JP5534846B2 - Water treatment equipment - Google Patents
Water treatment equipment Download PDFInfo
- Publication number
- JP5534846B2 JP5534846B2 JP2010029921A JP2010029921A JP5534846B2 JP 5534846 B2 JP5534846 B2 JP 5534846B2 JP 2010029921 A JP2010029921 A JP 2010029921A JP 2010029921 A JP2010029921 A JP 2010029921A JP 5534846 B2 JP5534846 B2 JP 5534846B2
- Authority
- JP
- Japan
- Prior art keywords
- water
- treated
- oxygen
- mixed gas
- water treatment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Water Treatment By Electricity Or Magnetism (AREA)
Description
本発明は、上水、下水、排水等に含有される有機物、無機物、微生物を放電により発生するラジカル、オゾン等の活性種により分解処理する水処理装置に関する。 The present invention relates to a water treatment apparatus for decomposing organic substances, inorganic substances, microorganisms contained in clean water, sewage, waste water and the like with active species such as radicals generated by electric discharge and ozone.
従来から、上水、下水、産業排水、プールなどの分野で、水中の有機物の酸化分解、殺菌、脱臭等の処理のためにオゾンが用いられている(特許文献1参照)。
しかしながら、オゾンは酸化力が弱く、親水化、低分子化はできても無機化することはできない。また、ダイオキシン等の難分解性有機物は分解できない。
Conventionally, ozone has been used for treatments such as oxidative decomposition, sterilization, and deodorization of organic substances in water in fields such as clean water, sewage, industrial wastewater, and pools (see Patent Document 1).
However, ozone has a weak oxidizing power and cannot be mineralized even if it can be made hydrophilic and low molecular. In addition, hardly decomposable organic substances such as dioxins cannot be decomposed.
そこで、処理能力を向上させるために、放電によりオゾンを発生させるとともに、オゾンより酸化力が強いOHラジカルやOラジカル等を発生させ、このオゾン及びラジカルを含む放電空間に被処理水を曝すことによって、オゾンだけでなく、ラジカルによっても酸化処理するようにした水処理装置が提案されている(特許文献2参照)。
しかし、ラジカルは寿命が短く、消滅しやすく、そのため効率が悪く、上記のような先に提案された水処理装置ではラジカルによる酸化作用を十分に発揮させることができない。
そこで、本発明の発明者は、接地電極である円筒電極の中心軸に沿って電圧印加電極である線状電極を設け、線状電極に高電圧を印加して両電極間で放電を生じさせるとともに、この放電場に被処理水を水滴状にして供給し、放電場内で生じるラジカルやオゾン等の活性種によって被処理水中の処理対象物質を分解処理するようにした水処理装置を先に提案している(特許文献3参照)。
すなわち、この水処理装置は、放電によってラジカルやオゾンをつぎつぎに発生させるとともに、被処理水を水滴化して、このラジカルやオゾンとの接触表面積を上げることによって処理効率を良くしている。
Therefore, in order to improve the treatment capacity, ozone is generated by discharge, and OH radicals and O radicals having oxidizing power stronger than ozone are generated, and the water to be treated is exposed to a discharge space containing the ozone and radicals. There has been proposed a water treatment apparatus that performs oxidation treatment not only by ozone but also by radicals (see Patent Document 2).
However, radicals have a short lifetime and tend to disappear, so that the efficiency is low, and the water treatment apparatus previously proposed cannot sufficiently exhibit the oxidizing action by radicals.
Therefore, the inventor of the present invention provides a linear electrode as a voltage application electrode along the central axis of the cylindrical electrode as a ground electrode, and applies a high voltage to the linear electrode to cause discharge between both electrodes. At the same time, we proposed a water treatment device that supplies treated water in the form of water droplets to this discharge field and decomposes the material to be treated in the treated water using active species such as radicals and ozone generated in the discharge field. (See Patent Document 3).
In other words, this water treatment apparatus generates radicals and ozone one after another by electric discharge, and improves the treatment efficiency by increasing the surface area of contact with the radicals and ozone by forming water to be treated into water droplets.
しかし、上記先に提案された水処理装置の場合、従来の方法に比べれば処理効率がよかったが、実用化するにあたってはさらに処理効率をよくすることが求められている。 However, in the case of the water treatment apparatus proposed above, the treatment efficiency was better than that of the conventional method, but it is required to further improve the treatment efficiency when put into practical use.
本発明は、上記事情に鑑みて、放電によって発生するラジカル等の活性種を被処理水に効率よく作用させて、処理速度を向上させることができる水処理装置を提供することを目的としている。 In view of the above circumstances, an object of the present invention is to provide a water treatment apparatus capable of improving the treatment speed by causing active species such as radicals generated by discharge to act on the water to be treated efficiently.
上記目的を達成するために、本発明の請求項1に記載の水処理装置(以下、「請求項1の水処理装置」と記す)は、被処理水を水滴化手段によって水滴化して、放電場を形成した処理室内に供給して水滴中の処理対象物質を分解処理する水処理装置であって、前記処理室に酸素を25〜90容量%含み、残部が窒素である混合気体を充満させる混合気体供給手段を備えていることを特徴としている。
請求項1の水処理装置において、混合気体の酸素濃度は、25〜90容量%(より好ましくは40〜90容量%)に限定されるが、その理由は、25容量%未満では、酸素濃度が薄く、OHラジカルやOラジカルの発生量が不足し、分解効率が悪くなり、90容量%を超えると分解効率は高いが、放電状態が安定しないためである。
請求項1の水処理装置において、混合気体を供給する方法としては、特に限定されないが、例えば、酸素ボンベ及び窒素ボンベからポンプを用いて酸素ガス及び窒素ガスを配管でそれぞれ処理室に送り、処理室内で混合する方法、酸素ガスの配管と窒素ガスの配管を途中で合流させて混合したのち、処理室内に送る方法などが挙げられる。また、PSA(Pressure Swing Adsorption)酸素濃縮装置及びブロワを用いて高濃度の酸素ガス及び空気を途中で合流させたのち、所定の濃度として処理室内に送る方法などが挙げられる。
In order to achieve the above object, a water treatment apparatus according to
In the water treatment apparatus according to
In the water treatment apparatus according to
また、本発明の水処理装置は、被処理水を水滴化する前工程で被処理水中に酸化剤を供給する手段を備えている構成もある。
酸化剤としては、特に限定されないが、例えば、酸素、オゾン、過酸化水素が挙げられる。
The water treatment equipment of the present invention is also configured to and a means for supplying an oxidizing agent in the water to be treated before the step of water droplets of water to be treated.
Although it does not specifically limit as an oxidizing agent, For example, oxygen, ozone, and hydrogen peroxide are mentioned.
酸化剤を供給する方法としては、特に限定されないが、例えば、液状の酸化剤の場合、液状酸化剤をタンクからポンプを用いて、被処理水を水滴化手段に送る配管中に供給する方法、液状の酸化剤をタンクからポンプを用いて、被処理水が貯められた前処理槽に供給する方法が挙げられ、ガス状の酸化剤の場合、ボンベから被処理水が貯められた前処理槽に供給してバブリングする方法などが挙げられる。また、オゾン発生装置により発生させたオゾンを被処理水が貯められた前処理槽に供給してバブリングする方法などが挙げられる。
As a method for supplying oxidation agent is not particularly limited, for example, in the case of a liquid oxidant, a liquid oxidant using a pump from a tank, a method of supplying in the piping for sending the water to be treated water drop means And a method of supplying a liquid oxidant from a tank to a pretreatment tank in which treated water is stored using a pump. In the case of a gaseous oxidant, pretreatment in which treated water is stored from a cylinder The method of supplying to a tank and bubbling is mentioned. Moreover, the method etc. which supply the ozone generated by the ozone generator to the pretreatment tank in which the to-be-processed water was stored, and bubbling are mentioned.
本発明において、処理対象物質としては、特に限定されないが、各種有機物、細菌や臭気成分が挙げられる。
本発明において、水滴化手段としては、特に限定されず、例えば、噴霧ノズルやシャワーノズルが挙げられる。
なお、上記水滴は、特に限定されないが、放電場内で発生するラジカル及びオゾンとの接触を高めるために、出来るだけ細かい水滴とすることが好ましい。
In the present invention, the substance to be treated is not particularly limited, and examples thereof include various organic substances, bacteria, and odor components.
In the present invention, the water droplet forming means is not particularly limited, and examples thereof include a spray nozzle and a shower nozzle.
In addition, although the said water droplet is not specifically limited, In order to improve the contact with the radical and ozone which generate | occur | produce within a discharge field, it is preferable to use a water droplet as fine as possible.
本発明において、放電方式は、高エネルギーの電子や紫外線が発生する放電が発生すれば、特に限定されないが、一方の電極を電圧印加電極とし、他方の電極を接地電極と、電圧印加電極に高圧パルス電圧を印加する方式が挙げられる。
上記電圧印加電極及び接地電極の材質は、特に限定されないが、耐食性を考慮するとチタンやステンレス鋼が好ましい。
In the present invention, the discharge method is not particularly limited as long as a discharge that generates high-energy electrons or ultraviolet rays occurs, but one electrode is a voltage application electrode, the other electrode is a ground electrode, and the voltage application electrode is a high voltage. A method of applying a pulse voltage can be mentioned.
The materials for the voltage application electrode and the ground electrode are not particularly limited, but titanium and stainless steel are preferable in consideration of corrosion resistance.
電極の形状は、特に限定されないが、接地電極の場合、特に限定されないが、円筒電極、円筒メッシュ電極などの円筒状電極、平板電極などが挙げられる。
一方、電圧印加電極の場合、例えば、接地電極が円筒状電極の場合、円筒状電極の中心軸に沿って設けられるワイヤー電極、ネジ状電極、剣山状電極、ワイヤーブラシ状電極などが挙げられ、接地電極が平板電極の場合、この平板電極に平行に設けられる平板電極が挙げられる。
The shape of the electrode is not particularly limited, but in the case of the ground electrode, it is not particularly limited, and examples thereof include a cylindrical electrode such as a cylindrical electrode and a cylindrical mesh electrode, and a flat plate electrode.
On the other hand, in the case of a voltage application electrode, for example, when the ground electrode is a cylindrical electrode, a wire electrode provided along the central axis of the cylindrical electrode, a screw electrode, a sword mountain electrode, a wire brush electrode, etc. When the ground electrode is a flat plate electrode, a flat plate electrode provided in parallel to the flat plate electrode is exemplified.
また、電圧印加電極及び接地電極は、処理室内に1対だけでなく複数対設けるようにしても構わない。 Further, a plurality of pairs of voltage application electrodes and ground electrodes may be provided in the processing chamber instead of only one pair.
電圧印加電極と接地電極との間に印加される放電電圧は、放電が起きる電圧であれば特に限定されない。 The discharge voltage applied between the voltage application electrode and the ground electrode is not particularly limited as long as it is a voltage at which discharge occurs.
さらに、本発明の水処理装置においては、被処理水を受けて貯める貯水槽と、この貯水槽に貯められた水を被処理水として供給手段に送るポンプとからなる被処理水循環構造を備えていてもよい。 Furthermore, the water treatment apparatus of the present invention includes a water treatment circulation structure comprising a water storage tank that receives and stores the water to be treated, and a pump that sends the water stored in the water storage tank to the supply means as the water to be treated. May be.
上記のように、請求項1の水処理装置は、処理室に、酸素を25〜90容量%含む酸素と他のガスとの混合気体を充満させる混合気体供給手段を備えているので、放電によって発生する高エネルギーの電子、紫外線が処理室内の高濃度な酸素分子に効率よく反応し、ラジカルを含む活性種が多量に発生し、この発生したラジカル等の活性種が水滴状の被処理水に確実に接触し、被処理水中の有機物に効率よく作用する。
したがって、被処理水中の有機物が、素早く、かつ、効率よく分解される。
As mentioned above, since the water treatment apparatus of
Therefore, the organic matter in the for-treatment water is decomposed quickly and efficiently.
また、被処理水を水滴化する前工程で被処理水中に酸化剤を供給する手段を備えていると、放電によって発生する高エネルギーの電子、紫外線が被処理水中に供給された、酸化剤としての酸素分子、オゾン分子あるいは過酸化水素分子に効率よく反応し、OHラジカルやOラジカル等の活性種を効率よく生成することができる。しかも、これらの生成した活性種は被処理水中で生成しているため、被処理水中に存在する処理対象物質に対して効率よく作用させることができる。したがって、被処理水中の有機物が、素早く、かつ、効率よく分解される。
Moreover, when provided with a means for supplying an oxidizing agent in the water to be treated before the step of water droplets of water to be treated, high-energy electrons generated by the discharge, ultraviolet light is supplied to the water to be treated as the oxidizing agent It is possible to efficiently generate active species such as OH radicals and O radicals by efficiently reacting with oxygen molecules, ozone molecules or hydrogen peroxide molecules. And since these produced | generated active species are produced | generated in to-be-processed water, it can be made to act efficiently with respect to the process target substance which exists in to-be-processed water. Therefore, the organic matter in the for-treatment water is decomposed quickly and efficiently.
すなわち、酸化剤として酸素を用いた場合、放電によって発生する高エネルギーの電子は、被処理水中に供給した酸素分子と反応し、Oラジカルを生成し、処理対象物質を効率よく分解することができる。 That is, when oxygen is used as the oxidant, high-energy electrons generated by discharge react with oxygen molecules supplied into the water to be treated, generate O radicals, and can efficiently decompose the material to be treated. .
また、酸化剤としてオゾンや過酸化水素を用いた場合、放電によって発生する紫外線が、被処理水中に供給したオゾン分子や過酸化水素分子に作用し、OHラジカルを生成し、処理対象物質を効率よく分解することができる。 In addition, when ozone or hydrogen peroxide is used as the oxidant, the ultraviolet rays generated by the discharge act on the ozone molecules and hydrogen peroxide molecules supplied into the water to be treated, generating OH radicals, making the target substance efficient. Can be decomposed well.
さらに、放電によって発生するオゾン分子は、被処理水中に供給した過酸化水素分子と反応し、OHラジカルを生成し、処理対象物質を効率よく分解することができる。 Furthermore, ozone molecules generated by the discharge react with hydrogen peroxide molecules supplied into the water to be treated, generate OH radicals, and can efficiently decompose the material to be treated.
以下に、本発明を、その実施の形態をあらわす図面を参照しつつ詳しく説明する。
図1は、本発明にかかる水処理装置(請求項1の水処理装置)の第1の実施の形態をあらわしている。
Hereinafter, the present invention will be described in detail with reference to the drawings showing embodiments thereof.
FIG. 1 shows a first embodiment of a water treatment apparatus according to the present invention (a water treatment apparatus according to claim 1).
図1に示すように、この水処理装置1aは、容器2と、円筒状電極3と、線状電極4と、貯槽としての被処理水タンク5と、ポンプ6と、水滴化手段としてのシャワーノズル7と、循環路となる被処理水供給ホース71と、混合気体供給手段8aと、被処理水タンク収容ボックス9と、高圧電源である高電圧パルス発生装置10と、を備えている。
容器2は、例えば、アクリル樹脂等の絶縁材料で形成され、円筒状をした処理室としての容器本体21と、容器本体21の下端を、通水孔22a部分を除いて閉鎖するように設けられた下部蓋部22と、容器本体21の上端を、シャワーノズル設置孔23a部分を除いて閉鎖するように設けられた上部蓋部23とを備え、下部蓋部22が被処理水タンク収容ボックス9の開口部91を塞いだ状態で被処理水タンク収容ボックス9の開口部91周縁に受けられている。
容器本体21の下端には、排気管25が設けられている。排気管25の途中または出口にはオゾン除去フィルター等のオゾン除去装置を設けることが好ましい。
As shown in FIG. 1, this
The
An
円筒状電極3は、例えば、ステンレス鋼製の2.5メッシュ、線径1.1mmの金網を円筒状に加工することによって得られ、外径が容器本体21の内径より少し小さくなっている。
線状電極4は、例えば、直径1mmのチタン鋼線で形成され、円筒状電極3の中心軸に沿うように設けられている。
The
The
被処理水タンク5は、下部蓋部22の通水孔22aを下方から臨むように被処理水タンク収容ボックス9内に収容されている。
ポンプ6は、被処理水タンク収容ボックス9内で被処理水タンク5に隣接して設けられ、被処理水タンク5内の被処理水Wを、被処理水供給ホース71を介してシャワーノズル7に送るようになっている。
The to-
The
シャワーノズル7は、被処理水供給ホース71を介して送られてきた被処理水を粒径が1500μm以下の水滴からなるミスト状態にして円筒状電極3の上部開口に向かって噴射するようになっている。
また、シャワーノズル7の噴角は、噴射される被処理水ミストMの最大広がり部で放電空間の最外縁である円筒状電極3の内壁面に沿うような角度に調整されている。
The
Moreover, the spray angle of the
混合気体供給手段8aは、酸素ボンベ81と、酸素供給管82と、窒素ボンベ83と、窒素供給管84と、ガスミキサー(例えば、マツモト機械社製、GM-A2)85と、混合気体供給管86とを備えている。
The mixed gas supply means 8a includes an
ガスミキサー85は、酸素ボンベ81から酸素供給管82を介して送られてきた酸素と、窒素ボンベ83から窒素供給管84を介して送られてきた窒素とを、酸素が25〜90容量%、窒素が残部となる所定の混合比率に混合するようになっている。
混合気体供給管86は、ミキサー85で混合されて得られた混合気体を容器本体21の上端部から容器本体21内に供給するようになっている。
The
The mixed
高電圧パルス発生装置10は、図2に示すように、高圧直流電源101、コンデンサ102、抵抗103、トリガトロンギャップスイッチ104、パルストランス105およびトリガ回路106を備えている。
As shown in FIG. 2, the high-
そして、高電圧パルス発生装置10は、以下のように動作する。
すなわち、高圧直流電源101からの電流が抵抗103を介してコンデンサ102に供給され、コンデンサ102が充電される。目標電圧までコンデンサ102が充電された後、トリガ回路106からの高電圧のトリガパルスによりトリガトロンギャップスイッチ104がオン状態になる。このとき、コンデンサ102に充電された電荷がパルストランス105の1次側に流れ込み、相互インダクタンスにより2次側にパルス状の誘起電圧が発生する。
The high
That is, the current from the high voltage
このようにしてパルストランス105の2次側に生じた高電圧パルスは、線状電極4と円筒状電極3との間に印加される。
すなわち、端子107が、線状電極4に導通状態にされ、端子108が円筒状電極3と導通状態にされる。
The high voltage pulse generated on the secondary side of the
That is, the terminal 107 is brought into conduction with the
端子107、108間に出力されるパルスの繰り返し数は、トリガ回路106におけるトリガパルスの出力頻度を変えることによって制御される。また出力パルスの電圧は、高圧直流電源101の出力電圧を切り替えることによって制御される。
The number of repetitions of pulses output between the
この水処理装置1aは、上記のようになっており、被処理水タンク5に有機物等を含む被処理水Wを仕込むとともに、高電圧パルス発生装置10によって、円筒状電極3と線状電極4との間に、高電圧をパルス状に印加し、円筒状電極3内に上下方向に円柱状となった放電空間を形成する。
そして、ポンプ6を駆動させて、被処理水タンク5内の被処理水Wを、ホース71を介してシャワーノズル7に送り、円筒状電極3の上方から円筒状電極3の中心軸方向に向かって噴射することによって被処理水Wを循環しながら処理するようになっている。
また、容器本体21内には、混合気体供給手段8aによって、酸素が25〜90容量%、窒素が残部である混合気体が充満するように供給される。
The
Then, the
The container
すなわち、この水処理装置1aは、放電によって、オゾン、OHラジカル、Oラジカル等の活性種が放電空間内に発生し、シャワーノズル7から噴射された被処理水ミストM中の水滴が円筒状をした放電空間内を落下していく間にこれら活性種に接触し、各水滴中の有機物が効率よく酸化分解処理されるのであるが、上記のように、容器本体21内には、混合気体供給手段8aによって、酸素が25〜90容量%、窒素が残部である混合気体が充満するように供給されるので、OHラジカル、Oラジカルが多量に効率よく発生し、従来に比べ処理を速く行うことができる。
That is, in the
図3は、他の水処理装置をあらわしている。
図3に示すように、この水処理装置1bは、混合気体供給手段8aに代えて、酸素供給手段8bを備えているとともに、タンク5が以下のような構成となっている以外は、その他の構成が上記第1の実施の形態の水処理装置1aと同様になっている。
すなわち、酸素供給手段8bは、酸素ボンベ87と、酸素供給管88とを備えている。
FIG. 3 shows another water treatment apparatus .
As shown in FIG. 3, this
That is, the oxygen supply means 8b includes an
被処理水タンク5は、酸化剤供給部55と、容器本体21を通って落ちてきた被処理水Wを受ける受槽部54とを備えている。酸化剤供給部55と、受槽部54とは、下端に処理水の連通孔53が設けられた仕切り51によって仕切られている。
酸化剤供給部55は、上部が閉じられていて、酸素供給手段8bの酸素供給管88から、内部の被処理水Wに酸素がバブリングされて、被処理水W中の溶存酸素量を増加させるようになっているとともに、上部に設けられた排気管52によって酸化剤供給部55内部の余剰酸素(酸化剤としてオゾンを用いた場合は余剰オゾン)を含むガスを被処理水タンク収容ボックス9外に排気できるようになっている。
The treated
The
そして、酸化剤供給部55は、上記のようにして溶存酸素量が増加した被処理水Wをポンプ6によって被処理水供給ホース71を介してシャワーノズル7に送るようになっている。なお、排気管52には、酸化剤としてオゾンを用いた場合は、その途中または出口にオゾン除去フィルター等のオゾン除去装置を設けることが好ましい。
受槽部54は、上部が開口していて、容器本体21内を通過した被処理水Wを受けるようになっている。
And the oxidizing
The receiving
この水処理装置1bは、上記のようになっており、被処理水タンク5に有機物等を含む被処理水Wを仕込むとともに、酸素供給手段8bによって酸化剤供給部55の被処理水Wに酸素をバブリングする。また、高電圧パルス発生装置10によって、円筒状電極3と線状電極4との間に、高電圧をパルス状に印加し、円筒状電極3内に上下方向に円柱状となった放電空間を形成するとともに、ポンプ6を駆動させて、酸化剤供給部55内の溶存酸素量が増加した被処理水Wを、ホース71を介してシャワーノズル7に送り、円筒状電極3の上方から円筒状電極3の中心軸方向に向かって噴射することによって被処理水Wを循環しながら処理するようになっている。
This
すなわち、この水処理装置1bは、放電によって、オゾン、OHラジカル、Oラジカル等の活性種が放電空間内に発生し、シャワーノズル7から噴射された被処理水ミストM中の水滴が円筒状をした放電空間内を落下していく間にこれら活性種に接触し、各水滴中の有機物が効率よく酸化分解処理されるのであるが、被処理水が水滴化される前に、被処理水中に、酸素が供給されて溶存酸素量が増加しているので、容器本体21内で放電によって発生する高エネルギーの電子は、被処理水中に供給した酸素分子と反応し、Oラジカルを生成し、処理対象物質を効率よく分解することができる。
That is, in the
また、この水処理装置1bは、被処理水タンク5が、仕切り51によって、酸素が供給される酸化剤供給部55と、容器本体21の下方で処理された水を受ける受槽部54とに仕切られ、仕切り51の下端に設けられた連通孔53のみを介して酸化剤供給部55と受槽部54とが連通しているだけであるので、酸化剤供給部55に供給された酸素(酸化剤としてオゾンを用いる場合は、オゾン)が受槽部54に入り込むことがない。すなわち、
被処理水タンク5内に供給された酸素が通水孔21aから容器本体21内に入り込むのを防止でき、溶存酸素のみの効果を把握することができる。しかし、溶存酸素のみの効果を把握する必要がない実際に水処理を行う上においては上記仕切り51を無くし、被処理水タンク5内に供給された酸素が通水孔21aから容器本体21内に入り込むようにしても構わない。
Further, in this
Oxygen supplied into the treated
なお、本発明は、上記の実施の形態に限定されない。例えば、上記の実施の形態では、高電圧パルス発生装置を備えていたが、高電圧パルス発生装置は市販のものを別途容易するようにしても構わない。
また、上記の実施の形態では、水処理装置が、混合気体供給手段を備えていたが、混合気体供給手段及び酸化剤供給手段の両方を備えていても構わない。
The present invention is not limited to the above embodiment. For example, in the above embodiment, the high voltage pulse generator is provided, but a commercially available high voltage pulse generator may be separately provided.
In the above embodiment, the water treatment apparatus includes the mixed gas supply unit. However, the water treatment apparatus may include both the mixed gas supply unit and the oxidant supply unit .
上記の実施の形態では、被処理水が循環するようになっていたが、循環させなくても構わない。
上記の実施の形態では、被処理水を上方から水滴化して噴射するようにしていたが、円筒状電極がメッシュとなっている場合は、円筒状電極の側面方向から網目を介して円筒状電極内に水滴化された被処理水を供給するようにしても構わない。
In the above embodiment, the water to be treated is circulated, but it is not necessary to circulate.
In the above-described embodiment, the water to be treated is sprayed from above and sprayed. However, when the cylindrical electrode is a mesh, the cylindrical electrode is connected from the side of the cylindrical electrode through the mesh. The water to be treated may be supplied into the inside.
以下に、本発明の具体的な実施例を比較例と対比させて説明する。 Specific examples of the present invention will be described below in comparison with comparative examples.
(実施例1)
図4に示すように、容器本体21内に円筒状電極3と線状電極4とを平行に6対備え た以外は、図1に示す水処理装置1aと同様の構成を備えた水処理装置を用い、以下の 実験条件で被処理水としてインディゴカルミンの分解処理を行い、紫外可視分光光度計 (島津製作所社製商品名UVmini−1240)を用いて610nmでの吸光度によ って、被処理水Wの処理時間の経過に伴うインディゴカルミンの濃度変化を調べた。
〔実験条件〕
被処理水W中のインディゴカルミン初期濃度:約20ppm
被処理水W量:7リットル
被処理水Wの噴射速度(循環速度):14L/分
充電電圧:20kV
放電回数:100回/秒
円筒状電極3の性状:2.5メッシュ、線径1.1mm、開孔率79.5%、溶接金網
円筒状電極3の外径:39.5mm
円筒状電極3の長さ(中心軸方向の長さ):200mm×6本
被処理水ミストの粒径:750〜970μm
シャワーノズル7の噴角:30°
シャワーノズル7から円筒状電極までの距離:被処理水ミストMの最外縁が最外部に位置する円筒状電極外縁の上端になるように調整した。
混合気体の酸素窒素比: 酸素:窒素=25:75
混合気体供給条件:混合気体を容器本体21内に10L/分(常温・常圧)で供給した。
Example 1
As shown in FIG. 4, a water treatment device having the same configuration as the
[Experimental conditions]
Indigo carmine initial concentration in treated water W: about 20 ppm
Amount of treated water W: 7 liters Injection speed (circulation speed) of treated water W: 14 L / min Charging voltage: 20 kV
Number of discharges: 100 times / second Properties of cylindrical electrode 3: 2.5 mesh, wire diameter 1.1 mm, hole area ratio 79.5%, welded wire mesh Outer diameter of cylindrical electrode 3: 39.5 mm
Length of cylindrical electrode 3 (length in the central axis direction): 200 mm × 6 Particle diameter of water mist to be treated: 750 to 970 μm
Spray angle of shower nozzle 7: 30 °
Distance from
Oxygen / nitrogen ratio of gas mixture: Oxygen: Nitrogen
Mixed gas supply conditions: The mixed gas was supplied into the container
(実施例2)
混合気体の酸素窒素比を、酸素:窒素=30:70とした以外は、実施例1と同様にしてインディゴカルミンの濃度変化を調べた。
(Example 2)
Changes in the concentration of indigo carmine were examined in the same manner as in Example 1 except that the oxygen-nitrogen ratio of the mixed gas was changed to oxygen: nitrogen = 30: 70.
(実施例3)
混合気体の酸素窒素比を、酸素:窒素=40:60とした以外は、実施例1と同様にしてインディゴカルミンの濃度変化を調べた。
(Example 3)
Changes in the concentration of indigo carmine were examined in the same manner as in Example 1 except that the oxygen-nitrogen ratio of the mixed gas was changed to oxygen: nitrogen = 40: 60.
(実施例4)
混合気体の酸素窒素比を、酸素:窒素=50:50とした以外は、実施例1と同様にしてインディゴカルミンの濃度変化を調べた。
Example 4
The change in the concentration of indigo carmine was examined in the same manner as in Example 1 except that the oxygen-nitrogen ratio of the mixed gas was changed to oxygen: nitrogen = 50: 50.
(実施例5)
混合気体の酸素窒素比を、酸素:窒素=60:40とした以外は、実施例1と同様にしてインディゴカルミンの濃度変化を調べた。
(Example 5)
Changes in the concentration of indigo carmine were examined in the same manner as in Example 1 except that the oxygen-nitrogen ratio of the mixed gas was changed to oxygen: nitrogen = 60: 40.
(実施例6)
混合気体の酸素窒素比を、酸素:窒素=70:30とした以外は、実施例1と同様にしてインディゴカルミンの濃度変化を調べた。
(Example 6)
Changes in the concentration of indigo carmine were examined in the same manner as in Example 1 except that the oxygen-nitrogen ratio of the mixed gas was changed to oxygen: nitrogen = 70: 30.
(実施例7)
混合気体の酸素窒素比を、酸素:窒素=80:20とした以外は、実施例1と同様にしてインディゴカルミンの濃度変化を調べた。
(Example 7)
The change in the concentration of indigo carmine was examined in the same manner as in Example 1 except that the oxygen-nitrogen ratio of the mixed gas was changed to oxygen: nitrogen = 80: 20.
(実施例8)
混合気体の酸素窒素比を、酸素:窒素=90:10とした以外は、実施例1と同様にしてインディゴカルミンの濃度変化を調べた。
(Example 8)
Changes in the concentration of indigo carmine were examined in the same manner as in Example 1 except that the oxygen-nitrogen ratio of the mixed gas was changed to oxygen: nitrogen = 90: 10.
(比較例1)
混合気体の酸素窒素比を、酸素:窒素=20:80とした以外は、実施例1と同様にしてインディゴカルミンの濃度変化を調べた。
(Comparative Example 1)
The change in the concentration of indigo carmine was examined in the same manner as in Example 1 except that the oxygen-nitrogen ratio of the mixed gas was changed to oxygen: nitrogen = 20: 80.
(比較例2)
混合気体の酸素窒素比を、酸素:窒素=10:90とした以外は、実施例1と同様にしてインディゴカルミンの濃度変化を調べた。
(Comparative Example 2)
Changes in the concentration of indigo carmine were examined in the same manner as in Example 1 except that the oxygen-nitrogen ratio of the mixed gas was changed to oxygen: nitrogen = 10: 90.
(比較例3)
混合気体に代えて、酸素のみを容器本体21に供給した以外は、実施例1と同様にしてインディゴカルミンの濃度変化を調べた。
(Comparative Example 3)
A change in the concentration of indigo carmine was examined in the same manner as in Example 1 except that only oxygen was supplied to the
(比較例4)
混合気体に代えて、窒素のみを容器本体21に供給した以外は、実施例1と同様にしてインディゴカルミンの濃度変化を調べた。
(Comparative Example 4)
A change in the concentration of indigo carmine was examined in the same manner as in Example 1 except that only nitrogen was supplied to the
(実施例9)
混合気体の容器本体21への供給量を4L/分とした以外は、実施例1と同様にしてインディゴカルミンの濃度変化を調べた。
Example 9
The change in the concentration of indigo carmine was examined in the same manner as in Example 1 except that the supply amount of the mixed gas to the container
(実施例10)
混合気体の容器本体21への供給量を20L/分とした以外は、実施例1と同様にしてインディゴカルミンの濃度変化を調べた。
(Example 10)
The change in the concentration of indigo carmine was examined in the same manner as in Example 1 except that the supply amount of the mixed gas to the
(実施例11)
混合気体の容器本体21への供給量を30L/分とした以外は、実施例1と同様にしてインディゴカルミンの濃度変化を調べた。
(Example 11)
The change in the concentration of indigo carmine was examined in the same manner as in Example 1 except that the supply amount of the mixed gas to the
(実施例12)
混合気体の容器本体への供給量を40L/分とした以外は、実施例1と同様にしてインディゴカルミンの濃度変化を調べた。
(Example 12)
The change in the concentration of indigo carmine was examined in the same manner as in Example 1 except that the supply amount of the mixed gas to the container body was 40 L / min.
(実施例13)
混合気体の容器本体21への供給量を50L/分とした以外は、実施例1と同様にしてインディゴカルミンの濃度変化を調べた。
(Example 13)
A change in the concentration of indigo carmine was examined in the same manner as in Example 1 except that the supply amount of the mixed gas to the
上記実施例4、比較例3及び比較例4における処理時間の経過に伴う被処理水Wのインディゴカルミン濃度変化を対比して図5に示した。
また、上記実施例1〜8及び比較例1〜4で調べた濃度変化の結果から分解速度、分解効率を求め、対比させて図6に示した。
FIG. 5 shows a comparison of the change in indigo carmine concentration of the water W to be treated with the passage of treatment time in Example 4, Comparative Example 3, and Comparative Example 4.
Moreover, the decomposition rate and decomposition efficiency were calculated | required from the result of the density | concentration change investigated in the said Examples 1-8 and Comparative Examples 1-4, and it compared and showed in FIG.
さらに、上記実施例1、実施例9〜13で調べた混合気体の供給量変化の結果から分解速度、分解効率を求め、対比させて図7に示した。
なお、分解効率(ppm/分/W)は、分解速度(ppm/分)を放電で消費された電力(W)で除した値とした。
Furthermore, the decomposition rate and the decomposition efficiency were obtained from the results of the change in the supply amount of the mixed gas investigated in Example 1 and Examples 9 to 13, and are shown in FIG.
The decomposition efficiency (ppm / min / W) was a value obtained by dividing the decomposition rate (ppm / min) by the power (W) consumed by the discharge.
図5から、比較例4のように、窒素のみを供給し、容器本体21をほぼ酸素がない状態にすると、インディゴカルミンの分解速度が僅かしか進まず、酸素のみを供給し、容器本体21内をほぼ酸素100容量%にしても、酸素50容量%の混合気体を容器本体21内に充満させた場合に比べ分解処理速度が遅くなることがよくわかる。
また、酸素100容量%の場合には、放電が安定せずスパーク放電が認められたことから安全性の面からも問題がある。
From FIG. 5, as in Comparative Example 4, when only nitrogen is supplied and the
Further, in the case of 100% by volume of oxygen, there is a problem in terms of safety because the discharge is not stable and spark discharge is recognized.
また、図6から、分解速度は、酸素の混合比率が50容量%になるまではほぼ直線的によくなり、50容量%〜100容量%未満ではほぼ横ばい状態になり、100容量%にすると却って酸素50〜90容量%の混合気体を容器本体21内に充満させた場合に比べ減少することがわかる。分解効率は、酸素の混合比率が40容量%になるまではほぼ直線的によくなり、40容量%〜100容量%未満ではほぼ横ばい状態になり、100容量%にすると却って分解効率が酸素40〜90容量%の混合気体を容器本体21内に充満させた場合に比べ減少することがわかる。
すなわち、酸素濃度が空気以上の濃度の25%以上にすることで分解速度および分解効率はほぼ直線的に上昇する。また、分解速度は、酸素:窒素=50:50〜90:10、分解効率は、酸素:窒素=40:60〜90:10の混合気体を用いれば、最も高いことがわかる。よって、空気に相当する酸素の混合比率21容量%と比較すると、それ以上にすれば分解速度、分解効率とも高くなることがわかる。
Further, from FIG. 6, the decomposition rate is improved almost linearly until the oxygen mixing ratio reaches 50% by volume, becomes almost flat when the mixing rate is less than 50% by volume to less than 100% by volume, and when it is set to 100% by volume. It turns out that it reduces compared with the case where the mixed gas of oxygen 50-90 volume% is filled in the container
That is, when the oxygen concentration is 25% or more of the concentration higher than that of air, the decomposition rate and decomposition efficiency increase almost linearly. The decomposition rate is highest when oxygen: nitrogen = 50: 50 to 90:10 and the decomposition efficiency is oxygen: nitrogen = 40: 60 to 90:10. Therefore, it can be seen that the decomposition rate and the decomposition efficiency become higher if the oxygen mixing ratio corresponding to air is 21% by volume if the oxygen mixing ratio is higher than that.
さらに、図7から、混合気体の混合比が一定であれば混合気体の供給量が、分解効率にあまり影響しないことがわかる。 Furthermore, it can be seen from FIG. 7 that if the mixture ratio of the mixed gas is constant, the supply amount of the mixed gas does not significantly affect the decomposition efficiency.
(参考例1)
図4に示すように、容器本体21内に円筒状電極3と線状電極4とを平行に6対備えた以外は、図3に示す水処理装置1bと同様の構成を備えた水処理装置を用い、以下の実験条件で被処理水としてインディゴカルミンの処理を行い、処理時間の経過に伴う被処理水のインディゴカルミン濃度変化を調べ、その結果を図8に示した。
〔実験条件〕
被処理水W中のインディゴカルミン初期濃度:約20ppm
被処理水W量:7リットル
被処理水Wの噴射速度(循環速度):14L/分
充電電圧:20kV
放電回数:100回/秒
円筒状電極3の性状:2.5メッシュ、線径1.1mm、開孔率79.5%、溶接金網
円筒状電極3の外径:39.5mm
円筒状電極3の長さ(中心軸方向の長さ):200mm×6本
被処理水ミストの粒径:750〜970μm
シャワーノズル7の噴角:30°
シャワーノズル7から円筒状電極までの距離:被処理水ミストMの最外縁が最外部に位置する円筒状電極外縁の上端になるように調整した。
酸化剤供給条件:酸素供給手段8bを用いて酸素を1L/分で供給した。
容器本体21内に窒素を4L/分で供給した。
( Reference Example 1 )
As shown in FIG. 4, a water treatment device having the same configuration as the
[Experimental conditions]
Indigo carmine initial concentration in treated water W: about 20 ppm
Amount of treated water W: 7 liters of treated water W injection speed (circulation speed): 14 L / min Charging voltage: 20 kV
Number of discharges: 100 times / second Properties of cylindrical electrode 3: 2.5 mesh, wire diameter 1.1 mm, hole area ratio 79.5%, welded wire mesh Outer diameter of cylindrical electrode 3: 39.5 mm
Length of cylindrical electrode 3 (length in the central axis direction): 200 mm × 6 Particle diameter of water mist to be treated: 750 to 970 μm
Spray angle of shower nozzle 7: 30 °
Distance from
Oxidant supply conditions: Oxygen was supplied at 1 L / min using the oxygen supply means 8b.
Nitrogen was supplied into the container
(参考例2)
酸化剤供給条件として、オゾン発生装置(野村電子工業社製N15)を用いて酸化剤としてのオゾンを発生させ、このオゾンが50ppm含まれた空気を1L/分で被処理水タンクにバブリングした以外は実施例1と同様にしてインディゴカルミンの処理を行い、処理時間の経過に伴う被処理水のインディゴカルミン濃度変化を調べ、その結果を図9に示した。
( Reference Example 2 )
As an oxidant supply condition, ozone as an oxidant was generated using an ozone generator (N15 manufactured by Nomura Electronics Co., Ltd.), and air containing 50 ppm of ozone was bubbled into the water tank to be treated at 1 L / min. Was treated with indigo carmine in the same manner as in Example 1, the change in indigo carmine concentration of the water to be treated with the lapse of the treatment time was examined, and the result is shown in FIG.
(参考例3)
酸化剤供給条件として、酸化剤としての過酸化水素水を被処理水中に過酸化水素濃度が100ppmとなるように溶解した以外は実施例1と同様にしてインディゴカルミンの処理を行い、処理時間の経過に伴う被処理水のインディゴカルミン濃度変化を調べ、その結果を図10に示した。
( Reference Example 3 )
As the oxidizing agent supply condition, indigo carmine was treated in the same manner as in Example 1 except that hydrogen peroxide water as the oxidizing agent was dissolved in the water to be treated so that the hydrogen peroxide concentration was 100 ppm. Changes in the indigo carmine concentration of the water to be treated with the progress were examined, and the results are shown in FIG.
上記比較例4のように酸化剤を加えず、容器本体21内が窒素で置換されている場合は、インディゴカルミンの分解速度が僅かである(図5及び図6参照)が、図8〜図10に示すように、被処理水を水滴化して容器本体21内に供給する前に被処理水に予め酸化剤を供給しておくようにすると、インディゴカルミンの分解速度が飛躍的に速くなることがわかる。
When the oxidizing agent is not added and the inside of the
本発明の水処理装置は、特に限定されないが、例えば、有機物を含む排水の浄化、汚染水の殺菌などに用いることができる。 Although the water treatment apparatus of this invention is not specifically limited, For example, it can use for purification | cleaning of the waste_water | drain containing organic substance, disinfection of contaminated water, etc.
1a,1b 水処理装置
2 容器
21 容器本体(処理室)
3 円筒状電極
4 線状電極
5 被処理水タンク(貯槽)
6 ポンプ
7 シャワーノズル(水滴化手段)
71 被処理水供給ホース(循環路)
8a 混合気体供給手段
81 酸素ボンベ
82 酸素供給配管
83 窒素ボンベ
84 窒素供給配管
85 ミキサー
86 混合気体供給配管
8b 酸素供給手段(酸化剤供給手段)
87 酸素ボンベ
88 酸素供給配管
10 高電圧パルス発生装置(高圧電源)
W 被処理水
M 被処理水ミスト
1a, 1b
3
6
71 Untreated water supply hose (circulation path)
8a Mixed gas supply means 81
87
W Treated water M Treated water mist
Claims (5)
前記処理室に酸素を25〜90容量%含み、残部が窒素である混合気体を充満させる混合気体供給手段を備えていることを特徴とする水処理装置。 A water treatment apparatus that decomposes water to be treated into water droplets by means of water droplets, supplies the water into a treatment chamber in which a discharge field is formed, and decomposes the target substance in the water droplets,
Water treatment device, characterized in that oxygen 25 to 90 volume% seen including in the processing chamber, and a mixed gas supply means for filling the mixed gas balance being nitrogen.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010029921A JP5534846B2 (en) | 2010-02-15 | 2010-02-15 | Water treatment equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010029921A JP5534846B2 (en) | 2010-02-15 | 2010-02-15 | Water treatment equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011161412A JP2011161412A (en) | 2011-08-25 |
JP5534846B2 true JP5534846B2 (en) | 2014-07-02 |
Family
ID=44592736
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010029921A Expired - Fee Related JP5534846B2 (en) | 2010-02-15 | 2010-02-15 | Water treatment equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5534846B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107207291A (en) * | 2015-01-21 | 2017-09-26 | 三菱电机株式会社 | Water treatment facilities and method for treating water |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6322477B2 (en) | 2014-05-20 | 2018-05-09 | 国立大学法人 熊本大学 | Apparatus and method for treating water containing organic matter |
JP6129447B2 (en) * | 2015-01-21 | 2017-05-17 | 三菱電機株式会社 | Water treatment apparatus and water treatment method |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007203147A (en) * | 2006-01-31 | 2007-08-16 | Ehime Univ | Water treatment process and ozone water |
JP2009241055A (en) * | 2008-03-12 | 2009-10-22 | Sekisui Chem Co Ltd | Water treating apparatus |
-
2010
- 2010-02-15 JP JP2010029921A patent/JP5534846B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107207291A (en) * | 2015-01-21 | 2017-09-26 | 三菱电机株式会社 | Water treatment facilities and method for treating water |
CN107207291B (en) * | 2015-01-21 | 2018-10-02 | 三菱电机株式会社 | Water treatment facilities and method for treating water |
Also Published As
Publication number | Publication date |
---|---|
JP2011161412A (en) | 2011-08-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7704401B2 (en) | Liquid treatment apparatus and liquid treatment method | |
JP5099612B2 (en) | Liquid processing equipment | |
WO2010055729A1 (en) | Water treatment device | |
US20140054242A1 (en) | Liquid treating apparatus and liquid treating method | |
US9409800B2 (en) | Electric arc for aqueous fluid treatment | |
KR20120022621A (en) | Water treatment apparatus using plasma | |
JP4073240B2 (en) | Radical treatment equipment | |
JP5534846B2 (en) | Water treatment equipment | |
JP2009241055A (en) | Water treating apparatus | |
JP2014159008A (en) | Water treatment apparatus | |
JP4934119B2 (en) | Water treatment equipment | |
JP6157763B2 (en) | Water treatment apparatus and water treatment method | |
JP2014117639A (en) | Method for decomposing dioxane in water to be treated | |
JP6178522B2 (en) | Wastewater purification system using high voltage discharge and fine bubbles | |
JP2013215682A (en) | Water treatment method and water treatment apparatus used for the water treatment method | |
JP2012196621A (en) | Water sterilization apparatus and water sterilization method | |
US20190169051A1 (en) | Liquid treatment device | |
JP2011251275A (en) | Water treatment method and water treatment apparatus used for water treatment method | |
JP2011067790A (en) | Water treatment apparatus | |
Sato et al. | Decomposition of phenol in water using water surface plasma in wetted-wall reactor | |
Muzafarov et al. | Disinfection of drinking water with ozone by the method of electrodispersion | |
KR20220012035A (en) | Submerged arc plasma coupled with ozone generator for wastewater treatment | |
JP2011255263A (en) | Water treatment method and water treatment apparatus used for the same | |
JP2012024693A (en) | Water treatment method and water treatment apparatus used for the water treatment method | |
KR101409654B1 (en) | The water treatment using plasma discharge device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130206 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20131030 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20131119 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140114 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140325 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140422 |
|
LAPS | Cancellation because of no payment of annual fees |