JP6238938B2 - Manufacturing method of electrode wire for electric discharge machining - Google Patents

Manufacturing method of electrode wire for electric discharge machining Download PDF

Info

Publication number
JP6238938B2
JP6238938B2 JP2015158360A JP2015158360A JP6238938B2 JP 6238938 B2 JP6238938 B2 JP 6238938B2 JP 2015158360 A JP2015158360 A JP 2015158360A JP 2015158360 A JP2015158360 A JP 2015158360A JP 6238938 B2 JP6238938 B2 JP 6238938B2
Authority
JP
Japan
Prior art keywords
phase
beta
electrode wire
discharge machining
zinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015158360A
Other languages
Japanese (ja)
Other versions
JP2017035753A (en
Inventor
張國大
Original Assignee
元祥金屬工業股▲ふん▼有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 元祥金屬工業股▲ふん▼有限公司 filed Critical 元祥金屬工業股▲ふん▼有限公司
Priority to JP2015158360A priority Critical patent/JP6238938B2/en
Publication of JP2017035753A publication Critical patent/JP2017035753A/en
Application granted granted Critical
Publication of JP6238938B2 publication Critical patent/JP6238938B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、放電加工用電極線に関するものであり、さらに詳しくは、放電加工のために用いられ、切断しても粉落ちせずに環境保護に寄与でき、かつ製造において一回の金属プレス加工で完成され、製造工程を有効に簡略化することができ、その不良率を低減することが可能な金属合金線材に関するものである。   The present invention relates to an electrode wire for electric discharge machining. More specifically, the present invention is used for electric discharge machining, can contribute to environmental protection without falling off even if cut, and is a single metal press working in manufacturing. The present invention relates to a metal alloy wire that can be effectively simplified and can reduce the defect rate.

第1種の従来の加工電極線は、図3に示すように、米国特許US第8067689号公報によれば、その金属合金線は、α(Alpha)相の銅金属線12には、まず、1層の黄銅塗布層18に対して亜鉛めっき処理を施し、かつ表面にも電気めっき層15を形成させ、α(Alpha)相の銅金属線12を亜鉛めっきしてなる固体合金である。β(Beta)相の銅金属線12は、銅金属線に亜鉛めっき法で塗布されると共に、表面を引抜加工した後、再び熱処理を施してから、銅−亜鉛固溶体18で電気めっきした後、再び熱処理してなる固体合金は、γ(Gamma)相で、かつ表面に電気めっき層15をめっきした金属合金線となる。ただ上記の如く従来技術の金属合金線の銅−亜鉛二元共晶合金上に、いずれも銅合金を亜鉛めっきしてなるβ(Beta)相であるため、銅金属線12の第1工程である溶融亜鉛めっきを施してβ(Beta)相を生成した後、再び銅金属線12の第2工程である電気めっきを施すめっき層を生成してから熱処理を施す必要があり、γ(Gamma)相を達成するために、二次電気めっき及び熱処理のプロセスを行う必要がある。銅芯は速く切断することができるが、精密度が制御し難く、粗度が好ましくなく、製作コストが高く、不良率が高く、プロセス時間が長く、かつその金属合金線は、ワークを切削する際、表面にめっきした電気めっき層15に摩耗、粉落ちが容易に生じて汚染することになり、環境保護性を有しなくなるという問題がある。   As shown in FIG. 3, according to US Pat. No. 8,067,689, the first type of conventional processed electrode wire has an α (Alpha) phase copper metal wire 12, It is a solid alloy obtained by subjecting one brass coating layer 18 to galvanizing treatment, forming an electroplating layer 15 on the surface, and galvanizing copper metal wire 12 of α (Alpha) phase. The β (Beta) phase copper metal wire 12 is applied to the copper metal wire by galvanizing, and after the surface is drawn, heat treated again, and then electroplated with the copper-zinc solid solution 18, The solid alloy formed by heat treatment again becomes a metal alloy wire having a γ (Gamma) phase and a surface plated with the electroplating layer 15. However, as described above, since both are β (Beta) phases formed by galvanizing a copper alloy on the copper-zinc binary eutectic alloy of the conventional metal alloy wire, in the first step of the copper metal wire 12 After forming a β (Beta) phase by performing a certain hot dip galvanization, it is necessary to generate a plating layer to be subjected to electroplating, which is the second step of the copper metal wire 12, and then to perform a heat treatment, and γ (Gamma) In order to achieve the phase, it is necessary to perform a process of secondary electroplating and heat treatment. The copper core can be cut quickly, but the precision is difficult to control, the roughness is unfavorable, the production cost is high, the defect rate is high, the process time is long, and the metal alloy wire cuts the workpiece At this time, the electroplating layer 15 plated on the surface is easily worn and powdered and contaminated, and there is a problem that it does not have environmental protection.

また、第2種の従来の加工電極線は図4、図5に示すように、米国特許US第6447930号公報において、当該電極線3は、単層または多層の芯31と、銅または銅−亜鉛合金から構成される均一なα(Alpha)相の基体を有する1個の外層(α(Alpha)−Ms、α(Alpha)相の黄銅芯心)と、亜鉛または亜鉛合金から構成される1個のシース層η(Eta)−Znとを有する。そのうち、シース層32は、拡散出現温度以下の1つの温度より低い時に芯に「塗布」されることが最適であり、外シース層は、α(Alpha)、β(Beta)、γ(Gamma)またはε(Epsilon)から構成され、再び黄銅芯体31に塗布を施して亜鉛めっきし、それにより、電食性能と放電性能がさらに改善される。ただその電極線3は、依然として黄銅である芯体31に、再び亜鉛または銅−亜鉛合金から構成される1個のシース層32で塗布され、技術上、溶融亜鉛めっき法で銅金属線に塗布され、上記のように開示した従来技術の製造技術も同様である。その結果、製造過程にも、及びワークを製成するために行う切削にも、依然として上記のように二次製造工程(α(Alpha)+Zn→β(Beta)、β(Beta)+Zn→γ(Gamma))の必要があり、高コスト及び電極線を形成する金属材の精密度が制御し難く、粗度が好ましくない欠陥が存在する。   In addition, as shown in FIGS. 4 and 5, a second type of conventional processed electrode wire is disclosed in US Pat. No. 6,447,930, in which the electrode wire 3 includes a single-layer or multi-layer core 31 and copper or copper- One outer layer (α (Alpha) -Ms, α (Alpha) phase brass core) having a uniform α (Alpha) phase base composed of a zinc alloy, and 1 composed of zinc or a zinc alloy Sheath layers η (Eta) -Zn. Among them, the sheath layer 32 is optimally “applied” to the core when it is lower than one temperature below the diffusion appearance temperature, and the outer sheath layer is α (Alpha), β (Beta), γ (Gamma). Alternatively, it is composed of ε (Epsilon), and the brass core 31 is again applied and galvanized, thereby further improving the electrolytic corrosion performance and the discharge performance. However, the electrode wire 3 is applied again to the core 31 which is still brass with a single sheath layer 32 made of zinc or a copper-zinc alloy, and technically applied to a copper metal wire by hot dip galvanizing. The same is true for the conventional manufacturing technique disclosed above. As a result, the secondary manufacturing process (α (Alpha) + Zn → β (Beta), β (Beta) + Zn → γ () is still applied to the manufacturing process and the cutting performed to produce the workpiece. Gamma)) is required, and there is a defect in which the cost is high, the precision of the metal material forming the electrode wire is difficult to control, and the roughness is not preferable.

第3種の従来技術は図6、図7に示すように、欧州特許EP第0733431号公報において、当該電極線4は、単層または多層の芯41と、銅または銅−亜鉛合金から構成される均一なα(Alpha)相の基体を有する1個の外層(α(Alpha)−Ms、α(Alpha)相の黄銅芯心)と、亜鉛または亜鉛合金から構成される1個のシース層η(Eta)−Znとを有する。その電極線4は、依然として黄銅である芯体41に、再び亜鉛または銅−亜鉛合金から構成される1個のシース層42で塗布され、技術上、溶融亜鉛めっき法で銅金属線に塗布され、上記のように開示した従来技術の製造技術も同様である。
その結果、製造過程にも、及びワークを製成するために行う切削にも、依然として上記のように二次製造工程(α(Alpha)+Zn→β(Beta)、β(Beta)+Zn→γ(Gamma))の必要があり、高コスト及び電極線を形成する金属材の精密度が制御し難く、粗度が好ましくない欠陥が存在し、かかる欠陥の改善された電極線の開発が切望されてきた。
As shown in FIGS. 6 and 7, the third type of prior art is disclosed in European Patent EP 0733431, wherein the electrode wire 4 is composed of a single-layer or multi-layer core 41 and copper or copper-zinc alloy. One outer layer (α (Alpha) -Ms, α (Alpha) phase brass core) having a uniform α (Alpha) phase substrate, and one sheath layer η composed of zinc or a zinc alloy (Eta) -Zn. The electrode wire 4 is applied again to the core body 41, which is still brass, with a single sheath layer 42 made of zinc or a copper-zinc alloy, and technically applied to a copper metal wire by hot dip galvanizing. The same is true for the conventional manufacturing technique disclosed above.
As a result, the secondary manufacturing process (α (Alpha) + Zn → β (Beta), β (Beta) + Zn → γ () is still applied to the manufacturing process and the cutting performed to produce the workpiece. Gamma)) is necessary, the cost is high, the precision of the metal material forming the electrode wire is difficult to control, and there is a defect with an undesirable roughness, and the development of an electrode wire with an improved such defect has been eagerly desired. It was.

米国特許US第8067689号公報US Patent No. 8067689 米国特許US第6447930号公報US Pat. No. 6,447,930 欧州特許EP第0733431号公報European Patent EP 0 733 431

従って、本発明の課題は、前記に二次製造工程を要することなく、一回の加工工程のみで表面に電気めっき層を形成させることができ、切削による微塵発生を抑制した放電加工用電極線を提供することにある。 Accordingly, an object of the present invention is to provide an electrode wire for electric discharge machining that can form an electroplating layer on the surface only in one machining step without requiring a secondary manufacturing step as described above, and suppresses generation of fine dust due to cutting. Is to provide.

そこで、本発明者は、本発明の課題を解決するため、鋭意検討を重ねた結果、全β(Beta)相の合金体を利用し、その金属核に対して直接亜鉛メッキし、低温熱処理に供すると共に、低温熱処理時間を延長することにより、γ(Gamma)、ε(Epsilon)、η(Eta)相を含有する固体合金が形成し、金属プレス加工により金属合金線が得られる点に着目し、本発明に想到した。
かくして、請求項1に係る発明によれば、
放電加工用電極線であって、

該放電加工用電極線が、銅60%と亜鉛40%とを混合溶解して熱凝固を経て、銅−亜鉛二元共晶を液相から固溶相の全β(Beta)相の合金体に溶融凝固させてなり、前記全β(Beta)相の合金体の金属核を亜鉛めっきした後、直接に低温熱処理時間を延長するように制御することにより、γ(Gamma)、ε(Epsilon)、η(Eta)相を生成させることにより、β(Beta)晶相に相互溶解が生じて表面に電気層が形成される固体合金からなり、少なくともγ(Gamma)、ε(Epsilon)、η(Eta)相を含む金属合金線を生成させてなることを特徴とする放電加工用電極線
が提供される。
また、請求項2に係る発明によれば、 銅と亜鉛の含量比が60:40である場合において、前記全β(Beta)相の合金体は、熱凝固を経て、平衡相によって二元共晶固体合金に対してγ(Gamma)、ε(Epsilon)、η(Eta)相を含んで存在し、そして低温熱処理時間を延長するように制御することにより形成されてなることを特徴とする請求項1に記載の放電加工用電極線
が提供される。
請求項3に係る発明によれば、
前記全β(Beta)相の合金体の銅−亜鉛二元共晶は、熱凝固を経てなり、溶点が903℃〜900℃であることを特徴とする請求項1に記載の放電加工用電極線

が提供される。請求項4に係る発明によれば、
前記全β(Beta)相の合金体に対して亜鉛めっきした後、直接に反応温度を低温250℃以下に制御する低温熱処理を施してなることを特徴とする請求項1に記載の放電加工用電極線
が提供される。
請求項5に係る発明によれば、
前記全β(Beta)相の合金体からη(Eta)相を生成する反応温度を420℃以下に制御し、ε(Epsilon)相を生成する反応温度を600℃以下に制御し、γ(Gamma)相を生成する反応温度を835℃以下に制御してなることを特徴とする請求項1に記載の放電加工用電極線

が提供される。請求項6に係る発明によれば、
β(Beta)+γ(Gamma)の合金体に対して反応温度を500−400℃に制御する低温熱処理を施し、直接にγ(Gamma)相の金属合金線に形成される銅−亜鉛合金材は、切断面粗度Ra<0.05を有し、または反応温度を400℃に制御する低温熱処理を施し、直接にε(Epsilon)相の金属合金線に形成される銅−亜鉛合金材は、切断面粗度Ra<0.05を有し、あるいは反応温度を250℃に制御する低温熱処理を施し、直接にη(Eta)相の金属合金線に形成される銅−亜鉛合金材は、切断面粗度Ra<0.10を有することを特徴とする、請求項5に記載の放電加工用電極線
が提供される。
In order to solve the problems of the present invention, the present inventor has intensively studied, and as a result, an alloy body of all β (beta) phases is used, and the metal core is directly galvanized for low-temperature heat treatment. At the same time, focusing on the fact that a solid alloy containing a γ (Gamma), ε (Epsilon), and η (Eta) phase is formed by extending the low-temperature heat treatment time, and a metal alloy wire is obtained by metal pressing. The present invention has been conceived.
Thus, according to the invention of claim 1,
An electrode wire for electric discharge machining,

The electrode wire for electric discharge machining is obtained by mixing and dissolving copper 60% and zinc 40% and subjecting them to thermal solidification to convert the copper-zinc binary eutectic from a liquid phase to a solid solution phase of all β (Beta) phases. Γ (Gamma), ε (Epsilon) by controlling to extend the low temperature heat treatment time directly after galvanizing the metal nuclei of the alloy body of all β (Beta) phases. , Η (Eta) phase to form a solid alloy in which an electric layer is formed on the surface by mutual dissolution in the β (Beta) crystal phase, and at least γ (Gamma), ε (Epsilon), η ( There is provided an electrode wire for electric discharge machining characterized in that a metal alloy wire containing an Eta) phase is generated.
According to the second aspect of the present invention, when the content ratio of copper and zinc is 60:40, the all β (Beta) phase alloy body undergoes thermal solidification and is binary-coordinated by the equilibrium phase. It is formed by controlling the crystal solid alloy to include a γ (Gamma), ε (Epsilon), and η (Eta) phases, and to extend the low-temperature heat treatment time. Item 2. An electrode wire for electric discharge machining according to Item 1 is provided.
According to the invention of claim 3,
2. The electrical discharge machining according to claim 1, wherein the copper-zinc binary eutectic of the all β (Beta) phase alloy body undergoes thermal solidification and has a melting point of 903 ° C. to 900 ° C. 3. Electrode wire

Is provided. According to the invention of claim 4,
2. The electrical discharge machining apparatus according to claim 1, wherein after the galvanization is performed on the all β (Beta) phase alloy body, a low temperature heat treatment is performed to directly control a reaction temperature to a low temperature of 250 ° C. or less. An electrode wire is provided.
According to the invention of claim 5,
The reaction temperature for generating the η (Eta) phase from the all β (Beta) phase alloy body is controlled to 420 ° C. or lower, the reaction temperature for generating the ε (Epsilon) phase is controlled to 600 ° C. or lower, and γ (Gamma The electrode wire for electric discharge machining according to claim 1, wherein the reaction temperature for generating a phase is controlled to 835 ° C. or lower.

Is provided. According to the invention of claim 6,
A copper-zinc alloy material formed directly on a γ (Gamma) phase metal alloy wire by subjecting an alloy body of β (Beta) + γ (Gamma) to a low temperature heat treatment for controlling the reaction temperature to 500 to 400 ° C. The copper-zinc alloy material that has a cutting surface roughness Ra <0.05 or is subjected to a low-temperature heat treatment that controls the reaction temperature to 400 ° C., and is directly formed on a metal alloy wire in an ε (Epsilon) phase. A copper-zinc alloy material that has a cutting surface roughness Ra <0.05 or that is subjected to a low-temperature heat treatment that controls the reaction temperature to 250 ° C. and is directly formed on a metal alloy wire of η (Eta) phase The electrode wire for electric discharge machining according to claim 5, wherein the electrode wire has a surface roughness Ra <0.10.

従って、前記全β(Beta)相の合金体の金属合金線は、二次加工を要さずに一回の加工工程のみで線材の表面に電気めっきを施してめっき層を形成して完成されると共に、従来技術の金属合金線は、ワークの切削に表面にめっきした電気めっき層に粉落ちが容易に生じるという欠陥が改善されることから、環境保護に寄与できる効果と、製造工程を効果的に短縮することができる効果と、その不良率を低減することができる効果が達成される。   Therefore, the metal alloy wire of the all β (Beta) phase alloy body is completed by forming a plating layer by electroplating the surface of the wire in only one processing step without requiring secondary processing. In addition, the metal alloy wire of the prior art improves the defect that the powder can easily fall off in the electroplated layer plated on the surface when cutting the workpiece, thus contributing to environmental protection and the manufacturing process. The effect that can be shortened automatically and the effect that the defect rate can be reduced are achieved.

本発明の一実施形態に係る放電加工用電極線の金属合金材の断面図である。It is sectional drawing of the metal alloy material of the electrode wire for electrical discharge machining which concerns on one Embodiment of this invention. 本発明の一実施形態に係る放電加工用電極線の銅と亜鉛の平衡相を示す説明図である。It is explanatory drawing which shows the equilibrium phase of copper and zinc of the electrode wire for electrical discharge machining which concerns on one Embodiment of this invention. 従来技術の放電加工用電極線の金属合金材の断面図一である。It is sectional drawing 1 of the metal alloy material of the electrode wire for electric discharge machining of a prior art. 従来技術の放電加工用電極線の金属合金材の断面図二である。It is sectional drawing 2 of the metal alloy material of the electrode wire for electric discharge machining of a prior art. 図4の金属合金材の局部拡大図である。It is a local enlarged view of the metal alloy material of FIG. 従来技術の放電加工用電極線の金属合金材の断面図三である。It is sectional drawing 3 of the metal alloy material of the electrode wire for electric discharge machining of a prior art. 図6の金属合金材の局部拡大図である。It is a local enlarged view of the metal alloy material of FIG.

以下、図面を参照して本発明の内容を詳細に説明する。図1は、本発明の一実施形態に係る放電加工用電極線の金属合金材の断面図であり、図示のように、その放電加工用電極線は、銅60%と亜鉛40%とを混合溶解して液相(溶解温度909℃)から熱凝固(融点903℃〜900℃)を経て、銅−亜鉛二元共晶を液相から固溶相の全β(Beta)相の合金体10に溶融凝固させてなると共に、前記全β(Beta)相の合金体10の金属核を亜鉛めっきした後、直接に低温熱処理(反応温度を低温250℃以下に制御。)を施すことにより得られるものである。さらにかかる低温熱処理の処理時間を延長するように制御することにより、γ(Gamma)、ε(Epsilon)、η(Eta)相を生成させ、β(Beta)晶相に相互溶解が生じて表面に電気層が形成される固体合金を、少なくともγ(Gamma)、ε(Epsilon)、η(Eta)相を含み、低表面粗度で、迅速に切断でき、粉落ちせず、及び付着力に優れる金属合金線1を生成させる。   Hereinafter, the content of the present invention will be described in detail with reference to the drawings. FIG. 1 is a sectional view of a metal alloy material of an electrode wire for electric discharge machining according to an embodiment of the present invention. As shown in the drawing, the electrode wire for electric discharge machining is a mixture of 60% copper and 40% zinc. It melts and undergoes thermal solidification (melting point 903 ° C. to 900 ° C.) from the liquid phase (melting temperature 909 ° C.), and the copper-zinc binary eutectic is transformed into an all-β (Beta) phase alloy 10 It is obtained by subjecting the metal core of the all β (beta) phase alloy body 10 to galvanization and then directly subjecting it to a low temperature heat treatment (controlling the reaction temperature to a low temperature of 250 ° C. or lower). Is. Furthermore, by controlling to extend the processing time of such low-temperature heat treatment, γ (Gamma), ε (Epsilon), and η (Eta) phases are generated, and mutual dissolution occurs in the β (Beta) crystal phase, resulting in the surface. The solid alloy on which the electrical layer is formed contains at least γ (Gamma), ε (Epsilon), and η (Eta) phases, has a low surface roughness, can be cut quickly, does not fall off, and has excellent adhesion. A metal alloy wire 1 is generated.

図2は、本発明の銅と亜鉛の平衡相を示す図である。図示のように、その中、縦軸は温度(℃)を示し、上横軸は銅(Cu)の含量比を示し、下横軸は亜鉛(Zn)の含量比を示す。当該平衡相図において、銅及び亜鉛の2種の元素を選択した後、銅と亜鉛の含量比が60:40である時(図2の標示符号10に示す斜線で標示された部分に位置する箇所)に、前記全β(Beta)相の合金体10を選択した後、前記全β(Beta)相の合金体10に対して低温熱処理を施し、平衡相によって二元共晶固体合金に対してγ(Gamma)、ε(Epsilon)、η(Eta)相を含んで存在する。そして低温熱処理融点時間を延長するように制御し(反応温度を低温420℃以下に制御してη(Eta)相を生成させ、または反応温度を低温600℃以下に制御してε(Epsilon)相を生成させ、あるいは反応温度を低温835℃以下に制御してγ(Gamma)相を生成させる。図2の標示符号1a,1b,1cで標示された部分に位置する箇所のように、被加工物の表面粗度(Ra)値は以下の表1に示す。 FIG. 2 is a diagram showing an equilibrium phase of copper and zinc according to the present invention. As shown in the figure, the vertical axis represents temperature (° C.), the upper horizontal axis represents the content ratio of copper (Cu), and the lower horizontal axis represents the content ratio of zinc (Zn). In the equilibrium phase diagram, after selecting two elements of copper and zinc, when the content ratio of copper and zinc is 60:40 (located in the hatched portion indicated by the reference numeral 10 in FIG. 2) After selecting the all β (Beta) phase alloy body 10 at the location), the all β (Beta) phase alloy body 10 is subjected to low-temperature heat treatment, and the equilibrium phase is applied to the binary eutectic solid alloy. Γ (Gamma), ε (Epsilon), and η (Eta) phases. Then, control is performed to extend the low-temperature heat treatment melting time (the reaction temperature is controlled to a low temperature of 420 ° C. or lower to generate a η (Eta) phase, or the reaction temperature is controlled to a low temperature of 600 ° C. or lower to the ε (Epsilon) phase. Or by controlling the reaction temperature to a low temperature of 835 ° C. or lower to generate a γ (Gamma) phase, like the part located at the part indicated by the reference numerals 1a, 1b, 1c in FIG. The surface roughness (Ra) value of the product is shown in Table 1 below.

Figure 0006238938
Figure 0006238938

β(Beta)+γ(Gamma)の合金体に対して反応温度を500−400℃に制御する低温熱処理を施すことが好ましい場合、直接にγ(Gamma)相の金属合金線1に形成される銅−亜鉛合金材1aは、面粗度Ra<0.05を有し、精密かつ迅速な切断が行われ、またはβ(Beta)+γ(Gamma)の合金体に対して反応温度を400℃に制御する低温熱処理を施すことが好ましい場合、直接にε(Epsilon)相の金属合金線1に形成される銅−亜鉛合金材1bは、面粗度Ra<0.05を有し、一般的に精密な切断が行われる。あるいはβ(Beta)+γ(Gamma)の合金体に対して反応温度を250℃に制御する低温熱処理を施すことが好ましい場合、直接にη(Eta)相の金属合金線1に形成される銅−亜鉛合金材1cは、面粗度Ra<0.10を有し、粉落ちせずに精密かつ迅速な切断が行われ、そして前記全β(Beta)相の合金体10を利用すれば、金属核に対して直接に亜鉛めっきして低温熱処理を施し、少なくともγ(Gamma)、ε(Epsilon)、η(Eta)相を含む金属合金線1は、二次加工を要さずに一回の加工製造工程のみで線材の表面に電気めっきを施してめっき層を形成して完成されることから、α(Alpha)相の銅芯体にβ(Beta)相の表層を熱処理加工した後、再びγ(Gamma)相の表層に二次加工熱処理する必要があるめっき層の伝統的な繁雑な製造工程である問題を解決すると共に、その加工表層にめっきした電気めっき層の粉落ち、粗度と精密度に好ましくない欠陥が改善されることから、環境保護に寄与できる効果と、製造工程を効果的に短縮することができる効果と、その不良率を低減することができる効果が達成され、及び低表面粗度で、迅速に切断でき、粉落ちせず、及び付着力に優れる効果が達成される。   When it is preferable to perform a low temperature heat treatment for controlling the reaction temperature to 500-400 ° C. to the alloy body of β (Beta) + γ (Gamma), copper formed directly on the metal alloy wire 1 of γ (Gamma) phase The zinc alloy material 1a has a surface roughness Ra <0.05 and is cut precisely and quickly, or the reaction temperature is controlled to 400 ° C. with respect to an alloy body of β (Beta) + γ (Gamma) When it is preferable to perform the low temperature heat treatment, the copper-zinc alloy material 1b directly formed on the metal alloy wire 1 in the ε (Epsilon) phase has a surface roughness Ra <0.05 and is generally precise. Cutting is performed. Alternatively, when it is preferable to perform low temperature heat treatment for controlling the reaction temperature to 250 ° C. on the alloy body of β (Beta) + γ (Gamma), copper − formed directly on the metal alloy wire 1 of η (Eta) phase The zinc alloy material 1c has a surface roughness Ra <0.10, can be cut accurately and quickly without falling off, and if the all-β (beta) phase alloy body 10 is used, The metal alloy wire 1 containing at least a γ (Gamma), ε (Epsilon), and η (Eta) phase is galvanized directly on the core and subjected to low temperature heat treatment. Since the plating layer is formed by electroplating the surface of the wire only in the processing and manufacturing process, the surface layer of the β (Beta) phase is heat-treated on the α (Alpha) phase copper core, and then again. Secondary processing heat treatment on the surface layer of γ (Gamma) phase This solves the problem of the traditional complicated manufacturing process of the plating layer that needs to be processed, and improves the undesired defects in powder fall, roughness and precision of the electroplating layer plated on the processed surface layer The effect that can contribute to environmental protection, the effect that the manufacturing process can be shortened effectively, and the effect that the defect rate can be reduced are achieved, and the powder can be cut quickly and with low surface roughness. The effect which does not fall and is excellent in adhesive force is achieved.

なお、上記の説明は、あくまでも本発明の好適な実施例を示すものであって、本発明は、これらによって限定するものではなく、特許請求の範囲に基づいて行う等効果を生ずる発明及びバリエーションのいずれも、本発明の範囲内に含まれるべきである。   It should be noted that the above description is merely a preferred embodiment of the present invention, and the present invention is not limited thereto, and the invention and variations that produce the same effect based on the scope of the claims. Both should be included within the scope of the present invention.

従来技術
12:銅金属線
15:電気めっき層
18:銅−亜鉛固溶体
3:電極線
31:芯体
32:シース層
4:電極線
41:芯体
42:シース層

本発明
10:合金体
1:金属合金線
1a,1b,1c:銅−亜鉛合金材
Prior Art 12: Copper Metal Wire 15: Electroplating Layer 18: Copper-Zinc Solid Solution 3: Electrode Wire 31: Core Body 32: Sheath Layer 4: Electrode Wire 41: Core Body 42: Sheath Layer

Invention 10: Alloy body 1: Metal alloy wires 1a, 1b, 1c: Copper-zinc alloy material

Claims (5)

放電加工用電極線の製造方法であって、
銅60%と亜鉛40%とを混合溶解して熱凝固を経て、銅−亜鉛二元共晶を液相から固溶相の全β(Beta)相の合金体に溶融凝固させてなり、前記固溶相の全β(Beta)相の合金体に対して亜鉛めっきをした後、低温熱処理を施すことにより、前記固溶相の全β(Beta)相の合金体と亜鉛めっき層との境界にγ(Gamma)相、ε(Epsilon)相、η(Eta)相を生成させるように制御することにより、前記固溶相の全β(Beta)相と相互溶解が生じて前記固溶相の全β(Beta)相の合金体の外面に境界層が形成される固溶相の全β(Beta)相の合金体からなり、前記境界層には、少なくともγ(Gamma)相、ε(Epsilon)相、η(Eta)相を含む放電加工用電極線を生成させてなることを特徴とする放電加工用電極線の製造方法。
A method for manufacturing an electrode wire for electric discharge machining,
Copper 60% and zinc 40% are mixed and dissolved, and after thermal solidification, the copper-zinc binary eutectic is melt-solidified from a liquid phase to an alloy body of all β (Beta) phases of a solid solution phase, After the zinc alloy is plated on the solid solution phase β (Beta) phase alloy body, a low temperature heat treatment is performed, whereby the boundary between the solid solution phase all β (Beta) phase alloy body and the zinc plating layer. Γ (Gamma) phase, ε (Epsilon) phase, and η (Eta) phase are controlled to form a mutual solution with all β (Beta) phases of the solid solution phase, It consists of a solid solution phase all beta (beta) phase alloy body in which a boundary layer is formed on the outer surface of the all beta (beta) phase alloy body, and the boundary layer has at least a gamma (gamma) phase, epsilon (epsilon) ) Phase and η (Eta) phase, and an electric discharge machining electrode wire is generated. Manufacturing method of electrical discharge machining electrode wire that.
銅と亜鉛の含量比が60:40である場合において、前記固溶の全β(Beta)相の合金体は、熱凝固を経て形成され、平衡相によって二元共晶の固溶相の全β(Beta)相の合金体と亜鉛めっき層との境界においてγ(Gamma)相、ε(Epsilon)相、η(Eta)相を含んで存在し、そして低温熱処理時間を制御することにより形成されてなることを特徴とする請求項1に記載の放電加工用電極線の製造方法。 In the case where the content ratio of copper and zinc is 60:40, an alloy body of all β (Beta) phases of the solid solution phase is formed through thermal solidification, and a binary eutectic solid solution phase is formed by an equilibrium phase. Γ (Gamma) phase, ε (Epsilon) phase, and η (Eta) phase exist at the boundary between the alloy body of all β (Beta) phases and the galvanized layer, and are formed by controlling the low-temperature heat treatment time. The method for producing an electrode wire for electric discharge machining according to claim 1, wherein: 前記固溶相の全β(Beta)相の合金体の銅−亜鉛二元共晶は、熱凝固を経てなり、融点が903℃〜900℃であることを特徴とする請求項1に記載の放電加工用電極線の製造方法。   The copper-zinc binary eutectic of the alloy body of all β (Beta) phases of the solid solution phase undergoes thermal solidification and has a melting point of 903 ° C to 900 ° C. Manufacturing method of electrode wire for electric discharge machining. 前記固溶相の全β(Beta)相の合金体に対して亜鉛めっきした後、反応温度を250℃以下の低温に制御する低温熱処理を施してなることを特徴とする請求項1に記載の放電加工用電極線の製造方法。   2. The low-temperature heat treatment for controlling the reaction temperature to a low temperature of 250 ° C. or lower after galvanizing the alloy body of all β (Beta) phases of the solid solution phase according to claim 1. Manufacturing method of electrode wire for electric discharge machining. 前記固溶相の全β(Beta)相の合金体と亜鉛めっき層とからη(Eta)相を生成する反応温度を420℃以下に制御し、ε(Epsilon)相を生成する反応温度を600℃以下に制御し、γ(Gamma)相を生成する反応温度を835℃以下に制御してなることを特徴とする請求項1に記載の放電加工用電極線の製造方法。   The reaction temperature for generating the η (Eta) phase from the solid solution phase alloy body of all β (Beta) phases and the galvanized layer is controlled to 420 ° C. or less, and the reaction temperature for generating the ε (Epsilon) phase is 600. 2. The method for producing an electrode wire for electric discharge machining according to claim 1, wherein the reaction temperature is controlled to 835 ° C. or lower by controlling the reaction temperature to ℃ or lower and generating a γ (Gamma) phase.
JP2015158360A 2015-08-10 2015-08-10 Manufacturing method of electrode wire for electric discharge machining Active JP6238938B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015158360A JP6238938B2 (en) 2015-08-10 2015-08-10 Manufacturing method of electrode wire for electric discharge machining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015158360A JP6238938B2 (en) 2015-08-10 2015-08-10 Manufacturing method of electrode wire for electric discharge machining

Publications (2)

Publication Number Publication Date
JP2017035753A JP2017035753A (en) 2017-02-16
JP6238938B2 true JP6238938B2 (en) 2017-11-29

Family

ID=58047364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015158360A Active JP6238938B2 (en) 2015-08-10 2015-08-10 Manufacturing method of electrode wire for electric discharge machining

Country Status (1)

Country Link
JP (1) JP6238938B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020515428A (en) * 2017-09-26 2020-05-28 ▲寧▼波康▲強▼▲微▼▲電▼子技▲術▼有限公司 Method of manufacturing textured plated electrode wire

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2015909B (en) * 1978-03-03 1982-12-01 Charmilles Sa Ateliers Electrode for spark erosion machining
DE19510740A1 (en) * 1995-03-24 1996-10-02 Berkenhoff Gmbh Wire electrode and method for producing a wire electrode, in particular for the spark erosion method
JP2002126950A (en) * 2000-10-23 2002-05-08 Sumitomo Metal Mining Co Ltd Manufacturing method of electrode wire for wire electric discharge machining
JP2002126949A (en) * 2000-10-23 2002-05-08 Sumitomo Metal Mining Co Ltd Electrode wire for wire electric discharge machining
JP2003291030A (en) * 2002-03-29 2003-10-14 Oki Electric Cable Co Ltd Electrode wire for wire electrical discharge machining
KR100528850B1 (en) * 2004-02-05 2005-11-21 주식회사 풍국통상 Multi purpose multilayer coated electrode wire for electric discharge machining and production method thereof
JP5042229B2 (en) * 2007-12-10 2012-10-03 沖電線株式会社 Electrode wire for wire electric discharge machining, its manufacturing method and its bus bar manufacturing apparatus
KR101292343B1 (en) * 2011-08-08 2013-07-31 성기철 Wire electrode for electro discharge machining and thesame methode

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020515428A (en) * 2017-09-26 2020-05-28 ▲寧▼波康▲強▼▲微▼▲電▼子技▲術▼有限公司 Method of manufacturing textured plated electrode wire

Also Published As

Publication number Publication date
JP2017035753A (en) 2017-02-16

Similar Documents

Publication Publication Date Title
KR101873953B1 (en) High-precision zinc-based alloy electrode wire and preparation method therefor
JP4012895B2 (en) Structure of porous electrode wire for electric discharge machining
US9902005B2 (en) Low-boron-oxygen cutting line for one-way wire winding and manufacturing method thereof
WO2015033896A1 (en) Electrode wire for wire electric discharge machining, and method for producing same
JP2018516769A (en) Scale-like microstructured electrode wire material and its production method and use
WO2013191022A1 (en) Bonding member
US2123384A (en) Copper base alloy article for brazing and method of preparing it
US20170014928A1 (en) Electrode Wire for Electric Discharge Machining and Method for Manufacturing the Electrode Wire
JP6238938B2 (en) Manufacturing method of electrode wire for electric discharge machining
CN110277192B (en) Tinned copper wire and manufacturing method thereof, and insulated wire and cable
US2873216A (en) Method of chemically plating metals
JP6210572B1 (en) Copper alloy wire rod and method for producing the same
JP2005206942A (en) PRESS-BLANKING MATERIAL, AND Sn PLATING TREATMENT METHOD
JP2006518005A (en) Method for producing zinc coated electrode wire for electric discharge machine using hot dip galvanizing method
TWI595951B (en) Discharge processing electrode line
KR20170014191A (en) electric discharge processing for electrode line
JP2006159304A (en) Electrode wire for wire electric discharge machining and its manufacturing method
KR101447505B1 (en) Solder joint structure having tooth-like structure with excellent efficiency for suppressing the formation of kirkendall voids and method of manufacturing the same
KR100925000B1 (en) Electrode wire for electric discharge machining and manufacturing method thereof
CN201105349Y (en) Electrode wire for electro-discharge machining
JPH02270986A (en) Tin coated metallic sheet having excellent brightness and whisker resistance
KR20130111758A (en) Method for manufacturing diamond coated wire saw
TWI612183B (en) Electrochemical processing electrode and manufacturing method thereof
EP4043135A1 (en) Electrode wire for electrical discharge machining
CN106191724A (en) Metal alloy wire manufacture method for spark machined

Legal Events

Date Code Title Description
A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20161209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170418

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170718

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171031

R150 Certificate of patent or registration of utility model

Ref document number: 6238938

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250