JP2011251275A - Water treatment method and water treatment apparatus used for water treatment method - Google Patents

Water treatment method and water treatment apparatus used for water treatment method Download PDF

Info

Publication number
JP2011251275A
JP2011251275A JP2010128754A JP2010128754A JP2011251275A JP 2011251275 A JP2011251275 A JP 2011251275A JP 2010128754 A JP2010128754 A JP 2010128754A JP 2010128754 A JP2010128754 A JP 2010128754A JP 2011251275 A JP2011251275 A JP 2011251275A
Authority
JP
Japan
Prior art keywords
water
treated
discharge space
water treatment
treated water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010128754A
Other languages
Japanese (ja)
Inventor
Taisuke Nose
泰祐 能勢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2010128754A priority Critical patent/JP2011251275A/en
Publication of JP2011251275A publication Critical patent/JP2011251275A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a water treatment method by which water treatment is carried out efficiently without requiring excessive energy cost and making an apparatus large-sized and to provide the water treatment apparatus using the water treatment method.SOLUTION: The water treatment method includes supplying water droplets made from water W to be treated in a discharge space, and decomposing a substance to be treated in the water drops by active species generated by electric discharge in the discharge space. The water droplets passed through the discharge space and treated is stored as the treated water W1 in an oxidation prompting treatment part 51a of a treated water tank 5a and the remaining substance to be treated in the treated water W 1 is promptly oxidized by supplying iron powder 91 into the treated water W1 stored in the oxidation prompting treatment part 51a.

Description

本発明は、上水、下水、排水等に含有される有機物、無機物、微生物を分解処理する水処理方法及びこの水処理方法に用いる水処理装置に関する。   The present invention relates to a water treatment method for decomposing organic substances, inorganic substances, and microorganisms contained in tap water, sewage, waste water, and the like, and a water treatment apparatus used in this water treatment method.

従来から、上水、下水、産業排水、プールなどの分野で、水中の有機物の酸化分解、殺菌、脱臭等の処理のためにオゾンが用いられている(特許文献1参照)。
しかしながら、オゾンは酸化力が弱く、親水化、低分子化はできても無機化することはできない。また、ダイオキシン等の難分解性有機物は分解できない。
Conventionally, ozone has been used for treatments such as oxidative decomposition, sterilization, and deodorization of organic substances in water in fields such as clean water, sewage, industrial wastewater, and pools (see Patent Document 1).
However, ozone has a weak oxidizing power and cannot be mineralized even if it can be made hydrophilic and low molecular. In addition, hardly decomposable organic substances such as dioxins cannot be decomposed.

そこで、処理能力を向上させるために、放電によりオゾンを発生させるとともに、オゾンより酸化力が強いOHラジカルやOラジカル等を発生させ、このオゾン及びラジカルを含む放電空間(放電場)に被処理水を曝すことによって、オゾンだけでなく、ラジカルによっても酸化処理するようにした水処理装置が提案されている(特許文献2参照)。
しかし、ラジカルは寿命が短く、消滅しやすく、そのため効率が悪く、上記のような先に提案された水処理装置ではラジカルによる酸化作用を十分に発揮させることができない。
Therefore, in order to improve the treatment capacity, ozone is generated by discharge, and OH radicals, O radicals, and the like that have stronger oxidizing power than ozone are generated, and the water to be treated is discharged in a discharge space (discharge field) containing the ozone and radicals. A water treatment apparatus has been proposed in which oxidation treatment is performed not only by ozone but also by radicals by exposure to water (see Patent Document 2).
However, radicals have a short lifetime and tend to disappear, so that the efficiency is low, and the water treatment apparatus previously proposed cannot sufficiently exhibit the oxidizing action by radicals.

そこで、本発明の発明者は、接地電極である円筒電極の中心軸に沿って電圧印加電極である線状電極を設け、線状電極に高電圧を印加して両電極間で放電を生じさせるとともに、この放電空間に被処理水を水滴状にして供給し、放電空間内で生じるラジカルやオゾン等の活性種によって被処理水中の処理対象物質を分解処理するようにした水処理装置を先に提案している(特許文献3参照)。
すなわち、この水処理装置は、放電によってラジカルやオゾンをつぎつぎに発生させるとともに、被処理水を水滴化して、このラジカルやオゾンとの接触表面積を上げることによって処理効率を良くしている。
Therefore, the inventor of the present invention provides a linear electrode as a voltage application electrode along the central axis of the cylindrical electrode as a ground electrode, and applies a high voltage to the linear electrode to cause discharge between both electrodes. At the same time, a water treatment apparatus is provided in which water to be treated is supplied to the discharge space in the form of water droplets, and the treatment target substance in the water to be treated is decomposed by active species such as radicals and ozone generated in the discharge space. It has been proposed (see Patent Document 3).
In other words, this water treatment apparatus generates radicals and ozone one after another by electric discharge, and improves the treatment efficiency by increasing the surface area of contact with the radicals and ozone by forming water to be treated into water droplets.

特開平9−267096号公報Japanese Patent Laid-Open No. 9-267096 特開2000−279977号公報JP 2000-279977 A 特開2009−241055号公報JP 2009-241055 A

しかし、上記先に提案された水処理装置の場合、従来の方法に比べれば処理効率がよかったが、実用化するにあたってはさらに処理効率をよくすることが求められている。
すなわち、上記水処理装置においては、水滴ができるだけ長時間放電空間に止まっている必要があるが、水滴を長時間放電空間に止まっているようにするには、電極を大きく長くすることが必要になり、装置が大型化するとともに、放電に要する電気エネルギーも多量に必要となり、コストがかかるという問題がある。
However, in the case of the water treatment apparatus proposed above, the treatment efficiency was better than that of the conventional method, but it is required to further improve the treatment efficiency when put into practical use.
That is, in the above water treatment apparatus, it is necessary for water droplets to remain in the discharge space for as long as possible, but in order to keep the water droplets in the discharge space for a long time, it is necessary to make the electrode large and long. As a result, there is a problem that the apparatus is increased in size, and a large amount of electric energy is required for discharging, which is costly.

本発明は、上記事情に鑑みて、エネルギーコストをあまりかけず、かつ、装置を大型化することなく、水処理を効率よく行うことができる水処理方法及びこの水処理方法に用いる水処理装置を提供することを目的としている。   In view of the above circumstances, the present invention provides a water treatment method capable of efficiently performing water treatment without much energy cost and without increasing the size of the device, and a water treatment device used in the water treatment method. It is intended to provide.

上記目的を達成するために、本発明にかかる水処理方法(以下、「本発明の水処理方法」と記す)は、放電空間内に被処理水を水滴化して供給し、放電空間内で放電によって発生した活性種によって、水滴中の処理対象物質を分解処理するようにした水処理方法であって、放電空間を通過して処理された水滴を処理水として処理水貯槽に貯めるとともに、処理水貯槽に貯まった処理水中に鉄粉を供給して処理水中の残存処理対象物質を促進酸化することを特徴としている。   In order to achieve the above object, a water treatment method according to the present invention (hereinafter referred to as “water treatment method of the present invention”) supplies water to be treated in the form of water droplets in a discharge space, and discharges in the discharge space. A water treatment method in which a substance to be treated in water droplets is decomposed by active species generated by the method, wherein water droplets that have passed through the discharge space are treated as treated water and stored in a treated water storage tank. It is characterized in that iron powder is supplied into the treated water stored in the storage tank to promote oxidation of the remaining treatment target substance in the treated water.

また、本発明にかかる水処理装置(以下、「本発明の水処理装置」と記す)は、放電空間内に被処理水を水滴化して供給し、放電空間内で放電によって発生した活性種によって、水滴中の処理対象物質を分解処理するようにした水処理装置であって、放電空間を通過して処理された水滴を受けて処理水として貯める処理水貯槽と、この処理水貯槽に鉄粉を供給する鉄粉供給手段とを備えていることを特徴としている。   Further, the water treatment apparatus according to the present invention (hereinafter referred to as “the water treatment apparatus of the present invention”) supplies water to be treated in the form of water droplets in the discharge space, and depending on the active species generated by the discharge in the discharge space. A water treatment apparatus for decomposing a treatment target substance in water droplets, receiving a treated water droplet through the discharge space and storing it as treated water, and iron powder in the treated water storage tank And an iron powder supply means for supplying.

本発明において、活性種とは、Oラジカル、OHラジカルなどのラジカル及びオゾンを意味する。   In the present invention, the active species means radicals such as O radical and OH radical, and ozone.

本発明で用いられる鉄粉としては、特に限定されないが、その粒径が500μm以下の還元鉄粉を用いることが好ましく、特に40μm以下の粒子を存在させることがより好ましい。すなわち、還元鉄粉の粒径が大きすぎると、撹拌機などで強く撹拌しないと、還元鉄粉がすぐに沈降してしまい、反応が進みつらくなるおそれがある。一方、撹拌機で強い撹拌を行わせようとした場合、大容量の撹拌機が必要になり、設備コストやエネルギーコストが大きくなるおそれがある。したがって、還元鉄粉の粒径を小さくして沈降せず長時間浮遊させるようにすることが好ましい。   Although it does not specifically limit as iron powder used by this invention, It is preferable to use the reduced iron powder whose particle size is 500 micrometers or less, and it is more preferable to make 40 micrometers or less especially exist. That is, if the particle size of the reduced iron powder is too large, the reduced iron powder may immediately settle and the reaction may be difficult to proceed unless it is stirred vigorously with a stirrer or the like. On the other hand, when trying to perform strong stirring with a stirrer, a large-capacity stirrer is required, which may increase equipment costs and energy costs. Therefore, it is preferable to reduce the particle size of the reduced iron powder so that it does not settle and floats for a long time.

還元鉄粉の添加量は、特に限定されないが、処理水中に0.1〜10[g/L]含まれていることが好ましい。
また、本発明で用いられる還元鉄粉は、特に限定されないが、例えば、ミルスケール還元鉄粉法、鉱石還元鉄粉法で製造されたものが挙げられる。
Although the addition amount of reduced iron powder is not specifically limited, It is preferable that 0.1-10 [g / L] is contained in treated water.
Moreover, although the reduced iron powder used by this invention is not specifically limited, For example, what was manufactured with the mill scale reduced iron powder method and the ore reduced iron powder method is mentioned.

また、本発明において、特に限定されないが、処理水中に鉄粉を供給すると同時に酸素を処理水中にバブリングすることが好ましい。
すなわち、酸素のバブリングによって、鉄粉がより長時間浮遊するとともに、OHラジカルの発生を促進し、分解処理をより活性化させることができる。
Further, in the present invention, although not particularly limited, it is preferable to supply iron powder into the treated water and simultaneously bubble oxygen into the treated water.
That is, by bubbling oxygen, the iron powder can float for a longer time, promote the generation of OH radicals, and activate the decomposition process more.

バブリングされる酸素は、ある程度酸素を含んで入れば、純酸素である必要はなく、空気でも構わない。
バブリングされる酸素の気泡径は、特に限定されないが、反応速度を考慮すると、できるだけ細かい気泡にすることが好ましい。
処理水中に供給される酸素の量は、特に限定されないが、0.2〜2 [L/min・L-被処理水]となるようにすることが好ましい。
The oxygen to be bubbled need not be pure oxygen as long as it contains oxygen to some extent, and may be air.
The bubble diameter of the bubbled oxygen is not particularly limited, but it is preferable to make the bubbles as fine as possible in consideration of the reaction rate.
The amount of oxygen supplied to the treated water is not particularly limited, but is preferably 0.2 to 2 [L / min · L-treated water].

本発明において、放電方式は、高エネルギーの電子や紫外線が発生する放電が発生すれば、特に限定されないが、一方の電極を電圧印加電極とし、他方の電極を接地電極として、電圧印加電極に高圧パルス電圧を印加する方式が挙げられる。
上記電圧印加電極及び接地電極の材質は、特に限定されないが、耐食性を考慮するとチタンやステンレス鋼が好ましい。
In the present invention, the discharge method is not particularly limited as long as a discharge that generates high-energy electrons or ultraviolet rays occurs. However, one electrode is a voltage application electrode, the other electrode is a ground electrode, and the voltage application electrode is a high voltage. A method of applying a pulse voltage can be mentioned.
The materials for the voltage application electrode and the ground electrode are not particularly limited, but titanium and stainless steel are preferable in consideration of corrosion resistance.

電極の形状は、特に限定されないが、接地電極の場合、特に限定されないが、円筒電極、円筒メッシュ電極などの円筒状電極、平板電極などが挙げられ、円筒状電極が好適である。
一方、電圧印加電極は、例えば、接地電極が円筒状電極の場合、円筒状電極の中心軸に沿って設けられるワイヤー電極、ネジ状電極、剣山状電極、ワイヤーブラシ状電極などが挙げられ、接地電極が平板電極の場合、この平板電極に平行に設けられる平板電極が挙げられる。
The shape of the electrode is not particularly limited, but in the case of the ground electrode, it is not particularly limited, and examples thereof include a cylindrical electrode such as a cylindrical electrode and a cylindrical mesh electrode, a flat plate electrode, and the like, and a cylindrical electrode is preferable.
On the other hand, for example, when the ground electrode is a cylindrical electrode, the voltage application electrode includes a wire electrode, a screw electrode, a sword mountain electrode, a wire brush electrode, and the like provided along the central axis of the cylindrical electrode. When the electrode is a flat plate electrode, a flat plate electrode provided in parallel to the flat plate electrode is exemplified.

また、電圧印加電極及び接地電極は、処理室内に1対だけでなく複数対設けるようにしても構わない。   Further, a plurality of pairs of voltage application electrodes and ground electrodes may be provided in the processing chamber instead of only one pair.

電圧印加電極と接地電極との間に印加される放電電圧は、放電が起きる電圧であれば特に限定されない。   The discharge voltage applied between the voltage application electrode and the ground electrode is not particularly limited as long as it is a voltage at which discharge occurs.

本発明において、処理対象物質としては、特に限定されないが、各種有機化合物、細菌や臭気成分などの有機物が挙げられる。
本発明において、水滴化手段としては、特に限定されず、例えば、噴霧ノズルやシャワーノズルが挙げられる。
なお、上記水滴は、特に限定されないが、放電空間内で発生するラジカル及びオゾンとの接触を高めるために、出来るだけ細かい水滴とすることが好ましい。
In the present invention, the substance to be treated is not particularly limited, and examples thereof include various organic compounds, organic substances such as bacteria and odor components.
In the present invention, the water droplet forming means is not particularly limited, and examples thereof include a spray nozzle and a shower nozzle.
In addition, although the said water droplet is not specifically limited, In order to improve the contact with the radical and ozone which generate | occur | produce in a discharge space, it is preferable to use a water droplet as fine as possible.

本発明の水処理装置において、処理水貯槽は、特に限定されないが、処理水を貯留するとともに、残存処理対象物質を促進酸化する促進酸化処理部と、促進酸化処理部の上澄み水を貯める上澄み水貯留部とを備えている構成としてもよい。
すなわち、処理水貯槽に鉄粉を供給することによって生じた鉄イオンが凝集剤として働き、処理水中に凝集した凝集物が発生する。したがって、そのまま放流等を行うと凝集物も一緒に放流されてしまうこととなるため、固液分離装置を別途設ける必要がある。しかし、凝集物を促進酸化処理部側に残すようにし、上澄み水貯留部に一旦貯留した上澄み水を放流することで、固液分離装置を別途設ける必要がなくなる。
In the water treatment apparatus of the present invention, the treated water storage tank is not particularly limited, but the treated water is stored, and an accelerated oxidation treatment unit that promotes oxidation of the remaining treatment target substance, and a supernatant water that stores supernatant water of the accelerated oxidation treatment unit It is good also as a structure provided with the storage part.
That is, iron ions generated by supplying iron powder to the treated water storage tank act as a flocculant, and aggregates aggregated in the treated water are generated. Therefore, if the discharge is performed as it is, the agglomerates are also discharged together, so it is necessary to provide a separate solid-liquid separation device. However, it is not necessary to separately provide a solid-liquid separation device by leaving the agglomerate on the accelerated oxidation treatment unit side and discharging the supernatant water once stored in the supernatant water storage unit.

また、本発明の水処理装置は、処理水貯槽の処理水を再び放電空間に供給する循環路を備えている構成としても構わない。
すなわち、循環によって処理水を放電空間での処理及び処理水貯槽での処理を繰り返し行うことができ、装置全体を小型化しても高い処理性能を得ることができる。
Moreover, the water treatment apparatus of this invention is good also as a structure provided with the circulation path which supplies the treated water of a treated water storage tank to discharge space again.
That is, the treatment water can be repeatedly treated in the discharge space and the treatment water storage tank by circulation, and high treatment performance can be obtained even if the entire apparatus is downsized.

本発明の水処理方法は、放電空間内に被処理水を水滴化して供給し、放電空間内で放電によって発生した活性種によって、水滴中の処理対象物質を分解処理するようにした水処理方法であって、放電空間を通過して処理された水滴を処理水として処理水貯槽に貯めるとともに、処理水貯槽に貯まった処理水中に鉄粉を供給して処理水中の残存処理対象物質を促進酸化するようにした。   The water treatment method of the present invention is a water treatment method in which water to be treated is supplied in the discharge space as water droplets, and the treatment target substance in the water droplets is decomposed by active species generated by discharge in the discharge space. In addition, water droplets processed through the discharge space are stored in the treated water storage tank as treated water, and iron powder is supplied into the treated water stored in the treated water storage tank to promote oxidation of the remaining treatment target substances in the treated water. I tried to do it.

すなわち、被処理水を水滴化して放電空間内を通過させることによって、放電空間内で発生するオゾン及びラジカルに水滴中の処理対象物質を接触させて、水滴中の処理対象物質を分解処理することができる。
また、放電によって、過酸化水素及び窒素酸化物も形成され、この過酸化水素が処理水貯槽内に受けられた処理水中に溶け込む。また、窒素酸化物が処理水中に溶け込んで硝酸となり、処理水が酸性になっていく。
That is, by subjecting the water to be treated to water droplets and passing through the discharge space, the material to be treated in the water droplets is brought into contact with ozone and radicals generated in the discharge space to decompose the material to be treated in the water droplets. Can do.
Moreover, hydrogen peroxide and nitrogen oxides are also formed by discharge, and this hydrogen peroxide dissolves in the treated water received in the treated water storage tank. In addition, nitrogen oxides dissolve in the treated water to become nitric acid, and the treated water becomes acidic.

そして、処理水貯槽では、鉄粉の表面に形成される第1鉄イオンが、放電によって発生した過酸化水素に触媒的に反応し、酸化力の強いOHラジカルを発生させて、処理水中に残存する処理対象物質が分解される。したがって、被処理水中の有機物が、素早く、かつ、効率よく分解される。   In the treated water storage tank, ferrous ions formed on the surface of the iron powder react catalytically with hydrogen peroxide generated by the discharge to generate OH radicals with strong oxidizing power and remain in the treated water. The target substance to be processed is decomposed. Therefore, the organic matter in the for-treatment water is decomposed quickly and efficiently.

以上のように、本発明の水処理方法によれば、有機化合物の分解を放電空間で発生するオゾンやラジカルによる分解だけでなく、電気エネルギーをかけることのなく、鉄粉を加えるだけで、いわゆるフェントン反応を利用して残存処理対象物質を促進酸化分解処理するようにしたので、エネルギーコストをあまりかけず、かつ、装置を大型化することなく、水処理を効率よく行うことができる。   As described above, according to the water treatment method of the present invention, the decomposition of the organic compound is not only caused by ozone and radicals generated in the discharge space, but also by adding iron powder without applying electric energy, so-called Since the residual material to be treated is subjected to accelerated oxidative decomposition using the Fenton reaction, water treatment can be efficiently performed without much energy cost and without increasing the size of the apparatus.

本発明にかかる水処理装置の第1の実施の形態を説明する模式図である。It is a schematic diagram explaining 1st Embodiment of the water treatment apparatus concerning this invention. 図1の水処理装置の高電圧パルス発生装置の回路図である。It is a circuit diagram of the high voltage pulse generator of the water treatment apparatus of FIG. 本発明にかかる水処理装置の第2の実施の形態を説明する模式図である。It is a schematic diagram explaining 2nd Embodiment of the water treatment apparatus concerning this invention. 実施例1、比較例1で調べた処理時間の経過に伴う被処理水のインディゴカルミン濃度変化を対比してあらわすグラフである。It is a graph which compares and shows the indigo carmine density | concentration change of the to-be-processed water accompanying progress of the processing time investigated in Example 1 and the comparative example 1. FIG. 実験例1で調べた処理時間の経過に伴う過酸化水素の濃度変化をあらわすグラフである。6 is a graph showing a change in the concentration of hydrogen peroxide with the lapse of treatment time examined in Experimental Example 1. 実験例1で調べた処理時間の経過に伴う硝酸イオンの濃度変化をあらわすグラフであるIt is a graph showing the concentration change of nitrate ion with progress of processing time investigated in example 1 of an experiment.

以下に、本発明を、その実施の形態をあらわす図面を参照しつつ詳しく説明する。
図1は、本発明にかかる水処理装置の第1の実施の形態をあらわしている。
Hereinafter, the present invention will be described in detail with reference to the drawings showing embodiments thereof.
FIG. 1 shows a first embodiment of a water treatment apparatus according to the present invention.

図1に示すように、この水処理装置1aは、処理室2と、円筒状電極3と、線状電極4と、処理水貯槽5と、ポンプ6と、水滴化手段としてのシャワーノズル7と、循環路となる被処理水供給ホース71と、混合気体供給手段8aと、鉄粉供給装置9aと、高圧電源である高電圧パルス発生装置10と、を備えている。
処理室2は、例えば、アクリル樹脂等の絶縁材料で形成され、あるいは、ステンレス鋼の筒状体の内面が絶縁材料で被覆された形成されて、円筒状をしている。
As shown in FIG. 1, the water treatment apparatus 1a includes a treatment chamber 2, a cylindrical electrode 3, a linear electrode 4, a treated water storage tank 5, a pump 6, and a shower nozzle 7 as a water droplet forming means. The water supply hose 71 to be treated as a circulation path, the mixed gas supply means 8a, the iron powder supply device 9a, and the high voltage pulse generator 10 as a high voltage power source are provided.
The processing chamber 2 is formed of, for example, an insulating material such as an acrylic resin, or the inner surface of a stainless steel cylindrical body is covered with an insulating material, and has a cylindrical shape.

処理室2は、上蓋23を備え、この上蓋23にシャワーノズル設置孔23aが設けられている。
処理室2の下端部には、排気管25が設けられている。排気管25の途中または出口にはオゾン除去フィルター等のオゾン除去装置を設けることが好ましい。
The processing chamber 2 includes an upper lid 23, and a shower nozzle installation hole 23 a is provided in the upper lid 23.
An exhaust pipe 25 is provided at the lower end of the processing chamber 2. It is preferable to provide an ozone removing device such as an ozone removing filter in the middle or the outlet of the exhaust pipe 25.

円筒状電極3は、例えば、ステンレス鋼製の2.5メッシュ、線径1.1mmの金網を円筒状に加工することによって得られ、外径が処理室本体21の内径より少し小さくなっている。
線状電極4は、例えば、直径1mmのチタン鋼線で形成され、円筒状電極3の中心軸に沿うように設けられている。
The cylindrical electrode 3 is obtained, for example, by processing a stainless steel 2.5 mesh, wire net of 1.1 mm into a cylindrical shape, and the outer diameter is slightly smaller than the inner diameter of the processing chamber body 21. .
The linear electrode 4 is formed of, for example, a titanium steel wire having a diameter of 1 mm, and is provided along the central axis of the cylindrical electrode 3.

処理水貯槽5aは、槽本体51と、蓋52とを備えている。
槽本体51の内部は、蓋52との間にオーバーフロー用の隙間54が形成される高さの仕切り壁53を介して促進酸化処理部51aと、上澄み水貯留部51bとに区切られている。
The treated water storage tank 5 a includes a tank body 51 and a lid 52.
The inside of the tank body 51 is divided into an accelerated oxidation treatment part 51a and a supernatant water storage part 51b through a partition wall 53 having a height at which an overflow gap 54 is formed between the tank body 51 and the lid 52.

蓋52は、槽本体51の上部開口を処理室2の下端開口を臨む部分及び後述する鉄粉供給装置9aの供給口以外すべての部分を塞ぐとともに、処理室2を下方から支持するように設けられている。
槽本体51の上澄み水貯留部51bは、ポンプ6に接続されている。
ポンプ6は、上澄み水貯留部51b内の分離水W2(または被処理水W)を、被処理水供給ホース71を介してシャワーノズル7に送るようになっている。
The lid 52 covers the upper opening of the tank body 51 so as to face the lower end opening of the processing chamber 2 and all the portions other than the supply port of the iron powder supply device 9a described later, and supports the processing chamber 2 from below. It has been.
The supernatant water reservoir 51 b of the tank body 51 is connected to the pump 6.
The pump 6 is configured to send the separated water W2 (or water to be treated W) in the supernatant water reservoir 51b to the shower nozzle 7 via the water to be treated supply hose 71.

シャワーノズル7は、被処理水供給ホース71を介して送られてきた分離水W2(または被処理水)を粒径が1500μm以下の水滴からなるミスト状態にして円筒状電極3の上部開口に向かって噴射するようになっている。
また、シャワーノズル7の噴角は、噴射される被処理水ミストMの最大広がり部で放電空間の最外縁である円筒状電極3の内壁面に沿うような角度に調整されている。
The shower nozzle 7 turns the separated water W2 (or treated water) sent through the treated water supply hose 71 into a mist state composed of water droplets having a particle size of 1500 μm or less toward the upper opening of the cylindrical electrode 3. To be injected.
Moreover, the spray angle of the shower nozzle 7 is adjusted to an angle along the inner wall surface of the cylindrical electrode 3 that is the outermost edge of the discharge space at the maximum spread portion of the sprayed water mist M to be sprayed.

混合気体供給手段8aは、酸素ボンベ81と、酸素供給管82と、窒素ボンベ83と、窒素供給管84と、ミキサー(マツモト機械製、GM-A2)85と、混合気体供給管86とを備えている。   The mixed gas supply means 8 a includes an oxygen cylinder 81, an oxygen supply pipe 82, a nitrogen cylinder 83, a nitrogen supply pipe 84, a mixer (GM-A2 manufactured by Matsumoto Kikai) 85, and a mixed gas supply pipe 86. ing.

ミキサー85は、酸素ボンベ81から酸素供給管82を介して送られてきた酸素と、窒素ボンベ83から窒素供給管84を介して送られてきた窒素とを、酸素が所定の混合比率に混合するようになっている。
混合気体供給管86は、ミキサー85で混合されて得られた混合気体を処理室2の上端部から処理室2内に供給するようになっている。
なお、混合気体中の酸素濃度は、25〜90容量%に設定されている。
The mixer 85 mixes oxygen sent from the oxygen cylinder 81 through the oxygen supply pipe 82 and nitrogen sent from the nitrogen cylinder 83 through the nitrogen supply pipe 84 to a predetermined mixing ratio. It is like that.
The mixed gas supply pipe 86 supplies the mixed gas obtained by mixing with the mixer 85 into the processing chamber 2 from the upper end portion of the processing chamber 2.
The oxygen concentration in the mixed gas is set to 25 to 90% by volume.

鉄粉供給装置9aは、蓋52に設けられた供給口から鉄粉91を促進酸化処理部51aに定量供給できるようになっている。   The iron powder supply device 9a can supply a fixed amount of iron powder 91 from the supply port provided in the lid 52 to the accelerated oxidation processing unit 51a.

高電圧パルス発生装置10は、図2に示すように、高圧直流電源101、コンデンサ102、抵抗103、トリガトロンギャップスイッチ104、パルストランス105およびトリガ回路106を備えている。   As shown in FIG. 2, the high-voltage pulse generator 10 includes a high-voltage DC power supply 101, a capacitor 102, a resistor 103, a trigger tron gap switch 104, a pulse transformer 105, and a trigger circuit 106.

そして、高電圧パルス発生装置10は、以下のように動作する。
すなわち、高圧直流電源101からの電流が抵抗103を介してコンデンサ102に供給され、コンデンサ102が充電される。目標電圧までコンデンサ102が充電された後、トリガ回路106からの高電圧のトリガパルスによりトリガトロンギャップスイッチ104がオン状態になる。このとき、コンデンサ102に充電された電荷がパルストランス105の1次側に流れ込み、相互インダクタンスにより2次側にパルス状の誘起電圧が発生する。
The high voltage pulse generator 10 operates as follows.
That is, the current from the high voltage DC power supply 101 is supplied to the capacitor 102 via the resistor 103, and the capacitor 102 is charged. After the capacitor 102 is charged to the target voltage, the trigger tron gap switch 104 is turned on by a high voltage trigger pulse from the trigger circuit 106. At this time, the electric charge charged in the capacitor 102 flows into the primary side of the pulse transformer 105, and a pulse-like induced voltage is generated on the secondary side due to the mutual inductance.

このようにしてパルストランス105の2次側に生じた高電圧パルスは、線状電極4と円筒状電極3との間に印加される。
すなわち、端子107が、線状電極4に導通状態にされ、端子108が円筒状電極4と導通状態にされる。
The high voltage pulse generated on the secondary side of the pulse transformer 105 in this way is applied between the linear electrode 4 and the cylindrical electrode 3.
That is, the terminal 107 is brought into conduction with the linear electrode 4, and the terminal 108 is brought into conduction with the cylindrical electrode 4.

端子107、108間に出力されるパルスの繰り返し数は、トリガ回路106におけるトリガパルスの出力頻度を変えることによって制御される。また出力パルスの電圧は、高圧直流電源101の出力電圧を切り替えることによって制御される。   The number of repetitions of pulses output between the terminals 107 and 108 is controlled by changing the output frequency of the trigger pulse in the trigger circuit 106. The voltage of the output pulse is controlled by switching the output voltage of the high-voltage DC power supply 101.

この水処理装置1aは、以下のようにして、被処理水中の有機化合物を分解処理する。
すなわち、処理水貯槽5aの促進酸化処理部51aと、上澄み水貯留部51bとに仕切り壁53の上端までに有機物等を含む被処理水Wを仕込むとともに、所定量(被処理水中の有機化合物の種類や量に応じて経験的に求められた量)の鉄粉を、鉄粉供給装置9aから鉄粉91を促進酸化処理部51a内に供給する。
The water treatment device 1a decomposes organic compounds in the water to be treated as follows.
That is, water to be treated W containing organic matter and the like is charged to the accelerated oxidation treatment part 51a and the supernatant water storage part 51b of the treated water storage tank 5a up to the upper end of the partition wall 53, and a predetermined amount (of the organic compound in the treated water). Iron powder 91 is supplied from the iron powder supply device 9a into the accelerated oxidation treatment unit 51a.

そして、高電圧パルス発生装置10によって、円筒状電極3と線状電極4との間に、高電圧をパルス状に印加し、円筒状電極3内に上下方向に円柱状となった放電空間を形成するとともに、ポンプ6を駆動させて、上澄み水貯留部51b内の被処理水W(上澄み水W2)を、被処理水供給ホース71を介してシャワーノズル7に送り、円筒状電極3の上方から円筒状電極3の中心軸方向に向かって水滴化して噴射する。   Then, a high voltage pulse generator 10 applies a high voltage between the cylindrical electrode 3 and the linear electrode 4 in a pulsed manner, and a discharge space having a cylindrical shape in the vertical direction is formed in the cylindrical electrode 3. The pump 6 is driven and the water to be treated W (supernatant water W2) in the supernatant water reservoir 51b is sent to the shower nozzle 7 via the water to be treated supply hose 71, and above the cylindrical electrode 3. From this, water droplets are formed and ejected in the direction of the central axis of the cylindrical electrode 3.

この水処理装置1aは、上記のようになっており、まず、水滴化された被処理水が円筒状電極3内部に形成された放電空間で発生するオゾンやラジカルに接触して被処理水中の有機化合物が分解され、処理水W1となって、処理室2の下端から促進酸化処理部51aに受けられ、促進酸化処理部51a内に貯められた水に混ざりこむ。
また、放電空間で発生する放電によって、過酸化水素及び窒素酸化物が発生し、この過酸化水素が処理水W1に溶け込むとともに、窒素酸化物が硝酸となって処理水W1に溶け込んで、促進酸化処理部51a内に入り込む。
The water treatment apparatus 1a is configured as described above. First, the water to be treated is brought into contact with ozone and radicals generated in the discharge space formed inside the cylindrical electrode 3, and the water in the water to be treated The organic compound is decomposed to become treated water W1, which is received by the accelerated oxidation treatment unit 51a from the lower end of the treatment chamber 2, and is mixed into the water stored in the accelerated oxidation treatment unit 51a.
In addition, hydrogen peroxide and nitrogen oxides are generated by the discharge generated in the discharge space, and the hydrogen peroxide dissolves in the treated water W1, and the nitrogen oxide becomes nitric acid and dissolves in the treated water W1, thereby promoting oxidation. It enters into the processing unit 51a.

一方、促進酸化処理部51a内には、鉄粉91が供給されているので、処理水W1中に含まれる硝酸によって鉄粉91の表面が溶解して第1鉄イオンが発生し、この第1鉄イオンが処理水中に含まれる上記過酸化水素に触媒として作用し、促進酸化処理部51a内でOHラジカルが発生する。
そして、促進酸化処理部51a内の水に含まれている有機化合物がこのOHラジカルによって分解処理される。
On the other hand, since the iron powder 91 is supplied into the accelerated oxidation treatment unit 51a, the surface of the iron powder 91 is dissolved by the nitric acid contained in the treated water W1, and ferrous ions are generated. Iron ions act as a catalyst on the hydrogen peroxide contained in the treated water, and OH radicals are generated in the accelerated oxidation treatment portion 51a.
And the organic compound contained in the water in the promotion oxidation process part 51a is decomposed | disassembled by this OH radical.

また、促進酸化処理部51a内では、鉄イオンの凝集作用によって促進酸化処理部51a内の水に含まれている微細な浮遊成分が凝集するが、上澄み水のみが仕切り壁53の上端を乗り越えて上澄み水貯留部51bに入る。
そして、上澄み水貯留部51bに入った上澄み水は、上澄み水貯留部51bに貯留された水と混ざり合い、再びポンプ6、被処理水供給ホース71を介してシャワーノズル7に被処理水として送られ、水滴化されて放電空間に供給される。
Further, in the accelerated oxidation treatment unit 51a, fine floating components contained in the water in the accelerated oxidation treatment unit 51a aggregate due to the aggregating action of iron ions, but only the supernatant water gets over the upper end of the partition wall 53. It enters into the supernatant water reservoir 51b.
Then, the supernatant water that has entered the supernatant water storage section 51b is mixed with the water stored in the supernatant water storage section 51b, and is sent again as treated water to the shower nozzle 7 via the pump 6 and the treated water supply hose 71. The water droplets are supplied to the discharge space.

最後に、所定時間経過し、十分に分解処理が行われたら、上澄み水貯留部51bの水は、そのまま放流され、促進酸化処理部51aでは、底に貯まった凝集沈澱物及び鉄粉の残渣がろ過分離されたのち、ろ液が放流される。   Finally, when the predetermined time has elapsed and the decomposition process is sufficiently performed, the water in the supernatant water storage unit 51b is discharged as it is, and the accelerated oxidation processing unit 51a removes the aggregated precipitate and iron powder residue stored at the bottom. After filtration and separation, the filtrate is discharged.

以上のように、この水処理装置1aは、放電空間内で発生するオゾンやラジカルで分解できなかった有機化合物を促進酸化処理部51aに鉄粉91を供給して残存処理対象物質を促進酸化させて分解するようにしたので、処理室2が小さいものであっても、処理効率が向上する。しかも、放電空間を大きく、かつ長くする必要がないので、放電に要する電気エネルギーも少なくすることができる。   As described above, the water treatment apparatus 1a supplies the iron powder 91 to the accelerated oxidation treatment unit 51a to promote oxidation of the residual treatment target substance by using the organic compounds that could not be decomposed by ozone or radicals generated in the discharge space. Therefore, even if the processing chamber 2 is small, the processing efficiency is improved. In addition, since it is not necessary to enlarge and lengthen the discharge space, the electrical energy required for the discharge can be reduced.

また、この水処理装置1aは、上記のように、処理室2内には、混合気体供給手段8aによって、酸素が25〜90容量%、窒素が残部である混合気体が充満するように供給されるので、OHラジカル、Oラジカルが多量に効率よく発生し、より処理を速く行うことができる。   Further, as described above, the water treatment apparatus 1a is supplied into the processing chamber 2 by the mixed gas supply means 8a so that the mixed gas in which oxygen is 25 to 90% by volume and nitrogen is the remainder is filled. Therefore, a large amount of OH radicals and O radicals are efficiently generated, and the treatment can be performed faster.

図3は、本発明にかかる水処理装置の第2の実施の形態をあらわしている。
図3に示すように、この水処理装置1bは、以下に説明する構成以外は、上記水処理装置1aと同様になっている。
FIG. 3 shows a second embodiment of the water treatment apparatus according to the present invention.
As shown in FIG. 3, the water treatment apparatus 1b is the same as the water treatment apparatus 1a except for the configuration described below.

すなわち、この水処理装置1bは、槽本体51が、仕切り壁55を介して完全に仕切られた被処理水貯槽51cを促進酸化処理部51aに隣接して備えている。
そして、被処理水貯槽51cの被処理水Wがホース71を介してシャワー7に送られるようになっている。
That is, in this water treatment apparatus 1b, the tank body 51 includes a water storage tank 51c that is completely partitioned through the partition wall 55, adjacent to the accelerated oxidation treatment section 51a.
And the to-be-processed water W of the to-be-processed water storage tank 51c is sent to the shower 7 via the hose 71.

促進酸化処理部51aの底には、散気管92が設けられ、ブロアー9bから送られる空気がこの散気管92から細かい気泡になってバブリングされるようになっている。
上澄み水貯槽51bが、排出管56を備え、上澄み水貯槽51b内の上澄み水W2を排出管56から放流できるようになっている。
An air diffuser 92 is provided at the bottom of the accelerated oxidation treatment unit 51a, and air sent from the blower 9b is bubbled from the air diffuser 92 into fine bubbles.
The supernatant water storage tank 51b is provided with a discharge pipe 56 so that the supernatant water W2 in the supernatant water storage tank 51b can be discharged from the discharge pipe 56.

この水処理装置1bは、上記のように、処理水W1が循環することなく、そのまま上澄み水W2として排水される。
そして、促進酸化処理部51aの底に散気管92が設けられ、ブロアー9bから送られる空気がこの散気管92から細かい気泡になってバブリングされるようになっているので、鉄粉91がより均一に分散状態で浮遊することになる。すなわち、鉄粉91が触媒として効率よく働くとともに、空気中の酸素が酸化剤として働き、より促進酸化を効率よく行うことができる。
As described above, the water treatment apparatus 1b is drained as the supernatant water W2 without circulating the treated water W1.
An air diffuser 92 is provided at the bottom of the accelerated oxidation treatment part 51a, and the air sent from the blower 9b is bubbled from the air diffuser 92 into fine bubbles, so that the iron powder 91 is more uniform. Will float in a dispersed state. That is, the iron powder 91 works efficiently as a catalyst, and oxygen in the air works as an oxidizing agent, so that accelerated oxidation can be performed more efficiently.

なお、本発明は、上記の実施の形態に限定されない。例えば、上記の実施の形態では、高電圧パルス発生装置を備えていたが、高電圧パルス発生装置は市販のものを別途容易するようにしても構わない。
また、上記の実施の形態では、水処理装置が、混合気体供給手段または、混合気体供給手段及び酸化剤供給手段の両方を備えていたが、混合気体供給手段及び酸化剤供給手段はなくても構わない。
The present invention is not limited to the above embodiment. For example, in the above embodiment, the high voltage pulse generator is provided, but a commercially available high voltage pulse generator may be separately provided.
In the above embodiment, the water treatment apparatus includes the mixed gas supply unit or both the mixed gas supply unit and the oxidant supply unit. However, the mixed gas supply unit and the oxidant supply unit may be omitted. I do not care.

上記の実施の形態では、被処理水を上方から水滴化して噴射するようにしていたが、円筒状電極がメッシュとなっている場合は、円筒状電極の側面方向から網目を介して円筒状電極内に水滴化された被処理水を供給するようにしても構わない。   In the above-described embodiment, the water to be treated is sprayed from above and sprayed. However, when the cylindrical electrode is a mesh, the cylindrical electrode is connected from the side of the cylindrical electrode through the mesh. The water to be treated may be supplied into the inside.

以下に、本発明の具体的な実施例を比較例と対比させて説明する。   Specific examples of the present invention will be described below in comparison with comparative examples.

(実施例1)
処理室2内に、6対の円筒状電極3及び線状電極4を、1対の円筒状電極3及び線状 電極4を中心にして、他の5対の円筒状電極3及び線状電極4を放射状に等間隔で並べ た以外は、図1に示す水処理装置1aを用い、以下の実験条件で被処理水W中の処理対 象物質としてのインディゴカルミンの分解処理を行い、紫外可視分光光度計(日立ハイ テクノロジーズ社製商品名U−1900)を用いて610nmでの吸光度によって、被 処理水Wの処理時間の経過に伴うインディゴカルミンの濃度変化を調べた。
〔実験条件〕
被処理水W中のインディゴカルミン初期濃度:約20ppm
被処理水W量:7リットル
被処理水Wの噴射速度(循環速度):14L/分
充電電圧:20kV
放電回数:100回/秒
円筒状電極3の性状:2.5メッシュ、線径1.1mm、開孔率79.5%、溶接金網
円筒状電極3の外径:39.5mm
円筒状電極3の長さ(中心軸方向の長さ):200mm×6本
被処理水ミストの粒径:750〜970μm
シャワーノズル7の噴角:30°
鉄粉:7g/L
シャワーノズル7から円筒状電極までの距離:被処理水ミストMの最外縁が最外部に位置する円筒状電極外縁の上端になるように調整した。
混合気体の酸素窒素比: 酸素:窒素=10:90
混合気体供給条件:混合気体を処理室2内に10L/分(常温・常圧)で供給した。
Example 1
In the processing chamber 2, six pairs of cylindrical electrodes 3 and linear electrodes 4 are centered on one pair of cylindrical electrodes 3 and linear electrodes 4, and the other five pairs of cylindrical electrodes 3 and linear electrodes are centered. Except that 4 are arranged radially at equal intervals, the water treatment apparatus 1a shown in FIG. 1 is used to decompose indigo carmine as a treatment target substance in the water W to be treated under the following experimental conditions, and ultraviolet visible Using a spectrophotometer (trade name U-1900, manufactured by Hitachi High-Technologies Corporation), the change in the concentration of indigo carmine with the lapse of the treatment time of the water to be treated W was examined by the absorbance at 610 nm.
[Experimental conditions]
Indigo carmine initial concentration in treated water W: about 20 ppm
Amount of treated water W: 7 liters Injection speed (circulation speed) of treated water W: 14 L / min Charging voltage: 20 kV
Number of discharges: 100 times / second Properties of cylindrical electrode 3: 2.5 mesh, wire diameter 1.1 mm, hole area ratio 79.5%, welded wire mesh Outer diameter of cylindrical electrode 3: 39.5 mm
Length of cylindrical electrode 3 (length in the central axis direction): 200 mm × 6 Particle diameter of water mist to be treated: 750 to 970 μm
Spray angle of shower nozzle 7: 30 °
Iron powder: 7g / L
Distance from shower nozzle 7 to cylindrical electrode: The outermost edge of the water mist M to be treated was adjusted to be the upper end of the outer edge of the cylindrical electrode located at the outermost part.
Oxygen / nitrogen ratio of the mixed gas: Oxygen: nitrogen = 10: 90
Mixed gas supply condition: The mixed gas was supplied into the processing chamber 2 at 10 L / min (normal temperature and normal pressure).

(比較例1)
鉄粉を用いなかった以外は、実施例1と同様にしてインディゴカルミンの濃度変化を調べた。
(Comparative Example 1)
The change in the concentration of indigo carmine was examined in the same manner as in Example 1 except that iron powder was not used.

上記実施例1及び比較例1で調べたインディゴカルミンの濃度変化の結果を図4に対比してあらわす。
図4に示すように、本発明の水処理方法を用いれば、すなわち、処理水貯槽に鉄粉を加えることにより分解処理速度が速くなることがよくわかる。
The result of the concentration change of indigo carmine examined in Example 1 and Comparative Example 1 is shown in comparison with FIG.
As shown in FIG. 4, it can be seen that the decomposition treatment speed is increased by using the water treatment method of the present invention, that is, by adding iron powder to the treated water storage tank.

(実験例1)
槽本体51内にイオン交換水のみを満たし、鉄粉を促進酸化処理部51aに供給しなかった以外は、上記実施例1と同様の処理条件で、水処理装置を稼動し、促進酸化処理部51a内の水中に溶け込んでいる過酸化水素濃度及び硝酸濃度の経時的変化を調べ、過酸化水素濃度の経時変化を図5に示し、硝酸濃度の経時的変化を図6に示した。
(Experimental example 1)
The water treatment apparatus was operated under the same processing conditions as in Example 1 above except that the tank body 51 was filled only with ion-exchanged water and the iron powder was not supplied to the accelerated oxidation treatment unit 51a. The time-dependent changes in the hydrogen peroxide concentration and nitric acid concentration dissolved in the water in 51a were examined. The time-dependent change in hydrogen peroxide concentration is shown in FIG. 5, and the time-dependent change in nitric acid concentration is shown in FIG.

図5及び図6から放電により過酸化水素及び硝酸が経時的に生成していることがわかる。   5 and 6 that hydrogen peroxide and nitric acid are generated over time by the discharge.

本発明の水処理装置は、特に限定されないが、例えば、有機物を含む排水の浄化、汚染水の殺菌などに用いることができる。   Although the water treatment apparatus of this invention is not specifically limited, For example, it can use for purification | cleaning of the waste_water | drain containing organic substance, disinfection of contaminated water, etc.

1a,1b 水処理装置
2 処理室
3 円筒状電極
4 線状電極
5a,5b 処理水貯槽
51 槽本体
51a 促進酸化処理部
51b 上澄み水貯留部
51c 被処理水貯槽
6 ポンプ
7 シャワーノズル(水滴化手段)
71 被処理水供給ホース(循環路)
8a 混合気体供給手段
81 酸素ボンベ
82 酸素供給配管
83 窒素ボンベ
84 窒素供給配管
85 ミキサー
86 混合気体供給配管
9a 鉄粉供給装置
91 鉄粉
9b ブロアー
92 散気管
10 高電圧パルス発生装置(高圧電源)
W 被処理水
W1 処理水
W2 上澄み水
M 被処理水ミスト
DESCRIPTION OF SYMBOLS 1a, 1b Water treatment apparatus 2 Processing chamber 3 Cylindrical electrode 4 Linear electrode 5a, 5b Treated water storage tank 51 Tank main body 51a Promotion oxidation processing part 51b Supernatant water storage part 51c To-be-processed water storage tank 6 Pump 7 Shower nozzle (water droplet forming means )
71 Untreated water supply hose (circulation path)
8a Mixed gas supply means 81 Oxygen cylinder 82 Oxygen supply pipe 83 Nitrogen cylinder 84 Nitrogen supply pipe 85 Mixer 86 Mixed gas supply pipe 9a Iron powder supply apparatus 91 Iron powder 9b Blower 92 Aeration pipe 10 High voltage pulse generator (high voltage power supply)
W treated water W1 treated water W2 supernatant water M treated water mist

Claims (8)

放電空間内に被処理水を水滴化して供給し、放電空間内で放電によって発生した活性種によって、水滴中の処理対象物質を分解処理するようにした水処理方法であって、
放電空間を通過して処理された水滴を処理水として処理水貯槽に貯めるとともに、処理水貯槽に貯まった処理水中に鉄粉を供給して処理水中の残存処理対象物質を促進酸化することを特徴とする水処理方法。
A water treatment method in which water to be treated is supplied as water droplets in a discharge space, and a treatment target substance in the water droplets is decomposed by active species generated by discharge in the discharge space,
Water droplets processed through the discharge space are stored in the treated water storage tank as treated water, and iron powder is supplied into the treated water stored in the treated water storage tank to promote oxidation of the remaining treatment target substances in the treated water. Water treatment method.
鉄粉が、粒径500μm以下の還元鉄粉である請求項1に記載の水処理方法。   The water treatment method according to claim 1, wherein the iron powder is reduced iron powder having a particle size of 500 μm or less. 酸素を処理水中にバブリングする請求項1または請求項2に記載の水処理方法。   The water treatment method according to claim 1 or 2, wherein oxygen is bubbled into the treated water. 放電空間内に被処理水を水滴化して供給し、放電空間内で放電によって発生した活性種によって、水滴中の処理対象物質を分解処理するようにした水処理装置であって、
放電空間を通過して処理された水滴を受けて処理水として貯める処理水貯槽と、この処理水貯槽に鉄粉を供給する鉄粉供給手段とを備えていることを特徴とする請求項1の水処理方法に用いる水処理装置。
A water treatment apparatus that supplies water to be treated into water droplets in the discharge space, and decomposes the substance to be treated in the water droplets by active species generated by discharge in the discharge space,
The treated water storage tank which receives the water droplet processed through the discharge space and stores it as treated water, and the iron powder supply means for supplying the iron powder to the treated water storage tank are provided. A water treatment apparatus used in a water treatment method.
処理水貯槽に酸素をバブリングする酸素供給手段を備えている請求項4に記載の水処理装置。   The water treatment apparatus according to claim 4, further comprising oxygen supply means for bubbling oxygen in the treated water storage tank. 少なくとも一対の円筒状電極及び線状電極と、円筒状電極と線状電極との間に高電圧を印加して放電空間を形成する高圧電源とを備えている請求項4または請求項5に記載の水処理装置。   6. The apparatus according to claim 4, further comprising at least a pair of cylindrical electrodes and linear electrodes, and a high-voltage power source that applies a high voltage between the cylindrical electrodes and the linear electrodes to form a discharge space. Water treatment equipment. 処理水貯槽が、処理水を貯留するとともに、残存処理対象物質を促進酸化する促進酸化処理部と、促進酸化処理部の上澄み水を貯める上澄み水貯留部とを備えている請求項4〜請求項6のいずれかに記載の水処理装置。   The treated water storage tank includes treated water, and an accelerated oxidation treatment unit that promotes oxidation of the remaining treatment target substance, and a supernatant water storage unit that stores supernatant water of the accelerated oxidation treatment unit. 6. The water treatment apparatus according to any one of 6. 処理水貯槽の処理水を再び放電空間に供給する循環路を備えている請求項4〜請求項7のいずれかに記載の水処理装置。   The water treatment apparatus according to any one of claims 4 to 7, further comprising a circulation path for supplying treated water from the treated water storage tank to the discharge space again.
JP2010128754A 2010-06-04 2010-06-04 Water treatment method and water treatment apparatus used for water treatment method Pending JP2011251275A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010128754A JP2011251275A (en) 2010-06-04 2010-06-04 Water treatment method and water treatment apparatus used for water treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010128754A JP2011251275A (en) 2010-06-04 2010-06-04 Water treatment method and water treatment apparatus used for water treatment method

Publications (1)

Publication Number Publication Date
JP2011251275A true JP2011251275A (en) 2011-12-15

Family

ID=45415658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010128754A Pending JP2011251275A (en) 2010-06-04 2010-06-04 Water treatment method and water treatment apparatus used for water treatment method

Country Status (1)

Country Link
JP (1) JP2011251275A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015146091A1 (en) * 2014-03-28 2015-10-01 ダイキン工業株式会社 Water treatment unit
US10035718B2 (en) 2015-01-20 2018-07-31 Mitsubishi Electric Corporation Water treatment apparatus and water treatment method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0466191A (en) * 1990-07-05 1992-03-02 Hidetoshi Sugimitsu Water cleaning method by ozone
JP2000279977A (en) * 1999-03-30 2000-10-10 Shinko Pantec Co Ltd Fluid treatment and fluid treatment apparatus
JP2003300083A (en) * 2002-04-10 2003-10-21 Kyowa Exeo Corp Waste water treatment method using iron powder
JP2009241055A (en) * 2008-03-12 2009-10-22 Sekisui Chem Co Ltd Water treating apparatus
JP2010063991A (en) * 2008-09-10 2010-03-25 Sekisui Chem Co Ltd Water treating apparatus
WO2010055729A1 (en) * 2008-11-12 2010-05-20 積水化学工業株式会社 Water treatment device
JP2011212511A (en) * 2010-03-31 2011-10-27 Sekisui Chem Co Ltd Method and apparatus for treating water to be treated

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0466191A (en) * 1990-07-05 1992-03-02 Hidetoshi Sugimitsu Water cleaning method by ozone
JP2000279977A (en) * 1999-03-30 2000-10-10 Shinko Pantec Co Ltd Fluid treatment and fluid treatment apparatus
JP2003300083A (en) * 2002-04-10 2003-10-21 Kyowa Exeo Corp Waste water treatment method using iron powder
JP2009241055A (en) * 2008-03-12 2009-10-22 Sekisui Chem Co Ltd Water treating apparatus
JP2010063991A (en) * 2008-09-10 2010-03-25 Sekisui Chem Co Ltd Water treating apparatus
WO2010055729A1 (en) * 2008-11-12 2010-05-20 積水化学工業株式会社 Water treatment device
JP2011212511A (en) * 2010-03-31 2011-10-27 Sekisui Chem Co Ltd Method and apparatus for treating water to be treated

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015146091A1 (en) * 2014-03-28 2015-10-01 ダイキン工業株式会社 Water treatment unit
JP2015188837A (en) * 2014-03-28 2015-11-02 ダイキン工業株式会社 water treatment unit
CN106103351A (en) * 2014-03-28 2016-11-09 大金工业株式会社 Unit for treating water
US9914650B2 (en) 2014-03-28 2018-03-13 Daikin Industries, Ltd. Water treatment unit
US10035718B2 (en) 2015-01-20 2018-07-31 Mitsubishi Electric Corporation Water treatment apparatus and water treatment method

Similar Documents

Publication Publication Date Title
Vanraes et al. Electrical discharge in water treatment technology for micropollutant decomposition
US6802981B2 (en) Method for purification and disinfection of water
US7704401B2 (en) Liquid treatment apparatus and liquid treatment method
US20070287917A1 (en) Method for Collapsing Microbubbles
Takahashi et al. Purification of high-conductivity water using gas–liquid phase discharge reactor
JP5099612B2 (en) Liquid processing equipment
US9409800B2 (en) Electric arc for aqueous fluid treatment
JP2005058887A (en) Waste water treatment apparatus using high-voltage pulse
Ghasemi et al. A review of pulsed power systems for degrading water pollutants ranging from microorganisms to organic compounds
JP2003320373A (en) Treating device by radical
Pereira et al. Simultaneous hydrodynamic cavitation and glow plasma discharge for the degradation of metronidazole in drinking water
JP2011251275A (en) Water treatment method and water treatment apparatus used for water treatment method
JP5534846B2 (en) Water treatment equipment
KR102052039B1 (en) Apparatus for purifying water based on electro-peroxone reaction
JP4934119B2 (en) Water treatment equipment
DE19951117A1 (en) High voltage direct current corona discharge in gas parallel to liquid surface breaks down organic impurities such as textile dye in waste water
Morimoto et al. Surfactant treatment using nanosecond pulsed powers and action of electric discharges on solution liquid
JP2001286866A (en) Purifying method of water containing soluble organic matters and trace harmful substance and device thereof
JP2013215682A (en) Water treatment method and water treatment apparatus used for the water treatment method
JP2000279977A (en) Fluid treatment and fluid treatment apparatus
JP2005013858A (en) Method and apparatus for treating wastewater using high voltage pulses
JP2014117639A (en) Method for decomposing dioxane in water to be treated
KR200407858Y1 (en) The multiple plasma treatment system of the waste water and air pollution
JP2005103391A (en) Wastewater treatment method and apparatus
JP2012024693A (en) Water treatment method and water treatment apparatus used for the water treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140306

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150310