JP2014117639A - Method for decomposing dioxane in water to be treated - Google Patents

Method for decomposing dioxane in water to be treated Download PDF

Info

Publication number
JP2014117639A
JP2014117639A JP2012273348A JP2012273348A JP2014117639A JP 2014117639 A JP2014117639 A JP 2014117639A JP 2012273348 A JP2012273348 A JP 2012273348A JP 2012273348 A JP2012273348 A JP 2012273348A JP 2014117639 A JP2014117639 A JP 2014117639A
Authority
JP
Japan
Prior art keywords
water
treated
dioxane
cylindrical electrode
injection nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012273348A
Other languages
Japanese (ja)
Inventor
Yuzo Yokoyama
祐三 横山
Hideaki Takezaki
秀昭 竹崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2012273348A priority Critical patent/JP2014117639A/en
Publication of JP2014117639A publication Critical patent/JP2014117639A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for decomposing dioxane that makes an active species such as radicals efficiently function on water to be treated containing dioxane to decompose the dioxane in the water to be treated.SOLUTION: In a water treatment method, dioxane contained in water W to be treated is decomposed in a discharge space formed by applying high voltage between a cylindrical electrode 3 and a wire electrode 4 disposed in the cylinder of the cylindrical electrode 3 in a treatment chamber 2. The water W to be treated is supplied in a mist state composed of water droplets M of a particle size of 1,500 μm or less.

Description

本発明は、ジオキサンを含む被処理水中のジオキサンを分解処理する被処理水中のジオキサン分解処理方法に関する。   The present invention relates to a dioxane decomposition treatment method in water to be treated for decomposing dioxane in water to be treated containing dioxane.

ジオキサン、特に、1,4−ジオキサンは、塩素系溶剤の安定剤、抽出・反応用溶剤(動物性および植物性油脂の抽出、パルプ化、ワックス、ニス、ラッカー、接着剤、保湿剤、ゴム、プラスチック、医薬品、化粧品、除草剤、殺虫剤、脱臭くん蒸剤)、洗浄用溶剤等に用いられている。
このジオキサンは、発ガン性など人体や生態系に影響を及ぼすおそれが大きいため、工場排水の水質基準が設けられている。
Dioxane, especially 1,4-dioxane, is a chlorinated solvent stabilizer, extraction and reaction solvent (extraction of animal and vegetable oils, pulping, wax, varnish, lacquer, adhesive, moisturizer, rubber, It is used in plastics, pharmaceuticals, cosmetics, herbicides, insecticides, deodorizing fumigants), cleaning solvents and the like.
Since this dioxane has a large possibility of affecting the human body and ecosystem such as carcinogenicity, water quality standards for factory wastewater are established.

一方、従来から、上水、下水、産業排水、プールなどの分野で、水中の有機物の酸化分解、殺菌、脱臭等の処理のためにオゾンが用いられている(特許文献1参照)。
しかしながら、オゾンは酸化力が弱く、難分解性物質であるジオキサンは、分解したとしても非常に長い時間がかかり、ジオキサンの分解処理にオゾンのみを用いた処理方法
を用いることは実用性に乏しい。
On the other hand, ozone has been conventionally used for treatments such as oxidative decomposition, sterilization, and deodorization of organic substances in water in fields such as clean water, sewage, industrial wastewater, and pools (see Patent Document 1).
However, ozone has weak oxidizing power, and dioxane, which is a hardly decomposable substance, takes a very long time even if decomposed, and it is not practical to use a treatment method using only ozone for the decomposition treatment of dioxane.

他方、処理能力を向上させるために、促進酸化処理(AOP)法を用いた処理装置が提案されている(特許文献2参照)。
すなわち、促進酸化処理は、被処理水中に、オゾンを注入するとともに、紫外線を被処理水に照射して、被処理水中にオゾンより酸化力が強いOHラジカルやOラジカル等を発生させ、このオゾン及びラジカルに被処理水を曝すことによって、オゾンだけでなく、ラジカルによっても酸化処理するようになっている。
On the other hand, in order to improve the processing capability, a processing apparatus using an accelerated oxidation process (AOP) method has been proposed (see Patent Document 2).
That is, the accelerated oxidation treatment injects ozone into the water to be treated and irradiates the water to be treated with ultraviolet rays to generate OH radicals, O radicals, and the like having higher oxidizing power than ozone in the water to be treated. In addition, by exposing the water to be treated to radicals, oxidation treatment is performed not only by ozone but also by radicals.

特開平9−267096号公報号公報Japanese Patent Laid-Open No. 9-267096 特開2000−279977号公報JP 2000-279977 A

しかし、上記ラジカルは、寿命が短く、消滅しやすいため、ラジカルの発生量が少ない上記促進酸化処理方法では、ラジカルによる酸化作用を十分に発揮させることができない。
しかも、促進酸化処理はオゾン発生装置にさらに過酸化水素水添加装置や紫外線照射ランプ等の付加設備が必要であり、本質的に高価となるため、設備コストおよびランニングコストが高くなるという課題がある。
However, since the radical has a short lifetime and is likely to disappear, the accelerated oxidation treatment method that generates a small amount of radicals cannot sufficiently exert the oxidizing action by the radical.
In addition, the accelerated oxidation treatment requires additional equipment such as a hydrogen peroxide solution addition device and an ultraviolet irradiation lamp in addition to the ozone generator, and is inherently expensive, so that the equipment cost and running cost are high. .

本発明は、上記事情に鑑みて、ラジカル等の活性種をジオキサンを含む被処理水に効率よく作用させて、被処理水中のジオキサンを分解処理することができるジオキサン分解処理方法を提供することを目的としている。   In view of the above circumstances, the present invention provides a dioxane decomposition treatment method capable of decomposing dioxane in water to be treated by causing active species such as radicals to efficiently act on water to be treated containing dioxane. It is aimed.

上記目的を達成するために、本発明にかかる被処理水中のジオキサン分解処理方法(以下、「本発明の処理方法」と記す)は、被処理水中に含まれるジオキサンを分解する水処理方法であって、円筒状電極とこの円筒状電極の円筒内を臨むように配置された線状電極との間に高電圧を印加することによって生じる放電空間内に被処理水を粒径が1500μm以下の水滴からなるミスト状態にして供給することを特徴としている。 In order to achieve the above object, the method for decomposing dioxane in water to be treated according to the present invention (hereinafter referred to as “treatment method of the present invention”) is a water treatment method for decomposing dioxane contained in water to be treated. Water droplets having a particle diameter of 1500 μm or less in the discharge space generated by applying a high voltage between the cylindrical electrode and the linear electrode arranged so as to face the cylinder of the cylindrical electrode It is characterized by being supplied in a mist state consisting of

なお、本発明の処理方法おいて、上記被処理水ミストを構成する水滴の粒径は、1500μm以下(好ましくは10μm以上1500μm以下)に限定されるが、その理由は、粒径が大きくなりすぎると、放電空間のプラズマに接触する体積あたりの表面積が小さくなり、処理効率が悪くなるためである。
本発明の処理方法によって処理されるジオキサンとは、1,4−ジオキサン、1,2−ジオキサン、1,3−ジオキサンが挙げられる。
In the treatment method of the present invention, the particle size of the water droplets constituting the treated water mist is limited to 1500 μm or less (preferably 10 μm to 1500 μm), because the particle size becomes too large. This is because the surface area per volume contacting the plasma in the discharge space is reduced, and the processing efficiency is degraded.
Examples of the dioxane treated by the treatment method of the present invention include 1,4-dioxane, 1,2-dioxane, and 1,3-dioxane.

本発明において、水滴の粒径の測定方法は液浸法による。水滴はシリコンオイルを満たしたシャーレに、シャーレの上部に設置した噴射ノズルの先端から水滴を噴霧し、噴射軸に対して垂直に置かれたシャーレにより採取した。採取した水滴は素早く撮像し、サイズ毎の粒径をカウントし、ザウター平均粒径を求め水滴の粒径とした。   In the present invention, the method for measuring the particle size of the water droplets is based on an immersion method. Water droplets were sprayed onto a petri dish filled with silicon oil from the tip of an injection nozzle installed at the top of the petri dish and collected by a petri dish placed perpendicular to the injection axis. The collected water droplets were quickly imaged, the particle size for each size was counted, and the Sauter average particle size was obtained as the particle size of the water droplets.

本発明の処理方法において、被処理水を粒径が1500μm以下の水滴からなるミスト状態にして供給する方法としては、被処理水を粒径が1500μm以下の水滴からなるミスト状態にすることができれば、特に限定されないが、例えば、噴射ノズルから噴射する方法、加熱式、超音波式などの蒸気発生装置により水蒸気化して供給する方法が挙げられ、コスト的に噴射ノズルから噴射する方法が好ましい。
上記のように、被処理水ミストを噴射ノズルから噴射させる場合においては、例えば、放電空間の上から下側、放電空間の下側から放電空間に向かって上側、放電空間の側方から放電空間に向かって噴射することができるが、より効率よく水滴を放電空間内に供給できることから、上から下側に向かって噴射することが好ましい。
In the treatment method of the present invention, as a method for supplying the water to be treated in a mist state composed of water droplets having a particle diameter of 1500 μm or less, the water to be treated can be made into a mist state comprising water droplets having a particle diameter of 1500 μm or less. Although not particularly limited, for example, a method of injecting from an injection nozzle, a method of supplying by steaming with a steam generator such as a heating type or an ultrasonic type, and the like, and a method of injecting from an injection nozzle are preferable in terms of cost.
As described above, when the water mist to be treated is ejected from the ejection nozzle, for example, the discharge space from the upper side to the lower side of the discharge space, the upper side from the lower side of the discharge space to the discharge space, and the discharge space from the side of the discharge space. However, since water droplets can be supplied into the discharge space more efficiently, it is preferable to spray from the top to the bottom.

また、噴射ノズルから噴射される被処理水ミストの最外縁を放電空間の最外縁に沿うように噴射ノズルの噴角を調整することが好ましい。
すなわち、放電空間の最外縁より外側まで広がるように噴射させても効率が落ちるとともに、容器の内壁面にぶつかり、大きな水滴となり内壁面に沿って流れ落ちてより効率が悪くなるおそれがある。
Moreover, it is preferable to adjust the injection angle of the injection nozzle so that the outermost edge of the to-be-treated water mist injected from the injection nozzle is along the outermost edge of the discharge space.
That is, even if it is sprayed so as to spread to the outside from the outermost edge of the discharge space, the efficiency is lowered, and it may hit the inner wall surface of the container, become large water droplets and flow down along the inner wall surface, and there is a possibility that the efficiency becomes worse.

なお、本発明において、噴角(噴霧角度)とは、ノズルから噴射された被処理水ミスト中の水滴は放物線をえがきつつ落下するため、ノズルの噴射口から出た直後の被処理水ミストの広がり角度を意味する。   In the present invention, the spray angle (spray angle) means that the water droplets in the treated water mist ejected from the nozzle fall while marking the parabola, and therefore the treated water mist immediately after coming out of the nozzle ejection port. Means the spread angle.

さらに、本発明の処理方法において、噴射ノズルの数は、特に限定されず、1つ以上備えていればよい。
また、円筒状電極及び線状電極を2対以上備えるような場合は、噴射ノズルは2つ以上備えていてもよいが、円筒状電極及び線状電極を複数対設ける場合、噴射ノズルの数を最小限にし、効率よく分解処理するために、各円筒状電極の中心軸が噴射ノズルの噴射軸方向と平行になるように配置し、噴射ノズルの噴射軸から遠い位置に配置された円筒状電極の噴射ノズル側端面が噴射軸に近い位置に配置された円筒状電極の噴射ノズル側端面に比べ、噴射ノズルから遠い位置に設けられている構成とすることが好ましい。
Furthermore, in the processing method of the present invention, the number of spray nozzles is not particularly limited, and it is sufficient that one or more spray nozzles are provided.
In addition, when two or more pairs of cylindrical electrodes and linear electrodes are provided, two or more spray nozzles may be provided. However, when a plurality of pairs of cylindrical electrodes and linear electrodes are provided, the number of spray nozzles is set. In order to minimize and efficiently disassemble the cylindrical electrode, the cylindrical electrode is arranged so that the central axis of each cylindrical electrode is parallel to the injection axis direction of the injection nozzle and located far from the injection axis of the injection nozzle. It is preferable that the injection nozzle side end face is provided at a position farther from the injection nozzle than the injection nozzle side end face of the cylindrical electrode arranged at a position close to the injection axis.

円筒状電極及び線状電極の材質は、導電性があり耐食性に優れたものであれば、特に限定されないが、ステンレス鋼が好適である。   The material of the cylindrical electrode and the linear electrode is not particularly limited as long as it is conductive and excellent in corrosion resistance, but stainless steel is preferable.

また、円筒状電極は、円筒状電極が被処理水ミストを構成する水滴が通過可能な大きさの開口を周壁に備えていることが好ましい。
上記のように、開口を設ける場合、円筒状電極の開口率は、処理効率を考えると、周壁全体の50%以上であることが好ましい。
Moreover, it is preferable that the cylindrical electrode is equipped with the opening of the magnitude | size which can pass the water droplet which a cylindrical electrode comprises to-be-processed water mist in a surrounding wall.
As described above, when the opening is provided, the opening ratio of the cylindrical electrode is preferably 50% or more of the entire peripheral wall in consideration of the processing efficiency.

上記のような開口を設けた円筒状電極としては、特に限定されないが、たとえば、金網、パンチングメタルを円筒状に成形した多数の孔を備えたもの、線状材をコイル状に巻回した螺旋状に繋がる隙間を形成したもの等が挙げられる。
円筒状電極の周壁に多数の孔を設ける場合、孔の大きさは、円筒形状を保持できるとともに、噴射ノズルから噴射された水滴が通過可能であれば特に限定されないが、一般的には開口面積が0.01mm2〜625mm2程度である。
The cylindrical electrode provided with the opening as described above is not particularly limited. For example, a wire mesh, a punching metal formed into a cylindrical shape, a spiral having a linear material wound in a coil shape, and the like. The thing etc. which formed the clearance gap connected in the shape are mentioned.
When a large number of holes are provided in the peripheral wall of the cylindrical electrode, the size of the hole is not particularly limited as long as the cylindrical shape can be maintained and water droplets injected from the injection nozzle can pass through. Is about 0.01 mm 2 to 625 mm 2.

円筒状電極及び線状電極は、処理効率を考えると、1つの処理室内に2対以上備えていることが好ましい。
また、円筒状電極及び線状電極を2対以上設けるとともに、各円筒状電極と線状電極との間に生じる放電空間に1つの噴射ノズルから水滴を供給する場合、噴射ノズルの噴射軸方向と、各円筒状電極の中心軸とが平行になっていて、噴射ノズルの噴射軸から遠い位置に配置された円筒状電極の噴射ノズル側端面が噴射軸に近い位置に配置された円筒状電極の噴射ノズル側端面に比べ、噴射ノズルから遠い位置に設けられているように、複数の電極対を配置することが好ましい。
In consideration of processing efficiency, it is preferable that two or more pairs of cylindrical electrodes and linear electrodes are provided in one processing chamber.
In addition, when two or more pairs of cylindrical electrodes and linear electrodes are provided and water droplets are supplied from one spray nozzle to a discharge space generated between each cylindrical electrode and the linear electrode, The cylindrical electrode in which the central axis of each cylindrical electrode is parallel and the end surface on the injection nozzle side of the cylindrical electrode arranged at a position far from the injection axis of the injection nozzle is arranged at a position close to the injection axis. It is preferable to arrange a plurality of electrode pairs so as to be provided at a position far from the injection nozzle as compared with the end surface on the injection nozzle side.

円筒状電極と線状電極との間に印加される充電電圧は、ストリーマ放電が起きる電圧であれば特に限定されない。   The charging voltage applied between the cylindrical electrode and the linear electrode is not particularly limited as long as it is a voltage at which streamer discharge occurs.

さらに、本発明の処理方法においては、ミストを受けて貯める貯水槽と、この貯水槽に貯められた水を被処理水として被処理水ミスト供給手段に送るポンプとを設け、被処理水を循環させながら処理するようにしても構わない。   Further, in the treatment method of the present invention, a water storage tank that receives and stores mist, and a pump that sends the water stored in the water storage tank as treated water to the treated water mist supply means are provided to circulate the treated water. You may be made to process it.

また、本発明の処理方法においては、活性種の発生量を増やし、処理能力をあげるため、他の有機物に比べ、多量の空気を被処理水中に溶存させるために、被処理水中に空気を強制的に供給したり、処理室内の空気量を十分確保するために処理室内に外部から空気を強制的に供給することが好ましい。
被処理水中に空気を供給する方法としては、特に限定されないが、被処理水タンク内であらかじめバブリングしておく方法や、上記のような循環式のものにおいては、貯水槽内にバブリングする方法などが挙げられる。
Further, in the treatment method of the present invention, in order to increase the generation amount of active species and increase the treatment capacity, in order to dissolve a large amount of air in the treated water compared to other organic substances, the air is forced into the treated water. It is preferable to supply air from the outside or forcibly supply air from outside to ensure a sufficient amount of air in the processing chamber.
The method of supplying air into the water to be treated is not particularly limited, but a method of previously bubbling in the water to be treated water or a method of bubbling in the water storage tank in the above circulating type, etc. Is mentioned.

空気供給手段としては、特に限定されないが、被処理水中にバブリングする場合には、できるだけ細かい気泡にして槽内に供給することが好ましい。
細かい気泡にする方法としては、特に限定されないが、ABS樹脂、ポリメチルメタアクリレート、ポリエチレン、ポリプロピレン等の合成樹脂やセラミック等を焼結した微細気泡を発生する硬質多孔体を備える散気装置、超高速旋回せん断方式、ベンチュリー減圧発泡方式、高速攪拌方式、受槽内に配管した空気供給管の先端にマイクロバブル化ノズル(例えば、商品名ナノプラネット社M2型マイクロバブル発生装置)を設ける方法などが挙げられる。
Although it does not specifically limit as an air supply means, When bubbling in to-be-processed water, it is preferable to supply it in a tank as a bubble as fine as possible.
The method of making fine bubbles is not particularly limited, but is a diffuser equipped with a hard porous body that generates fine bubbles by sintering a synthetic resin such as ABS resin, polymethyl methacrylate, polyethylene, or polypropylene, or ceramic, and the like. High-speed swirl shear method, Venturi decompression foaming method, high-speed agitation method, and a method of installing a microbubble nozzle (for example, a product name Nano Planet M2 type microbubble generator) at the tip of the air supply pipe piped in the receiving tank Can be mentioned.

また、被処理水中にバブリングする場合の空気の供給量は、特に限定されないが、被処理水1m3あたり、500〜1000L/minが好ましい。因みに、他の有機物の場合、500L/min未満で十分である。
一方、処理室内に空気を供給する場合の空気の供給量は、特に限定されないが、500〜2000L/minが好ましい。因みに、他の有機物の場合、500L/min未満で十分である。
なお、被処理水中への空気の供給と、処理室内への空気の供給は、いずれか一方のみ行うようにしても構わない。
Moreover, the supply amount of air when bubbling into the water to be treated is not particularly limited, but is preferably 500 to 1000 L / min per 1 m3 of the water to be treated. Incidentally, in the case of other organic substances, less than 500 L / min is sufficient.
On the other hand, the supply amount of air when supplying air into the processing chamber is not particularly limited, but is preferably 500 to 2000 L / min. Incidentally, in the case of other organic substances, less than 500 L / min is sufficient.
Note that only one of the supply of air into the water to be treated and the supply of air into the treatment chamber may be performed.

上記のように、本発明の処理方法は、被処理水中に含まれるジオキサンを分解する水処理方法であって、円筒状電極とこの円筒状電極の円筒内を臨むように配置された線状電極との間に高電圧を印加することによって生じる放電空間内に被処理水を粒径が1500μm以下の水滴からなるミスト状態にして供給するようにしたので、円柱状に長い放電空間を形成することができるとともに、この円柱状に長い放電空間内に1500μm以下と細かい粒径の水滴が長い時間放電空間内に曝される。
したがって、放電によって発生するオゾン、OHラジカル、Oラジカル等の活性種によって被処理水ミストの水滴中のジオキサンが効率よく分解される。
As described above, the treatment method of the present invention is a water treatment method for decomposing dioxane contained in water to be treated, and is a cylindrical electrode and a linear electrode arranged so as to face the inside of the cylindrical electrode. Since the water to be treated is supplied in a mist state composed of water droplets having a particle size of 1500 μm or less in the discharge space generated by applying a high voltage between them, a long discharge space is formed in a cylindrical shape. In addition, water droplets having a fine particle size of 1500 μm or less are exposed to the discharge space for a long time in the cylindrical long discharge space.
Accordingly, dioxane in the water droplets of the water mist to be treated is efficiently decomposed by active species such as ozone, OH radicals and O radicals generated by discharge.

また、被処理水ミスト供給手段として、噴射ノズルを用い、この噴射ノズルから噴射される被処理水ミストの最外縁が放電空間の最外縁に沿うように噴射ノズルの噴角を調整すれば、被処理水を円筒状電極の径に併せて効率的に放電空間に供給することができ、より効率的に処理を行うことができる。   In addition, if a spray nozzle is used as the treated water mist supply means and the spray angle of the spray nozzle is adjusted so that the outermost edge of the treated water mist sprayed from the spray nozzle is along the outermost edge of the discharge space, The treated water can be efficiently supplied to the discharge space in accordance with the diameter of the cylindrical electrode, and the treatment can be performed more efficiently.

また、円筒状電極が被処理水ミストを構成する水滴が通過可能な大きさの多数の孔を壁面に備えていれば、円筒状電極の側方から被処理水ミストを噴霧しても放電空間内に水滴を供給することができる。   In addition, if the cylindrical electrode is provided with a large number of holes on the wall surface through which water droplets constituting the treated water mist can pass, the discharge space can be discharged even if the treated water mist is sprayed from the side of the cylindrical electrode. Water droplets can be supplied inside.

1つの処理室内に円筒状電極及び線状電極を2対以上備えている構成とすれば、より効率よく処理を行うことができる。
また、円筒状電極及び線状電極を2対以上、円筒状電極の中心軸を平行にして配置した場合、上記のように円筒状電極が被処理水ミストを構成する水滴が通過可能な大きさの多数の孔や開口を周壁に備えている構成であれば、円筒状電極の内側に一旦入った水滴が孔を介して外側に出て、隣接する円筒状電極内に入る。したがって、効率よく処理を行うことができる。
If two or more pairs of cylindrical electrodes and linear electrodes are provided in one processing chamber, processing can be performed more efficiently.
In addition, when two or more pairs of cylindrical electrodes and linear electrodes are arranged and the central axes of the cylindrical electrodes are arranged in parallel, the cylindrical electrodes are large enough to pass the water droplets constituting the water mist to be treated as described above. If the peripheral wall is provided with a large number of holes and openings, water drops once inside the cylindrical electrode come out through the holes and enter the adjacent cylindrical electrode. Therefore, processing can be performed efficiently.

また、上記のように円筒状電極及び線状電極を2対以上備えている構成の場合、噴射ノズルの噴射軸方向と、各円筒状電極の中心軸とが平行になっていて、噴射ノズルの噴射軸から遠い位置に配置された円筒状電極の噴射ノズル側端面が噴射軸に近い位置に配置された円筒状電極の噴射ノズル側端面に比べ、噴射ノズルから遠い位置に設けられているように円筒状電極を配置すれば、放電空間へ無駄なく、被処理水ミストを供給することができ、より効率よく処理できる。   Further, in the case of the configuration including two or more pairs of cylindrical electrodes and linear electrodes as described above, the injection axis direction of the injection nozzle and the central axis of each cylindrical electrode are parallel to each other, The injection nozzle side end face of the cylindrical electrode arranged at a position far from the injection axis is arranged at a position farther from the injection nozzle than the injection nozzle side end face of the cylindrical electrode arranged at a position close to the injection axis. If a cylindrical electrode is arrange | positioned, to-be-processed water mist can be supplied to discharge space without waste, and it can process more efficiently.

さらに、被処理水ミスト中の水滴を受けて貯める貯水槽と、この貯水槽に貯められた水を被処理水として被処理水ミスト供給手段に送るポンプとからなる被処理水循環構造を備えていれば、被処理水中の有機物の分解率を向上させることができる。   Furthermore, a water-reserving water circulation structure comprising a water storage tank that receives and stores water droplets in the water-to-be-treated mist and a pump that sends the water stored in the water storage tank to the water-to-be-treated mist supply means as the water to be treated. For example, the decomposition rate of the organic matter in the water to be treated can be improved.

本発明の処理方法に用いる水処理装置の第1の実施の形態の断面図である。It is sectional drawing of 1st Embodiment of the water treatment apparatus used for the processing method of this invention. 本発明の処理方法に用いる水処理装置の第2の実施の形態を模式的にあらわした図である。It is the figure which represented typically 2nd Embodiment of the water treatment apparatus used for the processing method of this invention. 本発明の処理方法に用いる水処理装置の第3の実施の形態を模式的にあらわした図である。It is the figure which represented typically 3rd Embodiment of the water treatment apparatus used for the processing method of this invention. 本発明の処理方法に用いる水処理装置の第4の実施の形態を模式的にあらわした図である。It is the figure which represented typically 4th Embodiment of the water treatment apparatus used for the processing method of this invention. 本発明の処理方法に用いる水処理装置の第5の実施の形態を模式的にあらわした図である。It is the figure which represented typically 5th Embodiment of the water treatment apparatus used for the processing method of this invention. 本発明の処理方法に用いる本発明にかかる水処理装置の第6の実施の形態の円筒状電極と線状電極を上面側から見た状態を模式的にあらわした図である。It is the figure which represented typically the state which looked at the cylindrical electrode and linear electrode of 6th Embodiment of the water treatment apparatus concerning this invention used for the processing method of this invention from the upper surface side. 比較例1で実施した1,4-ジオキサン含有水処理に用いたオゾン単体処理の水処理装置を模式的にあらわした図である。It is the figure which represented typically the water treatment apparatus of the ozone simple substance process used for the 1, 4- dioxane containing water treatment implemented in the comparative example 1. 実施例1と比較例1で実施した1,4-ジオキサン含有水処理の処理時間と残存1,4-ジオキサン濃度を示した図である。It is the figure which showed the processing time of 1, 4- dioxane containing water processing implemented in Example 1 and Comparative Example 1, and the residual 1, 4- dioxane density | concentration.

以下に、本発明を、その実施の形態をあらわす図面を参照しつつ詳しく説明する。
図1は、本発明の処理方法に用いる水処理装置の第1の実施の形態をあらわしている。
Hereinafter, the present invention will be described in detail with reference to the drawings showing embodiments thereof.
FIG. 1 shows a first embodiment of a water treatment apparatus used in the treatment method of the present invention.

図1に示すように、この水処理装置1aは、処理室2と、円筒状電極3と、線状電極4と、被処理水タンク5と、ポンプ6と、噴射ノズルである噴射ノズル7と、被処理水供給ホース71と、高圧電源であるパルスパワー発生装置8と、被処理水タンク収容ボックス9とを備えている。
処理室2は、例えば、アクリル樹脂等の絶縁材料で形成され、円筒状をした処理室本体21と、処理室本体21の下端を、通水孔22a部分を除いて閉鎖するように設けられた下部蓋部22と、処理室本体21の上端を、噴射ノズル設置孔23a部分を除いて閉鎖するように設けられた上部蓋部23とを備え、下部蓋部22が被処理水タンク収容ボックス9の開口部91を塞いだ状態で被処理水タンク収容ボックス9の開口部91周縁に受けられている。
As shown in FIG. 1, the water treatment apparatus 1a includes a treatment chamber 2, a cylindrical electrode 3, a linear electrode 4, a water tank 5 to be treated, a pump 6, and an injection nozzle 7 that is an injection nozzle. The water supply hose 71 to be treated, the pulse power generator 8 which is a high voltage power source, and the water tank storage box 9 to be treated are provided.
The processing chamber 2 is formed of, for example, an insulating material such as acrylic resin, and is provided so as to close the cylindrical processing chamber main body 21 and the lower end of the processing chamber main body 21 except for the water passage hole 22a. The lower cover part 22 and the upper cover part 23 provided so that the upper end of the process chamber main body 21 may be closed except the injection nozzle installation hole 23a part are provided, and the lower cover part 22 is the to-be-processed water tank accommodation box 9. The opening 91 of the to-be-processed water tank storage box 9 is received by the periphery of the opening 91 in a state in which the opening 91 is closed.

円筒状電極3は、例えば、ステンレス鋼製の1〜100メッシュの厚さ0.35mmの網を円筒状に加工することによって得られ、外径が処理室本体21の内径より少し小さくなっている。
線状電極4は、例えば、直径0.28mmのステンレス鋼線で形成され、円筒状電極3の中心軸に沿うように設けられている。
The cylindrical electrode 3 is obtained by, for example, processing a stainless steel 1 to 100 mesh 0.35 mm thick net into a cylindrical shape, and the outer diameter is slightly smaller than the inner diameter of the processing chamber body 21. .
The linear electrode 4 is formed of, for example, a stainless steel wire having a diameter of 0.28 mm, and is provided along the central axis of the cylindrical electrode 3.

被処理水タンク5は、下部蓋部22の通水孔22aを下方から臨むように処理水タンク収容ボックス9内に収容されている。
ポンプ6は、処理水タンク収容ボックス9内で被処理水タンク5に隣接して設けられ、被処理水タンク5内の被処理水Wを、被処理水供給ホース71を介して噴射ノズル7に送るようになっている。
The treated water tank 5 is accommodated in the treated water tank accommodation box 9 so that the water passage hole 22a of the lower lid portion 22 faces from below.
The pump 6 is provided adjacent to the treated water tank 5 in the treated water tank storage box 9, and the treated water W in the treated water tank 5 is supplied to the injection nozzle 7 via the treated water supply hose 71. To send.

噴射ノズル7は、被処理水供給ホース71を介して送られてきた被処理水を粒径が1500μm以下の水滴からなるミスト状態にして円筒状電極3の上部開口に向かって噴射するようになっている。
また、噴射ノズル7の噴角は、噴射される被処理水ミストMの最大広がり部で放電空間の最外縁である円筒状電極3の内壁面に沿うような角度に調整されている。
The spray nozzle 7 sprays the treated water sent via the treated water supply hose 71 in a mist state composed of water droplets having a particle size of 1500 μm or less toward the upper opening of the cylindrical electrode 3. ing.
Moreover, the injection angle of the injection nozzle 7 is adjusted to an angle along the inner wall surface of the cylindrical electrode 3 that is the outermost edge of the discharge space at the maximum spread portion of the water Mist M to be injected.

パルスパワー発生装置8は、円筒状電極3が陰極、線状電極4が陽極となるように円筒状電極3及び線状電極4に接続され、円筒状電極3と線状電極4との間にパルス状に高電圧を印加して円筒状電極3と線状電極4との間でストリーマ放電を起こすようになっている。 The pulse power generator 8 is connected to the cylindrical electrode 3 and the linear electrode 4 so that the cylindrical electrode 3 is a cathode and the linear electrode 4 is an anode, and between the cylindrical electrode 3 and the linear electrode 4. A high voltage is applied in a pulse shape to cause streamer discharge between the cylindrical electrode 3 and the linear electrode 4.

そして、本発明の処理方法は、上記被処理水タンク5にジオキサンを含む被処理水Wを仕込むとともに、パルスパワー発生装置8によって、円筒状電極3と線状電極4との間に、高電圧をパルス状に印加し、円筒状電極3内に上下方向に円柱状となったストリーマ放電空間を形成する。
そして、ポンプ6を駆動させて、被処理水タンク5内の被処理水Wを、ホース71を介して噴射ノズル7に送り、円筒状電極3の上方から円筒状電極3の中心軸方向に向かって噴射することによって被処理水Wを循環しながら処理するようになっている。
In the treatment method of the present invention, treated water W containing dioxane is charged into the treated water tank 5 and a high voltage is applied between the cylindrical electrode 3 and the linear electrode 4 by the pulse power generator 8. Is applied in a pulse shape to form a streamer discharge space in the cylindrical electrode 3 that is cylindrical in the vertical direction.
Then, the pump 6 is driven so that the water to be treated W in the water tank 5 to be treated is sent to the spray nozzle 7 through the hose 71 and directed from above the cylindrical electrode 3 toward the central axis of the cylindrical electrode 3. The water to be treated W is treated while being circulated.

すなわち、ストリーマ放電によって、オゾン、OHラジカル、Oラジカル等の活性種が放電空間内に発生し、噴射ノズル7から噴射された被処理水ミストM中の水滴が円筒状をした放電空間内を落下していく間にこれら活性種に接触し、各水滴中のジオキサンが効率よく酸化分解処理される。   That is, active species such as ozone, OH radicals, and O radicals are generated in the discharge space by the streamer discharge, and water droplets in the water mist M to be treated, which is sprayed from the spray nozzle 7 fall in the cylindrical discharge space. In the meantime, these active species are contacted and dioxane in each water droplet is efficiently oxidized and decomposed.

図2は、本発明の処理方法に用いる水処理装置の第2の実施の形態をあらわしている。
図2に示すように、この水処理装置1bは、同じサイズの円筒状電極3及び線状電極4が4対処理室2内で水平方向に並ぶように配置されている以外は、上記水処理装置1aと同様になっている。
FIG. 2 shows a second embodiment of the water treatment apparatus used in the treatment method of the present invention.
As shown in FIG. 2, this water treatment apparatus 1 b is the same as the above water treatment except that the cylindrical electrode 3 and the linear electrode 4 of the same size are arranged in the horizontal direction in the 4-pair treatment chamber 2. It is the same as the apparatus 1a.

図3は、本発明の処理方法に用いる水処理装置の第3の実施の形態をあらわしている。
図3に示すように、この水処理装置1cは、噴射ノズル7が円筒状電極3の下方に設けられ、被処理水ミストを垂直上向き噴射するようにした以外は、上記水処理装置1bと同様になっている。
FIG. 3 shows a third embodiment of the water treatment apparatus used in the treatment method of the present invention.
As shown in FIG. 3, the water treatment apparatus 1c is the same as the water treatment apparatus 1b except that the spray nozzle 7 is provided below the cylindrical electrode 3 and the water mist to be treated is sprayed vertically upward. It has become.

この水処理装置1cによれば、被処理水ミストMが、放電空間の下側から放電空間に向かって噴射されるので、被処理水ミストM中の各水滴が一旦上昇した後、その重力により下降することにより、放電空間での滞留時間が増加し、より効率的に処理することができる。   According to the water treatment apparatus 1c, the water mist M to be treated is sprayed from the lower side of the discharge space toward the discharge space, so that each water droplet in the water mist M to be treated once rises, and then due to its gravity. By descending, the residence time in the discharge space is increased, and the treatment can be performed more efficiently.

図4は、本発明の処理方法に用いる水処理装置の第4の実施の形態をあらわしている。
図4に示すように、この水処理装置1dは、噴射ノズル7を円筒状電極の側方に設け、被処理水ミストを円筒状電極3の側面から水平方向に噴射するようにした以外は、上記水処理装置1aと同様になっている。
FIG. 4 shows a fourth embodiment of the water treatment apparatus used in the treatment method of the present invention.
As shown in FIG. 4, this water treatment apparatus 1 d is provided with an injection nozzle 7 on the side of the cylindrical electrode and injects water to be treated from the side surface of the cylindrical electrode 3 in the horizontal direction. It is the same as that of the said water treatment apparatus 1a.

図5は、本発明の処理方法に用いる水処理装置の第5の実施の形態をあらわしている。
図5に示すように、この水処理装置1eは、噴射ノズル7の噴射軸Cに近い側の2本の円筒状電極3aより、遠い側の2本の円筒状電極3bの中心軸方向の長さが短くなっているとともに、短い円筒状電極3bの上端面を長い円筒状電極3aの上端面より噴射ノズル7から離れた位置、すなわち、下方に位置するように配置し、噴射ノズル7から噴射された被処理水ミストMの最外縁が短い円筒状電極3b内に確実に納まるように調整した以外は、上記水処理装置1bと同様になっている。
FIG. 5 shows a fifth embodiment of the water treatment apparatus used in the treatment method of the present invention.
As shown in FIG. 5, the water treatment device 1 e has a length in the central axis direction of two cylindrical electrodes 3 b farther than the two cylindrical electrodes 3 a closer to the injection axis C of the injection nozzle 7. And the upper end surface of the short cylindrical electrode 3b is arranged at a position away from the injection nozzle 7 from the upper end surface of the long cylindrical electrode 3a, that is, positioned below, and is injected from the injection nozzle 7. The water treatment apparatus 1b is the same as the water treatment apparatus 1b except that the outermost edge of the treated water mist M is adjusted so as to be surely stored in the short cylindrical electrode 3b.

図6は、本発明の処理方法に用いる水処理装置の第6の実施の形態をあらわしている。
図6に示すように、この水処理装置1fは、円筒状電極3及び線状電極4からなる電極対を6対備え、1つの電極対を線状電極4が処理室本体21の中心軸に一致するように配置し、他の5つの電極対をその周囲を放射状に囲むように同一円周上に等間隔で並ぶように配置した以外は、上記水処理装置1aと同様になっている。
FIG. 6 shows a sixth embodiment of the water treatment apparatus used in the treatment method of the present invention.
As shown in FIG. 6, the water treatment device 1 f includes six electrode pairs each formed of a cylindrical electrode 3 and a linear electrode 4, and the linear electrode 4 serves as a central axis of the processing chamber body 21. The water treatment apparatus 1a is the same as the water treatment apparatus 1a except that the other five electrode pairs are arranged at equal intervals on the same circumference so as to radially surround the periphery of the other electrode pairs.

なお、本発明は、上記の実施の形態に限定されない。例えば、上記の実施の形態では、被処理水中には、ジオキサン以外の有機物が含まれていても構わない。
また、上記の実施の形態では、ジオキサンを含む被処理水を被処理水タンクに貯めて被処理水を循環させて処理するようにしていたが、1つの処理室を水滴化して1度通過させるだけでジオキサンを規定濃度以下することができれば、循環させる必要がない。また処理室を多段に設け、1つの処理水で処理された処理水を下流の処理室でさらに処理するようにしてよい。
上記第6の実施の形態の水処理装では、1つの電極対の周囲を5つの電極対で囲む2重構造であったが、さらに外側に多くの電極対を3重、4重に配置するようにしても構わないし、第5の実施の形態の水処理装置のように容器本体の外側に配置された円筒状電極の上端面の位置を内側に配置された円筒状電極の上端面より下方に設けるようにしても構わない。
The present invention is not limited to the above embodiment. For example, in the above embodiment, the water to be treated may contain organic substances other than dioxane.
In the above embodiment, the water to be treated containing dioxane is stored in the water tank to be treated and is circulated to be treated. However, the water is made to drop through one treatment chamber and passed once. If dioxane can be reduced to a specified concentration or less, it is not necessary to circulate it. Further, the treatment chambers may be provided in multiple stages, and the treatment water treated with one treatment water may be further treated in the downstream treatment chamber.
The water treatment device of the sixth embodiment has a double structure in which the periphery of one electrode pair is surrounded by five electrode pairs, but a large number of electrode pairs are further arranged in triples and quadruples on the outside. The upper end surface of the cylindrical electrode disposed on the outer side of the container main body may be positioned below the upper end surface of the cylindrical electrode disposed on the inner side as in the water treatment apparatus of the fifth embodiment. You may make it provide in.

以下に、本発明の具体的な実施例を比較例と対比させて説明する。
(実施例1)
貯水槽に空気配管に繋がるマイクロバブルノズルを設けるとともに、処理室内に空気を供給する空気配管を設けた以外は、図1に示す水処理装置1aを用い、以下の実験条件で精製水に1,4−ジオキサンが約100ppmの濃度で含まれる被処理水を水処理し、処理時間0時間、1時間、2時間、4時間にサンプリングしジオキサン濃度をガスクロマト質量分析計(島津製作所社製GC-MS)を用いて測定した。
〔実験条件〕
被処理水量:7リットル
被処理水の噴射速度(循環速度):14L/分
充電電圧:27kV
放電回数:100回/秒
円筒状電極:4メッシュ、線径1.0mm、開孔率80%、平織ステンレス鋼製金網
円筒状電極の内径:40mm
円筒状電極の長さ(中心軸方向の長さ):500mm
線状電極:線径0.28mmのステンレス鋼線
被処理水ミストの粒径:750〜970μm
噴射ノズルの噴角:30°
噴射ノズルから円筒状電極までの距離:被処理水ミストの最外縁が最外部に位置する円筒状電極外縁の上端になるように調整した。
貯水槽への空気供給量:被処理水量1m3 あたり700L/minに調整した。
処理室への空気供給量:被処理水量1m3 あたり1000L/minに調整した。
Specific examples of the present invention will be described below in comparison with comparative examples.
Example 1
Except for providing the microbubble nozzle connected to the air pipe in the water storage tank and providing the air pipe for supplying air into the treatment chamber, the water treatment apparatus 1a shown in FIG. Water to be treated containing 4-dioxane at a concentration of about 100 ppm is sampled at a treatment time of 0 hour, 1 hour, 2 hours, and 4 hours, and the concentration of dioxane is measured using a gas chromatograph mass spectrometer (GC MS).
[Experimental conditions]
Water to be treated: 7 liters Water to be treated (circulation speed): 14 L / min Charging voltage: 27 kV
Number of discharges: 100 times / second Cylindrical electrode: 4 mesh, wire diameter 1.0 mm, aperture ratio 80%, inner diameter of plain mesh stainless steel wire mesh cylindrical electrode: 40 mm
Length of cylindrical electrode (length in the central axis direction): 500 mm
Linear electrode: diameter of stainless steel wire treated water mist having a wire diameter of 0.28 mm: 750 to 970 μm
Injection angle of injection nozzle: 30 °
Distance from spray nozzle to cylindrical electrode: The outermost edge of the water mist to be treated was adjusted to be the upper end of the outer edge of the cylindrical electrode located at the outermost part.
Air supply amount to water storage tank: adjusted to 700 L / min per 1 m3 of water to be treated.
Air supply amount to treatment chamber: adjusted to 1000 L / min per 1 m3 of water to be treated.

(比較例1)
図7に示す水処理装置100を用い、以下の実験条件で精製水に1,4−ジオキサンが約100ppmの濃度で含まれる被処理水を水処理し、処理時間0時間、1時間、2時間、4時間にサンプリングし、ジオキサン濃度をガスクロマト質量分析計(島津製作所社製GC-MS)を用いて測定した。
〔実験条件〕
被処理水量:7リットル
被処理水の循環速度:14L/分
オゾン発生装置:エコデザイン社製
酸素ガス供給流量:10L/min
発生オゾンガス流量:10L/min
発生オゾンガス濃度:100g/Nm3(50000ppm)
噴射ノズル:ナノバブルノズル
(Comparative Example 1)
Using the water treatment apparatus 100 shown in FIG. 7, treated water containing 1,4-dioxane at a concentration of about 100 ppm in purified water under the following experimental conditions is treated with water, and the treatment time is 0 hours, 1 hour, 2 hours. Sampling was performed for 4 hours, and the dioxane concentration was measured using a gas chromatograph mass spectrometer (GC-MS manufactured by Shimadzu Corporation).
[Experimental conditions]
Amount of water to be treated: 7 liters Circulation speed of water to be treated: 14 L / min Ozone generator: Oxygen gas supply flow rate manufactured by Ecodesign: 10 L / min
Generated ozone gas flow rate: 10L / min
Generated ozone gas concentration: 100g / Nm3 (50000ppm)
Injection nozzle: Nano bubble nozzle

上記実施例1および比較例1で測定した各処理時間ごとの1,4−ジオキサン濃度をプロットし、処理時間と1,4−ジオキサン濃度の関係を求め、対比して図8に示す。なお、図8中、縦軸が1,4−ジオキサンの濃度(mg/L)、横軸が処理時間(時間)である。
図8に示すように、本発明の処理方法(実施例1)が、オゾン処理法(比較例1)に比べ、ジオキサンを短時間で効率よく分解処理できることがわかる。
また、本発明の処理方法によれば、さらに過酸化水素水添加装置や紫外線照射ランプ等の付加設備を設けるなどせずに十分な分解処理効果を得られ、設備コストの低減も図れる。
The 1,4-dioxane concentration for each treatment time measured in Example 1 and Comparative Example 1 is plotted, the relationship between the treatment time and 1,4-dioxane concentration is determined, and shown in FIG. In FIG. 8, the vertical axis represents 1,4-dioxane concentration (mg / L), and the horizontal axis represents treatment time (hours).
As shown in FIG. 8, it can be seen that the treatment method of the present invention (Example 1) can efficiently decompose dioxane in a shorter time than the ozone treatment method (Comparative Example 1).
In addition, according to the treatment method of the present invention, a sufficient decomposition treatment effect can be obtained without providing additional equipment such as a hydrogen peroxide solution addition device and an ultraviolet irradiation lamp, and the equipment cost can be reduced.

本発明の処理方法は、特に限定されないが、例えば、ジオキサン等の難分解性物質を含む排水の浄化、汚染水の殺菌などに用いることができる。   Although the processing method of this invention is not specifically limited, For example, it can use for the purification | cleaning of the waste_water | drain containing a hardly decomposable substance, such as a dioxane, and the disinfection of contaminated water.

1a,1b,1c,1d,1e,1f 水処理装置
2 処理室
21 処理室本体
3,3a,3b 円筒状電極
4 線状電極
5 被処理水タンク
6 ポンプ
7 噴射ノズル
8 パルスパワー発生装置(高圧電源)
W 被処理水
M 被処理水ミスト
1a, 1b, 1c, 1d, 1e, 1f Water treatment device 2 Treatment chamber 21 Treatment chamber body 3, 3a, 3b Cylindrical electrode 4 Linear electrode 5 Water tank 6 Pump 7 Injection nozzle 8 Pulse power generator (high pressure) Power supply)
W Treated water M Treated water mist

Claims (7)

被処理水中に含まれるジオキサンを分解する水処理方法であって、円筒状電極とこの円筒状電極の円筒内を臨むように配置された線状電極との間に高電圧を印加することによって生じる放電空間内に被処理水を粒径が1500μm以下の水滴からなるミスト状態にして供給することを特徴とする被処理水中のジオキサン分解処理方法。   A water treatment method for decomposing dioxane contained in water to be treated, which is generated by applying a high voltage between a cylindrical electrode and a linear electrode arranged to face the inside of the cylindrical electrode. A method for decomposing dioxane in water to be treated, characterized in that the water to be treated is supplied into the discharge space in a mist state comprising water droplets having a particle size of 1500 μm or less. 噴射ノズルから噴射して被処理水をミスト状態にする請求項1に記載の被処理水中のジオキサン分解処理方法。   The dioxane decomposition | disassembly method in the to-be-processed water of Claim 1 which injects from an injection nozzle and makes to-be-processed water a mist state. 噴射ノズルから噴射される被処理水ミストの最外縁を放電空間の最外縁に沿うように噴射ノズルの噴角を調整する請求項2に記載の被処理水中のジオキサン分解処理方法。   The dioxane decomposition treatment method of to-be-processed water of Claim 2 which adjusts the injection angle of an injection nozzle so that the outermost edge of the to-be-processed water mist injected from an injection nozzle may follow the outermost edge of discharge space. 円筒状電極が被処理水ミストを構成する水滴が通過可能な大きさの多数の孔を壁面に備えている請求項1〜請求項3のいずれかに記載の被処理水中のジオキサン分解処理方法。   The dioxane decomposition treatment method in to-be-processed water in any one of Claims 1-3 which equips a wall surface with many holes of the magnitude | size which the cylindrical electrode can pass the water droplet which comprises to-be-processed water mist. 円筒状電極の開孔率が50%以上である請求項1〜請求項4のいずれかに記載の被処理水中のジオキサン分解処理方法。   The method for decomposing dioxane in water to be treated according to any one of claims 1 to 4, wherein the open area ratio of the cylindrical electrode is 50% or more. 1つの処理室内に円筒状電極及び線状電極を複数対設けるとともに、1つの噴射ノズルから各対の円筒状電極と線状電極との間に生じる放電空間内に被処理水ミストを供給する請求項1〜請求項5のいずれかに記載の被処理水中のジオキサン分解処理方法。   A plurality of pairs of cylindrical electrodes and linear electrodes are provided in one processing chamber, and water to be treated is supplied from a single spray nozzle into a discharge space generated between each pair of cylindrical electrodes and linear electrodes. The dioxane decomposition | disassembly processing method in the to-be-processed water in any one of Claims 1-5. 複数対の円筒状電極及び線状電極を、各円筒状電極の中心軸が噴射ノズルの噴射軸方向と平行になるように配置し、噴射ノズルの噴射軸から遠い位置に配置された円筒状電極の噴射ノズル側端面が噴射軸に近い位置に配置された円筒状電極の噴射ノズル側端面に比べ、噴射ノズルから遠い位置に設けられている請求項6に記載の被処理水中のジオキサン分解処理方法。   A plurality of pairs of cylindrical electrodes and linear electrodes are arranged such that the central axis of each cylindrical electrode is parallel to the injection axis direction of the injection nozzle, and the cylindrical electrodes are arranged at positions far from the injection axis of the injection nozzle 7. The method for decomposing dioxane in water to be treated according to claim 6, wherein the injection nozzle side end face is provided at a position farther from the injection nozzle than the injection nozzle side end face of the cylindrical electrode disposed at a position close to the injection axis. .
JP2012273348A 2012-12-14 2012-12-14 Method for decomposing dioxane in water to be treated Pending JP2014117639A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012273348A JP2014117639A (en) 2012-12-14 2012-12-14 Method for decomposing dioxane in water to be treated

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012273348A JP2014117639A (en) 2012-12-14 2012-12-14 Method for decomposing dioxane in water to be treated

Publications (1)

Publication Number Publication Date
JP2014117639A true JP2014117639A (en) 2014-06-30

Family

ID=51172988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012273348A Pending JP2014117639A (en) 2012-12-14 2012-12-14 Method for decomposing dioxane in water to be treated

Country Status (1)

Country Link
JP (1) JP2014117639A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6430076B1 (en) * 2018-03-14 2018-11-28 三菱電機株式会社 Water treatment equipment
WO2019175998A1 (en) * 2018-03-14 2019-09-19 三菱電機株式会社 Water treatment apparatus and water treatment method
WO2023167354A1 (en) * 2022-03-02 2023-09-07 (주)디케이에코팜 Plasma sterilization and circulation type nutrient solution supply system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6430076B1 (en) * 2018-03-14 2018-11-28 三菱電機株式会社 Water treatment equipment
WO2019175997A1 (en) * 2018-03-14 2019-09-19 三菱電機株式会社 Water treatment device
WO2019175998A1 (en) * 2018-03-14 2019-09-19 三菱電機株式会社 Water treatment apparatus and water treatment method
CN111886204A (en) * 2018-03-14 2020-11-03 三菱电机株式会社 Water treatment device
WO2023167354A1 (en) * 2022-03-02 2023-09-07 (주)디케이에코팜 Plasma sterilization and circulation type nutrient solution supply system

Similar Documents

Publication Publication Date Title
US8168129B2 (en) Apparatus and method for purification and disinfection of liquid, solid or gaseous substances
US20070287917A1 (en) Method for Collapsing Microbubbles
US9409800B2 (en) Electric arc for aqueous fluid treatment
JP2009241055A (en) Water treating apparatus
JP2003320373A (en) Treating device by radical
JP2014117639A (en) Method for decomposing dioxane in water to be treated
JP5654946B2 (en) Water treatment equipment
KR101303832B1 (en) Discharging system of high-voltage for removing scum
JP2014159008A (en) Water treatment apparatus
JP4934119B2 (en) Water treatment equipment
JP5534846B2 (en) Water treatment equipment
JP6157763B2 (en) Water treatment apparatus and water treatment method
JP2011072905A (en) Water treatment system
JP2011067790A (en) Water treatment apparatus
KR102268724B1 (en) high density fusion plasma sterilization and deodorizer
KR102146200B1 (en) high density fusion plasma sterilization and deodorizer
KR102315114B1 (en) Plasma reactor for water treatment
JP2010207718A (en) Water treatment apparatus
JP6722903B2 (en) Space reformer
KR101409654B1 (en) The water treatment using plasma discharge device
KR102315245B1 (en) high density fusion plasma sterilization and deodorizer
JP2011251275A (en) Water treatment method and water treatment apparatus used for water treatment method
CN111886204A (en) Water treatment device
KR102035726B1 (en) Gas liquid contact device for water treatment
WO2016182548A1 (en) Electric arc for aqueous fluid treatment