JPS59110516A - Electrode wire for wire-cut electric discharge machining and its manufacturing method - Google Patents

Electrode wire for wire-cut electric discharge machining and its manufacturing method

Info

Publication number
JPS59110516A
JPS59110516A JP22077082A JP22077082A JPS59110516A JP S59110516 A JPS59110516 A JP S59110516A JP 22077082 A JP22077082 A JP 22077082A JP 22077082 A JP22077082 A JP 22077082A JP S59110516 A JPS59110516 A JP S59110516A
Authority
JP
Japan
Prior art keywords
wire
discharge machining
electrode
outer layer
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22077082A
Other languages
Japanese (ja)
Inventor
Kazuo Sawada
澤田 和夫
Takeshi Miyazaki
健史 宮崎
Shigeo Ezaki
江崎 繁男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP22077082A priority Critical patent/JPS59110516A/en
Publication of JPS59110516A publication Critical patent/JPS59110516A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H7/00Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
    • B23H7/02Wire-cutting
    • B23H7/08Wire electrodes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

PURPOSE:To enhance the machining efficiency by employing copper alloy, steel or ferric alloy as core material, by using a composite wire whose external layer is coated with Zn, Cd, etc., and thereby providing straightness as well as eliminating residual warp after being unwound. CONSTITUTION:A Zn pipe of 10 and 8mm.phi in outer and inner diameters, respectively, is fitted on a wire 2 of 7mm.phi, for example, made of brass (Cu-30%Zn), and a stretching process is applied. If it shall be processed into an outside diameter of 0.2mm.phi (here, thickness of the sheath 3 before supply of current is 20mum on one side), a one in straight state is heated by supply of current in the final stage of machining so as to form a 2mum thick (2% of radius) intermetal compound layer 5 consisting of Cu and Zn between the brass and Zn layer. Thus an electrode wire with excellent straightness and without residual warp after being unwound is obtained.

Description

【発明の詳細な説明】 (イ)技術分野 本発明は、ワイヤーカット放電加工用電極線として好適
な複合線およびその製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field The present invention relates to a composite wire suitable as an electrode wire for wire-cut electric discharge machining and a method for manufacturing the same.

(ロ)技術の背景 ワイヤーカットの放電加工法とは、被加工体と線状の加
工電極(以下、電極線と称す)との間に放電を行なわせ
、該電極線と被加工体とを相対的に移動させて被加工体
を所望の形状に切断加工するものであり、従来から実施
されている方法である。
(b) Background of the technology The wire-cut electrical discharge machining method involves creating an electrical discharge between the workpiece and a linear machining electrode (hereinafter referred to as an electrode wire), and then connecting the electrode wire and the workpiece. This method cuts a workpiece into a desired shape by relatively moving it, and is a conventional method.

このワイヤーカット放電加工法において、線状の電極線
としては、通常直径が0.05〜0.25−の長尺の線
を準備し、放電加工部分に順次新しい線を供給して使用
している。
In this wire-cut electrical discharge machining method, a long wire with a diameter of usually 0.05 to 0.25 mm is prepared as a linear electrode wire, and new wires are sequentially supplied to the electrical discharge machining part. There is.

そして該放電加工法においては、使用する電極線の良否
が加工速度や加工精度、被加工面の表面性状などに直接
大きな影響をおよぼすため、これにふされしい好適な材
料の使用が強く要望されている。
In the electric discharge machining method, the quality of the electrode wire used has a direct and significant effect on the machining speed, machining accuracy, and surface quality of the workpiece surface, so there is a strong demand for the use of suitable materials. ing.

一般′にこの電極線に要求される事項としては、(1)
加工速度;ワイヤーカット放電加工法は、一般に必ずし
も加工速度が速くないので、少しでも加工速度を大きく
することかできること。
Generally, the requirements for this electrode wire are (1)
Machining speed: Generally speaking, the machining speed of wire-cut electric discharge machining is not necessarily high, so it is possible to increase the machining speed even a little.

(2)被加工物の寸法精度と表面性状二寸法精度よく、
また表面の肌荒れなどを生じさせることなく加工できる
こと。
(2) Good dimensional accuracy and surface texture of the workpiece,
It can also be processed without causing surface roughness.

(3)作業性:切断作業中、電極線が断線したりすると
、著しく作業性を損なうので、この作業中の断、線の発
生が少ないこと。および、ワイヤーの加工機へのセツテ
ィングや、特にワイヤーの自動供給装置を使用する場合
ワイヤーに線ぐせがなく直線性を有していることが強く
望まれる。
(3) Workability: If the electrode wire breaks during cutting work, workability will be significantly impaired, so the occurrence of breaks and wires during this work should be minimal. Furthermore, when setting the wire in a processing machine, and especially when using an automatic wire feeding device, it is strongly desired that the wire be straight and free of curls.

(4)価格:電極線は前述のように消耗品であるから安
価であること。
(4) Price: As mentioned above, the electrode wire is a consumable item, so it should be inexpensive.

などが挙げられている。etc. are listed.

電極線に要望される上記の事項についてさらに説明する
と、加工速度は電極線と被加工体との間に放電を十分に
安定して発生させれば、速めることはできるが、従来加
工速度を速めることのできる電極線は、しばしば液加□
工物表面の肌荒れを発生させるようなことがしばしばで
あった。
To further explain the above requirements for the electrode wire, the machining speed can be increased if a sufficiently stable electrical discharge is generated between the electrode wire and the workpiece, but conventionally the machining speed cannot be increased. Electrode wires that can be
This often caused roughness on the surface of the workpiece.

また被加工物の寸法精度を得るためには、電極線の径の
寸法精度と十分に張力をかけ、電極線が一直線状に張ら
れた状態で使用される必要があり、この張力下で断線し
にくいことが要求される。
In addition, in order to obtain the dimensional accuracy of the workpiece, it is necessary to maintain the dimensional accuracy of the diameter of the electrode wire and to apply sufficient tension to the electrode wire. It requires something difficult to do.

・次に肌荒れなどの表面性状に関しては、均一かつ安定
した放電の発生が必要であり、従来加工速度と寸法精度
、加工表面状態の両立を満足させることが困難であった
ため、特にこれらの点を両立させる電極線の出現が望ま
れている。
・Next, regarding surface properties such as surface roughness, it is necessary to generate a uniform and stable electric discharge, and it has been difficult to satisfy both machining speed, dimensional accuracy, and machined surface condition, so we especially focused on these points. It is desired that an electrode wire that achieves both of these needs be developed.

また切断作業中の断線は、電極線と被加工物間の短絡や
不均一な放電や負荷される張力によるものであるので、
このような点からも電極線自身の寸法精度と安定した放
電性、大きい引張り強さが要求されるのである。
In addition, wire breaks during cutting are caused by short circuits between the electrode wire and the workpiece, uneven discharge, and applied tension.
From this point of view, the electrode wire itself is required to have dimensional accuracy, stable discharge performance, and high tensile strength.

さらに価格的に高価にならぬよう原材料が安価なことや
、放電加工用電極として0.05〜0.25mmφの程
度までの細線への伸線加工性の良好なことなども必要で
ある。
Furthermore, it is necessary that the raw materials are inexpensive so as not to be expensive, and that the wire drawability into fine wires of about 0.05 to 0.25 mmφ is good as electrodes for electrical discharge machining.

従来、ワイヤーカット放電加工用の電極線としては、銅
線、黄銅線(Cu−30%Zn)、タングステン線など
が使用されてきたが、これらは次のような点で」二連の
要求を必ずしも満たしていなかった。
Conventionally, copper wire, brass wire (Cu-30%Zn), tungsten wire, etc. have been used as electrode wires for wire-cut electrical discharge machining, but these wires meet the following two sets of requirements. It wasn't necessarily fulfilled.

即ち、銅線は強度があまり高くなく、断線しやすいのと
、加工速度の点で一般に黄銅線より劣るなどの欠点を有
している。
That is, copper wire has drawbacks such as not having very high strength, being easily broken, and being generally inferior to brass wire in terms of processing speed.

また黄銅線は加工速度においては銅線より改善されるも
のの未だ十分でなく、また被加工物の寸法精度と表面状
態においても必ずしも良好とは云えず、このほか作業性
の点でも必ずしも十分とkよ云えないなどの欠点を有し
ている。
In addition, although brass wire is improved in processing speed over copper wire, it is still not sufficient, and the dimensional accuracy and surface condition of the workpiece are not necessarily good, and in addition, it is not always sufficient in terms of workability. It has some disadvantages that cannot be described clearly.

またタングステン線は伸線加工が困難であり、また材料
が高価でありながら放電加工性にもあま(以下、単に亜
鉛と称す)を被覆した銅線等の複合線が検討されている
。亜鉛を被覆した銅線しよ放電が極めて安定しており、
被加工物の表面を粗すことなく加工速度を速めることが
できるとりAう優れた特徴を有しているが、銅線は前述
のようシて引張強さが低く、亜鉛を被覆した複合線の芯
材としてはより引張強さの高い材料が必要である。一方
亜鉛を被覆した複合線では亜鉛層の飛散、蒸発してより
下地の芯材が露出すると放電が不安定になるため、亜鉛
層を厚くする必要があり、引張を与えた時に歪み易い等
の問題があり、また外層と内層の強度比も大きく異なる
ため複合線の直線性を得0 がたくワイヤーの自動供給
装置などの機能を十分発揮させることが困難であった。
Further, tungsten wire is difficult to draw, and although the material is expensive, composite wires such as copper wire coated with lint (hereinafter simply referred to as zinc) are being considered to improve electrical discharge machinability. The electrical discharge of copper wire coated with zinc is extremely stable.
Copper wire has the excellent feature of increasing processing speed without roughening the surface of the workpiece, but as mentioned above, copper wire has low tensile strength, and zinc-coated composite wire A material with higher tensile strength is required for the core material. On the other hand, with zinc-coated composite wires, if the zinc layer scatters or evaporates and the underlying core material is exposed, the discharge becomes unstable, so the zinc layer needs to be thicker and tends to warp easily when tension is applied. Furthermore, since the strength ratio of the outer layer and the inner layer was significantly different, it was difficult to obtain the linearity of the composite wire and to fully utilize functions such as an automatic wire feeding device.

(発明の開示) 本発明は、上述の問題点を解決するため成されたもので
あり、第2図に示す如く芯材2として銅合金、鋼または
鉄合金を用い、外層3がZn、Cdもしくはこれらを主
体とする合金からなる複合線であるが芯材2と外層3と
の間に金属間化合物層5が形成されてなることを特徴と
する。
(Disclosure of the Invention) The present invention has been made to solve the above problems, and as shown in FIG. 2, the core material 2 is made of copper alloy, steel or iron alloy, and the outer layer 3 is made of Zn, Cd Alternatively, it is a composite wire made of an alloy mainly composed of these, but is characterized in that an intermetallic compound layer 5 is formed between the core material 2 and the outer layer 3.

そしてこの金属化合物層5の厚みは片側で半径の0.0
5%〜5%であるときもっとよい結果が得られる。00
5%以下では伸直性が得られ短く、5%以上では複合線
4・が脆くなり、リール巻きぐせやロール通過後線ぐせ
がつき易い。
The thickness of this metal compound layer 5 is 0.0 of the radius on one side.
Better results are obtained when it is between 5% and 5%. 00
If it is less than 5%, straightness is obtained and it is short, and if it is more than 5%, the composite wire 4 becomes brittle and tends to become curly when wound on a reel or become curly after passing through a roll.

金属間化合物は8月と外層の拐質の組合せにより種々の
ものがある。芯44が黄銅で外層がZnの場合はZnC
uてあり、思料が≦柵で外層がZnの場合はZnFeに
なる。
There are various types of intermetallic compounds depending on the combination of august and outer layer particles. If the core 44 is brass and the outer layer is Zn, use ZnC.
If the material is ≦fence and the outer layer is Zn, it becomes ZnFe.

上記本発明のワイヤーカット用複合電極線は次の方法に
よって製造することができる。
The above composite electrode wire for wire cutting of the present invention can be manufactured by the following method.

外層にZn、 Cdあるいはこれらを主体とする合金を
被覆した第1図の如き複合線を所望サイズより太い線径
のものを作製し、これを伸線加工した後に直線状態で加
熱することによ−)て外層と芯44との間に金属間化合
物層5を形成せしめるのである。伸線前にこの化合層を
形成しては伸線加工性に悪影響を・及ぼす。そしてこの
加熱方法としては通電加熱が望ましい。更に被覆外層が
低融点の材料の場合は特に外層表面を冷却しつつ加熱し
て外層が溶融しないように考慮すべきである。上記加熱
によっては引張り強さが低下することもあるのでワイヤ
ーカット用電極線としては加熱後の腹合線の見かけ上引
張強さは加熱前の80%以上になるように温度、時間等
の条件を設定するのが望ましい。
By making a composite wire coated with Zn, Cd, or an alloy mainly composed of these in the outer layer and having a wire diameter larger than the desired size as shown in Fig. 1, drawing this wire and then heating it in a straight state. -) to form an intermetallic compound layer 5 between the outer layer and the core 44. Forming this compound layer before wire drawing has an adverse effect on wire drawability. As this heating method, electrical heating is desirable. Furthermore, when the outer coating layer is made of a material with a low melting point, consideration should be given to heating the outer layer surface while cooling it so that the outer layer does not melt. The tensile strength may decrease depending on the heating described above, so when using the electrode wire for wire cutting, conditions such as temperature and time should be set so that the apparent tensile strength of the line of contact after heating is 80% or more of that before heating. It is desirable to set

上記方法によって製造した本発明の複合線は第1図の如
き従来の複合線に較べて放電加工特性は略同−であるが
リール巻きぐせがなく、特に自動供給、結線などの際に
直線性がよく自動運転が円滑に行うことが出来放電加工
の作東能率は著しく向上した。
The composite wire of the present invention manufactured by the above method has approximately the same electric discharge machining characteristics as the conventional composite wire as shown in Fig. 1, but there is no curling of the reel, and the wire has good straightness especially during automatic feeding and wire connection. Automatic operation can be carried out smoothly, and the production efficiency of electrical discharge machining has been significantly improved.

次に実施例によって説明する。Next, an example will be explained.

実施例1 黄銅(Cu−30%Zn)の7111mφの線に外径1
0mmφ、内径8mmφのZnパイプを嵌合して伸線加
工し外径0.2mmφ(この時通電前のZnの被覆層の
厚さは片側で20μmであった)に加工する際、最終加
工段階で直線状態で通電により加熱して黄銅とZn層の
間に厚さ2μm(半径の2%)のCuとZnよりなる金
属間化合物層を形成させたものを製造した。
Example 1 Brass (Cu-30%Zn) wire of 7111 mφ with an outer diameter of 1
When fitting Zn pipes with a diameter of 0 mmφ and an inner diameter of 8 mmφ and wire-drawing them to an outer diameter of 0.2 mmφ (at this time, the thickness of the Zn coating layer before energization was 20 μm on one side), the final processing step An intermetallic compound layer made of Cu and Zn with a thickness of 2 μm (2% of the radius) was formed between the brass and the Zn layer by heating it in a straight line with electricity.

この複合線をワイヤーカット放電加工機に使用した所、
放電加工特性に優れ、また直線性に優れ自動結線作業も
円滑に行われた。
When this composite wire was used in a wire-cut electrical discharge machine,
It has excellent electrical discharge machining characteristics, excellent linearity, and automatic wire connection work was performed smoothly.

比較のため上記通電加熱条件を変えて金属間化合物の厚
みを変えたものの直線性を調べん。
For comparison, we investigated the linearity of the intermetallic compound by changing the above electrical heating conditions and changing the thickness of the intermetallic compound.

その結果を第1表に示す。The results are shown in Table 1.

第1表 実施例2 0、22 mmφの鋼線(0,3%C)に電気メッキに
よりZnを被覆し外径0.25 mmφとした後、トン
ネル炉を通過させて加熱し、厚さ1.5μm(半径比1
.2%)のZnとFeよりなる金属間化合物を形成せし
めた。
Table 1 Example 2 A 0.22 mmφ steel wire (0.3% C) was coated with Zn by electroplating to have an outer diameter of 0.25 mmφ, and then passed through a tunnel furnace and heated to a thickness of 1 .5 μm (radius ratio 1
.. 2%) of Zn and Fe were formed.

この線を放電加工用電極線として使用したところ、放電
加工性は従来の黄銅線より優れて加工速度は高く、リー
ルから巻戻ししても直線11を維J’、’1しており、
加工精度が高く自動結線作業も容易であった。
When this wire was used as an electrode wire for electric discharge machining, the electric discharge machinability was superior to that of conventional brass wire, the machining speed was high, and the straight line 11 was maintained even when unwound from the reel.
Machining accuracy was high and automatic wiring work was easy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のワイヤーカット放電加工用電極線の断面
図、第2図は本発明の電極性の断面図である。 1:従来の複合電極線、2:芯材、3:外層、4:本発
明の複合電極線、5:金属間化合物層1rI図 W2図
FIG. 1 is a sectional view of a conventional wire-cut electric discharge machining electrode wire, and FIG. 2 is a sectional view of the electrode wire of the present invention. 1: Conventional composite electrode wire, 2: Core material, 3: Outer layer, 4: Composite electrode wire of the present invention, 5: Intermetallic compound layer 1rI diagram W2 diagram

Claims (1)

【特許請求の範囲】 (1)銅合金、鋼または鉄合金を芯材として外層がZn
、Cdもしくはこれらを主体とする合金からなる複合線
において芯材と外層との間に金属間化合物層が形成され
てなることを特徴とするワイヤーカット放電加工用電極
線。 (2、特許請求の範囲第(1〕項において、該金属間化
合物層の厚みが片側半径の0.05%〜5%であること
を特徴とするワイヤーカット放電加工用電極線。 (3)銅合金、鋼または鉄合金を芯材とし外層がZn、
 Cdもしくはこれらを主体とする合金からなり、思料
と外層の間に金属間化合物が形成された複合線の製造法
にふ・いて、所望サイズより太い線径の外層被覆複合線
を伸線加工した後直線状態で加熱することを特徴とする
ワイヤーカット放電加工用電極線の製造法。 (4)特許請求の範囲第(3)項において、伸線後の加
熱を通電加熱により金属間化合物を生成させることを特
徴とするワイヤーカント放電加工用電極線の製造法。 (5)特許請求の範囲第(3)項において、加熱方法が
外層の低融点金属あるいは合金が溶融しないように外層
を冷却しつつ通電加熱することを特徴とするワイヤーカ
ット放電加工用電極線の製造法。 (6)特許請求の範囲第(3)項において、加熱後の複
合線の見かけ上の引張り強さが加熱前の80%以上であ
ることを特徴とするワイヤーカット放電加工用電極線の
製造法。
[Claims] (1) Copper alloy, steel or iron alloy as the core material and the outer layer as Zn.
An electrode wire for wire-cut electric discharge machining, characterized in that an intermetallic compound layer is formed between a core material and an outer layer in a composite wire made of Cd, Cd, or an alloy mainly composed of these. (2. An electrode wire for wire-cut electrical discharge machining, characterized in that the thickness of the intermetallic compound layer is 0.05% to 5% of the radius of one side in claim (1). (3) The core material is copper alloy, steel or iron alloy, and the outer layer is Zn.
Based on the manufacturing method of a composite wire made of Cd or an alloy mainly composed of Cd and with an intermetallic compound formed between the core and the outer layer, an outer coated composite wire with a wire diameter thicker than the desired size was wire-drawn. A method for manufacturing an electrode wire for wire-cut electrical discharge machining, which is characterized by heating the wire in a straight state. (4) A method for manufacturing an electrode wire for wire cant electric discharge machining according to claim (3), characterized in that an intermetallic compound is generated by heating after wire drawing by applying current. (5) In claim (3), there is provided an electrode wire for wire-cut electrical discharge machining, characterized in that the heating method is heating with electricity while cooling the outer layer so that the low melting point metal or alloy of the outer layer does not melt. Manufacturing method. (6) A method for manufacturing a wire-cut electric discharge machining electrode wire according to claim (3), characterized in that the apparent tensile strength of the composite wire after heating is 80% or more of that before heating. .
JP22077082A 1982-12-15 1982-12-15 Electrode wire for wire-cut electric discharge machining and its manufacturing method Pending JPS59110516A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22077082A JPS59110516A (en) 1982-12-15 1982-12-15 Electrode wire for wire-cut electric discharge machining and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22077082A JPS59110516A (en) 1982-12-15 1982-12-15 Electrode wire for wire-cut electric discharge machining and its manufacturing method

Publications (1)

Publication Number Publication Date
JPS59110516A true JPS59110516A (en) 1984-06-26

Family

ID=16756281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22077082A Pending JPS59110516A (en) 1982-12-15 1982-12-15 Electrode wire for wire-cut electric discharge machining and its manufacturing method

Country Status (1)

Country Link
JP (1) JPS59110516A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2067560A1 (en) * 2007-12-10 2009-06-10 Oki Electric Cable Co., Ltd. Electrode wire for wire electric discharging, method for manufacturing the electrode wire, and apparatus for manufacturing bus line there of
CN113201708A (en) * 2020-01-30 2021-08-03 株式会社沙迪克 Heat treatment furnace, heating device, wire electrode manufacturing method, and thermal diffusion treatment method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2067560A1 (en) * 2007-12-10 2009-06-10 Oki Electric Cable Co., Ltd. Electrode wire for wire electric discharging, method for manufacturing the electrode wire, and apparatus for manufacturing bus line there of
EP2067560A4 (en) * 2007-12-10 2009-11-11 Oki Electric Cable Electrode wire for wire electric discharging, method for manufacturing the electrode wire, and apparatus for manufacturing bus line there of
CN113201708A (en) * 2020-01-30 2021-08-03 株式会社沙迪克 Heat treatment furnace, heating device, wire electrode manufacturing method, and thermal diffusion treatment method
KR20210097635A (en) * 2020-01-30 2021-08-09 가부시키가이샤 소딕 Heat treatment furnace, Heating device, Manufacturing method of wire electrode and Heat diffusion treatment method
US11835294B2 (en) 2020-01-30 2023-12-05 Sodick Co., Ltd. Heat treatment furnace, heating device, manufacturing method of wire electrode and heat diffusion treatment method

Similar Documents

Publication Publication Date Title
JP3718617B2 (en) Porous electrode wire for electrical discharge machining
JPS61136733A (en) Electrode wire for wire-cut spark erosion work and preparation thereof
JPS59127921A (en) Production of composite electrode wire for wire cut electric discharge machining
JPS5914429A (en) Composite wire for wire-cut electric discharge machining electrode wire and manufacturing method thereof
JPS59110516A (en) Electrode wire for wire-cut electric discharge machining and its manufacturing method
JP2001150247A (en) Electrode wire for wire electric discharge machining
JPS59129624A (en) Electrode wire for wire cut electro-discharge machining and its manufacture
JP3248457B2 (en) Method of manufacturing electrode wire for wire electric discharge machining
JPH0679535A (en) Composite electrode wire for wire-cut electric discharge machining and its manufacture
JPS59110517A (en) Electrode wire for wire-cut electric discharge machining and its manufacturing method
JP2003291030A (en) Electrode wire for wire electrical discharge machining
JPS59129626A (en) Electrode wire for wire cut electro-discharge machining
JPS6219326A (en) Electrode wire for wire-cut electric discharge machining
JP2002137123A (en) Electrode wire for wire electric discharge machining
JP3332196B2 (en) Method of manufacturing electrode wire for electric discharge machining
JPS59123751A (en) Production of electrode wire for electric spark machining for cutting wire
JPS59129629A (en) Composite electrode wire for wire cut electro-discharge machining and its manufacture
JPS618228A (en) Preparation of composite electrode-wire for wire electric discharge
JP4089551B2 (en) High-strength wire EDM electrode wire
JPH03111126A (en) Electrode wire for electric discharge machining
JPH0241824A (en) Electrode wire for electric discharge machining
JP2001030008A (en) Manufacture of copper or copper alloy-iron combined wire
JPS60104616A (en) Producing method of electrode wire for electrospark machining
JPS5942116A (en) Manufacture of composite electrode wire for electric discharge machining
JPH0366524A (en) Electrode wire for electric discharge machining