JPH0366524A - Electrode wire for electric discharge machining - Google Patents

Electrode wire for electric discharge machining

Info

Publication number
JPH0366524A
JPH0366524A JP19971889A JP19971889A JPH0366524A JP H0366524 A JPH0366524 A JP H0366524A JP 19971889 A JP19971889 A JP 19971889A JP 19971889 A JP19971889 A JP 19971889A JP H0366524 A JPH0366524 A JP H0366524A
Authority
JP
Japan
Prior art keywords
wire
brass
electric discharge
copper
electrode wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19971889A
Other languages
Japanese (ja)
Inventor
Kenji Hyodo
兵頭 健次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP19971889A priority Critical patent/JPH0366524A/en
Publication of JPH0366524A publication Critical patent/JPH0366524A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

PURPOSE:To form stable electric discharge and remarkably improve machining speed by dispersing graphite fine particles having average particle diameter under 10mum, and forming a covering layer of copper or brass having a thickness of 0.1mum - 20mum, on the surface of a metallic wire. CONSTITUTION:On the surface of a metallic wire 1 such as hard steel wire, stainless steel wire, and brass wire, a covering layer 2 of copper or brass having a thickness of 0.1mum - 20mum, dispersing graphite particles having average particle diameter under 10mum is formed. Hereby, a desired electrode wire 4 for electric discharge machining is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ワイヤ放電加工機に用いられる放電加工特性
を改善した放電加工用電極線に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an electrode wire for electric discharge machining that is used in a wire electric discharge machine and has improved electric discharge machining characteristics.

C従来の技術〕 ワイヤ放電加工機は、被加工物と電極線との間に高電圧
を加え、その放電エネルギーによって被加工物を加工す
るもので、巾ひろく実用化されている。
C. Prior Art] A wire electrical discharge machine applies a high voltage between a workpiece and an electrode wire, and processes the workpiece using the discharge energy, and has been widely put into practical use.

通常、電極線としては加工速度が大で、仕J−精度の良
好なものが要求されている。
Usually, electrode wires are required to have high processing speed and good precision.

従来のワイヤ放電加工用電極線としては、直径0.1−
0.3mmの銅、黄銅(Cu−35Zn程度)タングス
テン、モリブデン等の細線が用いられている。
Conventional wire electric discharge machining electrode wires have a diameter of 0.1-
A thin wire of 0.3 mm of copper, brass (about Cu-35Zn), tungsten, molybdenum, etc. is used.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

タングステン、モリブデン線は高強度のため、線径を細
くでき、高精度の加工ができるが、線径を細くする場合
の加工性が悪く、高価となるため、特殊な用途にしか使
えないという問題点がある。
Tungsten and molybdenum wires have high strength, so they can be made thinner and processed with high precision, but the problem is that they have poor workability when making the wire diameter thinner and are expensive, so they can only be used for special purposes. There is a point.

また、銅線は伸線加工性が良いので安価であるが、引張
強度が小さいため断線しやすく、又短絡も発生しやすい
ので高速化ができず、放電加工性が悪いという問題点が
ある。
In addition, copper wire has good wire drawability and is therefore inexpensive, but its low tensile strength causes wire breakage and short-circuiting, making it impossible to increase the speed and causing poor electrical discharge machinability.

さらに、黄銅は強度が比較的高く、放電特性も良好なた
め広く実用化されているが、黄銅は高温強度が小さいた
め、高張力を付加できず、加工速度を上げると断線しや
すいという問題点がある。
Furthermore, brass has relatively high strength and good discharge characteristics, so it is widely put into practical use. However, brass has low high-temperature strength, so high tension cannot be applied to it, and it is prone to wire breakage when machining speed is increased. There is.

また近羊、黄銅線上に低融点の亜鉛を被覆した電極線が
提案され、加工速度、加工精度ともかなり改善されたが
高温強度が低いため、加工速度を上げると断線しやすい
という問題点は依然として残っていた。
In addition, Chikahi proposed an electrode wire in which a brass wire was coated with low-melting-point zinc, and although the machining speed and machining accuracy were considerably improved, the problem of low high-temperature strength and the tendency to break when the machining speed was increased still remained. It remained.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は上記従来の問題点を除去し、加工速度が大きく
、かつ高精度の放電加工を行なうことができる電極線を
得ることを目的としたものである。
The object of the present invention is to eliminate the above-mentioned conventional problems and to obtain an electrode wire that has a high machining speed and can perform electric discharge machining with high accuracy.

即ち、硬鋼線、ステンレス鋼線、黄銅線等の金属線の表
面に、平均粒径が1O7j11以下の黒鉛粒子を分散し
、かつ0.1μm〜20IIaの厚さをhoする銅又は
黄銅の被覆層を形成し、好ましくは、被覆層が平均亜鉛
濃度20〜50%の黄銅で、かつ亜鉛濃度が表面部から
内部に向って減少する組成変化を有するよう形成した放
電加工用1rL極線を提供するものである。
That is, a copper or brass coating in which graphite particles with an average particle size of 1O7j11 or less are dispersed on the surface of a metal wire such as a hard steel wire, stainless steel wire, or brass wire, and the thickness is 0.1 μm to 20IIa. Provided is a 1rL polar wire for electric discharge machining, in which the coating layer is preferably made of brass having an average zinc concentration of 20 to 50%, and has a composition change in which the zinc concentration decreases from the surface toward the inside. It is something to do.

以下、本発明の一実施例を図面に基いて説明する。Hereinafter, one embodiment of the present invention will be described based on the drawings.

〔実施例1〕 第1図および第2図に示すように、ピアノ線材(SWR
572A)にバテンテング処理、伸線を行ない、直径が
0.18m+の硬鋼線からなる金属線(1)を?′F製
する。
[Example 1] As shown in Figs. 1 and 2, piano wire rod (SWR
A metal wire (1) made of hard steel wire with a diameter of 0.18 m+ is made by battening and wire drawing 572A). 'Made by F.

上記金属線(1)にアルカリ脱脂、酸洗をした後、下記
メツキ条件で銅−黒鉛の分散めっきを行ない、銅めっき
層中に黒鉛粒子(3)を分散させた、めっき厚さが11
0l1の被覆層(2)を形成した放電加工用電極線(4
)を構成した。
After degreasing and pickling the metal wire (1), copper-graphite dispersion plating was performed under the following plating conditions, and the graphite particles (3) were dispersed in the copper plating layer, resulting in a plating thickness of 11
Electrode wire for electrical discharge machining (4) with a coating layer (2) of 0l1 formed
) was configured.

(めっき条件) ビロリン酸銅    859/+2 ピロリン酸カリ  325g/+2 アンモニア水     3  a12/αPH8,8 液  温       50 ℃ 電流密度       5  A/論 黒  鉛       2g/+2(平均粒径0.5.
ca)次に、ワイヤ放電加工機により厚さ20mmの5
KDIIを被切断材として切断試験を行ない、上記実施
例1の電極線(4)と直径0.2閣の黄銅線(65%C
u)からなる電極線との加工速度を比較した。
(Plating conditions) Copper pyrophosphate 859/+2 Potassium pyrophosphate 325g/+2 Ammonia water 3 a12/αPH8,8 Liquid temperature 50°C Current density 5 A/thermal graphite 2g/+2 (average particle size 0.5.
ca) Next, a 20mm thick 5
A cutting test was conducted using KDII as the material to be cut, and the electrode wire (4) of Example 1 and the brass wire (65% C
The processing speed was compared with the electrode wire made of u).

実施例1の電極線(4)の加工速度は2−7m+++/
minとなり、黄銅線よりなる電極線の1.3  倍で
あった。又、被切断材の加工面に銅の融着もなく良好な
表面状態が得られた。
The processing speed of the electrode wire (4) in Example 1 was 2-7m+++/
min, which was 1.3 times that of the electrode wire made of brass wire. In addition, a good surface condition was obtained with no copper fusion on the processed surface of the workpiece.

〔実施例2〕 実施例1と同様に得られた金属線に脱脂、酸洗をした後
、実施例1と同様のめつき条件で厚さ7taの銅−黒鉛
の分散めっきを行ない、その後、引き続き下記のめっき
条件にてめっき厚さ3殉の亜鉛−黒鉛の分散めっきを行
なった。
[Example 2] After degreasing and pickling the metal wire obtained in the same manner as in Example 1, dispersion plating of copper-graphite with a thickness of 7 ta was performed under the same plating conditions as in Example 1, and then, Subsequently, zinc-graphite dispersion plating with a plating thickness of 3 was performed under the following plating conditions.

(めっき条件) fIt酸亜鉛亜鉛   410  g/α塩化アルミニ
ウム  20g/Q 硫酸ナトリウム   75g/Q PH4,5 液  温       30 ℃ 電流密度       3 A/− 素ガス雰囲気炉中で350℃に加熱して銅−亜鉛めっき
層間の拡散を進行させ、黄銅−黒鉛の分散めっき層とし
た被覆層を形成した放電加工用電極線を構成した。
(Plating conditions) Zinc fIt acid 410 g/α Aluminum chloride 20 g/Q Sodium sulfate 75 g/Q PH4,5 Liquid Temperature 30°C Current density 3 A/- Copper-zinc was heated to 350°C in a gas atmosphere furnace. An electrode wire for electric discharge machining was constructed in which diffusion between the plating layers was promoted to form a covering layer that was a dispersed plating layer of brass and graphite.

この熱処理によりfffii線の真直性も改善され、作
業性が良好となった。なお、黄銅層中の亜鉛濃度は均一
ではなく、表面の亜鉛含有量が高く、内面に向って減少
する組成変化を有する構造にな−)ている。
This heat treatment also improved the straightness of the fffii wire, resulting in good workability. Note that the zinc concentration in the brass layer is not uniform, and has a structure in which the zinc content is high on the surface and changes in composition decreasing toward the inner surface.

次に、上記黄銅−黒鉛の分散めっき処理した電極線を用
いて実施例1と同様の切断試験を行なったところ、本実
施例の電極線の加工速度は2 、9 mm/minで黄
銅線の1.4倍に増加した。
Next, a cutting test similar to that in Example 1 was conducted using the above-mentioned brass-graphite dispersion-plated electrode wire. It increased by 1.4 times.

上記実施例において、銅−亜鉛の組成比はα又はβ構造
を有する20〜50%Znの範囲が適当であるが、上記
のように熱処理により黄銅とする場合は、表面部の亜鉛
濃度を内部よりも高くすることが可能で、安定した放電
特性を有する電極線が得られる。
In the above example, the appropriate copper-zinc composition ratio is in the range of 20 to 50% Zn having an α or β structure. However, when brass is made by heat treatment as described above, the zinc concentration on the surface part is adjusted internally. It is possible to obtain an electrode wire having stable discharge characteristics.

本発明の電極線としては放電加工時に高張力を付加した
状態で高速加工を可能とするため、高強度で耐熱性の良
好な硬鋼線、ステンレス鋼線9合金鋼線等の鋼線が適し
ている。これらの鋼線は予めその表面に銅、黄銅、ニッ
ケル等の薄めつきを施してもよい。
As the electrode wire of the present invention, since high-speed machining is possible with high tension applied during electrical discharge machining, steel wires with high strength and good heat resistance, such as hard steel wire, stainless steel wire, and 9 alloy steel wire, are suitable. ing. The surface of these steel wires may be thinned with copper, brass, nickel, etc. in advance.

又、銅系合金線の使用も可能で、この場合は導電性が良
好な上、表面層の耐熱性が改善されるため切断速度の向
上が可能となる。
It is also possible to use a copper-based alloy wire; in this case, it has good conductivity and the heat resistance of the surface layer is improved, making it possible to increase the cutting speed.

さらに、めっき層の厚さは0.2川より薄いと導電率は
増加するが、放電特性に大きな変化は見られず、又、金
属線は次第に細くする必要があるため、電極線の強度が
低下するだけでなく、非常に高価になる。従って、めっ
き厚さは0.2〜20浦が適当であり、特に5〜15浦
の範囲が良好である。
Furthermore, if the thickness of the plating layer is less than 0.2 mm, the conductivity will increase, but no major change will be seen in the discharge characteristics.Also, since the metal wire must be gradually made thinner, the strength of the electrode wire will decrease. Not only will it be degraded, but it will also be very expensive. Therefore, a suitable plating thickness is 0.2 to 20 pores, and a range of 5 to 15 pores is particularly good.

銅又は黄銅めっき層中に分散させる黒30微粒子は耐熱
性が良好で、導電性もあるので電極材として最も適して
いる。黒鉛を銅または黄銅めっき中に分散させることに
より、放電に伴う電極線表面の消耗を減じると同時に、
加工中安定した放電が行なわれる。このように、金属線
をめっき層との相乗作用により高速度の加工が可能とな
り、又加工面の精度の向上も期待できる。
Black 30 fine particles dispersed in the copper or brass plating layer have good heat resistance and conductivity, and are therefore most suitable as an electrode material. By dispersing graphite in copper or brass plating, it reduces wear on the electrode wire surface due to discharge, and at the same time
Stable electrical discharge occurs during machining. In this way, the synergistic effect of the metal wire with the plating layer enables high-speed machining, and can also be expected to improve the accuracy of the machined surface.

なお、黒鉛の粒径はあまり大きいと電極線表面の凹凸も
大きくなり、寸法精度が低下し、放電も不安定になるの
で10gm以下が望ましい。
Note that if the particle size of graphite is too large, the unevenness of the surface of the electrode wire will become large, the dimensional accuracy will decrease, and the discharge will become unstable, so it is desirable that the particle size is 10 gm or less.

〔発明の効果〕〔Effect of the invention〕

本発明の放電加工用電極線は金属線の表面に導電率が大
きく、放電性の優れた銅又は黄銅のめっき贋を形成し、
めっき層中に耐熱性の良い黒鉛粒子を分散しているため
、放電加工において安定した放電が得られ、加工速度を
大巾に向上することができる。
The electrode wire for electric discharge machining of the present invention forms a copper or brass plating with high conductivity and excellent discharge properties on the surface of the metal wire,
Since graphite particles with good heat resistance are dispersed in the plating layer, stable discharge can be obtained during electrical discharge machining, and machining speed can be greatly improved.

又、放電加工時に従来よりも高張力での加工が可能で、
かつ、放電による電極線の消耗も少なくなるため、加工
面の精度が良好になるという優れた効果を有するもので
ある。
In addition, it is possible to perform electrical discharge machining with higher tension than before.
In addition, wear of the electrode wire due to electric discharge is reduced, which has the excellent effect of improving the accuracy of the machined surface.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の放電加工用電極線の一実施例を示す正
面図、第2図は第1図のA−A!liA拡大断面図であ
る。 (1)・・・・・・金属線    (2)・・・・・・
被覆層(3)・・・・・・黒鉛粒子 (4)・・・・・・放電加工用電極線
FIG. 1 is a front view showing an embodiment of the electrode wire for electric discharge machining of the present invention, and FIG. It is an enlarged sectional view of liA. (1)・・・Metal wire (2)・・・・・・
Covering layer (3)...Graphite particles (4)...Electrode wire for electrical discharge machining

Claims (2)

【特許請求の範囲】[Claims] (1)硬鋼線、ステンレス鋼線、黄銅線等の金属線の表
面に、平均粒径が10μm以下の黒鉛微粒子を分散し、
かつ0.1μm〜20μmの厚さを有する銅又は黄銅の
被覆層を形成したことを特徴とする放電加工用電極線。
(1) Graphite fine particles with an average particle size of 10 μm or less are dispersed on the surface of a metal wire such as a hard steel wire, stainless steel wire, or brass wire,
An electrode wire for electric discharge machining, characterized in that a copper or brass coating layer having a thickness of 0.1 μm to 20 μm is formed.
(2)被覆層が平均亜鉛濃度20〜50%の黄銅で、か
つ亜鉛濃度が表面部から内部に向って減少する組成変化
を有する請求項1記載の放電加工用電極線。
(2) The electrode wire for electrical discharge machining according to claim 1, wherein the coating layer is made of brass having an average zinc concentration of 20 to 50%, and has a composition change in which the zinc concentration decreases from the surface toward the inside.
JP19971889A 1989-07-31 1989-07-31 Electrode wire for electric discharge machining Pending JPH0366524A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19971889A JPH0366524A (en) 1989-07-31 1989-07-31 Electrode wire for electric discharge machining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19971889A JPH0366524A (en) 1989-07-31 1989-07-31 Electrode wire for electric discharge machining

Publications (1)

Publication Number Publication Date
JPH0366524A true JPH0366524A (en) 1991-03-22

Family

ID=16412458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19971889A Pending JPH0366524A (en) 1989-07-31 1989-07-31 Electrode wire for electric discharge machining

Country Status (1)

Country Link
JP (1) JPH0366524A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011152327A1 (en) * 2010-06-04 2011-12-08 鈴木金属工業株式会社 Electrode wire for electrical discharge machining
JP2020040171A (en) * 2018-09-11 2020-03-19 日鉄Sgワイヤ株式会社 Wire electrical discharge machining electrode wire

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011152327A1 (en) * 2010-06-04 2011-12-08 鈴木金属工業株式会社 Electrode wire for electrical discharge machining
JP2011251394A (en) * 2010-06-04 2011-12-15 Suzuki Kinzoku Kogyo Kk Electrode wire for electric discharge machining
CN102971102A (en) * 2010-06-04 2013-03-13 铃木金属工业株式会社 Electrode wire for electrical discharge machining
JP2020040171A (en) * 2018-09-11 2020-03-19 日鉄Sgワイヤ株式会社 Wire electrical discharge machining electrode wire

Similar Documents

Publication Publication Date Title
JP2541638B2 (en) Manufacturing method of electric discharge machining electrode
KR100868008B1 (en) Wire electrode for spark erosion cutting
EP1009574A1 (en) Electrode wire for use in electric discharge machining and process for preparing same
US6566622B1 (en) Wire electrode
JP2011251394A (en) Electrode wire for electric discharge machining
JPS6029234A (en) Wire electrode for wire cut electrical discharge machining
JPH04261714A (en) Wire electrode for cutting work piece by electrical discharge machining
JPS61136733A (en) Electrode wire for wire-cut spark erosion work and preparation thereof
JPH0366524A (en) Electrode wire for electric discharge machining
JP3405069B2 (en) Electrode wire for electric discharge machining
JP3087552B2 (en) Electrode wire for electric discharge machining
JPS6239217B2 (en)
JP2003291030A (en) Electrode wire for wire electrical discharge machining
JPH03111126A (en) Electrode wire for electric discharge machining
JP2713350B2 (en) Electrode wire for wire electric discharge machining
JPS59134624A (en) Composite electrode wire for electric discharge machining and preparation thereof
JPS59129624A (en) Electrode wire for wire cut electro-discharge machining and its manufacture
JPS59110517A (en) Electrode wire for wire-cut electric discharge machining and its manufacturing method
JP2000107943A (en) Wire electronic discharge machining electrode line
JP2001334415A (en) Electrode wire for wire cutting electric discharge machining
JP2002137123A (en) Electrode wire for wire electric discharge machining
JPS59123751A (en) Production of electrode wire for electric spark machining for cutting wire
JPS59129626A (en) Electrode wire for wire cut electro-discharge machining
JPH0271930A (en) Electrode wire for electric discharge machining
JPS59110516A (en) Electrode wire for wire-cut electric discharge machining and its manufacturing method