールできるので、セカンド接合性に優れた銅白金合金ボンディングワイヤを提供することができる。 When the present inventors continuously cast a copper-platinum binary alloy thin wire from the strand, copper (Cu) is precipitated in the extreme surface layer, and the platinum (Pt) concentration is extremely low, and then from the surface. It was found that the structure tends to increase toward the center. When the copper (Cu) in the pole surface layer is oxidized in the atmosphere, copper oxide with a certain thickness is immediately formed. However, the copper platinum binary alloy thin wire is oxidized by the presence of platinum (Pt). It was found that the progress of was hindered. Since the thickness of the copper (Cu) oxide film in the pole surface layer thus formed can be controlled by the amount of platinum (Pt) added, a copper platinum alloy bonding wire having excellent second bondability is provided. be able to.
従来の銅ボンディングワイヤの製法は、一般的な銅棒材や線材と同じであって、インゴット鋳造によるビレットや大径の連続鋳造材から切り出して、線引き加工により順次縮径して所要のμmオーダーの径とするものであった。
このような製造工程においては、鋳造後、表面の酸化層は比較的厚いものであってその後の伸線加工を阻害するため、切削或いは酸洗工程で除去する必要があり、極表面層の銅層と共に除去されて、線材の断面方向において不純物などの濃度はほぼ一様なものとなる。
本発明者らが見出した上記の偏析は、径10mm以下の素線を直接連続鋳造によって製造する過程で観察されたものであって、この素線は酸洗過程などによって表面層を除去することなく伸線加工工程により、所要の径のボンディングワイヤとするため、これらの素線を形成する際の凝固過程で生じた偏析構造がそのまま維持されているのである。
したがって、この鋳造された素線は凝固後大気雰囲気に触れると、白金(Pt)がほとんど含有されない極表面層の銅(Cu)が酸化されて酸化層を形成するが、このように形成された酸化層は、鋳造直後に素線に形成された酸化層がさらに伸線加工を経てボンディングワイヤに伸線される過程を通じて、伸線加工の加工度に応じて薄くなっても、その一方で外部からの酸化が進行するものの、その酸化域は白金(Pt)濃度に応じた一定の範囲に留まり、酸化膜厚を均一で一様な厚さに維持する。
The conventional copper bonding wire manufacturing method is the same as general copper rods and wires. Cut from billets by ingot casting or large-diameter continuous casting materials, and reduce the diameter sequentially by drawing to the required μm order. The diameter was assumed to be.
In such a manufacturing process, after casting, the surface oxide layer is relatively thick and obstructs the subsequent wire drawing, so it must be removed by a cutting or pickling process. By removing together with the layer, the concentration of impurities and the like becomes substantially uniform in the cross-sectional direction of the wire.
The above-mentioned segregation found by the present inventors was observed in the process of manufacturing a strand having a diameter of 10 mm or less directly by continuous casting, and this strand removes the surface layer by a pickling process or the like. In order to obtain a bonding wire having a required diameter by the wire drawing process, the segregation structure generated in the solidification process when these strands are formed is maintained as it is.
Therefore, when the cast wire is exposed to the atmospheric air after solidification, copper (Cu) in the extreme surface layer containing almost no platinum (Pt) is oxidized to form an oxide layer. Even if the oxide layer is thinned according to the degree of processing of the wire drawing process through the process in which the oxide layer formed on the strand immediately after casting is further drawn to the bonding wire through the wire drawing process, Although the oxidation from the metal proceeds, the oxidation region remains in a certain range according to the platinum (Pt) concentration, and the oxide film thickness is kept uniform and uniform.
これらのメカニズムの詳細は明らかではないが、ワイヤ素線の表面から内部に向けて測定した銅(Cu)と白金(Pt)との濃度分布から検討すると、ワイヤ素線表面に形成された銅(Cu)偏析層は極めて純度が高いことから、最表層ではこの高純度銅(Cu)が酸素と強く結合した均一緻密な極薄の酸化層が形成され、この酸化層が内部への酸素の侵入を抑制すると共に、その下方の銅(Cu)マトリックス中では白金(Pt)が更に内部への酸素の侵入を抑制して、その後の伸線加工を経て所定径のボンディングワイヤに加工されるまで酸化物層の厚さを均一で一定に維持するものと考えられる。 The details of these mechanisms are not clear, but if we consider the concentration distribution of copper (Cu) and platinum (Pt) measured from the surface of the wire to the inside, copper formed on the surface of the wire ( Since the Cu) segregation layer is extremely pure, a uniform dense ultrathin oxide layer in which this high-purity copper (Cu) is strongly bonded to oxygen is formed on the outermost layer, and this oxide layer penetrates oxygen into the interior. In the copper (Cu) matrix below it, platinum (Pt) further suppresses the intrusion of oxygen into the interior, and then oxidizes until it is processed into a bonding wire of a predetermined diameter through wire drawing. It is considered that the thickness of the material layer is kept uniform and constant.
さらに、本発明においては、銅白金合金ボンディングワイヤがファーストボンドの圧着ボールを形成するときに硬くなりすぎるのを避けるため、非金属元素の酸素(O)とイオウ(S)及びリン(p)の添加量を検討した。
すなわち、これまで銅(Cu)の不純物として排斥されていたイオウ(S)に着目し、溶融ボール形成時にイオウ(S)が銅(Cu)ボール表面に析出するのを避けるため、白金(Pt)の金属成分に加えて非金属成分の酸素(O)を銅(Cu)中に固溶させて銅(Cu)マトリックス中にイオウ(S)を固定した。その結果、溶融ボールを超音波併用熱圧着ボンディングしても、ワイヤの圧着ボール変形の際に加工硬化が生ぜず動的強度が高くなることは無い。そして、調質熱処理によって、ボンディングワイヤの硬度を下げることによってボンディングワイヤの静的強度を下げた。
また、該マトリックス中にイオウ(S)、酸素(O)及び必要に応じてリン(P)を抑制された濃度範囲で固溶することにより、マトリックスを構成する白金(Pt)と共にこれらのマトリックス中に固溶して固定された添加元素による静的強度及び動的強度を制御すると共にワイヤのしなやかさ(靱性)を向上した。
Further, in the present invention, in order to prevent the copper platinum alloy bonding wire from becoming too hard when forming the first bonded crimp ball, oxygen (O), sulfur (S) and phosphorus (p) of non-metallic elements are used. The addition amount was examined.
That is, focusing on sulfur (S) that has been excluded as an impurity of copper (Cu) so far, platinum (Pt) is used in order to prevent sulfur (S) from precipitating on the surface of the copper (Cu) ball when forming a molten ball. In addition to the metal component, oxygen (O) as a non-metal component was dissolved in copper (Cu) to fix sulfur (S) in the copper (Cu) matrix. As a result, even if the molten ball is bonded by ultrasonic thermocompression bonding, work hardening does not occur when the wire is deformed and the dynamic strength does not increase. The static strength of the bonding wire was lowered by reducing the hardness of the bonding wire by tempering heat treatment.
In addition, sulfur (S), oxygen (O) and, if necessary, phosphorus (P) are dissolved in the matrix in a suppressed concentration range, so that platinum (Pt) constituting the matrix and the matrix are dissolved in these matrices. The strength and toughness of the wire were improved while controlling the static strength and dynamic strength due to the additive elements fixed in solid solution.
本発明の半導体装置のボールボンディング用銅白金合金細線は、白金(Pt)および残部が純度99.995質量%以上の銅(Cu)からなる連続伸線された半導体装置用銅白金二元合金細線において、当該銅白金合金細線の銅(Cu)マトリックス中に金属元素として白金〔Pt〕が0.1〜2.0質量%
、非金属元素としてイオウ(S)が1〜10質量ppmおよび酸素(O)が10〜150質量ppm固溶されており、かつ、6nm以下の均一な酸化膜が表層を覆っているものである。
The copper platinum alloy fine wire for ball bonding of the semiconductor device of the present invention is a continuously drawn copper platinum binary alloy fine wire for semiconductor device made of platinum (Pt) and the balance of copper (Cu) having a purity of 99.995% by mass or more. In this case, platinum [Pt] as a metal element is 0.1 to 2.0 mass% in the copper (Cu) matrix of the copper platinum alloy thin wire.
In addition, 1 to 10 mass ppm of sulfur (S) and 10 to 150 mass ppm of oxygen (O) are solid-solved as nonmetallic elements, and a uniform oxide film of 6 nm or less covers the surface layer. .
また、本発明の半導体装置のボールボンディング用銅白金合金細線は、白金(Pt)および残部が純度99.995質量%以上の銅(Cu)からなる連続伸線された半導体装置用銅白金二元合金細線において、当該銅白金合金細線の銅(Cu)マトリックス中に金属元素として白金〔Pt〕が0.1〜2.0質量%
およびリン(P)が1〜5質量ppm、非金属元素としてイオウ(S)が1〜10質量ppmおよび酸素(O)が10〜150質量ppm固溶されており、かつ、6nm以下の均一な酸化膜が表層を覆っているものである。
In addition, the copper platinum alloy fine wire for ball bonding of the semiconductor device of the present invention is a continuously-drawn copper platinum binary wire for a semiconductor device made of platinum (Pt) and the balance of copper (Cu) having a purity of 99.995% by mass or more. In the alloy thin wire, platinum [Pt] is 0.1 to 2.0 mass% as a metal element in the copper (Cu) matrix of the copper platinum alloy thin wire.
And phosphorus (P) 1 to 5 ppm by mass, sulfur (S) 1 to 10 ppm by mass and oxygen (O) 10 to 150 ppm by mass as nonmetallic elements, and a uniform thickness of 6 nm or less An oxide film covers the surface layer.
白金(Pt)は、少量含有していても、銅(Cu)の酸化を防ぐ性質があることはこれまで知られている。しかし、銅白金二元合金素線の凝固時に、銅(Cu)が表層に析出し、高純度になればこの傾向が明瞭に現れることは知られていない。そこで、本発明において、これらの性質を利用して連続鋳造後の鋳造品に高温状態を保持しながら大気冷却を行えば、銅白金二元合金細線の表面に均一な銅(Cu)薄膜が形成される。この銅(Cu)薄膜は、その後中間熱処理をしても、その膜厚の変化は観察され無かった。 It has been heretofore known that platinum (Pt) has a property of preventing oxidation of copper (Cu) even when contained in a small amount. However, it is not known that when the copper platinum binary alloy wire is solidified, copper (Cu) precipitates on the surface layer, and this tendency clearly appears when the purity becomes high. Therefore, in the present invention, by performing the air cooling while maintaining the high temperature state in the casting after continuous casting by use of these properties, uniform copper on the surface of the copper platinum binary alloy thin wire (Cu) thin film It is formed. The copper (Cu) thin film, even if the subsequent intermediate heat treatment, the change in film thickness was observed.
また、本発明において、白金(Pt)は酸素(O)とともに銅(Cu)マトリックス中におけるイオウ(S)の動きを規制する。白金(Pt)の範囲を白金(Pt)が0.1〜2.0質量%としたのは、0.1質量%未満では銅(Cu)の酸化進行を防ぐことができず、2.0質量%を超えると、動的強度が高くなりすぎてアルミスプラッシュひいてはチップ割れを起こすからである。
これらの白金(Pt)濃度範囲は、後述するように図3に示す酸化膜の厚さ、6nm〜2nmと対応する。
本発明のボンディングワイヤのボンディング特性を安定させるためには、白金(Pt)が0.1〜0.8質量%の範囲が好ましく、0.1〜0.3質量%の範囲がより好ましい。
In the present invention, platinum (Pt) regulates the movement of sulfur (S) in the copper (Cu) matrix together with oxygen (O). The reason why the range of platinum (Pt) is 0.1 to 2.0% by mass of platinum (Pt) is that if it is less than 0.1% by mass, the progress of oxidation of copper (Cu) cannot be prevented. This is because if the amount exceeds mass%, the dynamic strength becomes too high and the aluminum splash and thus the chip crack occurs.
These platinum (Pt) concentration ranges correspond to the thickness of the oxide film shown in FIG.
In order to stabilize the bonding characteristics of the bonding wire of the present invention, the range of platinum (Pt) is preferably 0.1 to 0.8% by mass, and more preferably 0.1 to 0.3% by mass.
本発明において、イオウ(S)を1〜10質量ppm添加するのは、ボンディングワイヤのしなやかさ(靭性)を持たせるためである。イオウ(S)が1質量ppm未満ではこのしなやかさ(靭性)を持たせることができず、10質量ppmを超えると、ボール接続時にイオウ(S)が表面偏析をしてチップ割れを起こすからである。
また、イオウ(S)は、溶融ボール接合時のワイヤの変形中に動的再結晶を発現させ、ワイヤが塑性変形しても比較的加工硬化が小さいので、イオウ(S)を含まないボンディングワイヤよりもチップ割れが少なくなる。
In the present invention, sulfur (S) is added in an amount of 1 to 10 mass ppm in order to give the bonding wire flexibility (toughness). If the sulfur (S) is less than 1 ppm by mass, this flexibility (toughness) cannot be imparted, and if it exceeds 10 ppm by mass, the sulfur (S) will segregate on the surface and cause chip cracking when the ball is connected. is there.
In addition, since sulfur (S) causes dynamic recrystallization during deformation of the wire at the time of melting ball bonding, and the wire is plastically deformed, the work hardening is relatively small. Therefore, the bonding wire does not contain sulfur (S). Less chip cracking.
また、本発明において、酸素(O)を10〜150質量ppm添加するのは、白金(Pt)と併せて銅(Cu)マトリックス中におけるイオウ(S)の動きを規制するためである。酸素(O)が10質量ppm未満ではこの効果をもたせることができず、酸素(O)が150質量ppmを超えると、溶融ボール形成時にボール表面に酸化膜が形成されやすくなるためである。イオウ(S)の動きを確実に規制するためには、酸素(O)の含有量がイオウ(S)の含有量よりも多いことが好ましい。   In the present invention, oxygen (O) is added in an amount of 10 to 150 mass ppm in order to regulate the movement of sulfur (S) in the copper (Cu) matrix together with platinum (Pt). This is because when oxygen (O) is less than 10 ppm by mass, this effect cannot be achieved, and when oxygen (O) exceeds 150 ppm by mass, an oxide film is likely to be formed on the ball surface during formation of the molten ball. In order to reliably regulate the movement of sulfur (S), it is preferable that the content of oxygen (O) is larger than the content of sulfur (S).
さらに、本発明においては、銅(Cu)マトリックス中にリン(P)が1〜5質量ppm固溶されていることが好ましい。銅(Cu)マトリックス中にリン(P)が1〜5質量ppmあると、酸素(O)の移動を制限し、ボンディングワイヤのしなやかさ(靭性)を増す。リン(P)が1質量ppm未満では、この効果が無く、リン(P)が5質量ppmを超えると、イオウ(S)と酸素(O)とのバランスを崩すためである。 Furthermore, in the present invention, it is preferable that 1 to 5 mass ppm of phosphorus (P) is solid-solved in a copper (Cu) matrix. When the phosphorus (P) is 1 to 5 ppm by mass in the copper (Cu) matrix, the movement of oxygen (O) is restricted, and the flexibility (toughness) of the bonding wire is increased. This is because when phosphorus (P) is less than 1 ppm by mass, this effect is not obtained, and when phosphorus (P) exceeds 5 ppm by mass, the balance between sulfur (S) and oxygen (O) is lost.
本発明における純度99.995質量%以上の銅(Cu)中の不純元素としては、銀(Ag)、鉄(Fe)、ニッケル(Ni)、鉛(Pb)、スズ(Sn)、アンチモン(Sb)、ヒ素(As)、ビスマス(Bi)、クロム(Cr)などが挙げられる。
銅(Cu) の純度は、銅(Cu)マトリックスの動的強度およびしなやかさ(靭性)を発現させるため、99 .998質量%以上であることが好ましい。
As an impurity element in copper (Cu) having a purity of 99.995% by mass or more in the present invention, silver (Ag), iron (Fe), nickel (Ni), lead (Pb), tin (Sn), antimony (Sb ), Arsenic (As), bismuth (Bi), chromium (Cr), and the like.
The purity of copper (Cu) is preferably 99.998% by mass or more in order to express the dynamic strength and flexibility (toughness) of the copper (Cu) matrix.
本発明においては、連続伸線後の調質熱処理された銅白金合金細線のビッカース硬さが77〜105Hvであることが好ましい。白金(Pt)の添加量が比較的多いので、ビッカース硬さが高いと、連続伸線後の銅白金合金細線の静的強度および動的強度が高くなり、アルミスプラッシュひいてはチップ割れを起こすからである。好ましくは、ビッカース硬さは75〜85Hvであることがより好ましい。
調質熱処理温度は、銅白金合金細線の成分組成によって適宜選択することができるが、一般的には非酸化性雰囲気で300℃〜500℃で数秒間以下することが行われる。調質熱処理前にワイヤが冷間で連続伸線加工されているので、調質熱処理によって歪みが緩和された微細再結晶の銅(Cu)マトリックス組織が形成される。連続伸線加工の断面減少率(伸線加工前の線径と伸線加工後の線径との比)によって調質熱処理の温度が定まる。なお、連続伸線された銅白金合金細線には一定の張力をかけたまま調質熱処理をして、伸線歪みを取り除いてもよい。
この連続伸線は、連続伸線前の線径に対して90%以上の冷間加工されたものであることが好ましい。ボンディングワイヤに鋳造組織から伸線組織をつくるためである。より好ましくは99%以上の冷間加工されたものである。連続伸線加工は、ダイス伸線することが好ましく、ダイヤモンドダイスが特に好ましい。これにより、
同心円状に配置された細長の微細再結晶組織ができやすいためである。
本発明においては、連続伸線前の素線の中間熱処理は不要である。中間熱処理は、一般的には非酸化性雰囲気で400℃〜800℃で60〜180分間行うことが知られているが、銅白金合金太線の表面に一旦形成された銅(Cu)の薄膜ないし酸化膜の厚さにほとんど変化が無いからである。
In the present invention, it is preferable that the Vickers hardness of the copper platinum alloy fine wire subjected to the tempering heat treatment after continuous drawing is 77 to 105 Hv. Since the addition amount of platinum (Pt) is relatively large, if the Vickers hardness is high, the static strength and dynamic strength of the copper platinum alloy fine wire after continuous wire drawing increase, and aluminum splash and thus chip cracking occur. is there. Preferably, the Vickers hardness is more preferably 75 to 85 Hv.
The tempering heat treatment temperature can be appropriately selected depending on the component composition of the copper platinum alloy fine wire, but generally it is performed at 300 ° C. to 500 ° C. for several seconds or less in a non-oxidizing atmosphere. Since the wire is cold drawn continuously before the tempering heat treatment, a finely recrystallized copper (Cu) matrix structure in which strain is relaxed by the tempering heat treatment is formed. The temperature of the tempering heat treatment is determined by the cross-sectional reduction rate of continuous wire drawing (ratio of the wire diameter before wire drawing and the wire diameter after wire drawing). Note that the wire-drawn strain may be removed by subjecting the continuously drawn copper-platinum alloy fine wire to a tempering heat treatment while applying a certain tension.
This continuous drawing is preferably 90% or more cold-worked with respect to the wire diameter before continuous drawing. This is to create a wire drawing structure from a cast structure on the bonding wire. More preferably, it is 99% or more cold worked. In continuous wire drawing, it is preferable to draw a die, and a diamond die is particularly preferable. This
This is because an elongated fine recrystallized structure is easily formed concentrically.
In the present invention, intermediate heat treatment of the strand before continuous drawing is not necessary. It is known that the intermediate heat treatment is generally performed in a non-oxidizing atmosphere at 400 ° C. to 800 ° C. for 60 to 180 minutes, but a copper (Cu) thin film formed once on the surface of the copper platinum alloy thick wire or This is because there is almost no change in the thickness of the oxide film.
本発明のボンディングワイヤは、銅(Cu)マトリックス中に金属元素として白金(Pt)が0.1〜2.0質量%含有しているので、銅白金合金細線の表面の酸化膜は薄く、ファーストボンディング時に溶融ボールを形成しても、酸化膜により溶融ボールが硬くなることは無い。
また、前記のとおりワイヤ表面に一旦形成された酸化膜厚は均一で安定しているので、セカンドボンディング時に一定出力の超音波接合によって本発明の銅白金合金ボンディングワイヤは安定して接合することができる。
非金属元素としてのイオウ(S)と酸素(O)を固定しているので、ボンディングワイヤのしなやかさ(靭性)を利用してうまくボンディングループを描くことができ、接続後の接合強度も長期間安定させることができる。
また、本発明のボンディングワイヤは、銅(Cu)よりも酸化しやすい元素を添加していないので、銅(Cu)マトリックス中に酸素(O)を固定することができ、溶融ボールの形成時に表面酸化によりチップ割れを生じることが無い。さらに、溶融ボール変形時にイオウ(S)が表面偏析することがないので、動的強度も高くならず、塑性変形時のワイヤからチップにかかる単位荷重も増大することが無く、チップ割れを防ぐことができる。また、リン(P)は酸素(O)と結びついて銅白金合金細線のフラックス作用をする。
Since the bonding wire of the present invention contains 0.1 to 2.0 mass% of platinum (Pt) as a metal element in the copper (Cu) matrix, the oxide film on the surface of the copper platinum alloy fine wire is thin, and the first Even if the molten ball is formed at the time of bonding, the molten ball is not hardened by the oxide film.
In addition, since the oxide film thickness once formed on the wire surface is uniform and stable as described above, the copper platinum alloy bonding wire of the present invention can be stably bonded by ultrasonic bonding with a constant output during the second bonding. it can.
Since sulfur (S) and oxygen (O) as non-metallic elements are fixed, a bonding loop can be drawn well using the flexibility (toughness) of the bonding wire, and the bonding strength after connection is also long-term. It can be stabilized.
In addition, since the bonding wire of the present invention does not contain an element that is easier to oxidize than copper (Cu), oxygen (O) can be fixed in the copper (Cu) matrix, and the surface is formed during the formation of the molten ball. There is no chip cracking due to oxidation. Furthermore, since sulfur (S) does not segregate on the surface when the molten ball is deformed, the dynamic strength is not increased, the unit load applied from the wire to the chip during plastic deformation is not increased, and chip cracking is prevented. Can do. Moreover, phosphorus (P) is combined with oxygen (O) and acts as a flux of copper platinum alloy fine wires.
図1は、実施例(No.3)の素線表面から内部に向けた銅(Cu)及び白金(Pt)の濃度分布を測定したグラフ。1 is a graph obtained by measuring the concentration distribution of copper (Cu) and platinum (Pt) from the surface of the wire of Example (No. 3) toward the inside. 図2は実施例(No.3)の素線表面から内部に向けた酸素の濃度分布を測定したグラフ。FIG. 2 is a graph obtained by measuring the oxygen concentration distribution from the surface of the strand of Example (No. 3) toward the inside. 図3は、白金濃度とワイヤ表面の酸化膜厚との関係を示すグラフ。FIG. 3 is a graph showing the relationship between the platinum concentration and the oxide film thickness on the wire surface.
実施例1〜30、比較例1〜6として、表1に示す成分組成の合金を溶融し、連続鋳造して直径5mm径の銅合金太線を作製した。
実施例1の銅白金合金太線の表面から白金(Pt)及び銅(Cu)(図1)、酸素(O)濃度をSIMSの質量分析計でそれぞれ測定した。グラフの横軸は太線表面からの深さ(μm)、縦軸はそれらの相対二次イオン強度(対数)である。
図1によれば、白金(Pt)は、表層に存在せず、50nmまで固溶体の母材より相対二次イオン強度が低かった。これに対して銅(Cu)は表面近傍では極めて純度が高いことが解る。
図2によれば、酸素〔O〕は表層から50nmまで直線的に減少し、その後はほとんど中心方向へ入っていなかった。図から酸化膜厚は0.05μm(50nm)近傍と考えられる。
次いで、この実施例3の銅白金合金太線を中間熱処理した。中間熱処理は、500℃までの範囲で120分行い、その後、水中で急冷した。そして、同様に表層酸化膜の厚さを測定したところ、ほとんど変化が見られなかった。
また、図3にこれらの太線を伸線加工して径17μmとしたボンディングワイヤについて、白金(Pt)濃度と酸化物層の厚さとの関係を測定した結果を示す。
白金(Pt)濃度が0の時の酸化膜厚10nmから白金(Pt)濃度が増加するに連れて酸化膜厚が急激に減少し、次いで曲線が緩やかになると共に白金濃度が1〜2質量%の領域において酸化膜厚2nmで、ほぼ飽和する。
後述するように実用上本発明の効果は、酸化膜厚6nm〜2nmで発揮される。
As Examples 1 to 30 and Comparative Examples 1 to 6, alloys having the component compositions shown in Table 1 were melted and continuously cast to produce a copper alloy thick wire having a diameter of 5 mm.
Platinum (Pt), copper (Cu) (FIG. 1), and oxygen (O) concentrations were measured from the surface of the copper platinum alloy thick wire of Example 1 using a SIMS mass spectrometer. The horizontal axis of the graph is the depth (μm) from the surface of the thick line, and the vertical axis is their relative secondary ion intensity (logarithm).
According to FIG. 1, platinum (Pt) was not present on the surface layer, and the relative secondary ionic strength was lower than that of the solid solution base material up to 50 nm. In contrast, it can be seen that copper (Cu) has a very high purity near the surface.
According to FIG. 2, oxygen [O] decreased linearly from the surface layer to 50 nm, and then hardly entered the central direction. From the figure, the oxide film thickness is considered to be around 0.05 μm (50 nm).
Next, the copper platinum alloy thick wire of Example 3 was subjected to an intermediate heat treatment. The intermediate heat treatment was performed for 120 minutes in a range up to 500 ° C., and then rapidly cooled in water. Similarly, when the thickness of the surface oxide film was measured, almost no change was observed.
FIG. 3 shows the results of measuring the relationship between the platinum (Pt) concentration and the thickness of the oxide layer for a bonding wire having a diameter of 17 μm by drawing these thick wires.
As the platinum (Pt) concentration increases from the oxide film thickness of 10 nm when the platinum (Pt) concentration is 0, the oxide film thickness decreases rapidly, then the curve becomes gentle and the platinum concentration is 1 to 2% by mass. In this region, the film is almost saturated at an oxide film thickness of 2 nm.
As will be described later, the effect of the present invention is practically exhibited at an oxide film thickness of 6 nm to 2 nm.
その後、実施例と比較例のワイヤを冷間で連続伸線し、400℃で1秒以下調質熱処理を行い、直径17μmの各々のボンディングワイヤとした。調質熱処理後のボンディングワイヤのビッカース硬さ測定にはビッカース硬度計(アカシ社製型式MVK-G3) を使用した。なお、ビッカース硬さの値は、伸び率4%のときのボンディングワイヤの硬さを用いた。 Thereafter, the wires of the example and the comparative example were continuously drawn cold and subjected to a tempering heat treatment at 400 ° C. for 1 second or less to obtain each bonding wire having a diameter of 17 μm. A Vickers hardness tester (Akashi model MVK-G3) was used to measure the Vickers hardness of the bonding wire after the tempering heat treatment. In addition, the value of the Vickers hardness used the hardness of the bonding wire when elongation rate is 4%.
(熱圧着併用超音波接合条件)
銅合金細線の線径は17μm、ループ長は5mmで、ループ高さは170μmとした。ケー・アンド・エス社製型式マグザム・プラス型全自動ボンダを用いて、銅合金細線をチップ(厚さ0.5mm)上の0.8μmめっきしたアルミニウム(Al)−0.5質量%銅(Cu)合金膜上にボールボンディングを実施した。ボンディング条件は、120kHzの周波数で、FAB作製条件、荷重および超音条件については、ファースト接合に関してはFAB径がワイヤ径の1.6倍、圧着ボール径がワイヤ径の2倍となるように、また、セカンド接合に関しては良好な接合が得られるように任意に調整をおこない、全サンプル100個について同一条件で、ファーストボンドおよびセカンドボンドを実施した。キャピラリは、ワイヤサイズに合致したエス・ピー・ティー社製のものを使用した。
(Ultrasonic bonding conditions with thermocompression bonding)
The copper alloy fine wire had a wire diameter of 17 μm, a loop length of 5 mm, and a loop height of 170 μm. Aluminum (Al) -0.5 mass% copper (0.8 μm-plated copper alloy fine wire on a chip (thickness 0.5 mm) using a K & S type model mazam plus type fully automatic bonder Ball bonding was performed on the Cu) alloy film. The bonding conditions are a frequency of 120 kHz, and for FAB fabrication conditions, load and supersonic conditions, for the first bonding, the FAB diameter is 1.6 times the wire diameter and the crimp ball diameter is twice the wire diameter. In addition, the second bonding was arbitrarily adjusted so as to obtain a good bonding, and the first bond and the second bonding were performed under the same conditions for all 100 samples. The capillary used was a product made by SPT, which matched the wire size.
次に、 この接合された銅白金合金細線について、アルミスプラッシュ試験、リーニング試験およびセカンド接合性試験を行った。 Next, an aluminum splash test, a leaning test, and a second bondability test were performed on the bonded copper platinum alloy thin wires.
(アルミスプラッシュ試験)
ボンディング後の試料を真上から光学顕微鏡(オリンパス製測定顕微鏡、STM6) を使用し、2 0倍の倍率で接合箇所周辺のアルミパッドが熱変形してめくれているかどうかを観察した。このアルミスプラッシュ試験は、FABで溶融ボールを作製して圧着する際のFAB硬さの指標となるものである。実施例、および比較例のワイヤとも、各々100ヵ所観察を行い、アルミスプラッシュが一つでも発生していたら×、一つも発生していなければ○とした。なお、実施例および比較例はともにチップ割れが観察されなかった。
(Aluminum splash test)
Using an optical microscope (Olympus measuring microscope, STM6) from directly above the bonded sample, it was observed whether or not the aluminum pad around the joint was thermally deformed at a magnification of 20 times. This aluminum splash test serves as an index of FAB hardness when a molten ball is manufactured and pressed by FAB. Each of the wires of the example and the comparative example was observed at 100 locations, and was marked as x when even one aluminum splash was generated, and marked as ◯ when none was generated. In both the examples and comparative examples, no chip cracking was observed.
(リーニング試験)
第一ボンドと第二ボンドの接合箇所を結んだ線に延長上から光学顕微鏡(オリンパス製測定顕微鏡、STM6 )でボンディングワイヤのループ頂点の傾きを100本観察し、その標準偏差(σ)を求めた。標準偏差(σ)が4μm以下しかズレなかったものをリーニング優◎、標準偏差(σ)が4μm〜8μmを超えてズレたものをリーニング良○、そして標準偏差(σ)が8μmを超えてズレたものをリーニング不良×と判定した。
(Leaning test)
Observe 100 slopes of the loop apex of the bonding wire with an optical microscope (Olympus measuring microscope, STM6) from the top of the line connecting the joints of the first bond and the second bond, and calculate the standard deviation (σ). It was. Leaning excellent when the standard deviation (σ) is less than 4 μm, Leaning good when the standard deviation (σ) exceeds 4 μm to 8 μm, and deviation when the standard deviation (σ) exceeds 8 μm Was determined to be poor leaning.
(セカンド接合性試験)
銅(Cu)板にニッケル(Ni)を10μm電気めっきし、その上にパラジウム(Pd)を1μm電気めっきし、その上に金(Au)を0.5μm自己触媒めっきし、リード基板とした。このリード基板を175℃で加熱しながら銅合金細線のウェッジ接合し、ボンディングワイヤのプルテストをした。その結果、セカンドボンドの剥がれの有無によりセカンドボンドの接合性を調べた。ここで、◎印は機械的強度が6.0gf以上のものを、○印は機械的強度が5.2〜6.0gfのものを、△印は機械的強度が4.5〜5.2gfのものを、×印は機械的強度が4.5gf以下のものを、それぞれいう。
(Second bondability test)
A copper (Cu) plate was electroplated with nickel (Ni) at 10 μm, palladium (Pd) was electroplated with 1 μm thereon, and gold (Au) was plated thereon with 0.5 μm autocatalyst to obtain a lead substrate. While this lead substrate was heated at 175 ° C., wedge bonding of a copper alloy fine wire was performed, and a pull test of the bonding wire was performed. As a result, the bondability of the second bond was examined based on whether or not the second bond was peeled off. Here, ◎ indicates that the mechanical strength is 6.0 gf or more, ○ indicates that the mechanical strength is 5.2 to 6.0 gf, and Δ indicates that the mechanical strength is 4.5 to 5.2 gf. X means that the mechanical strength is 4.5 gf or less.
実施例1〜30及び比較例1〜6の各試験結果について、表1に示す。なお、酸素濃度は、燃焼法(LECO製酸素・窒素分析装置TC−436AR)によって測定した値であって、マトリックス中の固溶酸素+表面酸化膜の酸素の値であるが、酸化膜の厚さが数ナノメートルのレベルであってその影響はごくわずかであると考えられ、実質上マトリックス中の固溶酸素濃度と変わらないので以下固溶酸素濃度として扱う。
また、参考までにビッカース硬さも添付する。

It shows in Table 1 about each test result of Examples 1-30 and Comparative Examples 1-6. The oxygen concentration is a value measured by a combustion method (LECO oxygen / nitrogen analyzer TC-436AR), which is a value of solid solution oxygen in the matrix + oxygen in the surface oxide film, but the thickness of the oxide film. Therefore, the effect is considered to be negligible, and since it is substantially the same as the dissolved oxygen concentration in the matrix, it is treated as the dissolved oxygen concentration hereinafter.
In addition, Vickers hardness is attached for reference.

実施例及び比較例を挙げた表1において、ワイヤ組成範囲・被覆層の有無とアルミスプラッシュ、リーニング、セカンド接合性の試験結果とを対比すると、次のとおりであった。
比較例1は、イオウ(S)濃度が0.06質量ppmと下限値未満になっている。また、酸素(O)濃度が170質量ppmと上限値を超えている。このため、比較例1はワイヤの硬さの値が低くリーニング性が劣る一方で加工硬化による硬さが高くなってアルミスプラッシュが悪い。また、表層の酸素分布もまだら模様となり、セカンド接合性もあまり良好とはいえない。
In Table 1 which gave an Example and a comparative example, it was as follows when the wire composition range and the presence or absence of a coating layer were compared with the test results of aluminum splash, leaning, and second bondability.
In Comparative Example 1, the sulfur (S) concentration is 0.06 ppm by mass and less than the lower limit. Moreover, oxygen (O) density | concentration exceeds 170 mass ppm and an upper limit. For this reason, in Comparative Example 1, the hardness value of the wire is low and the leaning property is inferior, while the hardness due to work hardening is high and the aluminum splash is poor. In addition, the surface oxygen distribution has a mottled pattern, and the second bondability is not very good.
比較例2は、原材料銅〔Cu〕純度が99.991質量%と下限値未満になっている。またイオウ(S)を含有せず、酸素(O)濃度が上限値を超えている。このため、比較例2もワイヤが硬くなりすぎ、アルミスプラッシュが悪い。また、セカンド接合性はPd被覆によってもやや劣る。 In Comparative Example 2, the purity of the raw material copper [Cu] is 99.991% by mass, which is less than the lower limit. Further, it does not contain sulfur (S), and the oxygen (O) concentration exceeds the upper limit. For this reason, the wire of Comparative Example 2 is too hard and the aluminum splash is poor. Also, the second bondability is slightly inferior even with Pd coating.
比較例3は、原材料銅〔Cu〕純度が99.992質量%と、比較例2と同様に下限値未満になっている。また白金(Pt)濃度が2.2質量%と上限値を超えている。このため、比較例3はワイヤが硬くなりすぎ、アルミスプラッシュが悪い。 In Comparative Example 3, the purity of the raw material copper [Cu] is 99.992% by mass, which is less than the lower limit as in Comparative Example 2. Moreover, platinum (Pt) density | concentration exceeds 2.2 mass% and an upper limit. For this reason, the wire of Comparative Example 3 is too hard and the aluminum splash is poor.
比較例4は、白金(Pt)濃度が低く、イオウ(S)濃度が16質量%と上限値を超えている。このため、比較例4はワイヤの硬さが低いにもかかわらず動的強度が現れて硬くなりすぎ、アルミスプラッシュが悪い。 In Comparative Example 4, the platinum (Pt) concentration is low, and the sulfur (S) concentration is 16% by mass and exceeds the upper limit. For this reason, in Comparative Example 4, although the hardness of the wire is low, dynamic strength appears and becomes too hard, and the aluminum splash is poor.
比較例5は、白金(Pt)濃度が0.02質量%と下限値未満である。またイオウ(S)濃度も0.08質量ppm、といずれも下限値未満になっている。このため、比較例4はワイヤがやわらかくなりすぎ、リーニング性が悪い。 In Comparative Example 5, the platinum (Pt) concentration is 0.02% by mass and less than the lower limit. Moreover, sulfur (S) density | concentration is 0.08 mass ppm, and all are less than a lower limit. For this reason, in Comparative Example 4, the wire becomes too soft and the leaning property is poor.
比較例6は、原材料銅〔Cu〕純度が99.993質量%と、比較例2、3と同様に下限値未満になっている。又、酸素(O)濃度も高く、このため、比較例6はワイヤが硬くなりすぎ、アルミスプラッシュが悪い。 In Comparative Example 6, the purity of the raw material copper [Cu] is 99.993 mass%, which is less than the lower limit value as in Comparative Examples 2 and 3. Moreover, oxygen (O) density | concentration is also high, and, for this reason, the wire of comparative example 6 becomes too hard, and an aluminum splash is bad.
以上の比較例に対して、本発明の成分組成範囲の条件を満たす実施例はいずれも、アルミスプラッシュ、リーニング、セカンド接合性について良好な結果を得ている。
その範囲は、白金(Pt)濃度が0.1〜2.0質量%、イオウ(S)濃度が1〜10質量ppm、酸素(O)濃度が10〜150質量ppmであって、白金(Pt)濃度の増加と共にワイヤの硬さが高くなるが、ワイヤ硬さが100Hvを超えても(実施例1、5、8、15、17、2.0、26)アルミスプラッシュ試験結果は良好であり、ボール圧着時の塑性流動に伴う動的強度が高くならないことが解る。
また、本発明のワイヤは、上記の白金(Pt)濃度が0.1〜2.0質量%において効果を発揮するが、そのワイヤ構造は図3のグラフからこれらの白金(Pt)濃度に対応して酸化膜の厚さが6nm〜2nmである。
酸化膜の厚さに対する評価は表1に挙げられていないが、一般に6nmを超えるとセカンド接合性が低下し、また、下限値2nmは前述のとおり白金(Pt)濃度に対して飽和するが、他方、白金(Pt)濃度は2.0質量%を超えると、前述のとおり動的強度が高くなりすぎてチップ割れを起こすことから制約される。
さらに、ワイヤ硬さがHv80未満であっても(実施例10、11、14、23)リーニング試験結果及びセカンド接合試験結果が良好であり、イオウ(S)及び酸素(O)の共添加の効果が発揮されている。特に、これらの濃度範囲においてそれぞれ中間値或いは補完するような成分バランスにおいてこれらの効果が良好であることが解る。
さらに、リン(P)の添加は、硫黄(S)及び酸素(O)と共にこれらの効果を強化し、また、金(Au)及びパラジウム(Pd)からなる被覆層による効果もこれらに加えて発揮されている。
In contrast to the comparative examples described above, all the examples satisfying the component composition range of the present invention have obtained good results with respect to aluminum splash, leaning, and second bondability.
The ranges are as follows: platinum (Pt) concentration is 0.1 to 2.0 mass%, sulfur (S) concentration is 1 to 10 mass ppm, oxygen (O) concentration is 10 to 150 mass ppm, and platinum (Pt) ) The hardness of the wire increases with increasing concentration, but even if the wire hardness exceeds 100 Hv (Examples 1, 5, 8, 15, 17, 2.0, 26), the aluminum splash test results are good. It can be seen that the dynamic strength associated with plastic flow during ball compression does not increase.
In addition, the wire of the present invention is effective when the platinum (Pt) concentration is 0.1 to 2.0% by mass. The wire structure corresponds to these platinum (Pt) concentrations from the graph of FIG. Thus, the thickness of the oxide film is 6 nm to 2 nm.
Although the evaluation for the thickness of the oxide film is not listed in Table 1, in general, when the thickness exceeds 6 nm, the second bondability decreases, and the lower limit of 2 nm is saturated with respect to the platinum (Pt) concentration as described above. On the other hand, if the platinum (Pt) concentration exceeds 2.0% by mass, the dynamic strength becomes too high as described above, which is constrained because chip cracking occurs.
Furthermore, even if the wire hardness is less than Hv80 (Examples 10, 11, 14, and 23), the leaning test result and the second bonding test result are good, and the effect of co-addition of sulfur (S) and oxygen (O) Has been demonstrated. In particular, it can be seen that these effects are good in an intermediate value or a component balance that complements each of these concentration ranges.
Furthermore, the addition of phosphorus (P) enhances these effects together with sulfur (S) and oxygen (O), and also exhibits the effect of the coating layer made of gold (Au) and palladium (Pd). Has been.
本発明は、1st接合性、2nd接合性、ループ形成性が従来のボンディングワイヤに比較して大きく向上しているため、ワイヤボンディングの信頼性を向上すると共にワイヤボンディング工程を従来より低コストで行うことができ、産業上の利用価値は多大である。 In the present invention, the first bonding property, the second bonding property, and the loop forming property are greatly improved as compared with the conventional bonding wire, so that the reliability of wire bonding is improved and the wire bonding process is performed at a lower cost than the conventional method. The industrial utility value is great.

Claims (6)

  1. 白金(Pt)および残部が純度99.995質量%以上の銅(Cu)からなる連続伸線された半導体装置用銅白金二元合金細線において、
    当該銅白金合金細線の銅(Cu)マトリックス中に金属元素として白金(Pt)が0.1〜2.0質量% 、非金属元素としてイオウ(S)が1〜10質量ppm、および酸素(O)が10〜150質量ppm固溶されており、かつ、6nm以下の酸化膜が表層を覆っていることを特徴とする半導体装置のボールボンディング用銅白金合金細線。
    In a copper platinum binary alloy fine wire for a continuously drawn semiconductor device made of platinum (Pt) and the balance of copper (Cu) having a purity of 99.995% by mass or more,
    In the copper (Cu) matrix of the copper platinum alloy fine wire, platinum (Pt) is 0.1 to 2.0 mass% as a metal element, sulfur (S) is 1 to 10 mass ppm as a nonmetal element, and oxygen (O ) Is solid-dissolved in an amount of 10 to 150 mass ppm, and an oxide film of 6 nm or less covers the surface layer. A copper platinum alloy fine wire for ball bonding of a semiconductor device.
  2. 白金(Pt)および残部が純度99.995質量%以上の銅(Cu)からなる連続伸線された半導体装置用銅白金二元合金細線において、
    当該銅白金合金細線の銅(Cu)マトリックス中に金属元素として白金(Pt)が0.1〜2.0質量% およびリン(P)が1〜5質量ppm、非金属元素としてイオウ(S)が1〜10質量ppmおよび酸素(O)が10〜150質量ppm固溶されており、かつ、6nm以下の酸化膜が表層を覆っていることを特徴とする半導体装置のボールボンディング用銅白金合金細線。
    In a copper platinum binary alloy fine wire for a continuously drawn semiconductor device made of platinum (Pt) and the balance of copper (Cu) having a purity of 99.995% by mass or more,
    In the copper (Cu) matrix of the copper platinum alloy wire, platinum (Pt) is 0.1 to 2.0 mass% and phosphorus (P) is 1 to 5 mass ppm as a metal element, and sulfur (S) as a nonmetal element. 1 to 10 mass ppm of oxygen and 10 to 150 mass ppm of oxygen (O), and an oxide film of 6 nm or less covers the surface layer, the copper platinum alloy for ball bonding of a semiconductor device Thin line.
  3. 上記銅白金合金細線の残部銅(Cu) の純度が99.998質量%以上であることを特徴とする請求項1または請求項2に記載の半導体装置のボールボンディング用銅白金合金細線。 The copper platinum alloy fine wire for ball bonding of a semiconductor device according to claim 1 or 2, wherein the purity of the remaining copper (Cu) of the copper platinum alloy fine wire is 99.998 mass% or more.
  4. 上記銅白金合金細線のビッカース硬さが77〜105Hvであることを特徴とする請求項1または請求項2に記載の半導体装置のボールボンディング用銅白金合金細線。 Ball bonding copper platinum alloy fine wire of a semiconductor device according to claim 1 or claim 2, wherein the Vickers hardness of the copper platinum alloy fine wire is 77 ~105Hv.
  5. 上記酸素(O)の含有量が上記イオウ(S)の含有量よりも多いことを特徴とする請求項1または請求項2に記載の半導体装置のボールボンディング用銅白金合金細線。 3. The copper platinum alloy fine wire for ball bonding of a semiconductor device according to claim 1, wherein the oxygen (O) content is higher than the sulfur (S) content.
  6. 上記連続伸線が、酸化膜が形成された連続伸線前の線径に対して90%以上の冷間加工されたものであることを特徴とする請求項1または請求項2に記載の半導体装置のボールボンディング用銅白金合金細線。
    The said continuous wire drawing is 90 % or more of cold-worked with respect to the wire diameter before the continuous wire drawing in which the oxide film was formed, The Claim 1 or Claim 2 characterized by the above-mentioned. Copper platinum alloy wire for ball bonding of semiconductor devices.
JP2012217879A 2012-09-28 2012-09-28 Copper platinum alloy wire for semiconductor device connection Active JP5219316B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012217879A JP5219316B1 (en) 2012-09-28 2012-09-28 Copper platinum alloy wire for semiconductor device connection

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012217879A JP5219316B1 (en) 2012-09-28 2012-09-28 Copper platinum alloy wire for semiconductor device connection
TW102116584A TWI437650B (en) 2012-09-28 2013-05-09 Copper-platinum alloy wire used for connecting semiconductor equippments
SG2013038567A SG2013038567A (en) 2012-09-28 2013-05-17 Copper-platinum alloy wire for connection in semiconductor device
CN201310223610.3A CN103295993B (en) 2012-09-28 2013-06-06 Copper-the platinum alloy wires of the connection in semiconductor device

Publications (2)

Publication Number Publication Date
JP5219316B1 true JP5219316B1 (en) 2013-06-26
JP2014070252A JP2014070252A (en) 2014-04-21

Family

ID=48778719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012217879A Active JP5219316B1 (en) 2012-09-28 2012-09-28 Copper platinum alloy wire for semiconductor device connection

Country Status (4)

Country Link
JP (1) JP5219316B1 (en)
CN (1) CN103295993B (en)
SG (1) SG2013038567A (en)
TW (1) TWI437650B (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5871983B2 (en) 2014-03-28 2016-03-01 富士重工業株式会社 Battery module protection structure mounted on the rear of the vehicle body
KR20180105740A (en) 2014-04-21 2018-09-28 신닛테츠스미킹 마테리알즈 가부시키가이샤 Bonding wire for semiconductor device
SG10201403532QA (en) * 2014-06-23 2016-01-28 Heraeus Deutschland Gmbh & Co Kg Copper bonding wire with angstrom (a) thick surface oxide layer
SG10201404628TA (en) * 2014-08-04 2016-03-30 Heraeus Deutschland Gmbh & Co Kg Ball-bond arrangement
JP6422768B2 (en) * 2014-12-24 2018-11-14 タツタ電線株式会社 Manufacturing method of copper bonding wire
CN104789813A (en) * 2015-01-26 2015-07-22 汕头市骏码凯撒有限公司 LED (Light-emitting diode) packaging ultrafine bonded copper alloy wire and making method thereof
CN104752385B (en) * 2015-01-26 2018-02-02 汕头市骏码凯撒有限公司 A kind of IC package ultra-soft bonding wire and its manufacture method
JP6256616B2 (en) 2015-04-22 2018-01-10 日立金属株式会社 Metal particles and production method thereof, coated metal particles, metal powder
EP3131113A4 (en) 2015-06-15 2017-03-22 Nippon Micrometal Corporation Bonding wire for semiconductor device
CN107004610B (en) 2015-07-23 2020-07-17 日铁新材料股份有限公司 Bonding wire for semiconductor device
CN106463495B (en) 2015-08-12 2020-09-04 日铁新材料股份有限公司 Bonding wire for semiconductor device
SG11202001066VA (en) 2017-08-09 2020-03-30 Nippon Steel Chemical & Material Co Ltd Cu ALLOY BONDING WIRE FOR SEMICONDUCTOR DEVICE

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010171235A (en) * 2009-01-23 2010-08-05 Tanaka Electronics Ind Co Ltd HIGH-PURITY Cu BONDING WIRE
WO2011129256A1 (en) * 2010-04-14 2011-10-20 タツタ電線株式会社 Bonding wire

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005028951B4 (en) * 2005-06-22 2018-05-30 Infineon Technologies Ag Arrangement for the electrical connection of a semiconductor circuit arrangement with an external contact device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010171235A (en) * 2009-01-23 2010-08-05 Tanaka Electronics Ind Co Ltd HIGH-PURITY Cu BONDING WIRE
WO2011129256A1 (en) * 2010-04-14 2011-10-20 タツタ電線株式会社 Bonding wire

Also Published As

Publication number Publication date
CN103295993A (en) 2013-09-11
JP2014070252A (en) 2014-04-21
TW201411748A (en) 2014-03-16
TWI437650B (en) 2014-05-11
SG2013038567A (en) 2014-04-28
CN103295993B (en) 2016-12-28

Similar Documents

Publication Publication Date Title
CN101802994B (en) Bonding wire for semiconductor device
KR101328863B1 (en) Alloy wire and methods for manufacturing the same
JP4719299B2 (en) Bonding wires for semiconductor devices
KR101019811B1 (en) Bonding Wires for Semiconductor Devices
JP4729680B2 (en) Copper-based alloy with excellent press punchability
JP5451908B2 (en) Bonding wire for semiconductor and manufacturing method thereof
US8063471B2 (en) Copper alloy sheet for electric and electronic parts
JP5246314B2 (en) Copper alloy bonding wire for semiconductors
JP4677505B1 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
CN101828255B (en) Bonding wire for semiconductor devices
US5814168A (en) Process for producing high-strength, high-electroconductivity copper-base alloys
TWI508204B (en) High-speed signal line with bonding wire
JP4349641B1 (en) Coated copper wire for ball bonding
CN101522926B (en) Copper alloy plate for electrical and electronic components
TWI427719B (en) The joint structure of the joining wire and its forming method
JP5116101B2 (en) Bonding wire for semiconductor mounting and manufacturing method thereof
CN103339719B (en) The copper ball bonding wire of coating Pd
US8742258B2 (en) Bonding wire for semiconductor
US20060219666A1 (en) Electrode wire for electric discharge machining and manufacturing method of the same
JP4672373B2 (en) Bonding wires for semiconductor devices
JP2007100111A (en) Cu-Ni-Sn-P-BASED COPPER ALLOY EXCELLENT IN PRESS-PUNCHING PROPERTY, AND ITS PRODUCTION METHOD
WO2010106851A1 (en) Bonding wire for semiconductor
CN103409654B (en) Silver-gold-palladium alloy bump manufacture line
JP4904252B2 (en) Bonding wires for semiconductor devices
JP6055242B2 (en) Cu-Mg-P-based copper alloy Sn plated plate and method for producing the same

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5219316

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150