JP5467789B2 - Al-plated steel wire having good wire drawing workability and manufacturing method thereof - Google Patents

Al-plated steel wire having good wire drawing workability and manufacturing method thereof Download PDF

Info

Publication number
JP5467789B2
JP5467789B2 JP2009086031A JP2009086031A JP5467789B2 JP 5467789 B2 JP5467789 B2 JP 5467789B2 JP 2009086031 A JP2009086031 A JP 2009086031A JP 2009086031 A JP2009086031 A JP 2009086031A JP 5467789 B2 JP5467789 B2 JP 5467789B2
Authority
JP
Japan
Prior art keywords
wire
steel wire
plating
plated steel
molten
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009086031A
Other languages
Japanese (ja)
Other versions
JP2010236035A (en
Inventor
忠昭 三尾野
幸弘 守田
栄次 渡辺
保徳 服部
剛 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2009086031A priority Critical patent/JP5467789B2/en
Publication of JP2010236035A publication Critical patent/JP2010236035A/en
Application granted granted Critical
Publication of JP5467789B2 publication Critical patent/JP5467789B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Coating With Molten Metal (AREA)

Description

本発明は、鋼芯線の表面にAlめっき被覆層を有するAlめっき鋼線であって、伸線加工性が良好であり、自動車のワイヤーハーネス等の導電部材(素線)に適したAlめっき鋼線、およびその製造方法に関する。   The present invention is an Al-plated steel wire having an Al-plated coating layer on the surface of a steel core wire, which has good wire drawing workability and is suitable for a conductive member (element wire) such as an automobile wire harness. The present invention relates to a wire and a manufacturing method thereof.

自動車のワイヤーハーネスは多数の導線により構成されており、それぞれの導線はさらに数本〜数十本の「素線」を束ねることによって作られている。近年、軽量化、コンパクト化のニーズが高まり、ワイヤーハーネスにも細線化の要求が強くなっている。また、自動車解体時の分別回収作業をできるだけ不要にするために、ワイヤーハーネス用の導線にはリサイクル性の良い構成のものが強く望まれるようになってきた。   An automobile wire harness is composed of a large number of conductors, and each conductor is made by bundling several to several tens of “elements”. In recent years, there has been an increasing need for weight reduction and compactness, and there is an increasing demand for thinning wire harnesses. In addition, in order to eliminate the need for separate collection work at the time of car disassembly, a wire harness for a wire harness having a highly recyclable structure has been strongly desired.

ワイヤーハーネスを構成する各導線は端子に「かしめ加工」で締結されることが多く、かしめ部で容易に破断することがないように、個々の素線にはある程度の強度が要求され、また、かしめ締結部での引抜強度が要求される。現状の信号用ワイヤーハーネス導線用の素線には、Cu素線の場合は直径約0.2mm以上、Al素線の場合には直径1mm以上の線径を確保することが必要とされる。   Each wire constituting the wire harness is often fastened to the terminal by “caulking”, and each element wire is required to have a certain strength so that it is not easily broken at the caulking portion. The drawing strength at the caulking fastening portion is required. It is necessary to secure a wire diameter of about 0.2 mm or more in the case of the Cu wire and 1 mm or more in the case of the Al wire for the current wire for the signal wire harness conductor.

リサイクル性の観点では、鉄のリサイクルにとって阻害元素となるCuよりも、鉄スクラップとともに溶解可能なAlの方が優れている。電気伝導性の面では、AlはCuに比べ体積抵抗率が大きいが、微弱電流を流す信号用ワイヤーハーネスの場合、Al素線でも問題ない。しかしながら、Al素線は上記のように強度不足を解消するために太い線径のものを採用せざるを得ず、コンパクト化のニーズに十分応えられない。   From the viewpoint of recyclability, Al, which can be dissolved together with iron scrap, is superior to Cu, which is an inhibitory element for iron recycling. In terms of electrical conductivity, Al has a larger volume resistivity than Cu, but in the case of a signal wire harness that allows a weak current to flow, there is no problem with Al strands. However, the Al wire has to employ a thick wire diameter in order to solve the shortage of strength as described above, and cannot fully meet the needs for compactness.

一方、高強度・高耐食性が要求される用途において、鋼線を芯線とするAlめっき鋼線が知られている(特許文献1、2)。特許文献1には漁網ロープ用、送電線の補強用、海底光ファイバーケーブル補強用等のワイヤーに使用するAlめっき鋼線が記載されている。特許文献1の実施例に開示されている鋼線は線径2〜13mmと太いものであり、Alめっきの目的は耐食性改善である。特許文献2のAlめっき線材は高強度ボルト用であり、その図2には7mm径のものが示されている。ワイヤーハーネスの素線に使用できるような低抵抗かつ細径のAlめっき鋼線はまだ実用化されていない。その要因の1つとして、細径の鋼芯線の周囲にAlを付着させた低抵抗の溶融Alめっき鋼線は、伸線加工時にAlめっき鋼線の内部にクラックが生じやすいことが挙げられる。   On the other hand, in applications requiring high strength and high corrosion resistance, Al-plated steel wires having steel wires as core wires are known (Patent Documents 1 and 2). Patent Document 1 describes an Al-plated steel wire used for wires for fishing net ropes, power line reinforcement, submarine optical fiber cable reinforcement, and the like. The steel wire disclosed in the example of Patent Document 1 is as thick as 2 to 13 mm in wire diameter, and the purpose of Al plating is to improve corrosion resistance. The Al-plated wire of Patent Document 2 is for high-strength bolts, and FIG. A low-resistance and small-diameter Al-plated steel wire that can be used as a wire of a wire harness has not been put into practical use yet. One of the factors is that the low resistance hot-dip Al-plated steel wire in which Al is adhered around the small-diameter steel core wire is likely to crack inside the Al-plated steel wire during wire drawing.

特開平3−219025号公報Japanese Patent Laid-Open No. 3-219005 特開2004−360022号公報JP 2004-360022 A

導線用の素線を製造する場合、所定の線径とするために伸線工程が不可欠となる。しかしながら、鋼芯線を溶融Alめっきに供すると、Alめっき層と鋼素地の間に脆いFe−Al系合金反応層が形成されることから、伸線加工を行うことは必ずしも容易ではない。溶融めっき条件によっては、伸線加工率(断面減少率)が数%程度であってもFe−Al系合金反応層の部分で激しいクラックが生じることがある。発明者らの検討によれば、伸線加工後にワイヤーハーネスに加工され自動車に搭載されるまでの工程におけるAlめっき層の耐剥離性(特に曲げ戻しを受けた場合の耐剥離性)を十分に確保するためには、鋼芯線に由来する鋼素地の全周に対して合計1/2周以上の部分でAlめっき層/鋼素地間の接合が維持されていることが望まれる。また、ワイヤーハーネス用の素線を製造する場合には、少なくとも10%以上の伸線加工率(断面減少率)で伸線できる性能が要求される。   When manufacturing the strand for conducting wires, a wire drawing step is indispensable in order to obtain a predetermined wire diameter. However, when the steel core wire is subjected to hot-dip Al plating, a brittle Fe—Al alloy reaction layer is formed between the Al plating layer and the steel substrate, and therefore it is not always easy to perform wire drawing. Depending on the hot dipping conditions, severe cracks may occur in the Fe-Al alloy reaction layer even if the wire drawing rate (section reduction rate) is about several percent. According to the study by the inventors, sufficient peeling resistance (especially peeling resistance when subjected to bending back) of the Al plating layer in the process from drawing to wire harness processing and mounting on automobiles. In order to ensure, it is desired that the bonding between the Al plating layer and the steel substrate is maintained in a portion of a total of ½ or more of the entire circumference of the steel substrate derived from the steel core wire. Moreover, when manufacturing the strand for wire harnesses, the performance which can be drawn with a wire drawing rate (cross-sectional reduction rate) of at least 10% or more is required.

本発明はこのような現状に鑑み、溶融Alめっき鋼線の伸線加工率を例えば10%以上としたときに、鋼芯線に由来する鋼素地の全周に対して合計1/2周以上の部分でAlめっき層/鋼素地間の接合が維持される(すなわち後述のクラック発生率が50%未満となる)ような、良好な伸線加工性を有する溶融Alめっき鋼線を提供しようというものである。   In view of such a current situation, the present invention, when the drawing rate of the hot-dip Al-plated steel wire is, for example, 10% or more, is a total of 1/2 or more of the total circumference of the steel substrate derived from the steel core wire. It is intended to provide a hot-dip Al-plated steel wire having good wire drawing workability so that the bonding between the Al-plated layer / steel substrate is maintained in a part (that is, the crack occurrence rate described later is less than 50%). It is.

発明者らは詳細な検討の結果、溶融Alめっき鋼線のAlめっき層/鋼素地間に生成するFe−Al系合金反応層の平均厚さを6μm以下としたとき、伸線加工時のクラック発生に対する抵抗力が急激に向上することを見出した。本発明はこのような知見に基づいて完成したものである。   As a result of detailed studies, the inventors have found that when the average thickness of the Fe-Al alloy reaction layer formed between the Al plating layer / steel substrate of the molten Al-plated steel wire is 6 μm or less, cracks during wire drawing It has been found that the resistance to generation is rapidly improved. The present invention has been completed based on such findings.

すなわち本発明では、鋼芯線の周囲に溶融Alめっき層を有しており、溶融Alめっき後にまだ伸線加工を受けていないAlめっき鋼線であって、長手方向に垂直な断面において、鋼素地とAlめっき層の間に介在するFe−Al系合金反応層の平均厚さを6μm以下に低減した伸線加工性の良好なAlめっき鋼線が提供される。長手方向に垂直な断面において、鋼素地の部分の円相当径は例えば0.1〜1mmであり、当該断面に占めるAlめっき層(反応層を除く)の面積率は例えば10%以上である。ここで、当該Alめっき鋼線の長手方向に垂直な断面に存在する鋼素地の断面積をS(mm2)、円周率をπとするとき、S=πD2/4によって定まるD(mm)を鋼素地の円相当径という。 That is, in the present invention, an Al-plated steel wire having a molten Al plating layer around the steel core wire and not yet subjected to wire drawing after the molten Al plating, in a cross section perpendicular to the longitudinal direction, An Al-plated steel wire with good wire drawing workability in which the average thickness of the Fe—Al-based alloy reaction layer interposed between the Al-plated layer and the Al-plated layer is reduced to 6 μm or less is provided. In the cross section perpendicular to the longitudinal direction, the equivalent circle diameter of the steel substrate portion is, for example, 0.1 to 1 mm, and the area ratio of the Al plating layer (excluding the reaction layer) in the cross section is, for example, 10% or more. Here, when the cross-sectional area of the base steel present in the cross section perpendicular to the longitudinal direction of the Al-plated steel wire S (mm 2), the circular constant [pi, determined by S = πD 2/4 D ( mm ) Is called the equivalent circle diameter of the steel substrate.

また、本発明では上記のAlめっき鋼線(溶融Alめっき後にまだ伸線加工を受けていないもの)を伸線加工してなるAlめっき鋼線が提供される。   The present invention also provides an Al-plated steel wire obtained by wire-drawing the above-described Al-plated steel wire (those not yet subjected to wire drawing after hot-dip Al plating).

前記のAlめっき鋼線(溶融Alめっき後にまだ伸線加工を受けていないもの)の製造方法として、
(1)素材鋼線を溶融Alめっき浴に浸漬し、浸漬時間を、鋼素地とAlめっき層の間に介在するFe−Al系合金反応層の平均厚さが凝固後に6μm以下となる一定時間にコントロールして溶融Alめっき浴から引き上げる製造方法、あるいは、
(2)表面に平均厚さ0.2〜2μmのNiめっき層を有する素材鋼線を溶融Alめっき浴に浸漬し、浸漬時間を、Niめっき層が凝固後に全部消失するに足る時間、かつ鋼素地とAlめっき層の間に介在するFe−Al系合金反応層の平均厚さが凝固後に6μm以下となる一定時間にコントロールして溶融Alめっき浴から引き上げる製造方法、
が提供される。その際、前記素材鋼線を、300〜800℃の還元性雰囲気で活性化したのち、溶融Alめっき浴に浸漬してもよい。前記溶融Alめっき浴はSi含有量が0〜12質量%のものを使用することができる。
As a manufacturing method of the above Al-plated steel wire (those not yet subjected to wire drawing after hot-dip Al plating)
(1) The material steel wire is immersed in a molten Al plating bath, and the immersion time is set to a certain time during which the average thickness of the Fe—Al-based alloy reaction layer interposed between the steel substrate and the Al plating layer becomes 6 μm or less after solidification. Manufacturing method to control and lift from the molten Al plating bath, or
(2) A material steel wire having a Ni plating layer with an average thickness of 0.2 to 2 μm on the surface is immersed in a molten Al plating bath, and the immersion time is sufficient for the Ni plating layer to completely disappear after solidification, and the steel. A production method in which the average thickness of the Fe—Al alloy reaction layer interposed between the substrate and the Al plating layer is controlled to a fixed time of 6 μm or less after solidification and pulled up from the molten Al plating bath;
Is provided. In that case, after activating the said raw material steel wire in 300-800 degreeC reducing atmosphere, you may immerse in a molten Al plating bath. As the molten Al plating bath, one having a Si content of 0 to 12% by mass can be used.

溶融Alめっき鋼線は、従来、脆いFe−Al系合金反応層が生成するために、伸線加工を行うとその反応層の部分でクラックが生じやすく、したがって伸線加工率は低く抑える必要があったところ、本発明によれば、例えば伸線加工率(断面減少率)を10%以上としても反応層のクラックに起因した強度低下の問題が顕在化しない溶融Alめっき鋼線が提供された。これにより、所定の線径に揃えた溶融Alめっき鋼線の素線を大量生産することが可能となり、従来の銅素線を溶融Alめっき鋼線に替えることによってリサイクル性に優れたワイヤーハーネスを実現することができる。   Conventionally, since a brittle Fe-Al alloy reaction layer is generated in a hot-dip Al-plated steel wire, when the wire drawing is performed, cracks are likely to occur in the reaction layer, and therefore the wire drawing rate must be kept low. As a result, according to the present invention, for example, a hot-dip Al-plated steel wire is provided in which the problem of strength reduction caused by cracks in the reaction layer does not become apparent even when the drawing rate (cross-sectional reduction rate) is 10% or more. . This makes it possible to mass-produce molten Al-plated steel wires with a predetermined wire diameter, and replace the conventional copper strands with molten Al-plated steel wires to create a highly recyclable wire harness. Can be realized.

通常の溶融Alめっき鋼線を伸線加工率30%で伸線加工した場合の断面SEM写真。A cross-sectional SEM photograph when a normal hot-dip Al-plated steel wire is drawn at a drawing rate of 30%. 本発明の溶融Alめっき鋼線を伸線加工率42%で伸線加工した場合の断面SEM写真。The cross-sectional SEM photograph at the time of drawing the hot-dip Al plating steel wire of this invention with a drawing rate of 42%.

以下において、単に「断面」というときは特に断らない限り鋼線の長手方向に垂直な断面を意味する。「伸線加工率」は断面減少率で表され、次式によって算出される。
[伸線加工率(%)]=([伸線加工前の断面積]−[伸線加工後の断面積])/[伸線加工前の断面積]×100
Hereinafter, the term “cross section” means a cross section perpendicular to the longitudinal direction of the steel wire unless otherwise specified. The “drawing rate” is expressed by a cross-sectional reduction rate and is calculated by the following formula.
[Drawing rate (%)] = ([Cross sectional area before wire drawing] − [Cross sectional area after wire drawing]) / [Cross sectional area before wire drawing] × 100

Alめっき層/鋼素地間の「クラック発生率」は、鋼素地の全周(360°)に占めるクラック発生部分の円弧の合計角度の割合を意味し、以下のようにして定めることができる。伸線加工後の溶融Alめっき鋼線の断面において、鋼芯線に由来する鋼素地の最も長い部分の径(長径)の中点を中心点Oとする。中心点Oを一端とする半直線を想定し、その半直線を中心点Oを軸として断面内を360°回転させたとき、その直線がクラック上を通る(クラックに掛かる)場合の回転角度を積算し、これをθTOTAL(°)とする。クラック発生率は次式により算出される。
[クラック発生率(%)]=θTOTAL(°)/360°×100
The “crack generation rate” between the Al plating layer and the steel substrate means the ratio of the total angle of the arcs of the cracked portions in the entire circumference (360 °) of the steel substrate, and can be determined as follows. In the cross section of the hot-dip Al-plated steel wire after wire drawing, the center point O is the midpoint of the longest diameter of the steel base derived from the steel core wire. Assuming a half-line with the center point O as one end, and rotating the inside of the cross section 360 ° around the center point O as an axis, the rotation angle when the line passes over the crack (becomes on the crack) is Accumulate and set this as θ TOTAL (°). The crack generation rate is calculated by the following equation.
[Crack occurrence rate (%)] = θ TOTAL (°) / 360 ° × 100

Alめっき層/鋼素地間に介在する反応層の平均厚さh(μm)は、溶融Alめっき後にまだ伸線加工を受けていないAlめっき鋼線の断面の観察画像において、鋼芯線に由来する鋼素地の円相当径をD(μm)、断面内に存在する反応層のうち鋼素地と接している反応層(すなわちAlめっき層中に島状に分離して存在する反応層は含まない)の合計面積をS1(μm2)、円周率をπとするとき、次式により定めることができる。
[反応層の平均厚さh]=S1/(πD)
ここで、分母のπDは鋼素地の円周長さに相当する。反応層は概念的にその円周より外側に存在するので、数学的な正確さからは、反応層の平均厚さhは上式により定まる値よりも僅かに小さい値となる。しかし、hはπDに比べ十分に小さいので、本願では上式により近似したhの値を反応層の平均厚さとして採用することができる。なお、上記のDおよびS1は例えば断面の観察画像(例えばSEM画像)を画像処理することにより求めることができる。
The average thickness h (μm) of the reaction layer interposed between the Al plated layer / steel substrate is derived from the steel core wire in the observation image of the cross section of the Al plated steel wire that has not been subjected to wire drawing after the molten Al plating. The equivalent circle diameter of the steel substrate is D (μm), and the reaction layer in contact with the steel substrate among the reaction layers existing in the cross section (that is, the reaction layer that is separated into islands in the Al plating layer is not included) Where S 1 (μm 2 ) is the total area, and π is the circumference, it can be determined by the following equation.
[Average thickness h of reaction layer] = S 1 / (πD)
Here, πD of the denominator corresponds to the circumferential length of the steel substrate. Since the reaction layer conceptually exists outside the circumference, the average thickness h of the reaction layer is slightly smaller than the value determined by the above equation from mathematical accuracy. However, since h is sufficiently smaller than πD, the value of h approximated by the above formula can be adopted as the average thickness of the reaction layer in the present application. The above D and S 1 can be obtained by image processing, for example, the cross section of the observation image (e.g. SEM image).

図1、図2に、伸線加工を受けた溶融Alめっき鋼線の長手方向に垂直な断面のSEM写真において、Alめっき層/鋼素地間に介在する反応層の部分で生じたクラックの発生状況を例示する。図1は反応層におけるクラック発生の抑制対策をとっていない通常の溶融Alめっき鋼線を伸線加工率約30%で伸線加工した例である。反応層の部分で激しいクラックが発生し、クラック発生率は50%を大きく上回っている。このようなAlめっき鋼線は、鋼芯線に由来する鋼素地部分の張力を強度として十分に活かすことができず、強度レベルに劣る。図2は本発明の後述実施例1に該当するものであり、伸線加工率42%で伸線加工した例である。この場合でもクラック発生率は45%であり、伸線加工性が改善されている。   Fig. 1 and Fig. 2 show the generation of cracks in the reaction layer part between the Al plating layer and the steel substrate in the SEM photograph of the cross section perpendicular to the longitudinal direction of the hot-dip Al-plated steel wire subjected to wire drawing. Illustrate the situation. FIG. 1 shows an example in which a normal hot-dip Al-plated steel wire that has not taken countermeasures for suppressing cracks in the reaction layer is drawn at a drawing rate of about 30%. Vigorous cracks are generated in the reaction layer, and the crack generation rate greatly exceeds 50%. Such an Al-plated steel wire cannot fully utilize the tension of the steel base portion derived from the steel core wire as strength, and is inferior in strength level. FIG. 2 corresponds to Example 1 described later of the present invention, and is an example of wire drawing at a wire drawing rate of 42%. Even in this case, the crack generation rate is 45%, and the wire drawing workability is improved.

本発明の溶融Alめっき鋼線(溶融Alめっき後に未だ伸線加工を施していないもの)は、Alめっき層/鋼素地間に介在するFe−Al系合金反応層が、平均厚さ6μm以下に低減されている点に特徴がある。発明者らの詳細な検討によれば、溶融Alめっき鋼線の断面において、Fe−Al系合金反応層の平均厚さが6μmを超える場合には伸線加工率が数%であっても反応層の部分で激しいクラックが生じることがあり、10%以上の伸線加工を行うと、ほとんどの場合、クラック発生率は50%を超えてしまい、実用に供することが難しい。ところが、Fe−Al系合金反応層の平均厚さが6μm以下となるように溶融Alめっきを施した場合には、伸線加工性が急激に改善されるのである。Fe−Al系合金反応層の平均厚さは5μm以下であることがより好ましく、4μm以下であることが一層好ましい。ただし、反応層が全くないものを製造することはほとんど不可能であり、これまでの試験では平均厚さ0.5μm以上となる。   The hot-dip Al-plated steel wire of the present invention (not yet drawn after hot-Al plating) has an average thickness of 6 μm or less for the Fe—Al alloy reaction layer interposed between the Al plating layer / steel substrate. It is characterized by being reduced. According to the inventors' detailed examination, when the average thickness of the Fe-Al alloy reaction layer exceeds 6 μm in the cross section of the hot-dip Al-plated steel wire, the reaction is performed even if the drawing rate is several percent. In some cases, severe cracks may occur in the layer portion. When wire drawing of 10% or more is performed, in most cases, the crack generation rate exceeds 50%, which is difficult to put into practical use. However, when hot-dip Al plating is performed so that the average thickness of the Fe—Al-based alloy reaction layer is 6 μm or less, the wire drawing workability is drastically improved. The average thickness of the Fe—Al-based alloy reaction layer is more preferably 5 μm or less, and even more preferably 4 μm or less. However, it is almost impossible to manufacture a product having no reaction layer, and the average thickness is 0.5 μm or more in the tests so far.

Fe−Al系合金反応層の組成は、断面内の場所により変動が見られるが、通常、Al濃度が25〜75質量%の範囲で変動し、残部がFeおよび不可避的不純物である。   The composition of the Fe—Al-based alloy reaction layer varies depending on the location in the cross section, but usually the Al concentration varies in the range of 25 to 75 mass%, and the balance is Fe and inevitable impurities.

ワイヤーハーネス等の導線に用いる素線の用途を考慮すると、溶融Alめっき後、伸線加工前の段階の断面において、鋼芯線に由来する鋼素地の部分の円相当径は0.1〜1mmであることが望ましい。鋼芯線が細くなると溶融Alめっきが難しくなるので、鋼素地の部分の円相当径が0.1mm未満の溶融Alめっき鋼線を安定して製造することは容易でない。一方、鋼素地の円相当径が1mmを超える場合は伸線加工の負荷が過大となりやすい。また、断面に占めるAlめっき層(反応層を除く)の面積率は30%以上であることが望ましい。それよりAl付着量が少ないと導電性の面で不利となりやすい。Alめっき層の面積率の上限は、制御可能な装置上の条件範囲によって制約を受けるので、特に定める必要はないが、素線としての強度面からは例えば95%以下とすればよい。   In consideration of the use of the wire used for conducting wires such as a wire harness, the equivalent circle diameter of the steel substrate portion derived from the steel core wire is 0.1 to 1 mm in the cross section before the wire drawing after the molten Al plating. It is desirable to be. When the steel core wire becomes thin, it becomes difficult to perform hot-dip Al plating. Therefore, it is not easy to stably manufacture hot-dip aluminum-plated steel wire having a circle-equivalent diameter of the steel base portion of less than 0.1 mm. On the other hand, when the equivalent circle diameter of the steel substrate exceeds 1 mm, the load of wire drawing tends to be excessive. Further, the area ratio of the Al plating layer (excluding the reaction layer) in the cross section is desirably 30% or more. If the Al adhesion amount is smaller than that, it tends to be disadvantageous in terms of conductivity. The upper limit of the area ratio of the Al plating layer is restricted by the controllable condition range on the apparatus, and thus does not need to be particularly determined, but may be 95% or less, for example, from the viewpoint of strength as a strand.

芯線となる鋼線については、例えばJIS G3505に規定される軟鋼線材、G3532に規定される鉄線、G3506に規定される硬鋼線材などが適用可能であるが、これに限られるものではない。   As for the steel wire to be the core wire, for example, a mild steel wire specified in JIS G3505, an iron wire specified in G3532, a hard steel wire specified in G3506, and the like are applicable, but not limited thereto.

以上のようなFe−Al系合金反応層の生成厚さを低減した本発明の溶融Alめっき鋼線は、(1)溶融Alめっき浴への浸漬時間を短くする手法、あるいは、(2)鋼芯線の表面に薄いNiめっきを施した素材鋼板を溶融Alめっき浴に浸漬する手法、によって製造可能であることがわかった。   The hot-dip Al-plated steel wire of the present invention in which the generation thickness of the Fe—Al-based alloy reaction layer as described above is reduced is either (1) a technique for shortening the immersion time in the hot-Al plating bath, or (2) steel. It turned out that it can manufacture by the method of immersing the raw material steel plate which gave the thin Ni plating to the surface of the core wire in the hot Al plating bath.

(1)の溶融Alめっき浴への浸漬時間を短くする手法は、主としてライン速度を上げることによって実施できる。素材鋼線(芯線)の径および目的とするAlめっき付着量によって異なるが、例えば溶融Alめっき浴への浸漬時間が0.05〜1.5秒の範囲においてFe−Al系合金層の平均厚さを6μm以下に低減できる条件を見出すことができる。その条件は予め予備実験により把握しておくことができ、そのデータに基づいて、浸漬時間を、Fe−Al系合金層の平均厚さが凝固後に6μm以下となる一定時間にコントロールすればよい。素材鋼線の線径が細くなるとライン速度を向上させることが難しくなるが、装置のワイヤーの送給精度を高めるなどの工夫により、実現可能となる。装置の仕様によっては浸漬時間を0.1秒以上、あるいは0.3秒以上の範囲に管理しても構わない。   The technique (1) for shortening the immersion time in the molten Al plating bath can be carried out mainly by increasing the line speed. Depending on the diameter of the raw steel wire (core wire) and the target Al plating adhesion amount, for example, the average thickness of the Fe—Al based alloy layer in the range of 0.05 to 1.5 seconds immersed in a molten Al plating bath A condition that can reduce the thickness to 6 μm or less can be found. The conditions can be grasped in advance by a preliminary experiment, and based on the data, the immersion time may be controlled to a certain time during which the average thickness of the Fe—Al-based alloy layer becomes 6 μm or less after solidification. If the wire diameter of the material steel wire is reduced, it becomes difficult to improve the line speed, but it can be realized by improving the wire feeding accuracy of the apparatus. Depending on the specifications of the apparatus, the immersion time may be managed in the range of 0.1 second or more, or 0.3 second or more.

(2)の薄いNiめっきを施した素材鋼線を溶融Alめっき浴に浸漬する手法は、ライン速度の条件を緩和する上で有効である。発明者らの検討によれば、素材鋼線の表面に存在するNiめっき層は、Alめっき層/鋼素地間に介在する反応層の成長を抑制する作用を有することがわかった。薄いNiめっき層は溶融Alめっき浴中で溶失してしまうが、鋼素地のFeとめっき浴のAlが直接接触して反応する時間が短縮化されることによって、Fe−Al系合金反応層の成長が抑制されるものと考えられる。Niめっき層の厚さが厚くなりすぎると、凝固後もNiめっき層が残存し、Alめっき層/鋼素地間の界面構造が複雑になる。本発明では溶融Alめっきに供する素材鋼線の表面に存在させるNiめっき層の平均厚さを0.2〜2μmとする。0.2〜1.5μmとすることがより好ましく、0.2〜1.0μmとすることが一層好ましい。Niめっき層が薄すぎると反応層の成長抑制効果があまり発揮されない。厚すぎると凝固後にNiめっき層が残存しやすく、その場合は複雑な界面構造となる。   The method (2) of immersing the raw steel wire subjected to thin Ni plating in a molten Al plating bath is effective in relaxing the line speed condition. According to the study by the inventors, it has been found that the Ni plating layer present on the surface of the raw steel wire has an action of suppressing the growth of the reaction layer interposed between the Al plating layer / steel substrate. Although the thin Ni plating layer is lost in the molten Al plating bath, the Fe—Al alloy reaction layer is shortened by reducing the time for direct contact between Fe in the steel substrate and Al in the plating bath to react. It is thought that the growth of If the thickness of the Ni plating layer becomes too thick, the Ni plating layer remains even after solidification, and the interface structure between the Al plating layer / steel substrate becomes complicated. In the present invention, the average thickness of the Ni plating layer present on the surface of the material steel wire to be subjected to hot-dip Al plating is set to 0.2 to 2 μm. The thickness is more preferably 0.2 to 1.5 μm, and still more preferably 0.2 to 1.0 μm. If the Ni plating layer is too thin, the effect of suppressing the growth of the reaction layer is not exhibited so much. If it is too thick, the Ni plating layer tends to remain after solidification, and in this case, a complicated interface structure is formed.

薄いNiめっき層は、例えば硫酸ニッケル浴、塩化ニッケル浴などを用いた、公知の電気めっき法によって形成できる。Niめっき層の平均厚さは、電気Niめっきにおける電流密度および通電時間から算出することができ、Niめっき後、溶融Alめっき前に伸線加工を行う場合はその加工率(断面減少率)をも考慮してNiめっき層の平均厚さをコントロールすることができる。   The thin Ni plating layer can be formed by a known electroplating method using, for example, a nickel sulfate bath or a nickel chloride bath. The average thickness of the Ni plating layer can be calculated from the current density and the energization time in electric Ni plating. When wire drawing is performed after Ni plating and before hot-dip Al plating, the processing rate (cross-sectional reduction rate) is calculated. In consideration of this, the average thickness of the Ni plating layer can be controlled.

Niめっきを施した素材鋼線を用いる場合は、溶融Alめっきにおける浸漬時間を、Niめっき層が凝固後に全部消失するに足る時間、かつFe−Al系合金層の平均厚さが凝固後に6μm以下となる一定時間にコントロールすればよい。具体的には、例えば溶融Alめっき浴への浸漬時間が0.05〜3秒の範囲においてFe−Al系合金層の平均厚さを6μm以下に低減できる条件を見出すことができ、上記(1)の場合よりもライン速度を緩和することが可能になる。   When using Ni-plated material steel wire, the immersion time in molten Al plating is sufficient for the Ni plating layer to disappear completely after solidification, and the average thickness of the Fe-Al alloy layer is 6 μm or less after solidification. It may be controlled at a certain time. Specifically, for example, the conditions under which the average thickness of the Fe—Al-based alloy layer can be reduced to 6 μm or less can be found when the immersion time in the molten Al plating bath is 0.05 to 3 seconds. ), The line speed can be reduced.

溶融Alめっき浴に浸漬する直前に還元性雰囲気での活性化を行えば、めっき付着性を向上させる上で有効である。還元性雰囲気としては例えば10%H2−N2等のガスが挙げられ、温度は300〜800℃の範囲とすることが望ましい。 Activation in a reducing atmosphere immediately before immersion in a molten Al plating bath is effective in improving plating adhesion. Examples of the reducing atmosphere include a gas such as 10% H 2 —N 2 , and the temperature is preferably in the range of 300 to 800 ° C.

溶融Alめっき浴は、Si含有量を0〜12質量とすることができる。Siを添加することにより反応層の成長を抑制することができ、伸線加工性の向上に有効となる。また、Si添加により融点が低下するので、製造が容易となる。ただし、Si含有量が増加するとAlめっき層の加工性が低下する。また導電性低下にも繋がる。したがって、Alめっき浴にSiを含有させる場合は12質量%以下とすることが好ましく、高い加工性が要求される場合は9質量%以下、あるいは6質量%以下に規制することが有効である。Siを含有するAlめっき浴を使用した場合、Fe−Al系合金反応層中にもSiが検出されるが、めっき浴組成が上記の範囲であれば特に弊害はない。   The molten Al plating bath can have a Si content of 0 to 12 masses. By adding Si, the growth of the reaction layer can be suppressed, which is effective in improving the wire drawing workability. Further, since the melting point is lowered by the addition of Si, the manufacture becomes easy. However, when the Si content increases, the workability of the Al plating layer decreases. It also leads to a decrease in conductivity. Therefore, when Si is contained in the Al plating bath, the content is preferably 12% by mass or less, and when high workability is required, it is effective to restrict the content to 9% by mass or 6% by mass. When an Al plating bath containing Si is used, Si is also detected in the Fe—Al alloy reaction layer, but there is no particular adverse effect as long as the plating bath composition is in the above range.

《実施例1》
素材鋼線として、線径0.2mmの鋼線(JIS G3505の軟鋼線相当材)を用意した。溶融Alめっき浴として、Alおよび不可避的不純物からなるめっき浴を用い、前記素材鋼線を、10%H2−N2ガス、600℃の雰囲気に曝すことにより表面の活性化を行った後、溶融Alめっき浴に浸漬し、垂直に引き上げる方法で溶融Alめっきに供した。その際、ライン速度を70m/minとし、めっき浴中への浸漬時間を0.8秒とした。窒素ガスワイピングによってめっき付着量を調整した。
Example 1
As the material steel wire, a steel wire having a wire diameter of 0.2 mm (JIS G3505 mild steel wire equivalent material) was prepared. After activating the surface by exposing the material steel wire to an atmosphere of 10% H 2 -N 2 gas and 600 ° C. using a plating bath comprising Al and inevitable impurities as a molten Al plating bath, It was immersed in a molten Al plating bath and subjected to molten Al plating by a method of pulling up vertically. At that time, the line speed was set to 70 m / min, and the immersion time in the plating bath was set to 0.8 seconds. The plating adhesion amount was adjusted by nitrogen gas wiping.

得られた溶融Alめっき鋼線の断面を観察して、Alめっき層/鋼素地間に介在する反応層の平均厚さhを前述の方法で測定した結果、反応層の平均厚さは5.1μmであった。SEM−EDXによりその反応層を分析した結果、この反応層はFe−Al系合金反応層であり、Al濃度が25〜75質量%の範囲で変動し、残部はFeおよび不可避的不純物であった。断面に占めるAlめっき層(反応層を除く)の面積率は77%であった。   As a result of observing the cross section of the obtained Al-plated steel wire and measuring the average thickness h of the reaction layer interposed between the Al plating layer / steel substrate by the above-mentioned method, the average thickness of the reaction layer was 5. It was 1 μm. As a result of analyzing the reaction layer by SEM-EDX, this reaction layer was an Fe-Al alloy reaction layer, the Al concentration fluctuated in the range of 25 to 75% by mass, and the balance was Fe and inevitable impurities. . The area ratio of the Al plating layer (excluding the reaction layer) in the cross section was 77%.

上記の溶融Alめっき鋼線を引き抜きによる伸線加工に供し、得られたAlめっき鋼線の断面におけるクラック発生率を前述の方法で測定し、以下の結果を得た。
伸線加工率30%のとき、クラック発生率38%
伸線加工率42%のとき、クラック発生率45%
40%程度の伸線加工率においてクラック発生率は50%未満に抑えられており、良好な伸線加工性を有していることが確認された。
The above hot-dip Al-plated steel wire was subjected to wire drawing by drawing, and the crack generation rate in the cross section of the obtained Al-plated steel wire was measured by the method described above, and the following results were obtained.
When the drawing rate is 30%, the crack generation rate is 38%.
When the wire drawing rate is 42%, the crack occurrence rate is 45%.
At a wire drawing rate of about 40%, the crack occurrence rate was suppressed to less than 50%, and it was confirmed that the wire has a good wire drawing workability.

《比較例1》
実施例1において、溶融Alめっきのライン速度を45m/minとして、めっき浴中への浸漬時間を1.1秒としたことを除き、実施例1と同様の実験を行った。結果は以下のとおりであった。
<< Comparative Example 1 >>
In Example 1, the same experiment as in Example 1 was performed, except that the line speed of the molten Al plating was 45 m / min and the immersion time in the plating bath was 1.1 seconds. The results were as follows.

反応層の平均厚さは8.2μmであった。この反応層はAl濃度が25〜75質量%の範囲で変動し、残部はFeおよび不可避的不純物からなるFe−Al系合金反応層であることが確認された。断面に占めるAlめっき層(反応層を除く)の面積率は79%であった。この溶融Alめっき鋼線を伸線加工率13%で伸線加工したところ、クラック発生率は87%であり、伸線加工性に劣るものであった。   The average thickness of the reaction layer was 8.2 μm. It was confirmed that this reaction layer fluctuated in an Al concentration range of 25 to 75% by mass, and the balance was an Fe—Al alloy reaction layer composed of Fe and inevitable impurities. The area ratio of the Al plating layer (excluding the reaction layer) in the cross section was 79%. When this hot-dip Al plated steel wire was drawn at a drawing rate of 13%, the crack generation rate was 87%, which was inferior to the drawing property.

《比較例2》
実施例1において、溶融Alめっきのライン速度を30m/minとして、めっき浴中への浸漬時間を1.6秒としたことを除き、実施例1と同様の実験を行った。結果は以下のとおりであった。
<< Comparative Example 2 >>
In Example 1, the same experiment as in Example 1 was performed except that the line speed of the molten Al plating was set to 30 m / min and the immersion time in the plating bath was set to 1.6 seconds. The results were as follows.

反応層の平均厚さは11.5μmであった。この反応層はAl濃度が25〜75質量%の範囲で変動し、残部はFeおよび不可避的不純物からなるFe−Al系合金反応層であることが確認された。断面に占めるAlめっき層(反応層を除く)の面積率は76%であった。この溶融Alめっき鋼線を伸線加工率9%で伸線加工したところ、クラック発生率は90%であり、伸線加工性に劣るものであった。   The average thickness of the reaction layer was 11.5 μm. It was confirmed that this reaction layer fluctuated in an Al concentration range of 25 to 75% by mass, and the balance was an Fe—Al alloy reaction layer composed of Fe and inevitable impurities. The area ratio of the Al plating layer (excluding the reaction layer) in the cross section was 76%. When this molten Al-plated steel wire was drawn at a drawing rate of 9%, the crack generation rate was 90%, which was inferior to the drawing property.

《実施例2》
実施例1において、素材鋼線を平均厚さ0.5μmのNiめっき層を有する電気Niめっき鋼線としたこと、溶融めっき前の活性化処理を省略したこと、および溶融Alめっきのライン速度を35m/minとして、めっき浴中への浸漬時間を1.4秒としたことを除き、実施例1と同様の実験を行った。結果は以下のとおりであった。
Example 2
In Example 1, the material steel wire was an electric Ni-plated steel wire having a Ni-plated layer with an average thickness of 0.5 μm, the activation treatment before hot-dip plating was omitted, and the line speed of hot-dip Al plating was The same experiment as in Example 1 was performed except that the immersion time in the plating bath was set to 35 seconds at 1.4 m / min. The results were as follows.

反応層の平均厚さは4.8μmであった。この反応層はAl濃度が25〜75質量%の範囲で変動し、残部はFeおよび不可避的不純物からなるFe−Al系合金反応層であることが確認された。Niめっき層は完全に消失していた。素材鋼線としてNiめっき鋼線を使用することにより、ライン速度を遅くしても実施例1と同等以下に反応層を薄くすることが可能であった。すなわち、Niめっき層による反応層の生成抑制効果が認められた。断面に占めるAlめっき層(反応層を除く)の面積率は81%であった。   The average thickness of the reaction layer was 4.8 μm. It was confirmed that this reaction layer fluctuated in an Al concentration range of 25 to 75% by mass, and the balance was an Fe—Al alloy reaction layer composed of Fe and inevitable impurities. The Ni plating layer was completely lost. By using a Ni-plated steel wire as the material steel wire, it was possible to make the reaction layer as thin as or less than in Example 1 even if the line speed was slow. That is, the formation suppression effect of the reaction layer by the Ni plating layer was recognized. The area ratio of the Al plating layer (excluding the reaction layer) in the cross section was 81%.

この溶融Alめっき鋼線を伸線加工したときのクラック発生率は以下のとおりであった。
伸線加工率29%のとき、クラック発生率35%
伸線加工率42%のとき、クラック発生率44%
実施例1と同様、良好な伸線加工性を有することが確認された。
The crack occurrence rates when the hot-dip Al plated steel wire was drawn were as follows.
When the wire drawing rate is 29%, the crack occurrence rate is 35%.
When the wire drawing rate is 42%, the crack occurrence rate is 44%.
As in Example 1, it was confirmed that the film had good wire drawing workability.

《実施例3》
実施例1において、溶融Alめっき浴をSi:4質量%、残部Al及び不可避的不純物となるめっき浴としたことを除き、実施例1と同様の実験を行った。反応層はFe−Al系合金反応層であり、その平均厚さ、Al濃度、Alめっき層の面積率は実施例1と同様の傾向であった。
Example 3
In Example 1, the same experiment as in Example 1 was performed except that the molten Al plating bath was a plating bath containing 4% by mass of Si, the remaining Al and inevitable impurities. The reaction layer was an Fe—Al-based alloy reaction layer, and the average thickness, Al concentration, and area ratio of the Al plating layer were the same as in Example 1.

この溶融Alめっき鋼線を伸線加工したときのクラック発生率は以下のとおりであった。
伸線加工率29%のとき、クラック発生率36%
伸線加工率42%のとき、クラック発生率44%
実施例1と同様、良好な伸線加工性を有することが確認された。
The crack occurrence rates when the hot-dip Al plated steel wire was drawn were as follows.
When the drawing rate is 29%, the crack occurrence rate is 36%.
When the wire drawing rate is 42%, the crack occurrence rate is 44%.
As in Example 1, it was confirmed that the film had good wire drawing workability.

《実施例4》
実施例1において、窒素ガスワイピングの条件を調整してめっき付着量を低下させ、Alめっき層の面積率が実施例1よりも小さいAlめっき鋼線を製造した。
Example 4
In Example 1, the condition of nitrogen gas wiping was adjusted to reduce the amount of plating adhesion, and an Al-plated steel wire having an Al plating layer area ratio smaller than that in Example 1 was produced.

製造したAlめっき鋼線から、断面におけるAlめっき層の面積率が18%と39%の2水準のものを抽出した。これらの反応層の平均厚さ、組成は実施例1と同様の傾向であった。そして、このAlめっき層の面積率が18%と39%の溶融Alめっき鋼線を伸線加工率42%で伸線加工したときのクラック発生率は以下のとおりであった。
Alめっき層の面積率が18%のもの、クラック発生率48%
Alめっき層の面積率が39%のもの、クラック発生率46%
実施例1と同様、良好な伸線加工性を有することが確認された。
From the manufactured Al-plated steel wire, those having an Al plating layer area ratio of 18% and 39% in the cross section were extracted. The average thickness and composition of these reaction layers had the same tendency as in Example 1. And the crack incidence when the area ratio of this Al plating layer was drawn at a drawing rate of 42% on a molten Al plated steel wire with 18% and 39% was as follows.
Al plating layer area ratio of 18%, crack generation rate 48%
Al plating layer with an area ratio of 39%, crack generation rate 46%
As in Example 1, it was confirmed that the film had good wire drawing workability.

《比較例2》
実施例4において、窒素ガスワイピングの条件を調整してめっき付着量をさらに低下させ、断面におけるAlめっき層の面積率がさらに小さいAlめっき鋼線を製造した。
<< Comparative Example 2 >>
In Example 4, the condition of nitrogen gas wiping was adjusted to further reduce the plating adhesion amount, and an Al plated steel wire having a smaller area ratio of the Al plated layer in the cross section was manufactured.

製造したAlめっき鋼線から、断面におけるAlめっき層の面積率が8%のものを抽出した。これらの反応層の平均厚さ、組成は実施例4と同様の傾向であった。そして、このAlめっき層の面積率が8%の溶融Alめっき鋼線を伸線加工率42%で伸線加工したところ、クラック発生率は55%であり、伸線加工性に劣るものであった。   From the manufactured Al-plated steel wire, one having an area ratio of the Al plating layer in the cross section of 8% was extracted. The average thickness and composition of these reaction layers had the same tendency as in Example 4. When a hot-dip aluminum plated steel wire with an area ratio of 8% was drawn at a drawing rate of 42%, the crack generation rate was 55%, which was inferior to the drawing property. It was.

Claims (5)

鋼芯線の周囲に溶融Alめっき層を有しており、溶融Alめっき後にまだ伸線加工を受けていないAlめっき鋼線であって、長手方向に垂直な断面において、鋼素地の部分の円相当径が0.1〜1mmであり、鋼素地とAlめっき層の間に介在するFe−Al系合金反応層の平均厚さが0.5〜6μmであり、当該断面に占めるAlめっき層(反応層を除く)の面積率が30%以上である伸線加工性の良好なAlめっき鋼線。 An Al-plated steel wire that has a molten Al plating layer around the steel core wire and has not yet undergone wire drawing after the molten Al plating, and corresponds to the circle of the steel substrate in a cross section perpendicular to the longitudinal direction. The diameter is 0.1 to 1 mm, the average thickness of the Fe—Al alloy reaction layer interposed between the steel substrate and the Al plating layer is 0.5 to 6 μm , and the Al plating layer (reaction Al-plated steel wire with good wire drawing workability with an area ratio of 30% or more (excluding the layer) . 請求項1に記載のAlめっき鋼線を伸線加工してなるAlめっき鋼線であって、下記(1)式で定義される伸線加工率が10%以上、かつ下記(A)で定義されるクラック発生率が50%未満であるAlめっき鋼線。
[伸線加工率(%)]=([伸線加工前の断面積]−[伸線加工後の断面積])/[伸線加工前の断面積]×100 …(1)
(A)伸線加工後の溶融Alめっき鋼線の断面において、鋼素地の最も長い部分の径(長径)の中点を中心点Oとして、中心点Oを一端とする半直線を想定し、その半直線を中心点Oを軸として断面内を360°回転させたとき、その直線がクラック上を通るときの回転角度を積算し、これをθ TOTAL (°)として、下記(2)式によりクラック発生率を算出する。
[クラック発生率(%)]=θ TOTAL (°)/360°×100 …(2)
An Al-plated steel wire obtained by drawing the Al-plated steel wire according to claim 1, wherein the wire-drawing rate defined by the following formula (1) is 10% or more and is defined by the following (A): Al-plated steel wire with a crack generation rate of less than 50% .
[Drawing rate (%)] = ([Cross sectional area before wire drawing] − [Cross sectional area after wire drawing]) / [Cross sectional area before wire drawing] × 100 (1)
(A) In the cross section of the hot-dip Al-plated steel wire after wire drawing, assuming the center point O as the midpoint of the longest diameter of the steel substrate (major axis), a half line with the center point O as one end, When the half line is rotated 360 ° in the cross section around the center point O, the rotation angle when the straight line passes over the crack is integrated, and this is defined as θ TOTAL (°) by the following formula (2) The crack occurrence rate is calculated.
[Crack occurrence rate (%)] = θ TOTAL (°) / 360 ° × 100 (2)
表面に平均厚さ0.2〜2μmのNiめっき層を有する素材鋼線を溶融Alめっき浴に浸漬し、浸漬時間を、Niめっき層が凝固後に全部消失するに足る時間、かつ鋼素地とAlめっき層の間に介在するFe−Al系合金反応層の平均厚さが凝固後に6μm以下となる一定時間にコントロールして溶融Alめっき浴から引き上げる、伸線加工性に優れたAlめっき鋼線の製造方法。   A material steel wire having a Ni plating layer with an average thickness of 0.2 to 2 μm on the surface is immersed in a molten Al plating bath, and the immersion time is sufficient for the Ni plating layer to completely disappear after solidification, and the steel substrate and Al An Al-plated steel wire excellent in wire drawing workability that is pulled up from a molten Al plating bath by controlling the average thickness of the Fe-Al alloy reaction layer interposed between the plating layers to a fixed time of 6 μm or less after solidification. Production method. 前記素材鋼線を、300〜800℃の還元性雰囲気で活性化したのち、溶融Alめっき浴に浸漬する請求項に記載のAlめっき鋼線の製造方法。 The method for producing an Al-plated steel wire according to claim 3 , wherein the material steel wire is activated in a reducing atmosphere of 300 to 800 ° C and then immersed in a molten Al plating bath. 溶融Alめっき浴中のSi含有量が0〜12質量%である請求項3、4のいずれか1項に記載のAlめっき鋼線の製造方法。 The method for producing an Al plated steel wire according to any one of claims 3 and 4, wherein the Si content in the molten Al plating bath is 0 to 12% by mass.
JP2009086031A 2009-03-31 2009-03-31 Al-plated steel wire having good wire drawing workability and manufacturing method thereof Expired - Fee Related JP5467789B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009086031A JP5467789B2 (en) 2009-03-31 2009-03-31 Al-plated steel wire having good wire drawing workability and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009086031A JP5467789B2 (en) 2009-03-31 2009-03-31 Al-plated steel wire having good wire drawing workability and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2010236035A JP2010236035A (en) 2010-10-21
JP5467789B2 true JP5467789B2 (en) 2014-04-09

Family

ID=43090638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009086031A Expired - Fee Related JP5467789B2 (en) 2009-03-31 2009-03-31 Al-plated steel wire having good wire drawing workability and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5467789B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012190615A (en) * 2011-03-09 2012-10-04 Nisshin Steel Co Ltd Aluminum coated thin steel wire for heat-resistant electric wire
JP6198220B2 (en) * 2013-03-22 2017-09-20 日新製鋼株式会社 Hot-dip Al-plated steel wire, stranded wire and method for producing the same
JP6746349B2 (en) * 2016-03-31 2020-08-26 日鉄日新製鋼株式会社 Hot-dip aluminized steel wire and manufacturing method thereof
EP3650572A4 (en) * 2017-07-05 2020-12-30 Nippon Steel Corporation Molten aluminum-plated steel wire

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54162663A (en) * 1978-06-14 1979-12-24 Kokoku Steel Wire Production of bright aluminum plated steel wire
JPH11350164A (en) * 1998-06-11 1999-12-21 Sumitomo Metal Ind Ltd Hot-dip zn-al alloy coated steel sheet and its production
JP2002294427A (en) * 2001-03-30 2002-10-09 Kokoku Kousensaku Kk Plated wire, and manufacturing method and apparatus therefor
JP2004225193A (en) * 2003-01-23 2004-08-12 Kanai Hiroaki Lead material for loom and method for producing the same
JP2005264188A (en) * 2004-03-16 2005-09-29 Nippon Steel Corp HOT DIP Zn-Al ALLOY PLATED STEEL HAVING EXCELLENT BENDABILITY, AND ITS MANUFACTURING METHOD
JP2006339040A (en) * 2005-06-02 2006-12-14 Nisshin Steel Co Ltd Composite electric cable
JP4970231B2 (en) * 2006-12-11 2012-07-04 新日本製鐵株式会社 Hot-dip galvanized steel and its manufacturing method
JP5235433B2 (en) * 2008-01-31 2013-07-10 日新製鋼株式会社 Al plated steel wire and manufacturing method thereof

Also Published As

Publication number Publication date
JP2010236035A (en) 2010-10-21

Similar Documents

Publication Publication Date Title
EP2896708B1 (en) Aluminum alloy wire rod, alum1inum alloy stranded wire, sheathed wire, wire harness, and method for manufacturing aluminum alloy conductor
JP4927366B2 (en) Aluminum conductive wire
CN105705665B (en) Copper alloy wire, copper alloy twisted wire, covered electric cable, harness and copper alloy wire manufacturing method
TWI330202B (en) Copper alloy sheet material for electric and electronic parts
JP5193375B2 (en) Method for producing aluminum alloy conductor
JP6560455B2 (en) Surface treatment material, method for producing the same, and parts produced using the surface treatment material
JP6198220B2 (en) Hot-dip Al-plated steel wire, stranded wire and method for producing the same
JP2004134212A (en) Aluminum cable for automobile wire harnesses
JP5000792B2 (en) Electromagnetic wave shielding composite
JP5235433B2 (en) Al plated steel wire and manufacturing method thereof
JP5641756B2 (en) Production method of Al plated steel wire
JP6091280B2 (en) Al-plated steel wire manufacturing apparatus and manufacturing method
JP6185419B2 (en) Aluminum plated stainless steel wire
JP6452912B1 (en) Plated wire rod and its manufacturing method, and cable, electric wire, coil and spring member formed using the same
JP5467789B2 (en) Al-plated steel wire having good wire drawing workability and manufacturing method thereof
CN111263824A (en) Stranded conductor for insulated wire, flexible wire and cable
JP2013044040A (en) Aluminum alloy conductor
JP5377767B2 (en) Automotive wire
JP6535136B2 (en) SURFACE TREATMENT MATERIAL AND PARTS PRODUCED BY USING THE SAME
JP5252941B2 (en) Pressure bonding structure and wire harness using Al plated steel wire
JP4413591B2 (en) Aluminum conductive wire for automobile wire harness and aluminum electric wire for automobile wire harness
JP2010257719A (en) Electric wire with terminal
JP7503240B2 (en) Coated electric wire, electric wire with terminal, copper alloy wire, copper alloy stranded wire, and method for manufacturing copper alloy wire
JP6655769B1 (en) Plating wire rod, manufacturing method of the plating wire rod, and cable, electric wire, coil, wire harness, spring member, enamel wire, and lead wire using the plating wire rod
JP5464884B2 (en) Al-plated steel wire excellent in wire drawing workability and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140128

R150 Certificate of patent or registration of utility model

Ref document number: 5467789

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees