KR20200049183A - Electric discharge machining wire electrode and manufacturing method thereof - Google Patents

Electric discharge machining wire electrode and manufacturing method thereof Download PDF

Info

Publication number
KR20200049183A
KR20200049183A KR1020180132139A KR20180132139A KR20200049183A KR 20200049183 A KR20200049183 A KR 20200049183A KR 1020180132139 A KR1020180132139 A KR 1020180132139A KR 20180132139 A KR20180132139 A KR 20180132139A KR 20200049183 A KR20200049183 A KR 20200049183A
Authority
KR
South Korea
Prior art keywords
layer
zinc
nickel
electrode wire
forming
Prior art date
Application number
KR1020180132139A
Other languages
Korean (ko)
Inventor
황장익
임종국
이재창
장해섭
Original Assignee
주식회사 풍국
주식회사 풍국
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 풍국, 주식회사 풍국 filed Critical 주식회사 풍국
Priority to KR1020180132139A priority Critical patent/KR20200049183A/en
Priority to PCT/KR2018/014023 priority patent/WO2020091130A1/en
Publication of KR20200049183A publication Critical patent/KR20200049183A/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H7/00Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
    • B23H7/02Wire-cutting
    • B23H7/08Wire electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H1/00Electrical discharge machining, i.e. removing metal with a series of rapidly recurring electrical discharges between an electrode and a workpiece in the presence of a fluid dielectric
    • B23H1/04Electrodes specially adapted therefor or their manufacture
    • B23H1/06Electrode material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • C25D5/12Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment

Abstract

The present invention relates to an electrode wire for electric discharge machining and a method for manufacturing the same. The electrode wire has a structure in which a coating layer is formed on the surface of a core wire, wherein the coating layer is an alloy layer of nickel and zinc. The coating layer can be formed by the steps of: forming a nickel layer on the surface of the core wire; forming a zinc layer on the surface of the nickel layer; and forming an alloy layer of nickel and zinc through diffusion heat treatment. By forming the nickel layer having a high melting point and high hardness in the step before forming the zinc layer and then applying diffusion heat treatment to the nickel layer so as to form a tightly bonded nickel-zinc alloy layer on the core wire surface, the electrode wire and the method for manufacturing the same of the present invention are capable of withstanding high heat generated during electric discharge machining, increasing an applied voltage, and improving a flushing effect, an automatic wiring rate by surface hardening, and a function of keeping a mold surface clean. That is, it is possible to significantly increase the processing speed by improving tensile strength compared to a conventional simple brass or zinc coated brass electrode wire. In addition, the electrode wire of the present invention is advantageous for automating and unmanning discharge processing by improving the tensile strength and straightness and improving the automatic wiring rate. In addition, the generation of dust is suppressed through the refinement and stabilization of the nickel-zinc alloy layer as a coating layer, and the tensile strength is improved to facilitate the insertion of the electrode wire into the small hole of a work, thereby improving overall workability.

Description

방전가공용 전극선 및 그 제조방법{ELECTRIC DISCHARGE MACHINING WIRE ELECTRODE AND MANUFACTURING METHOD THEREOF}Electrode wire for electric discharge processing and its manufacturing method {ELECTRIC DISCHARGE MACHINING WIRE ELECTRODE AND MANUFACTURING METHOD THEREOF}

본 발명은 방전가공용 전극선 및 그 제조방법에 관한 것으로, 구체적으로는 심선에 피복층이 형성된 방전가공용 전극선 및 그 제조방법에 관한 것이다.The present invention relates to an electrode wire for electric discharge processing and a method for manufacturing the same, and more particularly, to an electrode wire for electric discharge processing having a coating layer formed on the core wire and a method for manufacturing the same.

방전가공(EDM; Electric Discharge machining)은 주행하는 전극선과 공작물 사이에 방전을 일으켜 발생하는 스파크를 이용하여 가공물을 절단 또는 절삭하는 가공방법이다. 방전가공용 전극선은 소모성이며, 이러한 방전가공 기술은 절삭가공이 난이한 난삭재 및 고경도의 열처리가 된 금형재료의 가공과 비대칭 형상의 금형가공기술에 절대적인 영향을 끼치고 있다. 산업기술의 발전에 따라 금형기술 또한 발전되어 금형의 정밀도 향상과 가공속도의 향상을 위해 끊임없이 방전가공용 전극선의 개발이 이루어져 왔다.Electric Discharge Machining (EDM) is a machining method that cuts or cuts a workpiece using sparks generated by generating discharge between the traveling electrode wire and the workpiece. The electrode wire for electric discharge machining is consumable, and this electric discharge machining technique has an absolute influence on the machining of difficult-to-cut hard materials and high-hardness heat-treated mold materials and the asymmetric shape mold processing technology. In accordance with the development of industrial technology, the mold technology has also been developed, and the electrode wire for discharge processing has been continuously developed to improve the precision of the mold and the processing speed.

종래 방전가공용 전극선은 전기전도도가 높은 은(Ag) 또는 구리(Cu)가 방전효과가 크지만 방전가공시 발생된 공작물이 용해된 방전흔을 빨리 배출시키기 위해 기화 및 폭발력이 높은 아연(Zn)이 함유된 황동 전극선이 주로 사용되고 있다. 이러한 황동 전극선은 전기전도도, 강도 및 가공속도의 향상을 위해 아연(Zn)의 함량을 증가시키고 있으나, 아연의 함량을 증가시키면 전극선의 냉간 가공성이 떨어지기 때문에 중량 기준 40wt% 이상의 아연(Zn)을 포함하는 전극선을 생산하고 있지 못하다. In the conventional electrode line for electric discharge processing, silver (Ag) or copper (Cu) having high electrical conductivity has a large discharge effect, but zinc (Zn) having high evaporation and explosive power is used to rapidly discharge discharge marks in which the work pieces generated during discharge processing are rapidly discharged. Contained brass electrode wire is mainly used. These brass electrode wires increase the content of zinc (Zn) to improve the electrical conductivity, strength and processing speed, but if the content of zinc increases, the cold workability of the electrode wire decreases, so zinc (Zn) of 40 wt% or more by weight is used. It does not produce electrode wires.

한편 종래 단일 재질로 전극선을 구성하는 대신에, 이를 심선으로 하고 그 표면에 수마이크로 미터 두께의 피복층을 형성한 형태의 전극선이 개시되어 있다. 예컨대, 황동을 심선으로 하고 그 표면에 아연을 전기 또는 용융 도금한 후 확산 열처리하여 제작되는 전극선이 대표적이다. 그러나 이러한 전극선의 피복층은 순수한 아연 도금층 또는 확산층으로 구성되기 때문에, 인장강도가 충분하지 못하고 인가접압 상승시 단선이 일어나기 쉬워 가공속도 및 작업성이 떨어지는 한편 동과 아연 간 결합조직의 시효경화에 따른 변형 등으로 인한 진직도 저하로 인해 자동결선율이 떨어짐으로써 고정밀도 및 무인화 가공 한계가 있는 실정이다.On the other hand, instead of constructing an electrode wire from a conventional single material, an electrode wire in the form of a core wire and forming a coating layer having a thickness of several micrometers on its surface is disclosed. For example, electrode wires produced by using brass as a core wire and diffusing heat treatment after electroplating or hot dip galvanizing zinc on the surface thereof are typical. However, since the coating layer of such an electrode wire is composed of a pure galvanized layer or a diffusion layer, the tensile strength is insufficient and the breakage tends to occur when the applied contact pressure increases, resulting in poor processing speed and workability, and deformation due to aging hardening of the connective tissue between copper and zinc. Due to the decrease in straightness due to the lowering of the automatic connection rate, there is a limitation in high precision and unmanned processing.

- 일본공개특허 제 2005-512826호-Japanese Patent Publication No. 2005-512826 - 일본공개특허 제2005-230992호-Japanese Patent Publication No. 2005-230992

본 발명의 목적은, 인장 강도 및 진직도가 향상되고 분진 발생이 억제되어, 방전가공시 가공속도, 가공정밀도, 자동결선율 및 작업성을 개선할 수 있는 방전가공용 전극선 및 그 제조방법을 제공하는 것이다. An object of the present invention is to improve the tensile strength and straightness and suppress the generation of dust, to provide an electrode wire for electrical discharge machining and a method for manufacturing the same, which can improve processing speed, machining precision, automatic connection rate and workability during electrical discharge machining. will be.

본 발명은 전술한 과제를 해결하기 위하여 예의 검토한 결과 이루어진 것으로, 그 요지는 특허청구범위에 기재한 바와 동일한 아래의 내용이다.The present invention has been made as a result of earnest examination in order to solve the above-described problems, the subject matter of which is the same as described in the claims.

(1) 심선 표면에 피복층이 형성된 방전가공용 전극선으로서, 상기 피복층은 니켈과 아연의 합금층인 것을 특징으로 하는 방전가공용 전극선.(1) An electrode wire for electric discharge machining in which a coating layer is formed on the surface of the core wire, wherein the coating layer is an alloy layer of nickel and zinc.

(2) 상기 심선은 황동인 것을 특징으로 하는 상기 (1)의 방전가공용 전극선.(2) The electrode wire for electric discharge machining according to (1), wherein the core wire is brass.

(3) 니켈 대 아연의 중량비가 2:8 ~ 3:7인 것을 특징으로 하는 상기 (1)의 방전가공용 전극선.(3) The electrode wire for electric discharge machining according to (1), wherein the weight ratio of nickel to zinc is 2: 8 to 3: 7.

(4) 심선 표면에 피복층을 형성한 후 감경하여 제조되는 방전가공용 전극선 제조방법에 있어서, 상기 피복층의 형성은 심선 표면에 니켈 층을 형성하는 단계; 상기 니켈 표면에 아연 층을 형성하는 단계; 및 확산 열처리를 통해 니켈과 아연의 합금층을 형성하는 단계;를 포함하는 것을 특징으로 하는 방전가공용 전극선 제조방법.(4) A method for manufacturing an electrode wire for electric discharge processing, which is produced by reducing the thickness after forming a coating layer on the surface of the core wire, wherein the formation of the coating layer comprises: forming a nickel layer on the surface of the core wire; Forming a zinc layer on the nickel surface; And forming an alloy layer of nickel and zinc through diffusion heat treatment.

(5) 상기 니켈 층의 형성은 도금 방식인 것을 특징으로 하는 상기 (4)의 방전가공용 전극선 제조방법.(5) The method of manufacturing an electrode wire for electric discharge machining according to (4), wherein the formation of the nickel layer is a plating method.

(6) 상기 아연 층의 형성은 도금 방식인 것을 특징으로 하는 상기 (4)의 방전가공용 전극선 제조방법.(6) The method of manufacturing an electrode wire for electric discharge machining according to (4), wherein the formation of the zinc layer is a plating method.

(7) 상기 열처리는 420 ~ 450 ℃의 온도에서 6시간 이상 수행되는 것을 특징으로 하는 상기 (4)의 방전가공용 전극선 제조방법.(7) The method of manufacturing the electrode wire for electric discharge machining according to (4), wherein the heat treatment is performed at a temperature of 420 to 450 ° C for 6 hours or more.

(8) 상기 니켈 층과 아연 층은 중량비로 2:8 ~ 3:7로 형성되는 것을 특징으로 하는 상기 (4)의 방전가공용 전극선 제조방법.(8) The method of manufacturing the electrode wire for discharge processing according to (4), wherein the nickel layer and the zinc layer are formed in a weight ratio of 2: 8 to 3: 7.

(9) 상기 니켈 층의 두께는 2 ~ 4㎛로 형성되는 것을 특징으로 하는 상기 (4)의 방전가공용 전극선 제조방법.(9) The method of manufacturing an electrode wire for discharge processing according to (4), wherein the nickel layer has a thickness of 2 to 4 μm.

(10) 상기 아연 층의 두께는 6 ~ 12㎛로 형성되는 것을 특징으로 하는 상기 (4)의 방전가공용 전극선 제조방법.(10) The thickness of the zinc layer is 6 ~ 12㎛ characterized in that the electrode wire manufacturing method of the discharge processing, characterized in that (4).

(11) 감경 이후에 조질처리하는 단계를 더 포함하는 것을 특징으로 하는 상기 (4)의 방전가공용 전극선 제조방법.(11) A method of manufacturing an electrode wire for discharge processing according to (4), further comprising a step of tempering after reduction.

본 발명의 전극선 및 그 제조방법은, 아연 층 형성 전단계에서 고융점 고경도의 니켈 층을 형성한 후 확산열처리하여 결합이 치밀한 니켈-아연 합금층을 심선 표면에 형성함으로써, 방전가공시 발생하는 높은 열에 견딜수 있고 인가전압을 높일 수 있으며, 플러싱 효과의 향상 그리고 표면 경화로 자동결선율 향상과 금형 표면을 깨끗하게 유지할 수 있는 기능을 향상시킬 수 있다. 즉, 종래 단순한 황동 또는 아연 피복 황동 전극선 대비 인장강도가 향상됨으로써 가공속도를 현저히 증가시킬 수 있다. 또한 본 발명의 전극선은 인장강도 및 진직도가 개선되어 자동결선율이 향상됨으로써 방전가공을 자동화 및 무인화 하기에 유리하다. 또한 피복층으로서 니켈-아연 합금층에 대한 미세화 안정화를 통해 분진 발생이 억제되고, 인장강도가 향상되어 공작물의 작은 홀에 전극선 삽입이 용이해져, 전체적으로 작업성이 향상될 수 있다.The electrode wire of the present invention and a method of manufacturing the same are formed by forming a nickel layer having a high melting point and high hardness at a stage before forming a zinc layer, followed by diffusion heat treatment to form a densely bonded nickel-zinc alloy layer on the surface of the core wire, resulting in high generation during discharge processing. It can withstand heat, increase the applied voltage, improve the flushing effect and improve the automatic connection rate by surface hardening and the ability to keep the mold surface clean. That is, it is possible to significantly increase the processing speed by improving the tensile strength compared to a conventional simple brass or zinc coated brass electrode wire. In addition, the electrode wire of the present invention is advantageous for automating and unmanning discharge processing by improving the tensile strength and straightness and improving the automatic connection rate. In addition, dust generation is suppressed by miniaturization stabilization for the nickel-zinc alloy layer as a coating layer, and tensile strength is improved, so that it is easy to insert an electrode line into a small hole of a work piece, thereby improving overall workability.

도 1는 본 발명에 따른 방전가공용 전극선의 단면 구조도.
도 2은 본 발명에 따른 방전가공용 전극선 제조방법에 관한 공정도.
1 is a cross-sectional structure diagram of an electrode wire for electric discharge machining according to the present invention.
Figure 2 is a process diagram of a method for manufacturing an electrode wire for electrical discharge machining according to the present invention.

이하, 첨부된 도면을 참조하여 본 발명에 대하여 상세히 설명한다. 도면에서 동일 또는 균등물에 대해서는 동일 또는 유사한 참조번호를 부여하였다. 또한, 명세서 전체에서, 어떤 부분이 어떤 구성요소를 '포함' 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한, 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. 또한, 어떤 구성요소가 '선택적으로' 제공, 구비 또는 포함된다고 할 때, 이는 본 발명의 해결과제를 위한 필수적으로 채택되는 구성요소는 아니나 그러한 해결과제와 견련성을 가지고 임의적으로 채택될 수 있음을 의미한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings. In the drawings, the same or equivalent reference numbers are assigned to the same or equivalent materials. In addition, throughout the specification, when a certain part 'includes' a certain component, this means that unless otherwise stated, other components are not excluded, and other components may be further included. In addition, when a component is provided, provided or included 'optionally', it is not an essential component for the solution of the present invention, but can be arbitrarily adopted with such a solution and consistency. it means.

도 1은 본 발명에 따른 방전가공용 전극선(이하, '전극선'으로 약칭함)의 단면 구조도를 나타내고, 도 2은 본 발명에 따른 전극선 제조방법에 대한 플로우차트를 나타낸다. 1 shows a cross-sectional structure diagram of an electrode line for discharge processing according to the present invention (hereinafter abbreviated as 'electrode line') , and FIG. 2 shows a flowchart for a method of manufacturing an electrode line according to the present invention.

상기 전극선은 심선 표면에 피복층이 형성된 구조로서, 기본적으로 심선을 제공하고(S10), 심선 표면에 피복층을 형성한 후(S22~S26) 감경(S30)하여 제조된다. 이 경우, 상기 피복층의 형성은 심선 표면에 니켈 층을 형성하는 단계(S22); 상기 니켈 표면에 아연 층을 형성하는 단계(S24); 및 확산 열처리를 통해 니켈과 아연의 합금층을 형성하는 단계(S26);를 포함한다. The electrode wire has a structure in which a coating layer is formed on the surface of the core wire, and is basically prepared by providing a core wire (S10), and forming a coating layer on the surface of the core wire (S22 to S26), or reducing it (S30). In this case, the formation of the coating layer is a step of forming a nickel layer on the surface of the core wire (S22); Forming a zinc layer on the nickel surface (S24); And forming an alloy layer of nickel and zinc through diffusion heat treatment (S26).

상기 전극선의 심선 모재로는 일반적인 방전 가공용 EDM 와이어 재료로서 구리가 사용될 수 있으며, 바람직하게는 구리(Cu)와 아연(Zn)의 합금으로서 황동이 사용될 수 있다. 이러한 황동으로는, 예컨대 중량%로 35wt% 또는 37wt% Zn을 함유한 황동이 사용될 수 있다.Copper may be used as an EDM wire material for general electric discharge machining as the core wire base material of the electrode wire, and preferably brass may be used as an alloy of copper (Cu) and zinc (Zn). As such a brass, for example, brass containing 35 wt% or 37 wt% Zn by weight may be used.

상기 피복층은 니켈과 아연의 합금층으로서, 심선 표면에 대해 니켈 층과 아연 층을 순차 형성한 후 확산열처리함으로써 형성된다. 기본적으로, 피복층 중 니켈 층은 구리 합금의 일종인 황동과 같은 심선 모재와의 밀착성을 향상시키고, 또한 피복 층 중 아연 층은 니켈 층과의 높은 친화력을 갖기 때문에, 심선과 최외층 아연 층의 중간에 니켈 층이 존재함으로써 니켈 층 및 아연 층으로 이루어진 피복층의 밀착성이 전체적으로 향상되는 효과를 갖는다. The coating layer is an alloy layer of nickel and zinc, and is formed by sequentially forming a nickel layer and a zinc layer on the surface of the core wire and then diffusing heat. Basically, the nickel layer of the coating layer improves the adhesion with a core wire base material such as brass, which is a kind of copper alloy, and the zinc layer of the coating layer has a high affinity with the nickel layer, so that the middle of the core layer and the outermost layer zinc layer The presence of a nickel layer has the effect of improving the overall adhesion of the coating layer composed of the nickel layer and the zinc layer.

구체적으로, 상기 니켈 층은 확산 열처리시 심선인 황동 모선과 아연 층으로부터의 탈아연 발생량을 줄여줄 수 있다. 즉, 황동 모선에 아연 층을 직접 형성한 후 확산처리시, 황동과 아연 원자간의 확산이 발생하게 되어 최종 전극선 표면 근반에는 아연 함량이 높은 새로운 조성의 황동 도금층을 얻게 되는데, 이때 열처리 온도나 분위기, 유지시간에 따라서 황동 및 아연 도금층으로부터 아연이 증발하는 탈아연 현상이 발생하기도 한다. 하지만 본 발명에서처럼 중간에 니켈 도금층이 존재함으로써 원자 간 친화력이 뛰어난 구리-니켈-아연 합금의 생성으로 인해 탈아연을 방지하고 도금층의 밀착성이 높은 건전한 도금층을 얻게 되는 것이다. 따라서 본 발명에서는 니켈 층을 하지 않은 황동선의 도금층에 비해 상대적으로 높은 밀착력을 갖는다고 볼 수 있으며, 이러한 효과로 인장시험 시 도금층에 가해지는 전단응력에 대한 저항성이 높기 때문에 인장강도의 향상을 가져온다. 이 경우, 니켈 층, 아연 층이 너무 얇으면 심선과의 밀착성은 양호하나 심선으로부터 구리 원자의 확산이 빨라져 전극선 표면이 구리/아연/니켈의 합금 구성으로 되어 기존의 단순 아연 도금 전극선과 비슷한 성능의 와이어가 된다. 반대로, 니켈 함량이 많으면 심선과 아연 층의 확산 이동속도가 낮아 와이어 방전가공시 플럭싱 효과가 낮아 본 발명품의 목적인 가공속도의 향상의 효과를 기대할 수 없다. Specifically, the nickel layer may reduce the amount of de-zinc generated from the brass busbar and the zinc layer, which are core wires during diffusion heat treatment. In other words, after the zinc layer is directly formed on the brass busbar, during diffusion treatment, diffusion occurs between the brass and the zinc atoms to obtain a brass plated layer of a new composition with a high zinc content at the root of the final electrode wire. Depending on the holding time, de-zinc phenomenon in which zinc evaporates from the brass and galvanized layers may occur. However, as in the present invention, the presence of a nickel plating layer in the middle prevents dezincification due to the formation of a copper-nickel-zinc alloy having excellent interatomic affinity and obtains a healthy plating layer with high adhesion of the plating layer. Therefore, in the present invention, it can be seen that it has a relatively high adhesion to a plated layer of a brass wire without a nickel layer, and this effect brings about an improvement in tensile strength because of its high resistance to shear stress applied to the plated layer during the tensile test. In this case, if the nickel layer and the zinc layer are too thin, the adhesion with the core wire is good, but the diffusion of copper atoms from the core wire is faster, and the surface of the electrode wire is composed of an alloy of copper / zinc / nickel, which is similar to the existing simple zinc plated electrode wire. It becomes a wire. Conversely, if the nickel content is high, the diffusion movement speed of the core and zinc layers is low, so the fluxing effect during wire discharge processing is low, and the effect of improving the processing speed, which is the object of the present invention, cannot be expected.

또한, 전극선의 심선을 구성하는 황동 모선은 아연 함량에 따라 α상, *?*상, γ 상으로 존재하며 아연 함량이 많을수록 높은 경도를 가지며 균열에 민감하고 탈아연 현상이 쉽게 발생하는 것이 일반적이지만, 본 발명에서 피복층에 제 3의 니켈 층을 첨가는 구리와의 고용으로 인해 아연 당량이 상대적으로 줄어들게 하는 장점도 있다. 즉 니켈의 첨가에 의해, 신선 가공 또는 확산처리 중 높은 아연함량에 따른 도금층의 균열이 덜 발생하게 되고 이는 앞서 기술한 바와 같이 도금층의 밀착성 상승효과로 인해 본 발명품의 인장강도를 상승시키는 효과가 있다. 즉, 황동 전극선 제조시 확산 피복층의 밀착성을 향상시키는 니켈 층의 존재는 인장강도를 향상시켜 전극선에 의한 가공속도를 더욱 빠르게 향상시키고, 피복층의 응력저항성이 향상되어 전체적으로 전극선의 직진성이 개선되는 효과를 나타낸다.In addition, the brass busbar constituting the core wire of the electrode wire is present in the α phase, the *? * Phase, and the γ phase depending on the zinc content, and the higher the zinc content, the higher the hardness, susceptible to cracking, and easily de-zinc occurs. , In the present invention, the addition of the third nickel layer to the coating layer also has an advantage in that zinc equivalent is relatively reduced due to solid solution with copper. That is, by adding nickel, less cracking of the plating layer due to high zinc content occurs during fresh processing or diffusion treatment, and as described above, it has an effect of increasing the tensile strength of the present invention due to the synergistic effect of the plating layer. . That is, the presence of a nickel layer that improves the adhesion of the diffusion coating layer when manufacturing the brass electrode wire improves the tensile strength to improve the processing speed by the electrode wire more rapidly, and improves the stress resistance of the coating layer to improve the straightness of the electrode wire as a whole. Shows.

상기 니켈 층 및 아연 층의 형성은 특별히 제한되지 않으며, 예컨대 용융 도금 또는 전기 도금 방식일 있다. 한편, 니켈 층 및 아연 층의 형성시 도면에 도시되어 있지 않으나, 종래와 마찬가지로 탈지, 수세, 산세 또는 초음파 등의 세척, 건조 또는 권취 과정이 수반될 수 있다.The formation of the nickel layer and the zinc layer is not particularly limited, and may be, for example, hot-dip plating or electroplating. On the other hand, although the nickel layer and the zinc layer are not shown in the drawing when forming, a washing, drying or coiling process such as degreasing, washing, pickling or ultrasonic waves may be carried out as in the prior art.

한편, 니켈 층 및 아연 층의 2원계 복합 피복층에 따른 상기한 효과 구현하는 관점에서 그 중량비, 두께 및 확산 열처리 공정에 관한 제어가 중요하다. 구체적으로, 니켈 대 아연의 중량비는 2:8 ~ 3:7로 제어되는 것이 바람직하다. 또한, 상기 피복층의 감경 전을 기준으로, 피복층 중 니켈 층의 두께는 바람직하게는 2 ~ 4㎛로, 아연 층의 두께는 바람직하게는 6 ~ 12㎛로 제어되는 것이 바람직하다. 또한, 상기 열처리는 니켈 대 아연의 중량비 구성에 따라 조절되며 진공로 상태에서 420 ~ 450 ℃의 온도에서 6시간 이상 수행하는 것이 바람직하다.On the other hand, it is important to control the weight ratio, thickness, and diffusion heat treatment process from the viewpoint of realizing the above-described effect according to the binary-based composite coating layer of the nickel layer and the zinc layer. Specifically, it is preferable that the weight ratio of nickel to zinc is controlled from 2: 8 to 3: 7. In addition, based on before the reduction of the coating layer, the thickness of the nickel layer in the coating layer is preferably 2 to 4 μm, and the thickness of the zinc layer is preferably controlled to 6 to 12 μm. In addition, the heat treatment is controlled according to the composition of the weight ratio of nickel to zinc and is preferably performed for 6 hours or more at a temperature of 420 to 450 ° C in a vacuum furnace.

선택적으로 전극선 감경 이후에 조질처리(anealing) 하는 단계 를 더 포함할 수 있다. 이러한 조질 처리에 의해 신선에 의한 감경후 선재의 표면경화를 풀어주기 위한 열처리 후 급냉하는 조질처리를 하여, 니켈-아연 합금층의 조직이 안정화됨으로써 방전가공시 가루발생이 감소될 수 있 저하의 기능을 얻을 수 있다.Optionally, it may further include a step of annealing after the electrode line is reduced. By this tempering treatment, after the heat treatment for releasing the surface hardening of the wire after the reduction by drawing, the tempering treatment for quenching is performed, and the structure of the nickel-zinc alloy layer is stabilized, so that powder generation during discharge processing can be reduced. Can get

이하, 본 발명의 바람직한 실시예 및 실험예에 기초하여 본 발명을 더욱 구체적으로 설명한다. 그러나 본 발명의 기술적 사상은 이에 한정되거나 제한되지 않고 당업자에 의해 변형되어 다양하게 실시될 수 있음은 물론이다.Hereinafter, the present invention will be described in more detail based on preferred examples and experimental examples of the present invention. However, the technical spirit of the present invention is not limited to or limited thereto, and may be variously implemented by a person skilled in the art.

[인장강도][The tensile strength]

Figure pat00001
Figure pat00001

[가공속도][Processing speed]

Figure pat00002
Figure pat00002

[자동결선율][Automatic wiring rate]

Figure pat00003
Figure pat00003

[가공정밀도][Processing Density]

Figure pat00004
Figure pat00004

1: 전극선
10: 심선 20: 피복층
22: 니켈 층
24: 아연층
1: electrode wire
10: core wire 20: coating layer
22: nickel layer
24: zinc layer

Claims (11)

심선 표면에 피복층이 형성된 방전가공용 전극선으로서, 상기 피복층은 니켈과 아연의 합금층인 것을 특징으로 하는 방전가공용 전극선.
An electrode wire for electric discharge machining in which a coating layer is formed on the surface of the core wire, wherein the coating layer is an alloy layer of nickel and zinc.
제1항에 있어서, 상기 심선은 황동인 것을 특징으로 하는 방전가공용 전극선.
The electrode wire for electric discharge machining according to claim 1, wherein the core wire is brass.
제1항에 있어서, 니켈 대 아연의 중량비가 2:8 ~ 3:7인 것을 특징으로 하는 방전가공용 전극선.
The electrode wire for electrical discharge machining according to claim 1, wherein the weight ratio of nickel to zinc is 2: 8 to 3: 7.
심선 표면에 피복층을 형성한 후 감경하여 제조되는 방전가공용 전극선 제조방법에 있어서, 상기 피복층의 형성은 심선 표면에 니켈 층을 형성하는 단계; 상기 니켈 표면에 아연 층을 형성하는 단계; 및 확산 열처리를 통해 니켈과 아연의 합금층을 형성하는 단계;를 포함하는 것을 특징으로 하는 방전가공용 전극선 제조방법.
A method of manufacturing an electrode wire for electrical discharge processing that is produced by reducing the thickness after forming a coating layer on a surface of a core wire, the forming of the coating layer comprising: forming a nickel layer on the surface of the core wire; Forming a zinc layer on the nickel surface; And forming an alloy layer of nickel and zinc through diffusion heat treatment.
제4항에 있어서, 상기 니켈 층의 형성은 도금 방식인 것을 특징으로 하는 방전가공용 전극선 제조방법.
5. The method of claim 4, wherein the forming of the nickel layer is a plating method.
제4항에 있어서, 상기 아연 층의 형성은 도금 방식인 것을 특징으로 하는 방전가공용 전극선 제조방법.
The method of claim 4, wherein the forming of the zinc layer is a plating method.
제4항에 있어서, 상기 열처리는 420 ~ 450 ℃의 온도에서 6시간 이상 수행되는 것을 특징으로 하는 방전가공용 전극선 제조방법.
The method of claim 4, wherein the heat treatment is performed at a temperature of 420 to 450 ° C for 6 hours or more.
제4항에 있어서, 상기 니켈 층과 아연 층은 중량비로 2:8 ~ 3:7로 형성되는 것을 특징으로 하는 방전가공용 전극선 제조방법.
5. The method of claim 4, wherein the nickel layer and the zinc layer are formed in a weight ratio of 2: 8 to 3: 7.
제4항에 있어서, 상기 니켈 층의 두께는 2 ~ 4㎛로 형성되는 것을 특징으로 하는 방전가공용 전극선 제조방법.
The method of claim 4, wherein the nickel layer has a thickness of 2 to 4 μm.
제4항에 있어서, 상기 아연 층의 두께는 6 ~ 12㎛로 형성되는 것을 특징으로 하는 방전가공용 전극선 제조방법.
The method of claim 4, wherein the zinc layer has a thickness of 6 to 12 μm.
제4항에 있어서, 감경 이후에 조질처리하는 단계를 더 포함하는 것을 특징으로 하는 방전가공용 전극선 제조방법.
The method of claim 4, further comprising the step of tempering after reduction.
KR1020180132139A 2018-10-31 2018-10-31 Electric discharge machining wire electrode and manufacturing method thereof KR20200049183A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020180132139A KR20200049183A (en) 2018-10-31 2018-10-31 Electric discharge machining wire electrode and manufacturing method thereof
PCT/KR2018/014023 WO2020091130A1 (en) 2018-10-31 2018-11-15 Electrode wire for electric discharge machining and method for manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180132139A KR20200049183A (en) 2018-10-31 2018-10-31 Electric discharge machining wire electrode and manufacturing method thereof

Publications (1)

Publication Number Publication Date
KR20200049183A true KR20200049183A (en) 2020-05-08

Family

ID=70462285

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180132139A KR20200049183A (en) 2018-10-31 2018-10-31 Electric discharge machining wire electrode and manufacturing method thereof

Country Status (2)

Country Link
KR (1) KR20200049183A (en)
WO (1) WO2020091130A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005512826A (en) 2001-12-21 2005-05-12 テルモコンパクト Wire for electrical discharge machining at high speed
JP2005230992A (en) 2004-02-20 2005-09-02 Hitachi Cable Ltd Method of manufacturing electrode wire for wire electric discharge machining

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2942350B2 (en) * 1990-11-28 1999-08-30 住友電気工業株式会社 Electrode wire for wire electric discharge machining
US5945010A (en) * 1997-09-02 1999-08-31 Composite Concepts Company, Inc. Electrode wire for use in electric discharge machining and process for preparing same
KR20000059366A (en) * 1999-03-03 2000-10-05 황해웅 Cu-Zn-Ni alloys for EDM(Energy Discharge Machine) wire and its manufacturing method
JP4285324B2 (en) * 2004-05-20 2009-06-24 日立電線株式会社 Electrode wire for wire electric discharge machining and electric discharge machined product manufactured using the same
JP5231486B2 (en) * 2010-06-04 2013-07-10 鈴木金属工業株式会社 Electrode wire for electric discharge machining

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005512826A (en) 2001-12-21 2005-05-12 テルモコンパクト Wire for electrical discharge machining at high speed
JP2005230992A (en) 2004-02-20 2005-09-02 Hitachi Cable Ltd Method of manufacturing electrode wire for wire electric discharge machining

Also Published As

Publication number Publication date
WO2020091130A1 (en) 2020-05-07

Similar Documents

Publication Publication Date Title
JP6029778B1 (en) High-precision zinc-based alloy electrode wire and manufacturing method thereof
JP5025387B2 (en) Conductive material for connecting parts and method for manufacturing the same
KR920010862B1 (en) Wire electrode for wire cut electric discharge machine
JP3718529B2 (en) Method for producing porous electrode wire for electric discharge machining
EP3251777B1 (en) Scale-style micro-texture electrode wire material and preparation method therefor and use thereof
KR101292343B1 (en) Wire electrode for electro discharge machining and thesame methode
US6781081B2 (en) Wire electrode for spark erosion cutting
JP2006183068A (en) Conductive material for connecting part and method for manufacturing the conductive material
JP5231486B2 (en) Electrode wire for electric discharge machining
JP2015180770A (en) Sn PLATED MATERIAL AND PRODUCTION METHOD THEREOF
KR20140051734A (en) Wire electrode for electro discharge machining and thesame methode
JP2008296298A (en) Electrode wire for wire electric discharge machining
KR20200049183A (en) Electric discharge machining wire electrode and manufacturing method thereof
JP2006159304A (en) Electrode wire for wire electric discharge machining and its manufacturing method
TWI595951B (en) Discharge processing electrode line
KR100925000B1 (en) Electrode wire for electric discharge machining and manufacturing method thereof
JP2010168666A (en) HEAT-RESISTANT TINNED STRIP OF Cu-Zn ALLOY IN WHICH WHISKER IS SUPPRESSED
JP2012124025A (en) Plated copper wire and manufacturing method thereof
JP2002137123A (en) Electrode wire for wire electric discharge machining
JPS62246425A (en) Electrode wire for wire cut electric discharge machining and manufacture method therefor
KR20140100796A (en) Wire electrode for electro discharge machining and thesame methode
JP2713350B2 (en) Electrode wire for wire electric discharge machining
JP2003291030A (en) Electrode wire for wire electrical discharge machining
JP6238938B2 (en) Manufacturing method of electrode wire for electric discharge machining
KR100481950B1 (en) An electrode wire production method for a graphite coating discharge processing

Legal Events

Date Code Title Description
N231 Notification of change of applicant
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E601 Decision to refuse application